llvm-project/llvm/lib/Target/AMDGPU/AMDGPUSubtarget.h

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1434 lines
37 KiB
C
Raw Normal View History

//=====-- AMDGPUSubtarget.h - Define Subtarget for AMDGPU ------*- C++ -*-====//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//==-----------------------------------------------------------------------===//
//
/// \file
/// AMDGPU specific subclass of TargetSubtarget.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_AMDGPU_AMDGPUSUBTARGET_H
#define LLVM_LIB_TARGET_AMDGPU_AMDGPUSUBTARGET_H
#include "AMDGPU.h"
#include "AMDGPUCallLowering.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "R600FrameLowering.h"
#include "R600ISelLowering.h"
#include "R600InstrInfo.h"
#include "SIFrameLowering.h"
#include "SIISelLowering.h"
#include "SIInstrInfo.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "llvm/ADT/Triple.h"
#include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
#include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/SelectionDAGTargetInfo.h"
#include "llvm/MC/MCInstrItineraries.h"
#include "llvm/Support/MathExtras.h"
#include <cassert>
#include <cstdint>
#include <memory>
#include <utility>
#define GET_SUBTARGETINFO_HEADER
#include "AMDGPUGenSubtargetInfo.inc"
#define GET_SUBTARGETINFO_HEADER
#include "R600GenSubtargetInfo.inc"
namespace llvm {
class StringRef;
class AMDGPUSubtarget {
public:
enum Generation {
INVALID = 0,
R600 = 1,
R700 = 2,
EVERGREEN = 3,
NORTHERN_ISLANDS = 4,
SOUTHERN_ISLANDS = 5,
SEA_ISLANDS = 6,
VOLCANIC_ISLANDS = 7,
GFX9 = 8,
GFX10 = 9
};
private:
Triple TargetTriple;
protected:
bool Has16BitInsts;
bool HasMadMixInsts;
bool HasMadMacF32Insts;
bool HasDsSrc2Insts;
bool HasSDWA;
bool HasVOP3PInsts;
bool HasMulI24;
bool HasMulU24;
bool HasInv2PiInlineImm;
bool HasFminFmaxLegacy;
bool EnablePromoteAlloca;
bool HasTrigReducedRange;
unsigned MaxWavesPerEU;
unsigned LocalMemorySize;
char WavefrontSizeLog2;
public:
AMDGPUSubtarget(const Triple &TT);
static const AMDGPUSubtarget &get(const MachineFunction &MF);
static const AMDGPUSubtarget &get(const TargetMachine &TM,
const Function &F);
/// \returns Default range flat work group size for a calling convention.
std::pair<unsigned, unsigned> getDefaultFlatWorkGroupSize(CallingConv::ID CC) const;
/// \returns Subtarget's default pair of minimum/maximum flat work group sizes
/// for function \p F, or minimum/maximum flat work group sizes explicitly
/// requested using "amdgpu-flat-work-group-size" attribute attached to
/// function \p F.
///
/// \returns Subtarget's default values if explicitly requested values cannot
/// be converted to integer, or violate subtarget's specifications.
std::pair<unsigned, unsigned> getFlatWorkGroupSizes(const Function &F) const;
/// \returns Subtarget's default pair of minimum/maximum number of waves per
/// execution unit for function \p F, or minimum/maximum number of waves per
/// execution unit explicitly requested using "amdgpu-waves-per-eu" attribute
/// attached to function \p F.
///
/// \returns Subtarget's default values if explicitly requested values cannot
/// be converted to integer, violate subtarget's specifications, or are not
/// compatible with minimum/maximum number of waves limited by flat work group
/// size, register usage, and/or lds usage.
std::pair<unsigned, unsigned> getWavesPerEU(const Function &F) const;
/// Return the amount of LDS that can be used that will not restrict the
/// occupancy lower than WaveCount.
unsigned getMaxLocalMemSizeWithWaveCount(unsigned WaveCount,
const Function &) const;
/// Inverse of getMaxLocalMemWithWaveCount. Return the maximum wavecount if
/// the given LDS memory size is the only constraint.
unsigned getOccupancyWithLocalMemSize(uint32_t Bytes, const Function &) const;
unsigned getOccupancyWithLocalMemSize(const MachineFunction &MF) const;
bool isAmdHsaOS() const {
return TargetTriple.getOS() == Triple::AMDHSA;
}
bool isAmdPalOS() const {
return TargetTriple.getOS() == Triple::AMDPAL;
}
bool isMesa3DOS() const {
return TargetTriple.getOS() == Triple::Mesa3D;
}
bool isMesaKernel(const Function &F) const {
return isMesa3DOS() && !AMDGPU::isShader(F.getCallingConv());
}
bool isAmdHsaOrMesa(const Function &F) const {
return isAmdHsaOS() || isMesaKernel(F);
}
bool isGCN() const {
return TargetTriple.getArch() == Triple::amdgcn;
}
bool has16BitInsts() const {
return Has16BitInsts;
}
bool hasMadMixInsts() const {
return HasMadMixInsts;
}
bool hasMadMacF32Insts() const {
return HasMadMacF32Insts || !isGCN();
}
bool hasDsSrc2Insts() const {
return HasDsSrc2Insts;
}
bool hasSDWA() const {
return HasSDWA;
}
bool hasVOP3PInsts() const {
return HasVOP3PInsts;
}
bool hasMulI24() const {
return HasMulI24;
}
bool hasMulU24() const {
return HasMulU24;
}
bool hasInv2PiInlineImm() const {
return HasInv2PiInlineImm;
}
bool hasFminFmaxLegacy() const {
return HasFminFmaxLegacy;
}
bool hasTrigReducedRange() const {
return HasTrigReducedRange;
}
bool isPromoteAllocaEnabled() const {
return EnablePromoteAlloca;
}
unsigned getWavefrontSize() const {
return 1 << WavefrontSizeLog2;
}
unsigned getWavefrontSizeLog2() const {
return WavefrontSizeLog2;
}
unsigned getLocalMemorySize() const {
return LocalMemorySize;
}
Align getAlignmentForImplicitArgPtr() const {
return isAmdHsaOS() ? Align(8) : Align(4);
}
/// Returns the offset in bytes from the start of the input buffer
/// of the first explicit kernel argument.
unsigned getExplicitKernelArgOffset(const Function &F) const {
return isAmdHsaOrMesa(F) ? 0 : 36;
}
/// \returns Maximum number of work groups per compute unit supported by the
/// subtarget and limited by given \p FlatWorkGroupSize.
virtual unsigned getMaxWorkGroupsPerCU(unsigned FlatWorkGroupSize) const = 0;
/// \returns Minimum flat work group size supported by the subtarget.
virtual unsigned getMinFlatWorkGroupSize() const = 0;
/// \returns Maximum flat work group size supported by the subtarget.
virtual unsigned getMaxFlatWorkGroupSize() const = 0;
/// \returns Number of waves per execution unit required to support the given
/// \p FlatWorkGroupSize.
virtual unsigned
getWavesPerEUForWorkGroup(unsigned FlatWorkGroupSize) const = 0;
/// \returns Minimum number of waves per execution unit supported by the
/// subtarget.
virtual unsigned getMinWavesPerEU() const = 0;
/// \returns Maximum number of waves per execution unit supported by the
/// subtarget without any kind of limitation.
unsigned getMaxWavesPerEU() const { return MaxWavesPerEU; }
/// Return the maximum workitem ID value in the function, for the given (0, 1,
/// 2) dimension.
unsigned getMaxWorkitemID(const Function &Kernel, unsigned Dimension) const;
/// Creates value range metadata on an workitemid.* intrinsic call or load.
bool makeLIDRangeMetadata(Instruction *I) const;
/// \returns Number of bytes of arguments that are passed to a shader or
/// kernel in addition to the explicit ones declared for the function.
unsigned getImplicitArgNumBytes(const Function &F) const {
if (isMesaKernel(F))
return 16;
return AMDGPU::getIntegerAttribute(F, "amdgpu-implicitarg-num-bytes", 0);
}
uint64_t getExplicitKernArgSize(const Function &F, Align &MaxAlign) const;
unsigned getKernArgSegmentSize(const Function &F, Align &MaxAlign) const;
/// \returns Corresponsing DWARF register number mapping flavour for the
/// \p WavefrontSize.
AMDGPUDwarfFlavour getAMDGPUDwarfFlavour() const {
return getWavefrontSize() == 32 ? AMDGPUDwarfFlavour::Wave32
: AMDGPUDwarfFlavour::Wave64;
}
virtual ~AMDGPUSubtarget() {}
};
class GCNSubtarget : public AMDGPUGenSubtargetInfo,
public AMDGPUSubtarget {
using AMDGPUSubtarget::getMaxWavesPerEU;
public:
enum TrapHandlerAbi {
TrapHandlerAbiNone = 0,
TrapHandlerAbiHsa = 1
};
enum TrapID {
TrapIDHardwareReserved = 0,
TrapIDHSADebugTrap = 1,
TrapIDLLVMTrap = 2,
TrapIDLLVMDebugTrap = 3,
TrapIDDebugBreakpoint = 7,
TrapIDDebugReserved8 = 8,
TrapIDDebugReservedFE = 0xfe,
TrapIDDebugReservedFF = 0xff
};
enum TrapRegValues {
LLVMTrapHandlerRegValue = 1
};
private:
/// GlobalISel related APIs.
std::unique_ptr<AMDGPUCallLowering> CallLoweringInfo;
std::unique_ptr<InlineAsmLowering> InlineAsmLoweringInfo;
std::unique_ptr<InstructionSelector> InstSelector;
std::unique_ptr<LegalizerInfo> Legalizer;
std::unique_ptr<RegisterBankInfo> RegBankInfo;
protected:
// Basic subtarget description.
Triple TargetTriple;
unsigned Gen;
InstrItineraryData InstrItins;
int LDSBankCount;
unsigned MaxPrivateElementSize;
// Possibly statically set by tablegen, but may want to be overridden.
bool FastFMAF32;
bool FastDenormalF32;
bool HalfRate64Ops;
// Dynamically set bits that enable features.
bool FlatForGlobal;
bool AutoWaitcntBeforeBarrier;
bool UnalignedScratchAccess;
bool UnalignedAccessMode;
bool HasApertureRegs;
bool EnableXNACK;
bool DoesNotSupportXNACK;
bool EnableCuMode;
bool TrapHandler;
// Used as options.
bool EnableLoadStoreOpt;
bool EnableUnsafeDSOffsetFolding;
bool EnableSIScheduler;
bool EnableDS128;
[AMDGPU] Add support for TFE/LWE in image intrinsics. 2nd try TFE and LWE support requires extra result registers that are written in the event of a failure in order to detect that failure case. The specific use-case that initiated these changes is sparse texture support. This means that if image intrinsics are used with either option turned on, the programmer must ensure that the return type can contain all of the expected results. This can result in redundant registers since the vector size must be a power-of-2. This change takes roughly 6 parts: 1. Modify the instruction defs in tablegen to add new instruction variants that can accomodate the extra return values. 2. Updates to lowerImage in SIISelLowering.cpp to accomodate setting TFE or LWE (where the bulk of the work for these instruction types is now done) 3. Extra verification code to catch cases where intrinsics have been used but insufficient return registers are used. 4. Modification to the adjustWritemask optimisation to account for TFE/LWE being enabled (requires extra registers to be maintained for error return value). 5. An extra pass to zero initialize the error value return - this is because if the error does not occur, the register is not written and thus must be zeroed before use. Also added a new (on by default) option to ensure ALL return values are zero-initialized that is required for sparse texture support. 6. Disable the inst_combine optimization in the presence of tfe/lwe (later TODO for this to re-enable and handle correctly). There's an additional fix now to avoid a dmask=0 For an image intrinsic with tfe where all result channels except tfe were unused, I was getting an image instruction with dmask=0 and only a single vgpr result for tfe. That is incorrect because the hardware assumes there is at least one vgpr result, plus the one for tfe. Fixed by forcing dmask to 1, which gives the desired two vgpr result with tfe in the second one. The TFE or LWE result is returned from the intrinsics using an aggregate type. Look in the test code provided to see how this works, but in essence IR code to invoke the intrinsic looks as follows: %v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 15, i32 %s, <8 x i32> %rsrc, i32 1, i32 0) %v.vec = extractvalue {<4 x float>, i32} %v, 0 %v.err = extractvalue {<4 x float>, i32} %v, 1 This re-submit of the change also includes a slight modification in SIISelLowering.cpp to work-around a compiler bug for the powerpc_le platform that caused a buildbot failure on a previous submission. Differential revision: https://reviews.llvm.org/D48826 Change-Id: If222bc03642e76cf98059a6bef5d5bffeda38dda Work around for ppcle compiler bug Change-Id: Ie284cf24b2271215be1b9dc95b485fd15000e32b llvm-svn: 351054
2019-01-14 19:55:24 +08:00
bool EnablePRTStrictNull;
bool DumpCode;
// Subtarget statically properties set by tablegen
bool FP64;
bool FMA;
bool MIMG_R128;
bool IsGCN;
bool GCN3Encoding;
bool CIInsts;
bool GFX8Insts;
bool GFX9Insts;
bool GFX10Insts;
bool GFX10_3Insts;
bool GFX7GFX8GFX9Insts;
bool SGPRInitBug;
bool HasSMemRealTime;
bool HasIntClamp;
bool HasFmaMixInsts;
bool HasMovrel;
bool HasVGPRIndexMode;
bool HasScalarStores;
bool HasScalarAtomics;
bool HasSDWAOmod;
bool HasSDWAScalar;
bool HasSDWASdst;
bool HasSDWAMac;
bool HasSDWAOutModsVOPC;
bool HasDPP;
bool HasDPP8;
bool HasR128A16;
bool HasGFX10A16;
bool HasG16;
bool HasNSAEncoding;
bool GFX10_BEncoding;
bool HasDLInsts;
bool HasDot1Insts;
bool HasDot2Insts;
bool HasDot3Insts;
bool HasDot4Insts;
bool HasDot5Insts;
bool HasDot6Insts;
bool HasMAIInsts;
bool HasPkFmacF16Inst;
bool HasAtomicFaddInsts;
bool EnableSRAMECC;
bool DoesNotSupportSRAMECC;
bool HasNoSdstCMPX;
bool HasVscnt;
bool HasGetWaveIdInst;
bool HasSMemTimeInst;
bool HasRegisterBanking;
bool HasVOP3Literal;
bool HasNoDataDepHazard;
bool FlatAddressSpace;
bool FlatInstOffsets;
bool FlatGlobalInsts;
bool FlatScratchInsts;
bool ScalarFlatScratchInsts;
bool AddNoCarryInsts;
bool HasUnpackedD16VMem;
bool R600ALUInst;
bool CaymanISA;
bool CFALUBug;
bool LDSMisalignedBug;
bool HasMFMAInlineLiteralBug;
bool HasVertexCache;
short TexVTXClauseSize;
bool UnalignedBufferAccess;
bool UnalignedDSAccess;
bool ScalarizeGlobal;
bool HasVcmpxPermlaneHazard;
bool HasVMEMtoScalarWriteHazard;
bool HasSMEMtoVectorWriteHazard;
bool HasInstFwdPrefetchBug;
bool HasVcmpxExecWARHazard;
bool HasLdsBranchVmemWARHazard;
bool HasNSAtoVMEMBug;
bool HasOffset3fBug;
bool HasFlatSegmentOffsetBug;
bool HasImageStoreD16Bug;
bool HasImageGather4D16Bug;
// Dummy feature to use for assembler in tablegen.
bool FeatureDisable;
SelectionDAGTargetInfo TSInfo;
private:
SIInstrInfo InstrInfo;
SITargetLowering TLInfo;
SIFrameLowering FrameLowering;
public:
// See COMPUTE_TMPRING_SIZE.WAVESIZE, 13-bit field in units of 256-dword.
static const unsigned MaxWaveScratchSize = (256 * 4) * ((1 << 13) - 1);
GCNSubtarget(const Triple &TT, StringRef GPU, StringRef FS,
const GCNTargetMachine &TM);
~GCNSubtarget() override;
GCNSubtarget &initializeSubtargetDependencies(const Triple &TT,
StringRef GPU, StringRef FS);
const SIInstrInfo *getInstrInfo() const override {
return &InstrInfo;
}
const SIFrameLowering *getFrameLowering() const override {
return &FrameLowering;
}
const SITargetLowering *getTargetLowering() const override {
return &TLInfo;
}
const SIRegisterInfo *getRegisterInfo() const override {
return &InstrInfo.getRegisterInfo();
}
const CallLowering *getCallLowering() const override {
return CallLoweringInfo.get();
}
const InlineAsmLowering *getInlineAsmLowering() const override {
return InlineAsmLoweringInfo.get();
}
InstructionSelector *getInstructionSelector() const override {
return InstSelector.get();
}
const LegalizerInfo *getLegalizerInfo() const override {
return Legalizer.get();
}
const RegisterBankInfo *getRegBankInfo() const override {
return RegBankInfo.get();
}
// Nothing implemented, just prevent crashes on use.
const SelectionDAGTargetInfo *getSelectionDAGInfo() const override {
return &TSInfo;
}
const InstrItineraryData *getInstrItineraryData() const override {
return &InstrItins;
}
void ParseSubtargetFeatures(StringRef CPU, StringRef TuneCPU, StringRef FS);
Generation getGeneration() const {
return (Generation)Gen;
}
/// Return the number of high bits known to be zero fror a frame index.
unsigned getKnownHighZeroBitsForFrameIndex() const {
return countLeadingZeros(MaxWaveScratchSize) + getWavefrontSizeLog2();
}
int getLDSBankCount() const {
return LDSBankCount;
}
unsigned getMaxPrivateElementSize(bool ForBufferRSrc = false) const {
return (ForBufferRSrc || !enableFlatScratch()) ? MaxPrivateElementSize : 16;
}
unsigned getConstantBusLimit(unsigned Opcode) const;
bool hasIntClamp() const {
return HasIntClamp;
}
bool hasFP64() const {
return FP64;
}
bool hasMIMG_R128() const {
return MIMG_R128;
}
bool hasHWFP64() const {
return FP64;
}
bool hasFastFMAF32() const {
return FastFMAF32;
}
bool hasHalfRate64Ops() const {
return HalfRate64Ops;
}
bool hasAddr64() const {
return (getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS);
}
bool hasFlat() const {
return (getGeneration() > AMDGPUSubtarget::SOUTHERN_ISLANDS);
}
// Return true if the target only has the reverse operand versions of VALU
// shift instructions (e.g. v_lshrrev_b32, and no v_lshr_b32).
bool hasOnlyRevVALUShifts() const {
return getGeneration() >= VOLCANIC_ISLANDS;
}
bool hasFractBug() const {
return getGeneration() == SOUTHERN_ISLANDS;
}
bool hasBFE() const {
return true;
}
bool hasBFI() const {
return true;
}
bool hasBFM() const {
return hasBFE();
}
bool hasBCNT(unsigned Size) const {
return true;
}
bool hasFFBL() const {
return true;
}
bool hasFFBH() const {
return true;
}
bool hasMed3_16() const {
return getGeneration() >= AMDGPUSubtarget::GFX9;
}
bool hasMin3Max3_16() const {
return getGeneration() >= AMDGPUSubtarget::GFX9;
}
bool hasFmaMixInsts() const {
return HasFmaMixInsts;
}
bool hasCARRY() const {
return true;
}
bool hasFMA() const {
return FMA;
}
bool hasSwap() const {
return GFX9Insts;
}
bool hasScalarPackInsts() const {
return GFX9Insts;
}
bool hasScalarMulHiInsts() const {
return GFX9Insts;
}
TrapHandlerAbi getTrapHandlerAbi() const {
return isAmdHsaOS() ? TrapHandlerAbiHsa : TrapHandlerAbiNone;
}
/// True if the offset field of DS instructions works as expected. On SI, the
/// offset uses a 16-bit adder and does not always wrap properly.
bool hasUsableDSOffset() const {
return getGeneration() >= SEA_ISLANDS;
}
bool unsafeDSOffsetFoldingEnabled() const {
return EnableUnsafeDSOffsetFolding;
}
/// Condition output from div_scale is usable.
bool hasUsableDivScaleConditionOutput() const {
return getGeneration() != SOUTHERN_ISLANDS;
}
/// Extra wait hazard is needed in some cases before
/// s_cbranch_vccnz/s_cbranch_vccz.
bool hasReadVCCZBug() const {
return getGeneration() <= SEA_ISLANDS;
}
/// Writes to VCC_LO/VCC_HI update the VCCZ flag.
bool partialVCCWritesUpdateVCCZ() const {
return getGeneration() >= GFX10;
}
/// A read of an SGPR by SMRD instruction requires 4 wait states when the SGPR
/// was written by a VALU instruction.
bool hasSMRDReadVALUDefHazard() const {
return getGeneration() == SOUTHERN_ISLANDS;
}
/// A read of an SGPR by a VMEM instruction requires 5 wait states when the
/// SGPR was written by a VALU Instruction.
bool hasVMEMReadSGPRVALUDefHazard() const {
return getGeneration() >= VOLCANIC_ISLANDS;
}
bool hasRFEHazards() const {
return getGeneration() >= VOLCANIC_ISLANDS;
}
/// Number of hazard wait states for s_setreg_b32/s_setreg_imm32_b32.
unsigned getSetRegWaitStates() const {
return getGeneration() <= SEA_ISLANDS ? 1 : 2;
}
bool dumpCode() const {
return DumpCode;
}
/// Return the amount of LDS that can be used that will not restrict the
/// occupancy lower than WaveCount.
unsigned getMaxLocalMemSizeWithWaveCount(unsigned WaveCount,
const Function &) const;
bool supportsMinMaxDenormModes() const {
return getGeneration() >= AMDGPUSubtarget::GFX9;
}
/// \returns If target supports S_DENORM_MODE.
bool hasDenormModeInst() const {
return getGeneration() >= AMDGPUSubtarget::GFX10;
}
bool useFlatForGlobal() const {
return FlatForGlobal;
}
/// \returns If target supports ds_read/write_b128 and user enables generation
/// of ds_read/write_b128.
bool useDS128() const {
return CIInsts && EnableDS128;
}
/// \return If target supports ds_read/write_b96/128.
bool hasDS96AndDS128() const {
return CIInsts;
}
/// Have v_trunc_f64, v_ceil_f64, v_rndne_f64
bool haveRoundOpsF64() const {
return CIInsts;
}
/// \returns If MUBUF instructions always perform range checking, even for
/// buffer resources used for private memory access.
bool privateMemoryResourceIsRangeChecked() const {
return getGeneration() < AMDGPUSubtarget::GFX9;
}
[AMDGPU] Add support for TFE/LWE in image intrinsics. 2nd try TFE and LWE support requires extra result registers that are written in the event of a failure in order to detect that failure case. The specific use-case that initiated these changes is sparse texture support. This means that if image intrinsics are used with either option turned on, the programmer must ensure that the return type can contain all of the expected results. This can result in redundant registers since the vector size must be a power-of-2. This change takes roughly 6 parts: 1. Modify the instruction defs in tablegen to add new instruction variants that can accomodate the extra return values. 2. Updates to lowerImage in SIISelLowering.cpp to accomodate setting TFE or LWE (where the bulk of the work for these instruction types is now done) 3. Extra verification code to catch cases where intrinsics have been used but insufficient return registers are used. 4. Modification to the adjustWritemask optimisation to account for TFE/LWE being enabled (requires extra registers to be maintained for error return value). 5. An extra pass to zero initialize the error value return - this is because if the error does not occur, the register is not written and thus must be zeroed before use. Also added a new (on by default) option to ensure ALL return values are zero-initialized that is required for sparse texture support. 6. Disable the inst_combine optimization in the presence of tfe/lwe (later TODO for this to re-enable and handle correctly). There's an additional fix now to avoid a dmask=0 For an image intrinsic with tfe where all result channels except tfe were unused, I was getting an image instruction with dmask=0 and only a single vgpr result for tfe. That is incorrect because the hardware assumes there is at least one vgpr result, plus the one for tfe. Fixed by forcing dmask to 1, which gives the desired two vgpr result with tfe in the second one. The TFE or LWE result is returned from the intrinsics using an aggregate type. Look in the test code provided to see how this works, but in essence IR code to invoke the intrinsic looks as follows: %v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 15, i32 %s, <8 x i32> %rsrc, i32 1, i32 0) %v.vec = extractvalue {<4 x float>, i32} %v, 0 %v.err = extractvalue {<4 x float>, i32} %v, 1 This re-submit of the change also includes a slight modification in SIISelLowering.cpp to work-around a compiler bug for the powerpc_le platform that caused a buildbot failure on a previous submission. Differential revision: https://reviews.llvm.org/D48826 Change-Id: If222bc03642e76cf98059a6bef5d5bffeda38dda Work around for ppcle compiler bug Change-Id: Ie284cf24b2271215be1b9dc95b485fd15000e32b llvm-svn: 351054
2019-01-14 19:55:24 +08:00
/// \returns If target requires PRT Struct NULL support (zero result registers
/// for sparse texture support).
bool usePRTStrictNull() const {
return EnablePRTStrictNull;
}
bool hasAutoWaitcntBeforeBarrier() const {
return AutoWaitcntBeforeBarrier;
}
bool hasUnalignedBufferAccess() const {
return UnalignedBufferAccess;
}
bool hasUnalignedBufferAccessEnabled() const {
return UnalignedBufferAccess && UnalignedAccessMode;
}
bool hasUnalignedDSAccess() const {
return UnalignedDSAccess;
}
bool hasUnalignedDSAccessEnabled() const {
return UnalignedDSAccess && UnalignedAccessMode;
}
bool hasUnalignedScratchAccess() const {
return UnalignedScratchAccess;
}
bool hasUnalignedAccessMode() const {
return UnalignedAccessMode;
}
bool hasApertureRegs() const {
return HasApertureRegs;
}
bool isTrapHandlerEnabled() const {
return TrapHandler;
}
bool isXNACKEnabled() const {
return EnableXNACK;
}
bool isCuModeEnabled() const {
return EnableCuMode;
}
bool hasFlatAddressSpace() const {
return FlatAddressSpace;
}
bool hasFlatScrRegister() const {
return hasFlatAddressSpace();
}
bool hasFlatInstOffsets() const {
return FlatInstOffsets;
}
bool hasFlatGlobalInsts() const {
return FlatGlobalInsts;
}
bool hasFlatScratchInsts() const {
return FlatScratchInsts;
}
// Check if target supports ST addressing mode with FLAT scratch instructions.
// The ST addressing mode means no registers are used, either VGPR or SGPR,
// but only immediate offset is swizzled and added to the FLAT scratch base.
bool hasFlatScratchSTMode() const {
return hasFlatScratchInsts() && hasGFX10_3Insts();
}
bool hasScalarFlatScratchInsts() const {
return ScalarFlatScratchInsts;
}
bool hasGlobalAddTidInsts() const {
return GFX10_BEncoding;
}
bool hasAtomicCSub() const {
return GFX10_BEncoding;
}
bool hasMultiDwordFlatScratchAddressing() const {
return getGeneration() >= GFX9;
}
bool hasFlatSegmentOffsetBug() const {
return HasFlatSegmentOffsetBug;
}
bool hasFlatLgkmVMemCountInOrder() const {
return getGeneration() > GFX9;
}
bool hasD16LoadStore() const {
return getGeneration() >= GFX9;
}
bool d16PreservesUnusedBits() const {
return hasD16LoadStore() && !isSRAMECCEnabled();
}
bool hasD16Images() const {
return getGeneration() >= VOLCANIC_ISLANDS;
}
/// Return if most LDS instructions have an m0 use that require m0 to be
/// iniitalized.
bool ldsRequiresM0Init() const {
return getGeneration() < GFX9;
}
// True if the hardware rewinds and replays GWS operations if a wave is
// preempted.
//
// If this is false, a GWS operation requires testing if a nack set the
// MEM_VIOL bit, and repeating if so.
bool hasGWSAutoReplay() const {
return getGeneration() >= GFX9;
}
/// \returns if target has ds_gws_sema_release_all instruction.
bool hasGWSSemaReleaseAll() const {
return CIInsts;
}
/// \returns true if the target has integer add/sub instructions that do not
/// produce a carry-out. This includes v_add_[iu]32, v_sub_[iu]32,
/// v_add_[iu]16, and v_sub_[iu]16, all of which support the clamp modifier
/// for saturation.
bool hasAddNoCarry() const {
return AddNoCarryInsts;
}
bool hasUnpackedD16VMem() const {
return HasUnpackedD16VMem;
}
// Covers VS/PS/CS graphics shaders
bool isMesaGfxShader(const Function &F) const {
return isMesa3DOS() && AMDGPU::isShader(F.getCallingConv());
}
bool hasMad64_32() const {
return getGeneration() >= SEA_ISLANDS;
}
bool hasSDWAOmod() const {
return HasSDWAOmod;
}
bool hasSDWAScalar() const {
return HasSDWAScalar;
}
bool hasSDWASdst() const {
return HasSDWASdst;
}
bool hasSDWAMac() const {
return HasSDWAMac;
}
bool hasSDWAOutModsVOPC() const {
return HasSDWAOutModsVOPC;
}
bool hasDLInsts() const {
return HasDLInsts;
}
bool hasDot1Insts() const {
return HasDot1Insts;
}
bool hasDot2Insts() const {
return HasDot2Insts;
}
bool hasDot3Insts() const {
return HasDot3Insts;
}
bool hasDot4Insts() const {
return HasDot4Insts;
}
bool hasDot5Insts() const {
return HasDot5Insts;
}
bool hasDot6Insts() const {
return HasDot6Insts;
}
bool hasMAIInsts() const {
return HasMAIInsts;
}
bool hasPkFmacF16Inst() const {
return HasPkFmacF16Inst;
}
bool hasAtomicFaddInsts() const {
return HasAtomicFaddInsts;
}
bool isSRAMECCEnabled() const {
return EnableSRAMECC;
}
bool hasNoSdstCMPX() const {
return HasNoSdstCMPX;
}
bool hasVscnt() const {
return HasVscnt;
}
bool hasGetWaveIdInst() const {
return HasGetWaveIdInst;
}
bool hasSMemTimeInst() const {
return HasSMemTimeInst;
}
bool hasRegisterBanking() const {
return HasRegisterBanking;
}
bool hasVOP3Literal() const {
return HasVOP3Literal;
}
bool hasNoDataDepHazard() const {
return HasNoDataDepHazard;
}
bool vmemWriteNeedsExpWaitcnt() const {
return getGeneration() < SEA_ISLANDS;
}
// Scratch is allocated in 256 dword per wave blocks for the entire
// wavefront. When viewed from the perspecive of an arbitrary workitem, this
// is 4-byte aligned.
//
// Only 4-byte alignment is really needed to access anything. Transformations
// on the pointer value itself may rely on the alignment / known low bits of
// the pointer. Set this to something above the minimum to avoid needing
// dynamic realignment in common cases.
Align getStackAlignment() const { return Align(16); }
bool enableMachineScheduler() const override {
return true;
}
bool useAA() const override;
bool enableSubRegLiveness() const override {
return true;
}
void setScalarizeGlobalBehavior(bool b) { ScalarizeGlobal = b; }
bool getScalarizeGlobalBehavior() const { return ScalarizeGlobal; }
// static wrappers
static bool hasHalfRate64Ops(const TargetSubtargetInfo &STI);
// XXX - Why is this here if it isn't in the default pass set?
bool enableEarlyIfConversion() const override {
return true;
}
bool enableFlatScratch() const;
void overrideSchedPolicy(MachineSchedPolicy &Policy,
unsigned NumRegionInstrs) const override;
unsigned getMaxNumUserSGPRs() const {
return 16;
}
bool hasSMemRealTime() const {
return HasSMemRealTime;
}
bool hasMovrel() const {
return HasMovrel;
}
bool hasVGPRIndexMode() const {
return HasVGPRIndexMode;
}
bool useVGPRIndexMode() const;
bool hasScalarCompareEq64() const {
return getGeneration() >= VOLCANIC_ISLANDS;
}
bool hasScalarStores() const {
return HasScalarStores;
}
bool hasScalarAtomics() const {
return HasScalarAtomics;
}
bool hasLDSFPAtomics() const {
return GFX8Insts;
}
bool hasDPP() const {
return HasDPP;
}
bool hasDPPBroadcasts() const {
return HasDPP && getGeneration() < GFX10;
}
bool hasDPPWavefrontShifts() const {
return HasDPP && getGeneration() < GFX10;
}
bool hasDPP8() const {
return HasDPP8;
}
bool hasR128A16() const {
return HasR128A16;
}
bool hasGFX10A16() const {
return HasGFX10A16;
}
bool hasA16() const { return hasR128A16() || hasGFX10A16(); }
bool hasG16() const { return HasG16; }
bool hasOffset3fBug() const {
return HasOffset3fBug;
}
bool hasImageStoreD16Bug() const { return HasImageStoreD16Bug; }
bool hasImageGather4D16Bug() const { return HasImageGather4D16Bug; }
bool hasNSAEncoding() const { return HasNSAEncoding; }
bool hasGFX10_BEncoding() const {
return GFX10_BEncoding;
}
bool hasGFX10_3Insts() const {
return GFX10_3Insts;
}
bool hasMadF16() const;
bool enableSIScheduler() const {
return EnableSIScheduler;
}
bool loadStoreOptEnabled() const {
return EnableLoadStoreOpt;
}
bool hasSGPRInitBug() const {
return SGPRInitBug;
}
bool hasMFMAInlineLiteralBug() const {
return HasMFMAInlineLiteralBug;
}
bool has12DWordStoreHazard() const {
return getGeneration() != AMDGPUSubtarget::SOUTHERN_ISLANDS;
}
// \returns true if the subtarget supports DWORDX3 load/store instructions.
bool hasDwordx3LoadStores() const {
return CIInsts;
}
bool hasReadM0MovRelInterpHazard() const {
return getGeneration() == AMDGPUSubtarget::GFX9;
}
bool hasReadM0SendMsgHazard() const {
return getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS &&
getGeneration() <= AMDGPUSubtarget::GFX9;
}
bool hasVcmpxPermlaneHazard() const {
return HasVcmpxPermlaneHazard;
}
bool hasVMEMtoScalarWriteHazard() const {
return HasVMEMtoScalarWriteHazard;
}
bool hasSMEMtoVectorWriteHazard() const {
return HasSMEMtoVectorWriteHazard;
}
bool hasLDSMisalignedBug() const {
return LDSMisalignedBug && !EnableCuMode;
}
bool hasInstFwdPrefetchBug() const {
return HasInstFwdPrefetchBug;
}
bool hasVcmpxExecWARHazard() const {
return HasVcmpxExecWARHazard;
}
bool hasLdsBranchVmemWARHazard() const {
return HasLdsBranchVmemWARHazard;
}
bool hasNSAtoVMEMBug() const {
return HasNSAtoVMEMBug;
}
bool hasHardClauses() const { return getGeneration() >= GFX10; }
/// Return the maximum number of waves per SIMD for kernels using \p SGPRs
/// SGPRs
unsigned getOccupancyWithNumSGPRs(unsigned SGPRs) const;
/// Return the maximum number of waves per SIMD for kernels using \p VGPRs
/// VGPRs
unsigned getOccupancyWithNumVGPRs(unsigned VGPRs) const;
/// Return occupancy for the given function. Used LDS and a number of
/// registers if provided.
/// Note, occupancy can be affected by the scratch allocation as well, but
/// we do not have enough information to compute it.
unsigned computeOccupancy(const Function &F, unsigned LDSSize = 0,
unsigned NumSGPRs = 0, unsigned NumVGPRs = 0) const;
/// \returns true if the flat_scratch register should be initialized with the
/// pointer to the wave's scratch memory rather than a size and offset.
bool flatScratchIsPointer() const {
return getGeneration() >= AMDGPUSubtarget::GFX9;
}
/// \returns true if the machine has merged shaders in which s0-s7 are
/// reserved by the hardware and user SGPRs start at s8
bool hasMergedShaders() const {
return getGeneration() >= GFX9;
}
/// \returns SGPR allocation granularity supported by the subtarget.
unsigned getSGPRAllocGranule() const {
return AMDGPU::IsaInfo::getSGPRAllocGranule(this);
}
/// \returns SGPR encoding granularity supported by the subtarget.
unsigned getSGPREncodingGranule() const {
return AMDGPU::IsaInfo::getSGPREncodingGranule(this);
}
/// \returns Total number of SGPRs supported by the subtarget.
unsigned getTotalNumSGPRs() const {
return AMDGPU::IsaInfo::getTotalNumSGPRs(this);
}
/// \returns Addressable number of SGPRs supported by the subtarget.
unsigned getAddressableNumSGPRs() const {
return AMDGPU::IsaInfo::getAddressableNumSGPRs(this);
}
/// \returns Minimum number of SGPRs that meets the given number of waves per
/// execution unit requirement supported by the subtarget.
unsigned getMinNumSGPRs(unsigned WavesPerEU) const {
return AMDGPU::IsaInfo::getMinNumSGPRs(this, WavesPerEU);
}
/// \returns Maximum number of SGPRs that meets the given number of waves per
/// execution unit requirement supported by the subtarget.
unsigned getMaxNumSGPRs(unsigned WavesPerEU, bool Addressable) const {
return AMDGPU::IsaInfo::getMaxNumSGPRs(this, WavesPerEU, Addressable);
}
/// \returns Reserved number of SGPRs for given function \p MF.
unsigned getReservedNumSGPRs(const MachineFunction &MF) const;
/// \returns Maximum number of SGPRs that meets number of waves per execution
/// unit requirement for function \p MF, or number of SGPRs explicitly
/// requested using "amdgpu-num-sgpr" attribute attached to function \p MF.
///
/// \returns Value that meets number of waves per execution unit requirement
/// if explicitly requested value cannot be converted to integer, violates
/// subtarget's specifications, or does not meet number of waves per execution
/// unit requirement.
unsigned getMaxNumSGPRs(const MachineFunction &MF) const;
/// \returns VGPR allocation granularity supported by the subtarget.
unsigned getVGPRAllocGranule() const {
return AMDGPU::IsaInfo::getVGPRAllocGranule(this);
}
/// \returns VGPR encoding granularity supported by the subtarget.
unsigned getVGPREncodingGranule() const {
return AMDGPU::IsaInfo::getVGPREncodingGranule(this);
}
/// \returns Total number of VGPRs supported by the subtarget.
unsigned getTotalNumVGPRs() const {
return AMDGPU::IsaInfo::getTotalNumVGPRs(this);
}
/// \returns Addressable number of VGPRs supported by the subtarget.
unsigned getAddressableNumVGPRs() const {
return AMDGPU::IsaInfo::getAddressableNumVGPRs(this);
}
/// \returns Minimum number of VGPRs that meets given number of waves per
/// execution unit requirement supported by the subtarget.
unsigned getMinNumVGPRs(unsigned WavesPerEU) const {
return AMDGPU::IsaInfo::getMinNumVGPRs(this, WavesPerEU);
}
/// \returns Maximum number of VGPRs that meets given number of waves per
/// execution unit requirement supported by the subtarget.
unsigned getMaxNumVGPRs(unsigned WavesPerEU) const {
return AMDGPU::IsaInfo::getMaxNumVGPRs(this, WavesPerEU);
}
/// \returns Maximum number of VGPRs that meets number of waves per execution
/// unit requirement for function \p MF, or number of VGPRs explicitly
/// requested using "amdgpu-num-vgpr" attribute attached to function \p MF.
///
/// \returns Value that meets number of waves per execution unit requirement
/// if explicitly requested value cannot be converted to integer, violates
/// subtarget's specifications, or does not meet number of waves per execution
/// unit requirement.
unsigned getMaxNumVGPRs(const MachineFunction &MF) const;
void getPostRAMutations(
std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations)
const override;
bool isWave32() const {
return getWavefrontSize() == 32;
}
bool isWave64() const {
return getWavefrontSize() == 64;
}
const TargetRegisterClass *getBoolRC() const {
return getRegisterInfo()->getBoolRC();
}
/// \returns Maximum number of work groups per compute unit supported by the
/// subtarget and limited by given \p FlatWorkGroupSize.
unsigned getMaxWorkGroupsPerCU(unsigned FlatWorkGroupSize) const override {
return AMDGPU::IsaInfo::getMaxWorkGroupsPerCU(this, FlatWorkGroupSize);
}
/// \returns Minimum flat work group size supported by the subtarget.
unsigned getMinFlatWorkGroupSize() const override {
return AMDGPU::IsaInfo::getMinFlatWorkGroupSize(this);
}
/// \returns Maximum flat work group size supported by the subtarget.
unsigned getMaxFlatWorkGroupSize() const override {
return AMDGPU::IsaInfo::getMaxFlatWorkGroupSize(this);
}
/// \returns Number of waves per execution unit required to support the given
/// \p FlatWorkGroupSize.
unsigned
getWavesPerEUForWorkGroup(unsigned FlatWorkGroupSize) const override {
return AMDGPU::IsaInfo::getWavesPerEUForWorkGroup(this, FlatWorkGroupSize);
}
/// \returns Minimum number of waves per execution unit supported by the
/// subtarget.
unsigned getMinWavesPerEU() const override {
return AMDGPU::IsaInfo::getMinWavesPerEU(this);
}
void adjustSchedDependency(SUnit *Def, int DefOpIdx, SUnit *Use, int UseOpIdx,
SDep &Dep) const override;
};
class R600Subtarget final : public R600GenSubtargetInfo,
public AMDGPUSubtarget {
private:
R600InstrInfo InstrInfo;
R600FrameLowering FrameLowering;
bool FMA;
bool CaymanISA;
bool CFALUBug;
bool HasVertexCache;
bool R600ALUInst;
bool FP64;
short TexVTXClauseSize;
Generation Gen;
R600TargetLowering TLInfo;
InstrItineraryData InstrItins;
SelectionDAGTargetInfo TSInfo;
public:
R600Subtarget(const Triple &TT, StringRef CPU, StringRef FS,
const TargetMachine &TM);
const R600InstrInfo *getInstrInfo() const override { return &InstrInfo; }
const R600FrameLowering *getFrameLowering() const override {
return &FrameLowering;
}
const R600TargetLowering *getTargetLowering() const override {
return &TLInfo;
}
const R600RegisterInfo *getRegisterInfo() const override {
return &InstrInfo.getRegisterInfo();
}
const InstrItineraryData *getInstrItineraryData() const override {
return &InstrItins;
}
// Nothing implemented, just prevent crashes on use.
const SelectionDAGTargetInfo *getSelectionDAGInfo() const override {
return &TSInfo;
}
void ParseSubtargetFeatures(StringRef CPU, StringRef TuneCPU, StringRef FS);
Generation getGeneration() const {
return Gen;
}
Align getStackAlignment() const { return Align(4); }
R600Subtarget &initializeSubtargetDependencies(const Triple &TT,
StringRef GPU, StringRef FS);
bool hasBFE() const {
return (getGeneration() >= EVERGREEN);
}
bool hasBFI() const {
return (getGeneration() >= EVERGREEN);
}
bool hasBCNT(unsigned Size) const {
if (Size == 32)
return (getGeneration() >= EVERGREEN);
return false;
}
bool hasBORROW() const {
return (getGeneration() >= EVERGREEN);
}
bool hasCARRY() const {
return (getGeneration() >= EVERGREEN);
}
bool hasCaymanISA() const {
return CaymanISA;
}
bool hasFFBL() const {
return (getGeneration() >= EVERGREEN);
}
bool hasFFBH() const {
return (getGeneration() >= EVERGREEN);
}
bool hasFMA() const { return FMA; }
bool hasCFAluBug() const { return CFALUBug; }
bool hasVertexCache() const { return HasVertexCache; }
short getTexVTXClauseSize() const { return TexVTXClauseSize; }
bool enableMachineScheduler() const override {
return true;
}
bool enableSubRegLiveness() const override {
return true;
}
/// \returns Maximum number of work groups per compute unit supported by the
/// subtarget and limited by given \p FlatWorkGroupSize.
unsigned getMaxWorkGroupsPerCU(unsigned FlatWorkGroupSize) const override {
return AMDGPU::IsaInfo::getMaxWorkGroupsPerCU(this, FlatWorkGroupSize);
}
/// \returns Minimum flat work group size supported by the subtarget.
unsigned getMinFlatWorkGroupSize() const override {
return AMDGPU::IsaInfo::getMinFlatWorkGroupSize(this);
}
/// \returns Maximum flat work group size supported by the subtarget.
unsigned getMaxFlatWorkGroupSize() const override {
return AMDGPU::IsaInfo::getMaxFlatWorkGroupSize(this);
}
/// \returns Number of waves per execution unit required to support the given
/// \p FlatWorkGroupSize.
unsigned
getWavesPerEUForWorkGroup(unsigned FlatWorkGroupSize) const override {
return AMDGPU::IsaInfo::getWavesPerEUForWorkGroup(this, FlatWorkGroupSize);
}
/// \returns Minimum number of waves per execution unit supported by the
/// subtarget.
unsigned getMinWavesPerEU() const override {
return AMDGPU::IsaInfo::getMinWavesPerEU(this);
}
};
} // end namespace llvm
#endif // LLVM_LIB_TARGET_AMDGPU_AMDGPUSUBTARGET_H