llvm-project/llvm/lib/MC/CMakeLists.txt

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

77 lines
1.5 KiB
CMake
Raw Normal View History

[cmake] Explicitly mark libraries defined in lib/ as "Component Libraries" Summary: Most libraries are defined in the lib/ directory but there are also a few libraries defined in tools/ e.g. libLLVM, libLTO. I'm defining "Component Libraries" as libraries defined in lib/ that may be included in libLLVM.so. Explicitly marking the libraries in lib/ as component libraries allows us to remove some fragile checks that attempt to differentiate between lib/ libraries and tools/ libraires: 1. In tools/llvm-shlib, because llvm_map_components_to_libnames(LIB_NAMES "all") returned a list of all libraries defined in the whole project, there was custom code needed to filter out libraries defined in tools/, none of which should be included in libLLVM.so. This code assumed that any library defined as static was from lib/ and everything else should be excluded. With this change, llvm_map_components_to_libnames(LIB_NAMES, "all") only returns libraries that have been added to the LLVM_COMPONENT_LIBS global cmake property, so this custom filtering logic can be removed. Doing this also fixes the build with BUILD_SHARED_LIBS=ON and LLVM_BUILD_LLVM_DYLIB=ON. 2. There was some code in llvm_add_library that assumed that libraries defined in lib/ would not have LLVM_LINK_COMPONENTS or ARG_LINK_COMPONENTS set. This is only true because libraries defined lib lib/ use LLVMBuild.txt and don't set these values. This code has been fixed now to check if the library has been explicitly marked as a component library, which should now make it easier to remove LLVMBuild at some point in the future. I have tested this patch on Windows, MacOS and Linux with release builds and the following combinations of CMake options: - "" (No options) - -DLLVM_BUILD_LLVM_DYLIB=ON - -DLLVM_LINK_LLVM_DYLIB=ON - -DBUILD_SHARED_LIBS=ON - -DBUILD_SHARED_LIBS=ON -DLLVM_BUILD_LLVM_DYLIB=ON - -DBUILD_SHARED_LIBS=ON -DLLVM_LINK_LLVM_DYLIB=ON Reviewers: beanz, smeenai, compnerd, phosek Reviewed By: beanz Subscribers: wuzish, jholewinski, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, mgorny, mehdi_amini, sbc100, jgravelle-google, hiraditya, aheejin, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, steven_wu, rogfer01, MartinMosbeck, brucehoult, the_o, dexonsmith, PkmX, jocewei, jsji, dang, Jim, lenary, s.egerton, pzheng, sameer.abuasal, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D70179
2019-11-14 13:39:58 +08:00
add_llvm_component_library(LLVMMC
ConstantPools.cpp
ELFObjectWriter.cpp
2011-09-25 06:06:35 +08:00
MCAsmBackend.cpp
MCAsmInfo.cpp
MCAsmInfoCOFF.cpp
MCAsmInfoDarwin.cpp
MCAsmInfoELF.cpp
MCAsmInfoWasm.cpp
MCAsmInfoXCOFF.cpp
MCAsmMacro.cpp
MCAsmStreamer.cpp
2009-08-21 19:28:56 +08:00
MCAssembler.cpp
2009-08-27 10:08:37 +08:00
MCCodeEmitter.cpp
MCCodeView.cpp
MCContext.cpp
2011-09-25 06:06:35 +08:00
MCDwarf.cpp
MCELFObjectTargetWriter.cpp
MCELFStreamer.cpp
MCExpr.cpp
MCFragment.cpp
MCInst.cpp
2009-09-14 13:22:47 +08:00
MCInstPrinter.cpp
MCInstrAnalysis.cpp
MCInstrDesc.cpp
MCInstrInfo.cpp
MCLabel.cpp
MCLinkerOptimizationHint.cpp
2009-08-21 19:28:56 +08:00
MCMachOStreamer.cpp
MCMachObjectTargetWriter.cpp
2009-08-21 19:28:56 +08:00
MCNullStreamer.cpp
2011-07-20 14:35:24 +08:00
MCObjectFileInfo.cpp
MCObjectStreamer.cpp
MCObjectWriter.cpp
[CSSPGO] Pseudo probe encoding and emission. This change implements pseudo probe encoding and emission for CSSPGO. Please see RFC here for more context: https://groups.google.com/g/llvm-dev/c/1p1rdYbL93s Pseudo probes are in the form of intrinsic calls on IR/MIR but they do not turn into any machine instructions. Instead they are emitted into the binary as a piece of data in standalone sections. The probe-specific sections are not needed to be loaded into memory at execution time, thus they do not incur a runtime overhead.  **ELF object emission** The binary data to emit are organized as two ELF sections, i.e, the `.pseudo_probe_desc` section and the `.pseudo_probe` section. The `.pseudo_probe_desc` section stores a function descriptor for each function and the `.pseudo_probe` section stores the actual probes, each fo which corresponds to an IR basic block or an IR function callsite. A function descriptor is stored as a module-level metadata during the compilation and is serialized into the object file during object emission. Both the probe descriptors and pseudo probes can be emitted into a separate ELF section per function to leverage the linker for deduplication. A `.pseudo_probe` section shares the same COMDAT group with the function code so that when the function is dead, the probes are dead and disposed too. On the contrary, a `.pseudo_probe_desc` section has its own COMDAT group. This is because even if a function is dead, its probes may be inlined into other functions and its descriptor is still needed by the profile generation tool. The format of `.pseudo_probe_desc` section looks like: ``` .section .pseudo_probe_desc,"",@progbits .quad 6309742469962978389 // Func GUID .quad 4294967295 // Func Hash .byte 9 // Length of func name .ascii "_Z5funcAi" // Func name .quad 7102633082150537521 .quad 138828622701 .byte 12 .ascii "_Z8funcLeafi" .quad 446061515086924981 .quad 4294967295 .byte 9 .ascii "_Z5funcBi" .quad -2016976694713209516 .quad 72617220756 .byte 7 .ascii "_Z3fibi" ``` For each `.pseudoprobe` section, the encoded binary data consists of a single function record corresponding to an outlined function (i.e, a function with a code entry in the `.text` section). A function record has the following format : ``` FUNCTION BODY (one for each outlined function present in the text section) GUID (uint64) GUID of the function NPROBES (ULEB128) Number of probes originating from this function. NUM_INLINED_FUNCTIONS (ULEB128) Number of callees inlined into this function, aka number of first-level inlinees PROBE RECORDS A list of NPROBES entries. Each entry contains: INDEX (ULEB128) TYPE (uint4) 0 - block probe, 1 - indirect call, 2 - direct call ATTRIBUTE (uint3) reserved ADDRESS_TYPE (uint1) 0 - code address, 1 - address delta CODE_ADDRESS (uint64 or ULEB128) code address or address delta, depending on ADDRESS_TYPE INLINED FUNCTION RECORDS A list of NUM_INLINED_FUNCTIONS entries describing each of the inlined callees. Each record contains: INLINE SITE GUID of the inlinee (uint64) ID of the callsite probe (ULEB128) FUNCTION BODY A FUNCTION BODY entry describing the inlined function. ``` To support building a context-sensitive profile, probes from inlinees are grouped by their inline contexts. An inline context is logically a call path through which a callee function lands in a caller function. The probe emitter builds an inline tree based on the debug metadata for each outlined function in the form of a trie tree. A tree root is the outlined function. Each tree edge stands for a callsite where inlining happens. Pseudo probes originating from an inlinee function are stored in a tree node and the tree path starting from the root all the way down to the tree node is the inline context of the probes. The emission happens on the whole tree top-down recursively. Probes of a tree node will be emitted altogether with their direct parent edge. Since a pseudo probe corresponds to a real code address, for size savings, the address is encoded as a delta from the previous probe except for the first probe. Variant-sized integer encoding, aka LEB128, is used for address delta and probe index. **Assembling** Pseudo probes can be printed as assembly directives alternatively. This allows for good assembly code readability and also provides a view of how optimizations and pseudo probes affect each other, especially helpful for diff time assembly analysis. A pseudo probe directive has the following operands in order: function GUID, probe index, probe type, probe attributes and inline context. The directive is generated by the compiler and can be parsed by the assembler to form an encoded `.pseudoprobe` section in the object file. A example assembly looks like: ``` foo2: # @foo2 # %bb.0: # %bb0 pushq %rax testl %edi, %edi .pseudoprobe 837061429793323041 1 0 0 je .LBB1_1 # %bb.2: # %bb2 .pseudoprobe 837061429793323041 6 2 0 callq foo .pseudoprobe 837061429793323041 3 0 0 .pseudoprobe 837061429793323041 4 0 0 popq %rax retq .LBB1_1: # %bb1 .pseudoprobe 837061429793323041 5 1 0 callq *%rsi .pseudoprobe 837061429793323041 2 0 0 .pseudoprobe 837061429793323041 4 0 0 popq %rax retq # -- End function .section .pseudo_probe_desc,"",@progbits .quad 6699318081062747564 .quad 72617220756 .byte 3 .ascii "foo" .quad 837061429793323041 .quad 281547593931412 .byte 4 .ascii "foo2" ``` With inlining turned on, the assembly may look different around %bb2 with an inlined probe: ``` # %bb.2: # %bb2 .pseudoprobe 837061429793323041 3 0 .pseudoprobe 6699318081062747564 1 0 @ 837061429793323041:6 .pseudoprobe 837061429793323041 4 0 popq %rax retq ``` **Disassembling** We have a disassembling tool (llvm-profgen) that can display disassembly alongside with pseudo probes. So far it only supports ELF executable file. An example disassembly looks like: ``` 00000000002011a0 <foo2>: 2011a0: 50 push rax 2011a1: 85 ff test edi,edi [Probe]: FUNC: foo2 Index: 1 Type: Block 2011a3: 74 02 je 2011a7 <foo2+0x7> [Probe]: FUNC: foo2 Index: 3 Type: Block [Probe]: FUNC: foo2 Index: 4 Type: Block [Probe]: FUNC: foo Index: 1 Type: Block Inlined: @ foo2:6 2011a5: 58 pop rax 2011a6: c3 ret [Probe]: FUNC: foo2 Index: 2 Type: Block 2011a7: bf 01 00 00 00 mov edi,0x1 [Probe]: FUNC: foo2 Index: 5 Type: IndirectCall 2011ac: ff d6 call rsi [Probe]: FUNC: foo2 Index: 4 Type: Block 2011ae: 58 pop rax 2011af: c3 ret ``` Reviewed By: wmi Differential Revision: https://reviews.llvm.org/D91878
2020-12-09 07:37:32 +08:00
MCPseudoProbe.cpp
MCRegisterInfo.cpp
MCSchedule.cpp
MCSection.cpp
2010-05-08 01:29:48 +08:00
MCSectionCOFF.cpp
MCSectionELF.cpp
MCSectionMachO.cpp
MCSectionWasm.cpp
MCSectionXCOFF.cpp
MCStreamer.cpp
MCSubtargetInfo.cpp
MCSymbol.cpp
MCSymbolELF.cpp
MCSymbolXCOFF.cpp
MCTargetOptions.cpp
MCTargetOptionsCommandFlags.cpp
MCValue.cpp
MCWasmObjectTargetWriter.cpp
MCWasmStreamer.cpp
MCWin64EH.cpp
MCWinCOFFStreamer.cpp
MCWinEH.cpp
MCXCOFFObjectTargetWriter.cpp
MCXCOFFStreamer.cpp
MachObjectWriter.cpp
StringTableBuilder.cpp
2011-06-29 11:26:17 +08:00
SubtargetFeature.cpp
WasmObjectWriter.cpp
2011-09-25 06:06:35 +08:00
WinCOFFObjectWriter.cpp
XCOFFObjectWriter.cpp
ADDITIONAL_HEADER_DIRS
${LLVM_MAIN_INCLUDE_DIR}/llvm/MC
LINK_COMPONENTS
Support
BinaryFormat
DebugInfoCodeView
)
add_subdirectory(MCParser)
add_subdirectory(MCDisassembler)