llvm-project/mlir/lib/IR/Region.cpp

213 lines
7.9 KiB
C++
Raw Normal View History

//===- Region.cpp - MLIR Region Class -------------------------------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
#include "mlir/IR/Region.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/Operation.h"
using namespace mlir;
Region::Region(Operation *container) : container(container) {}
Region::~Region() {
// Operations may have cyclic references, which need to be dropped before we
// can start deleting them.
dropAllReferences();
}
/// Return the context this region is inserted in. The region must have a valid
/// parent container.
MLIRContext *Region::getContext() {
assert(container && "region is not attached to a container");
return container->getContext();
}
/// Return a location for this region. This is the location attached to the
/// parent container. The region must have a valid parent container.
Location Region::getLoc() {
assert(container && "region is not attached to a container");
return container->getLoc();
}
Region *Region::getContainingRegion() {
assert(container && "region is not attached to a container");
return container->getContainingRegion();
}
Operation *Region::getContainingOp() { return container; }
bool Region::isProperAncestor(Region *other) {
if (this == other)
return false;
while ((other = other->getContainingRegion())) {
if (this == other)
return true;
}
return false;
}
/// Return the number of this region in the parent operation.
unsigned Region::getRegionNumber() {
// Regions are always stored consecutively, so use pointer subtraction to
// figure out what number this is.
return this - &getContainingOp()->getRegions()[0];
}
/// Clone the internal blocks from this region into `dest`. Any
/// cloned blocks are appended to the back of dest.
void Region::cloneInto(Region *dest, BlockAndValueMapping &mapper) {
assert(dest && "expected valid region to clone into");
cloneInto(dest, dest->end(), mapper);
}
/// Clone this region into 'dest' before the given position in 'dest'.
void Region::cloneInto(Region *dest, Region::iterator destPos,
BlockAndValueMapping &mapper) {
assert(dest && "expected valid region to clone into");
// If the list is empty there is nothing to clone.
if (empty())
return;
for (Block &block : *this) {
Block *newBlock = new Block();
mapper.map(&block, newBlock);
// Clone the block arguments. The user might be deleting arguments to the
// block by specifying them in the mapper. If so, we don't add the
// argument to the cloned block.
for (auto *arg : block.getArguments())
if (!mapper.contains(arg))
mapper.map(arg, newBlock->addArgument(arg->getType()));
// Clone and remap the operations within this block.
for (auto &op : block)
newBlock->push_back(op.clone(mapper));
dest->getBlocks().insert(destPos, newBlock);
}
// Now that each of the blocks have been cloned, go through and remap the
// operands of each of the operations.
auto remapOperands = [&](Operation *op) {
for (auto &operand : op->getOpOperands())
if (auto *mappedOp = mapper.lookupOrNull(operand.get()))
operand.set(mappedOp);
for (auto &succOp : op->getBlockOperands())
if (auto *mappedOp = mapper.lookupOrNull(succOp.get()))
succOp.set(mappedOp);
};
for (iterator it(mapper.lookup(&front())); it != destPos; ++it)
it->walk(remapOperands);
}
void Region::dropAllReferences() {
for (Block &b : *this)
b.dropAllReferences();
}
/// Check if there are any values used by operations in `region` defined
/// outside its ancestor region `limit`. That is, given `A{B{C{}}}` with region
/// `C` and limit `B`, the values defined in `B` can be used but the values
/// defined in `A` cannot. Emit errors if `noteLoc` is provided; this location
/// is used to point to the operation containing the region, the actual error is
/// reported at the operation with an offending use.
static bool isIsolatedAbove(Region &region, Region &limit,
llvm::Optional<Location> noteLoc) {
assert(limit.isAncestor(&region) &&
"expected isolation limit to be an ancestor of the given region");
// List of regions to analyze. Each region is processed independently, with
// respect to the common `limit` region, so we can look at them in any order.
// Therefore, use a simple vector and push/pop back the current region.
SmallVector<Region *, 8> pendingRegions;
pendingRegions.push_back(&region);
// Traverse all operations in the region.
while (!pendingRegions.empty()) {
for (Block &block : *pendingRegions.pop_back_val()) {
for (Operation &op : block) {
for (Value *operand : op.getOperands()) {
// Check that any value that is used by an operation is defined in the
// same region as either an operation result or a block argument.
if (operand->getContainingRegion()->isProperAncestor(&limit)) {
if (noteLoc) {
op.emitOpError("using value defined outside the region")
.attachNote(noteLoc)
<< "required by region isolation constraints";
}
return false;
}
}
// Schedule any regions the operations contain for further checking.
pendingRegions.reserve(pendingRegions.size() + op.getNumRegions());
for (Region &subRegion : op.getRegions())
pendingRegions.push_back(&subRegion);
}
}
}
return true;
}
bool Region::isIsolatedFromAbove(llvm::Optional<Location> noteLoc) {
return isIsolatedAbove(*this, *this, noteLoc);
}
/// Walk the operations in this block in postorder, calling the callback for
/// each operation.
void Region::walk(llvm::function_ref<void(Operation *)> callback) {
for (auto &block : *this)
block.walk(callback);
}
Region *llvm::ilist_traits<::mlir::Block>::getContainingRegion() {
size_t Offset(
size_t(&((Region *)nullptr->*Region::getSublistAccess(nullptr))));
iplist<Block> *Anchor(static_cast<iplist<Block> *>(this));
return reinterpret_cast<Region *>(reinterpret_cast<char *>(Anchor) - Offset);
}
/// This is a trait method invoked when a basic block is added to a region.
/// We keep the region pointer up to date.
void llvm::ilist_traits<::mlir::Block>::addNodeToList(Block *block) {
assert(!block->getParent() && "already in a region!");
block->parentValidInstOrderPair.setPointer(getContainingRegion());
}
/// This is a trait method invoked when an operation is removed from a
/// region. We keep the region pointer up to date.
void llvm::ilist_traits<::mlir::Block>::removeNodeFromList(Block *block) {
assert(block->getParent() && "not already in a region!");
block->parentValidInstOrderPair.setPointer(nullptr);
}
/// This is a trait method invoked when an operation is moved from one block
/// to another. We keep the block pointer up to date.
void llvm::ilist_traits<::mlir::Block>::transferNodesFromList(
ilist_traits<Block> &otherList, block_iterator first, block_iterator last) {
// If we are transferring operations within the same function, the parent
// pointer doesn't need to be updated.
auto *curParent = getContainingRegion();
if (curParent == otherList.getContainingRegion())
return;
// Update the 'parent' member of each Block.
for (; first != last; ++first)
first->parentValidInstOrderPair.setPointer(curParent);
}