2015-02-21 04:30:47 +08:00
|
|
|
//===-- LowerBitSets.cpp - Bitset lowering pass ---------------------------===//
|
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// This pass lowers bitset metadata and calls to the llvm.bitset.test intrinsic.
|
|
|
|
// See http://llvm.org/docs/LangRef.html#bitsets for more information.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#include "llvm/Transforms/IPO/LowerBitSets.h"
|
|
|
|
#include "llvm/Transforms/IPO.h"
|
|
|
|
#include "llvm/ADT/EquivalenceClasses.h"
|
|
|
|
#include "llvm/ADT/Statistic.h"
|
2015-03-14 08:00:49 +08:00
|
|
|
#include "llvm/ADT/Triple.h"
|
2015-02-21 04:30:47 +08:00
|
|
|
#include "llvm/IR/Constant.h"
|
|
|
|
#include "llvm/IR/Constants.h"
|
2015-09-09 06:49:35 +08:00
|
|
|
#include "llvm/IR/Function.h"
|
|
|
|
#include "llvm/IR/GlobalObject.h"
|
2015-02-21 04:30:47 +08:00
|
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
|
|
#include "llvm/IR/IRBuilder.h"
|
|
|
|
#include "llvm/IR/Instructions.h"
|
|
|
|
#include "llvm/IR/Intrinsics.h"
|
|
|
|
#include "llvm/IR/Module.h"
|
|
|
|
#include "llvm/IR/Operator.h"
|
|
|
|
#include "llvm/Pass.h"
|
2015-07-30 02:12:36 +08:00
|
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
#include "llvm/Support/raw_ostream.h"
|
2015-02-21 04:30:47 +08:00
|
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
|
|
|
|
|
|
using namespace llvm;
|
|
|
|
|
|
|
|
#define DEBUG_TYPE "lowerbitsets"
|
|
|
|
|
LowerBitSets: Use byte arrays instead of bit sets to represent in-memory bit sets.
By loading from indexed offsets into a byte array and applying a mask, a
program can test bits from the bit set with a relatively short instruction
sequence. For example, suppose we have 15 bit sets to lay out:
A (16 bits), B (15 bits), C (14 bits), D (13 bits), E (12 bits),
F (11 bits), G (10 bits), H (9 bits), I (7 bits), J (6 bits), K (5 bits),
L (4 bits), M (3 bits), N (2 bits), O (1 bit)
These bits can be laid out in a 16-byte array like this:
Byte Offset
0123456789ABCDEF
Bit
7 HHHHHHHHHIIIIIII
6 GGGGGGGGGGJJJJJJ
5 FFFFFFFFFFFKKKKK
4 EEEEEEEEEEEELLLL
3 DDDDDDDDDDDDDMMM
2 CCCCCCCCCCCCCCNN
1 BBBBBBBBBBBBBBBO
0 AAAAAAAAAAAAAAAA
For example, to test bit X of A, we evaluate ((bits[X] & 1) != 0), or to
test bit X of I, we evaluate ((bits[9 + X] & 0x80) != 0). This can be done
in 1-2 machine instructions on x86, or 4-6 instructions on ARM.
This uses the LPT multiprocessor scheduling algorithm to lay out the bits
efficiently.
Saves ~450KB of instructions in a recent build of Chromium.
Differential Revision: http://reviews.llvm.org/D7954
llvm-svn: 231043
2015-03-03 08:49:28 +08:00
|
|
|
STATISTIC(ByteArraySizeBits, "Byte array size in bits");
|
|
|
|
STATISTIC(ByteArraySizeBytes, "Byte array size in bytes");
|
|
|
|
STATISTIC(NumByteArraysCreated, "Number of byte arrays created");
|
2015-02-21 04:30:47 +08:00
|
|
|
STATISTIC(NumBitSetCallsLowered, "Number of bitset calls lowered");
|
|
|
|
STATISTIC(NumBitSetDisjointSets, "Number of disjoint sets of bitsets");
|
|
|
|
|
2015-03-20 06:02:10 +08:00
|
|
|
static cl::opt<bool> AvoidReuse(
|
|
|
|
"lowerbitsets-avoid-reuse",
|
|
|
|
cl::desc("Try to avoid reuse of byte array addresses using aliases"),
|
|
|
|
cl::Hidden, cl::init(true));
|
|
|
|
|
2015-02-21 04:30:47 +08:00
|
|
|
bool BitSetInfo::containsGlobalOffset(uint64_t Offset) const {
|
|
|
|
if (Offset < ByteOffset)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if ((Offset - ByteOffset) % (uint64_t(1) << AlignLog2) != 0)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
uint64_t BitOffset = (Offset - ByteOffset) >> AlignLog2;
|
|
|
|
if (BitOffset >= BitSize)
|
|
|
|
return false;
|
|
|
|
|
LowerBitSets: Use byte arrays instead of bit sets to represent in-memory bit sets.
By loading from indexed offsets into a byte array and applying a mask, a
program can test bits from the bit set with a relatively short instruction
sequence. For example, suppose we have 15 bit sets to lay out:
A (16 bits), B (15 bits), C (14 bits), D (13 bits), E (12 bits),
F (11 bits), G (10 bits), H (9 bits), I (7 bits), J (6 bits), K (5 bits),
L (4 bits), M (3 bits), N (2 bits), O (1 bit)
These bits can be laid out in a 16-byte array like this:
Byte Offset
0123456789ABCDEF
Bit
7 HHHHHHHHHIIIIIII
6 GGGGGGGGGGJJJJJJ
5 FFFFFFFFFFFKKKKK
4 EEEEEEEEEEEELLLL
3 DDDDDDDDDDDDDMMM
2 CCCCCCCCCCCCCCNN
1 BBBBBBBBBBBBBBBO
0 AAAAAAAAAAAAAAAA
For example, to test bit X of A, we evaluate ((bits[X] & 1) != 0), or to
test bit X of I, we evaluate ((bits[9 + X] & 0x80) != 0). This can be done
in 1-2 machine instructions on x86, or 4-6 instructions on ARM.
This uses the LPT multiprocessor scheduling algorithm to lay out the bits
efficiently.
Saves ~450KB of instructions in a recent build of Chromium.
Differential Revision: http://reviews.llvm.org/D7954
llvm-svn: 231043
2015-03-03 08:49:28 +08:00
|
|
|
return Bits.count(BitOffset);
|
2015-02-21 04:30:47 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
bool BitSetInfo::containsValue(
|
2015-03-10 10:37:25 +08:00
|
|
|
const DataLayout &DL,
|
2015-09-09 06:49:35 +08:00
|
|
|
const DenseMap<GlobalObject *, uint64_t> &GlobalLayout, Value *V,
|
2015-02-21 04:30:47 +08:00
|
|
|
uint64_t COffset) const {
|
2015-09-09 06:49:35 +08:00
|
|
|
if (auto GV = dyn_cast<GlobalObject>(V)) {
|
2015-02-21 04:30:47 +08:00
|
|
|
auto I = GlobalLayout.find(GV);
|
|
|
|
if (I == GlobalLayout.end())
|
|
|
|
return false;
|
|
|
|
return containsGlobalOffset(I->second + COffset);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (auto GEP = dyn_cast<GEPOperator>(V)) {
|
2015-03-10 10:37:25 +08:00
|
|
|
APInt APOffset(DL.getPointerSizeInBits(0), 0);
|
|
|
|
bool Result = GEP->accumulateConstantOffset(DL, APOffset);
|
2015-02-21 04:30:47 +08:00
|
|
|
if (!Result)
|
|
|
|
return false;
|
|
|
|
COffset += APOffset.getZExtValue();
|
|
|
|
return containsValue(DL, GlobalLayout, GEP->getPointerOperand(),
|
|
|
|
COffset);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (auto Op = dyn_cast<Operator>(V)) {
|
|
|
|
if (Op->getOpcode() == Instruction::BitCast)
|
|
|
|
return containsValue(DL, GlobalLayout, Op->getOperand(0), COffset);
|
|
|
|
|
|
|
|
if (Op->getOpcode() == Instruction::Select)
|
|
|
|
return containsValue(DL, GlobalLayout, Op->getOperand(1), COffset) &&
|
|
|
|
containsValue(DL, GlobalLayout, Op->getOperand(2), COffset);
|
|
|
|
}
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2015-07-30 02:12:36 +08:00
|
|
|
void BitSetInfo::print(raw_ostream &OS) const {
|
|
|
|
OS << "offset " << ByteOffset << " size " << BitSize << " align "
|
|
|
|
<< (1 << AlignLog2);
|
|
|
|
|
|
|
|
if (isAllOnes()) {
|
|
|
|
OS << " all-ones\n";
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
OS << " { ";
|
|
|
|
for (uint64_t B : Bits)
|
|
|
|
OS << B << ' ';
|
|
|
|
OS << "}\n";
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2015-02-21 04:30:47 +08:00
|
|
|
BitSetInfo BitSetBuilder::build() {
|
|
|
|
if (Min > Max)
|
|
|
|
Min = 0;
|
|
|
|
|
|
|
|
// Normalize each offset against the minimum observed offset, and compute
|
|
|
|
// the bitwise OR of each of the offsets. The number of trailing zeros
|
|
|
|
// in the mask gives us the log2 of the alignment of all offsets, which
|
|
|
|
// allows us to compress the bitset by only storing one bit per aligned
|
|
|
|
// address.
|
|
|
|
uint64_t Mask = 0;
|
|
|
|
for (uint64_t &Offset : Offsets) {
|
|
|
|
Offset -= Min;
|
|
|
|
Mask |= Offset;
|
|
|
|
}
|
|
|
|
|
|
|
|
BitSetInfo BSI;
|
|
|
|
BSI.ByteOffset = Min;
|
|
|
|
|
|
|
|
BSI.AlignLog2 = 0;
|
|
|
|
if (Mask != 0)
|
|
|
|
BSI.AlignLog2 = countTrailingZeros(Mask, ZB_Undefined);
|
|
|
|
|
|
|
|
// Build the compressed bitset while normalizing the offsets against the
|
|
|
|
// computed alignment.
|
|
|
|
BSI.BitSize = ((Max - Min) >> BSI.AlignLog2) + 1;
|
|
|
|
for (uint64_t Offset : Offsets) {
|
|
|
|
Offset >>= BSI.AlignLog2;
|
LowerBitSets: Use byte arrays instead of bit sets to represent in-memory bit sets.
By loading from indexed offsets into a byte array and applying a mask, a
program can test bits from the bit set with a relatively short instruction
sequence. For example, suppose we have 15 bit sets to lay out:
A (16 bits), B (15 bits), C (14 bits), D (13 bits), E (12 bits),
F (11 bits), G (10 bits), H (9 bits), I (7 bits), J (6 bits), K (5 bits),
L (4 bits), M (3 bits), N (2 bits), O (1 bit)
These bits can be laid out in a 16-byte array like this:
Byte Offset
0123456789ABCDEF
Bit
7 HHHHHHHHHIIIIIII
6 GGGGGGGGGGJJJJJJ
5 FFFFFFFFFFFKKKKK
4 EEEEEEEEEEEELLLL
3 DDDDDDDDDDDDDMMM
2 CCCCCCCCCCCCCCNN
1 BBBBBBBBBBBBBBBO
0 AAAAAAAAAAAAAAAA
For example, to test bit X of A, we evaluate ((bits[X] & 1) != 0), or to
test bit X of I, we evaluate ((bits[9 + X] & 0x80) != 0). This can be done
in 1-2 machine instructions on x86, or 4-6 instructions on ARM.
This uses the LPT multiprocessor scheduling algorithm to lay out the bits
efficiently.
Saves ~450KB of instructions in a recent build of Chromium.
Differential Revision: http://reviews.llvm.org/D7954
llvm-svn: 231043
2015-03-03 08:49:28 +08:00
|
|
|
BSI.Bits.insert(Offset);
|
2015-02-21 04:30:47 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
return BSI;
|
|
|
|
}
|
|
|
|
|
2015-02-25 07:17:02 +08:00
|
|
|
void GlobalLayoutBuilder::addFragment(const std::set<uint64_t> &F) {
|
|
|
|
// Create a new fragment to hold the layout for F.
|
|
|
|
Fragments.emplace_back();
|
|
|
|
std::vector<uint64_t> &Fragment = Fragments.back();
|
|
|
|
uint64_t FragmentIndex = Fragments.size() - 1;
|
|
|
|
|
|
|
|
for (auto ObjIndex : F) {
|
|
|
|
uint64_t OldFragmentIndex = FragmentMap[ObjIndex];
|
|
|
|
if (OldFragmentIndex == 0) {
|
|
|
|
// We haven't seen this object index before, so just add it to the current
|
|
|
|
// fragment.
|
|
|
|
Fragment.push_back(ObjIndex);
|
|
|
|
} else {
|
|
|
|
// This index belongs to an existing fragment. Copy the elements of the
|
|
|
|
// old fragment into this one and clear the old fragment. We don't update
|
|
|
|
// the fragment map just yet, this ensures that any further references to
|
|
|
|
// indices from the old fragment in this fragment do not insert any more
|
|
|
|
// indices.
|
|
|
|
std::vector<uint64_t> &OldFragment = Fragments[OldFragmentIndex];
|
|
|
|
Fragment.insert(Fragment.end(), OldFragment.begin(), OldFragment.end());
|
|
|
|
OldFragment.clear();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Update the fragment map to point our object indices to this fragment.
|
|
|
|
for (uint64_t ObjIndex : Fragment)
|
|
|
|
FragmentMap[ObjIndex] = FragmentIndex;
|
|
|
|
}
|
|
|
|
|
LowerBitSets: Use byte arrays instead of bit sets to represent in-memory bit sets.
By loading from indexed offsets into a byte array and applying a mask, a
program can test bits from the bit set with a relatively short instruction
sequence. For example, suppose we have 15 bit sets to lay out:
A (16 bits), B (15 bits), C (14 bits), D (13 bits), E (12 bits),
F (11 bits), G (10 bits), H (9 bits), I (7 bits), J (6 bits), K (5 bits),
L (4 bits), M (3 bits), N (2 bits), O (1 bit)
These bits can be laid out in a 16-byte array like this:
Byte Offset
0123456789ABCDEF
Bit
7 HHHHHHHHHIIIIIII
6 GGGGGGGGGGJJJJJJ
5 FFFFFFFFFFFKKKKK
4 EEEEEEEEEEEELLLL
3 DDDDDDDDDDDDDMMM
2 CCCCCCCCCCCCCCNN
1 BBBBBBBBBBBBBBBO
0 AAAAAAAAAAAAAAAA
For example, to test bit X of A, we evaluate ((bits[X] & 1) != 0), or to
test bit X of I, we evaluate ((bits[9 + X] & 0x80) != 0). This can be done
in 1-2 machine instructions on x86, or 4-6 instructions on ARM.
This uses the LPT multiprocessor scheduling algorithm to lay out the bits
efficiently.
Saves ~450KB of instructions in a recent build of Chromium.
Differential Revision: http://reviews.llvm.org/D7954
llvm-svn: 231043
2015-03-03 08:49:28 +08:00
|
|
|
void ByteArrayBuilder::allocate(const std::set<uint64_t> &Bits,
|
|
|
|
uint64_t BitSize, uint64_t &AllocByteOffset,
|
|
|
|
uint8_t &AllocMask) {
|
|
|
|
// Find the smallest current allocation.
|
|
|
|
unsigned Bit = 0;
|
|
|
|
for (unsigned I = 1; I != BitsPerByte; ++I)
|
|
|
|
if (BitAllocs[I] < BitAllocs[Bit])
|
|
|
|
Bit = I;
|
|
|
|
|
|
|
|
AllocByteOffset = BitAllocs[Bit];
|
|
|
|
|
|
|
|
// Add our size to it.
|
|
|
|
unsigned ReqSize = AllocByteOffset + BitSize;
|
|
|
|
BitAllocs[Bit] = ReqSize;
|
|
|
|
if (Bytes.size() < ReqSize)
|
|
|
|
Bytes.resize(ReqSize);
|
|
|
|
|
|
|
|
// Set our bits.
|
|
|
|
AllocMask = 1 << Bit;
|
|
|
|
for (uint64_t B : Bits)
|
|
|
|
Bytes[AllocByteOffset + B] |= AllocMask;
|
|
|
|
}
|
|
|
|
|
2015-02-21 04:30:47 +08:00
|
|
|
namespace {
|
|
|
|
|
LowerBitSets: Use byte arrays instead of bit sets to represent in-memory bit sets.
By loading from indexed offsets into a byte array and applying a mask, a
program can test bits from the bit set with a relatively short instruction
sequence. For example, suppose we have 15 bit sets to lay out:
A (16 bits), B (15 bits), C (14 bits), D (13 bits), E (12 bits),
F (11 bits), G (10 bits), H (9 bits), I (7 bits), J (6 bits), K (5 bits),
L (4 bits), M (3 bits), N (2 bits), O (1 bit)
These bits can be laid out in a 16-byte array like this:
Byte Offset
0123456789ABCDEF
Bit
7 HHHHHHHHHIIIIIII
6 GGGGGGGGGGJJJJJJ
5 FFFFFFFFFFFKKKKK
4 EEEEEEEEEEEELLLL
3 DDDDDDDDDDDDDMMM
2 CCCCCCCCCCCCCCNN
1 BBBBBBBBBBBBBBBO
0 AAAAAAAAAAAAAAAA
For example, to test bit X of A, we evaluate ((bits[X] & 1) != 0), or to
test bit X of I, we evaluate ((bits[9 + X] & 0x80) != 0). This can be done
in 1-2 machine instructions on x86, or 4-6 instructions on ARM.
This uses the LPT multiprocessor scheduling algorithm to lay out the bits
efficiently.
Saves ~450KB of instructions in a recent build of Chromium.
Differential Revision: http://reviews.llvm.org/D7954
llvm-svn: 231043
2015-03-03 08:49:28 +08:00
|
|
|
struct ByteArrayInfo {
|
|
|
|
std::set<uint64_t> Bits;
|
|
|
|
uint64_t BitSize;
|
|
|
|
GlobalVariable *ByteArray;
|
|
|
|
Constant *Mask;
|
|
|
|
};
|
|
|
|
|
2015-02-21 04:30:47 +08:00
|
|
|
struct LowerBitSets : public ModulePass {
|
|
|
|
static char ID;
|
|
|
|
LowerBitSets() : ModulePass(ID) {
|
|
|
|
initializeLowerBitSetsPass(*PassRegistry::getPassRegistry());
|
|
|
|
}
|
|
|
|
|
LowerBitSets: Use byte arrays instead of bit sets to represent in-memory bit sets.
By loading from indexed offsets into a byte array and applying a mask, a
program can test bits from the bit set with a relatively short instruction
sequence. For example, suppose we have 15 bit sets to lay out:
A (16 bits), B (15 bits), C (14 bits), D (13 bits), E (12 bits),
F (11 bits), G (10 bits), H (9 bits), I (7 bits), J (6 bits), K (5 bits),
L (4 bits), M (3 bits), N (2 bits), O (1 bit)
These bits can be laid out in a 16-byte array like this:
Byte Offset
0123456789ABCDEF
Bit
7 HHHHHHHHHIIIIIII
6 GGGGGGGGGGJJJJJJ
5 FFFFFFFFFFFKKKKK
4 EEEEEEEEEEEELLLL
3 DDDDDDDDDDDDDMMM
2 CCCCCCCCCCCCCCNN
1 BBBBBBBBBBBBBBBO
0 AAAAAAAAAAAAAAAA
For example, to test bit X of A, we evaluate ((bits[X] & 1) != 0), or to
test bit X of I, we evaluate ((bits[9 + X] & 0x80) != 0). This can be done
in 1-2 machine instructions on x86, or 4-6 instructions on ARM.
This uses the LPT multiprocessor scheduling algorithm to lay out the bits
efficiently.
Saves ~450KB of instructions in a recent build of Chromium.
Differential Revision: http://reviews.llvm.org/D7954
llvm-svn: 231043
2015-03-03 08:49:28 +08:00
|
|
|
Module *M;
|
|
|
|
|
2015-03-14 08:00:49 +08:00
|
|
|
bool LinkerSubsectionsViaSymbols;
|
2015-09-09 06:49:35 +08:00
|
|
|
Triple::ArchType Arch;
|
|
|
|
Triple::ObjectFormatType ObjectFormat;
|
2015-02-21 04:30:47 +08:00
|
|
|
IntegerType *Int1Ty;
|
2015-02-26 04:42:41 +08:00
|
|
|
IntegerType *Int8Ty;
|
2015-02-21 04:30:47 +08:00
|
|
|
IntegerType *Int32Ty;
|
|
|
|
Type *Int32PtrTy;
|
|
|
|
IntegerType *Int64Ty;
|
2015-09-09 06:49:35 +08:00
|
|
|
IntegerType *IntPtrTy;
|
2015-02-21 04:30:47 +08:00
|
|
|
|
|
|
|
// The llvm.bitsets named metadata.
|
|
|
|
NamedMDNode *BitSetNM;
|
|
|
|
|
2015-09-09 06:49:35 +08:00
|
|
|
// Mapping from bitset identifiers to the call sites that test them.
|
|
|
|
DenseMap<Metadata *, std::vector<CallInst *>> BitSetTestCallSites;
|
2015-02-21 04:30:47 +08:00
|
|
|
|
LowerBitSets: Use byte arrays instead of bit sets to represent in-memory bit sets.
By loading from indexed offsets into a byte array and applying a mask, a
program can test bits from the bit set with a relatively short instruction
sequence. For example, suppose we have 15 bit sets to lay out:
A (16 bits), B (15 bits), C (14 bits), D (13 bits), E (12 bits),
F (11 bits), G (10 bits), H (9 bits), I (7 bits), J (6 bits), K (5 bits),
L (4 bits), M (3 bits), N (2 bits), O (1 bit)
These bits can be laid out in a 16-byte array like this:
Byte Offset
0123456789ABCDEF
Bit
7 HHHHHHHHHIIIIIII
6 GGGGGGGGGGJJJJJJ
5 FFFFFFFFFFFKKKKK
4 EEEEEEEEEEEELLLL
3 DDDDDDDDDDDDDMMM
2 CCCCCCCCCCCCCCNN
1 BBBBBBBBBBBBBBBO
0 AAAAAAAAAAAAAAAA
For example, to test bit X of A, we evaluate ((bits[X] & 1) != 0), or to
test bit X of I, we evaluate ((bits[9 + X] & 0x80) != 0). This can be done
in 1-2 machine instructions on x86, or 4-6 instructions on ARM.
This uses the LPT multiprocessor scheduling algorithm to lay out the bits
efficiently.
Saves ~450KB of instructions in a recent build of Chromium.
Differential Revision: http://reviews.llvm.org/D7954
llvm-svn: 231043
2015-03-03 08:49:28 +08:00
|
|
|
std::vector<ByteArrayInfo> ByteArrayInfos;
|
|
|
|
|
2015-02-21 04:30:47 +08:00
|
|
|
BitSetInfo
|
2015-09-09 06:49:35 +08:00
|
|
|
buildBitSet(Metadata *BitSet,
|
|
|
|
const DenseMap<GlobalObject *, uint64_t> &GlobalLayout);
|
LowerBitSets: Use byte arrays instead of bit sets to represent in-memory bit sets.
By loading from indexed offsets into a byte array and applying a mask, a
program can test bits from the bit set with a relatively short instruction
sequence. For example, suppose we have 15 bit sets to lay out:
A (16 bits), B (15 bits), C (14 bits), D (13 bits), E (12 bits),
F (11 bits), G (10 bits), H (9 bits), I (7 bits), J (6 bits), K (5 bits),
L (4 bits), M (3 bits), N (2 bits), O (1 bit)
These bits can be laid out in a 16-byte array like this:
Byte Offset
0123456789ABCDEF
Bit
7 HHHHHHHHHIIIIIII
6 GGGGGGGGGGJJJJJJ
5 FFFFFFFFFFFKKKKK
4 EEEEEEEEEEEELLLL
3 DDDDDDDDDDDDDMMM
2 CCCCCCCCCCCCCCNN
1 BBBBBBBBBBBBBBBO
0 AAAAAAAAAAAAAAAA
For example, to test bit X of A, we evaluate ((bits[X] & 1) != 0), or to
test bit X of I, we evaluate ((bits[9 + X] & 0x80) != 0). This can be done
in 1-2 machine instructions on x86, or 4-6 instructions on ARM.
This uses the LPT multiprocessor scheduling algorithm to lay out the bits
efficiently.
Saves ~450KB of instructions in a recent build of Chromium.
Differential Revision: http://reviews.llvm.org/D7954
llvm-svn: 231043
2015-03-03 08:49:28 +08:00
|
|
|
ByteArrayInfo *createByteArray(BitSetInfo &BSI);
|
|
|
|
void allocateByteArrays();
|
|
|
|
Value *createBitSetTest(IRBuilder<> &B, BitSetInfo &BSI, ByteArrayInfo *&BAI,
|
|
|
|
Value *BitOffset);
|
2015-09-09 06:49:35 +08:00
|
|
|
void lowerBitSetCalls(ArrayRef<Metadata *> BitSets,
|
|
|
|
Constant *CombinedGlobalAddr,
|
|
|
|
const DenseMap<GlobalObject *, uint64_t> &GlobalLayout);
|
2015-02-26 04:42:41 +08:00
|
|
|
Value *
|
LowerBitSets: Use byte arrays instead of bit sets to represent in-memory bit sets.
By loading from indexed offsets into a byte array and applying a mask, a
program can test bits from the bit set with a relatively short instruction
sequence. For example, suppose we have 15 bit sets to lay out:
A (16 bits), B (15 bits), C (14 bits), D (13 bits), E (12 bits),
F (11 bits), G (10 bits), H (9 bits), I (7 bits), J (6 bits), K (5 bits),
L (4 bits), M (3 bits), N (2 bits), O (1 bit)
These bits can be laid out in a 16-byte array like this:
Byte Offset
0123456789ABCDEF
Bit
7 HHHHHHHHHIIIIIII
6 GGGGGGGGGGJJJJJJ
5 FFFFFFFFFFFKKKKK
4 EEEEEEEEEEEELLLL
3 DDDDDDDDDDDDDMMM
2 CCCCCCCCCCCCCCNN
1 BBBBBBBBBBBBBBBO
0 AAAAAAAAAAAAAAAA
For example, to test bit X of A, we evaluate ((bits[X] & 1) != 0), or to
test bit X of I, we evaluate ((bits[9 + X] & 0x80) != 0). This can be done
in 1-2 machine instructions on x86, or 4-6 instructions on ARM.
This uses the LPT multiprocessor scheduling algorithm to lay out the bits
efficiently.
Saves ~450KB of instructions in a recent build of Chromium.
Differential Revision: http://reviews.llvm.org/D7954
llvm-svn: 231043
2015-03-03 08:49:28 +08:00
|
|
|
lowerBitSetCall(CallInst *CI, BitSetInfo &BSI, ByteArrayInfo *&BAI,
|
2015-09-09 06:49:35 +08:00
|
|
|
Constant *CombinedGlobal,
|
|
|
|
const DenseMap<GlobalObject *, uint64_t> &GlobalLayout);
|
|
|
|
void buildBitSetsFromGlobalVariables(ArrayRef<Metadata *> BitSets,
|
|
|
|
ArrayRef<GlobalVariable *> Globals);
|
|
|
|
unsigned getJumpTableEntrySize();
|
|
|
|
Type *getJumpTableEntryType();
|
|
|
|
Constant *createJumpTableEntry(GlobalObject *Src, Function *Dest,
|
|
|
|
unsigned Distance);
|
|
|
|
void verifyBitSetMDNode(MDNode *Op);
|
|
|
|
void buildBitSetsFromFunctions(ArrayRef<Metadata *> BitSets,
|
|
|
|
ArrayRef<Function *> Functions);
|
|
|
|
void buildBitSetsFromDisjointSet(ArrayRef<Metadata *> BitSets,
|
|
|
|
ArrayRef<GlobalObject *> Globals);
|
LowerBitSets: Use byte arrays instead of bit sets to represent in-memory bit sets.
By loading from indexed offsets into a byte array and applying a mask, a
program can test bits from the bit set with a relatively short instruction
sequence. For example, suppose we have 15 bit sets to lay out:
A (16 bits), B (15 bits), C (14 bits), D (13 bits), E (12 bits),
F (11 bits), G (10 bits), H (9 bits), I (7 bits), J (6 bits), K (5 bits),
L (4 bits), M (3 bits), N (2 bits), O (1 bit)
These bits can be laid out in a 16-byte array like this:
Byte Offset
0123456789ABCDEF
Bit
7 HHHHHHHHHIIIIIII
6 GGGGGGGGGGJJJJJJ
5 FFFFFFFFFFFKKKKK
4 EEEEEEEEEEEELLLL
3 DDDDDDDDDDDDDMMM
2 CCCCCCCCCCCCCCNN
1 BBBBBBBBBBBBBBBO
0 AAAAAAAAAAAAAAAA
For example, to test bit X of A, we evaluate ((bits[X] & 1) != 0), or to
test bit X of I, we evaluate ((bits[9 + X] & 0x80) != 0). This can be done
in 1-2 machine instructions on x86, or 4-6 instructions on ARM.
This uses the LPT multiprocessor scheduling algorithm to lay out the bits
efficiently.
Saves ~450KB of instructions in a recent build of Chromium.
Differential Revision: http://reviews.llvm.org/D7954
llvm-svn: 231043
2015-03-03 08:49:28 +08:00
|
|
|
bool buildBitSets();
|
|
|
|
bool eraseBitSetMetadata();
|
2015-02-21 04:30:47 +08:00
|
|
|
|
|
|
|
bool doInitialization(Module &M) override;
|
|
|
|
bool runOnModule(Module &M) override;
|
|
|
|
};
|
|
|
|
|
|
|
|
} // namespace
|
|
|
|
|
|
|
|
INITIALIZE_PASS_BEGIN(LowerBitSets, "lowerbitsets",
|
|
|
|
"Lower bitset metadata", false, false)
|
|
|
|
INITIALIZE_PASS_END(LowerBitSets, "lowerbitsets",
|
|
|
|
"Lower bitset metadata", false, false)
|
|
|
|
char LowerBitSets::ID = 0;
|
|
|
|
|
|
|
|
ModulePass *llvm::createLowerBitSetsPass() { return new LowerBitSets; }
|
|
|
|
|
LowerBitSets: Use byte arrays instead of bit sets to represent in-memory bit sets.
By loading from indexed offsets into a byte array and applying a mask, a
program can test bits from the bit set with a relatively short instruction
sequence. For example, suppose we have 15 bit sets to lay out:
A (16 bits), B (15 bits), C (14 bits), D (13 bits), E (12 bits),
F (11 bits), G (10 bits), H (9 bits), I (7 bits), J (6 bits), K (5 bits),
L (4 bits), M (3 bits), N (2 bits), O (1 bit)
These bits can be laid out in a 16-byte array like this:
Byte Offset
0123456789ABCDEF
Bit
7 HHHHHHHHHIIIIIII
6 GGGGGGGGGGJJJJJJ
5 FFFFFFFFFFFKKKKK
4 EEEEEEEEEEEELLLL
3 DDDDDDDDDDDDDMMM
2 CCCCCCCCCCCCCCNN
1 BBBBBBBBBBBBBBBO
0 AAAAAAAAAAAAAAAA
For example, to test bit X of A, we evaluate ((bits[X] & 1) != 0), or to
test bit X of I, we evaluate ((bits[9 + X] & 0x80) != 0). This can be done
in 1-2 machine instructions on x86, or 4-6 instructions on ARM.
This uses the LPT multiprocessor scheduling algorithm to lay out the bits
efficiently.
Saves ~450KB of instructions in a recent build of Chromium.
Differential Revision: http://reviews.llvm.org/D7954
llvm-svn: 231043
2015-03-03 08:49:28 +08:00
|
|
|
bool LowerBitSets::doInitialization(Module &Mod) {
|
|
|
|
M = &Mod;
|
2015-03-10 10:37:25 +08:00
|
|
|
const DataLayout &DL = Mod.getDataLayout();
|
2015-02-21 04:30:47 +08:00
|
|
|
|
2015-03-14 08:00:49 +08:00
|
|
|
Triple TargetTriple(M->getTargetTriple());
|
|
|
|
LinkerSubsectionsViaSymbols = TargetTriple.isMacOSX();
|
2015-09-09 06:49:35 +08:00
|
|
|
Arch = TargetTriple.getArch();
|
|
|
|
ObjectFormat = TargetTriple.getObjectFormat();
|
2015-03-14 08:00:49 +08:00
|
|
|
|
LowerBitSets: Use byte arrays instead of bit sets to represent in-memory bit sets.
By loading from indexed offsets into a byte array and applying a mask, a
program can test bits from the bit set with a relatively short instruction
sequence. For example, suppose we have 15 bit sets to lay out:
A (16 bits), B (15 bits), C (14 bits), D (13 bits), E (12 bits),
F (11 bits), G (10 bits), H (9 bits), I (7 bits), J (6 bits), K (5 bits),
L (4 bits), M (3 bits), N (2 bits), O (1 bit)
These bits can be laid out in a 16-byte array like this:
Byte Offset
0123456789ABCDEF
Bit
7 HHHHHHHHHIIIIIII
6 GGGGGGGGGGJJJJJJ
5 FFFFFFFFFFFKKKKK
4 EEEEEEEEEEEELLLL
3 DDDDDDDDDDDDDMMM
2 CCCCCCCCCCCCCCNN
1 BBBBBBBBBBBBBBBO
0 AAAAAAAAAAAAAAAA
For example, to test bit X of A, we evaluate ((bits[X] & 1) != 0), or to
test bit X of I, we evaluate ((bits[9 + X] & 0x80) != 0). This can be done
in 1-2 machine instructions on x86, or 4-6 instructions on ARM.
This uses the LPT multiprocessor scheduling algorithm to lay out the bits
efficiently.
Saves ~450KB of instructions in a recent build of Chromium.
Differential Revision: http://reviews.llvm.org/D7954
llvm-svn: 231043
2015-03-03 08:49:28 +08:00
|
|
|
Int1Ty = Type::getInt1Ty(M->getContext());
|
|
|
|
Int8Ty = Type::getInt8Ty(M->getContext());
|
|
|
|
Int32Ty = Type::getInt32Ty(M->getContext());
|
2015-02-21 04:30:47 +08:00
|
|
|
Int32PtrTy = PointerType::getUnqual(Int32Ty);
|
LowerBitSets: Use byte arrays instead of bit sets to represent in-memory bit sets.
By loading from indexed offsets into a byte array and applying a mask, a
program can test bits from the bit set with a relatively short instruction
sequence. For example, suppose we have 15 bit sets to lay out:
A (16 bits), B (15 bits), C (14 bits), D (13 bits), E (12 bits),
F (11 bits), G (10 bits), H (9 bits), I (7 bits), J (6 bits), K (5 bits),
L (4 bits), M (3 bits), N (2 bits), O (1 bit)
These bits can be laid out in a 16-byte array like this:
Byte Offset
0123456789ABCDEF
Bit
7 HHHHHHHHHIIIIIII
6 GGGGGGGGGGJJJJJJ
5 FFFFFFFFFFFKKKKK
4 EEEEEEEEEEEELLLL
3 DDDDDDDDDDDDDMMM
2 CCCCCCCCCCCCCCNN
1 BBBBBBBBBBBBBBBO
0 AAAAAAAAAAAAAAAA
For example, to test bit X of A, we evaluate ((bits[X] & 1) != 0), or to
test bit X of I, we evaluate ((bits[9 + X] & 0x80) != 0). This can be done
in 1-2 machine instructions on x86, or 4-6 instructions on ARM.
This uses the LPT multiprocessor scheduling algorithm to lay out the bits
efficiently.
Saves ~450KB of instructions in a recent build of Chromium.
Differential Revision: http://reviews.llvm.org/D7954
llvm-svn: 231043
2015-03-03 08:49:28 +08:00
|
|
|
Int64Ty = Type::getInt64Ty(M->getContext());
|
2015-03-10 10:37:25 +08:00
|
|
|
IntPtrTy = DL.getIntPtrType(M->getContext(), 0);
|
2015-02-21 04:30:47 +08:00
|
|
|
|
LowerBitSets: Use byte arrays instead of bit sets to represent in-memory bit sets.
By loading from indexed offsets into a byte array and applying a mask, a
program can test bits from the bit set with a relatively short instruction
sequence. For example, suppose we have 15 bit sets to lay out:
A (16 bits), B (15 bits), C (14 bits), D (13 bits), E (12 bits),
F (11 bits), G (10 bits), H (9 bits), I (7 bits), J (6 bits), K (5 bits),
L (4 bits), M (3 bits), N (2 bits), O (1 bit)
These bits can be laid out in a 16-byte array like this:
Byte Offset
0123456789ABCDEF
Bit
7 HHHHHHHHHIIIIIII
6 GGGGGGGGGGJJJJJJ
5 FFFFFFFFFFFKKKKK
4 EEEEEEEEEEEELLLL
3 DDDDDDDDDDDDDMMM
2 CCCCCCCCCCCCCCNN
1 BBBBBBBBBBBBBBBO
0 AAAAAAAAAAAAAAAA
For example, to test bit X of A, we evaluate ((bits[X] & 1) != 0), or to
test bit X of I, we evaluate ((bits[9 + X] & 0x80) != 0). This can be done
in 1-2 machine instructions on x86, or 4-6 instructions on ARM.
This uses the LPT multiprocessor scheduling algorithm to lay out the bits
efficiently.
Saves ~450KB of instructions in a recent build of Chromium.
Differential Revision: http://reviews.llvm.org/D7954
llvm-svn: 231043
2015-03-03 08:49:28 +08:00
|
|
|
BitSetNM = M->getNamedMetadata("llvm.bitsets");
|
2015-02-21 04:30:47 +08:00
|
|
|
|
|
|
|
BitSetTestCallSites.clear();
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2015-02-22 17:51:42 +08:00
|
|
|
/// Build a bit set for BitSet using the object layouts in
|
|
|
|
/// GlobalLayout.
|
2015-02-21 04:30:47 +08:00
|
|
|
BitSetInfo LowerBitSets::buildBitSet(
|
2015-09-09 06:49:35 +08:00
|
|
|
Metadata *BitSet,
|
|
|
|
const DenseMap<GlobalObject *, uint64_t> &GlobalLayout) {
|
2015-02-21 04:30:47 +08:00
|
|
|
BitSetBuilder BSB;
|
|
|
|
|
|
|
|
// Compute the byte offset of each element of this bitset.
|
|
|
|
if (BitSetNM) {
|
|
|
|
for (MDNode *Op : BitSetNM->operands()) {
|
|
|
|
if (Op->getOperand(0) != BitSet || !Op->getOperand(1))
|
|
|
|
continue;
|
2015-09-09 06:49:35 +08:00
|
|
|
Constant *OpConst =
|
|
|
|
cast<ConstantAsMetadata>(Op->getOperand(1))->getValue();
|
|
|
|
if (auto GA = dyn_cast<GlobalAlias>(OpConst))
|
|
|
|
OpConst = GA->getAliasee();
|
|
|
|
auto OpGlobal = dyn_cast<GlobalObject>(OpConst);
|
2015-06-27 08:17:51 +08:00
|
|
|
if (!OpGlobal)
|
|
|
|
continue;
|
2015-02-21 04:30:47 +08:00
|
|
|
uint64_t Offset =
|
|
|
|
cast<ConstantInt>(cast<ConstantAsMetadata>(Op->getOperand(2))
|
|
|
|
->getValue())->getZExtValue();
|
|
|
|
|
|
|
|
Offset += GlobalLayout.find(OpGlobal)->second;
|
|
|
|
|
|
|
|
BSB.addOffset(Offset);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return BSB.build();
|
|
|
|
}
|
|
|
|
|
2015-02-22 17:51:42 +08:00
|
|
|
/// Build a test that bit BitOffset mod sizeof(Bits)*8 is set in
|
|
|
|
/// Bits. This pattern matches to the bt instruction on x86.
|
2015-02-21 04:30:47 +08:00
|
|
|
static Value *createMaskedBitTest(IRBuilder<> &B, Value *Bits,
|
|
|
|
Value *BitOffset) {
|
|
|
|
auto BitsType = cast<IntegerType>(Bits->getType());
|
|
|
|
unsigned BitWidth = BitsType->getBitWidth();
|
|
|
|
|
|
|
|
BitOffset = B.CreateZExtOrTrunc(BitOffset, BitsType);
|
|
|
|
Value *BitIndex =
|
|
|
|
B.CreateAnd(BitOffset, ConstantInt::get(BitsType, BitWidth - 1));
|
|
|
|
Value *BitMask = B.CreateShl(ConstantInt::get(BitsType, 1), BitIndex);
|
|
|
|
Value *MaskedBits = B.CreateAnd(Bits, BitMask);
|
|
|
|
return B.CreateICmpNE(MaskedBits, ConstantInt::get(BitsType, 0));
|
|
|
|
}
|
|
|
|
|
LowerBitSets: Use byte arrays instead of bit sets to represent in-memory bit sets.
By loading from indexed offsets into a byte array and applying a mask, a
program can test bits from the bit set with a relatively short instruction
sequence. For example, suppose we have 15 bit sets to lay out:
A (16 bits), B (15 bits), C (14 bits), D (13 bits), E (12 bits),
F (11 bits), G (10 bits), H (9 bits), I (7 bits), J (6 bits), K (5 bits),
L (4 bits), M (3 bits), N (2 bits), O (1 bit)
These bits can be laid out in a 16-byte array like this:
Byte Offset
0123456789ABCDEF
Bit
7 HHHHHHHHHIIIIIII
6 GGGGGGGGGGJJJJJJ
5 FFFFFFFFFFFKKKKK
4 EEEEEEEEEEEELLLL
3 DDDDDDDDDDDDDMMM
2 CCCCCCCCCCCCCCNN
1 BBBBBBBBBBBBBBBO
0 AAAAAAAAAAAAAAAA
For example, to test bit X of A, we evaluate ((bits[X] & 1) != 0), or to
test bit X of I, we evaluate ((bits[9 + X] & 0x80) != 0). This can be done
in 1-2 machine instructions on x86, or 4-6 instructions on ARM.
This uses the LPT multiprocessor scheduling algorithm to lay out the bits
efficiently.
Saves ~450KB of instructions in a recent build of Chromium.
Differential Revision: http://reviews.llvm.org/D7954
llvm-svn: 231043
2015-03-03 08:49:28 +08:00
|
|
|
ByteArrayInfo *LowerBitSets::createByteArray(BitSetInfo &BSI) {
|
|
|
|
// Create globals to stand in for byte arrays and masks. These never actually
|
|
|
|
// get initialized, we RAUW and erase them later in allocateByteArrays() once
|
|
|
|
// we know the offset and mask to use.
|
|
|
|
auto ByteArrayGlobal = new GlobalVariable(
|
|
|
|
*M, Int8Ty, /*isConstant=*/true, GlobalValue::PrivateLinkage, nullptr);
|
|
|
|
auto MaskGlobal = new GlobalVariable(
|
|
|
|
*M, Int8Ty, /*isConstant=*/true, GlobalValue::PrivateLinkage, nullptr);
|
|
|
|
|
|
|
|
ByteArrayInfos.emplace_back();
|
|
|
|
ByteArrayInfo *BAI = &ByteArrayInfos.back();
|
|
|
|
|
|
|
|
BAI->Bits = BSI.Bits;
|
|
|
|
BAI->BitSize = BSI.BitSize;
|
|
|
|
BAI->ByteArray = ByteArrayGlobal;
|
|
|
|
BAI->Mask = ConstantExpr::getPtrToInt(MaskGlobal, Int8Ty);
|
|
|
|
return BAI;
|
|
|
|
}
|
|
|
|
|
|
|
|
void LowerBitSets::allocateByteArrays() {
|
|
|
|
std::stable_sort(ByteArrayInfos.begin(), ByteArrayInfos.end(),
|
|
|
|
[](const ByteArrayInfo &BAI1, const ByteArrayInfo &BAI2) {
|
|
|
|
return BAI1.BitSize > BAI2.BitSize;
|
|
|
|
});
|
|
|
|
|
|
|
|
std::vector<uint64_t> ByteArrayOffsets(ByteArrayInfos.size());
|
|
|
|
|
|
|
|
ByteArrayBuilder BAB;
|
|
|
|
for (unsigned I = 0; I != ByteArrayInfos.size(); ++I) {
|
|
|
|
ByteArrayInfo *BAI = &ByteArrayInfos[I];
|
|
|
|
|
|
|
|
uint8_t Mask;
|
|
|
|
BAB.allocate(BAI->Bits, BAI->BitSize, ByteArrayOffsets[I], Mask);
|
|
|
|
|
|
|
|
BAI->Mask->replaceAllUsesWith(ConstantInt::get(Int8Ty, Mask));
|
|
|
|
cast<GlobalVariable>(BAI->Mask->getOperand(0))->eraseFromParent();
|
|
|
|
}
|
|
|
|
|
|
|
|
Constant *ByteArrayConst = ConstantDataArray::get(M->getContext(), BAB.Bytes);
|
|
|
|
auto ByteArray =
|
|
|
|
new GlobalVariable(*M, ByteArrayConst->getType(), /*isConstant=*/true,
|
|
|
|
GlobalValue::PrivateLinkage, ByteArrayConst);
|
|
|
|
|
|
|
|
for (unsigned I = 0; I != ByteArrayInfos.size(); ++I) {
|
|
|
|
ByteArrayInfo *BAI = &ByteArrayInfos[I];
|
|
|
|
|
|
|
|
Constant *Idxs[] = {ConstantInt::get(IntPtrTy, 0),
|
|
|
|
ConstantInt::get(IntPtrTy, ByteArrayOffsets[I])};
|
2015-04-03 02:55:32 +08:00
|
|
|
Constant *GEP = ConstantExpr::getInBoundsGetElementPtr(
|
|
|
|
ByteArrayConst->getType(), ByteArray, Idxs);
|
LowerBitSets: Use byte arrays instead of bit sets to represent in-memory bit sets.
By loading from indexed offsets into a byte array and applying a mask, a
program can test bits from the bit set with a relatively short instruction
sequence. For example, suppose we have 15 bit sets to lay out:
A (16 bits), B (15 bits), C (14 bits), D (13 bits), E (12 bits),
F (11 bits), G (10 bits), H (9 bits), I (7 bits), J (6 bits), K (5 bits),
L (4 bits), M (3 bits), N (2 bits), O (1 bit)
These bits can be laid out in a 16-byte array like this:
Byte Offset
0123456789ABCDEF
Bit
7 HHHHHHHHHIIIIIII
6 GGGGGGGGGGJJJJJJ
5 FFFFFFFFFFFKKKKK
4 EEEEEEEEEEEELLLL
3 DDDDDDDDDDDDDMMM
2 CCCCCCCCCCCCCCNN
1 BBBBBBBBBBBBBBBO
0 AAAAAAAAAAAAAAAA
For example, to test bit X of A, we evaluate ((bits[X] & 1) != 0), or to
test bit X of I, we evaluate ((bits[9 + X] & 0x80) != 0). This can be done
in 1-2 machine instructions on x86, or 4-6 instructions on ARM.
This uses the LPT multiprocessor scheduling algorithm to lay out the bits
efficiently.
Saves ~450KB of instructions in a recent build of Chromium.
Differential Revision: http://reviews.llvm.org/D7954
llvm-svn: 231043
2015-03-03 08:49:28 +08:00
|
|
|
|
|
|
|
// Create an alias instead of RAUW'ing the gep directly. On x86 this ensures
|
|
|
|
// that the pc-relative displacement is folded into the lea instead of the
|
|
|
|
// test instruction getting another displacement.
|
2015-03-17 07:36:24 +08:00
|
|
|
if (LinkerSubsectionsViaSymbols) {
|
|
|
|
BAI->ByteArray->replaceAllUsesWith(GEP);
|
|
|
|
} else {
|
2015-04-30 05:22:39 +08:00
|
|
|
GlobalAlias *Alias =
|
|
|
|
GlobalAlias::create(PointerType::getUnqual(Int8Ty),
|
|
|
|
GlobalValue::PrivateLinkage, "bits", GEP, M);
|
2015-03-17 07:36:24 +08:00
|
|
|
BAI->ByteArray->replaceAllUsesWith(Alias);
|
|
|
|
}
|
LowerBitSets: Use byte arrays instead of bit sets to represent in-memory bit sets.
By loading from indexed offsets into a byte array and applying a mask, a
program can test bits from the bit set with a relatively short instruction
sequence. For example, suppose we have 15 bit sets to lay out:
A (16 bits), B (15 bits), C (14 bits), D (13 bits), E (12 bits),
F (11 bits), G (10 bits), H (9 bits), I (7 bits), J (6 bits), K (5 bits),
L (4 bits), M (3 bits), N (2 bits), O (1 bit)
These bits can be laid out in a 16-byte array like this:
Byte Offset
0123456789ABCDEF
Bit
7 HHHHHHHHHIIIIIII
6 GGGGGGGGGGJJJJJJ
5 FFFFFFFFFFFKKKKK
4 EEEEEEEEEEEELLLL
3 DDDDDDDDDDDDDMMM
2 CCCCCCCCCCCCCCNN
1 BBBBBBBBBBBBBBBO
0 AAAAAAAAAAAAAAAA
For example, to test bit X of A, we evaluate ((bits[X] & 1) != 0), or to
test bit X of I, we evaluate ((bits[9 + X] & 0x80) != 0). This can be done
in 1-2 machine instructions on x86, or 4-6 instructions on ARM.
This uses the LPT multiprocessor scheduling algorithm to lay out the bits
efficiently.
Saves ~450KB of instructions in a recent build of Chromium.
Differential Revision: http://reviews.llvm.org/D7954
llvm-svn: 231043
2015-03-03 08:49:28 +08:00
|
|
|
BAI->ByteArray->eraseFromParent();
|
|
|
|
}
|
|
|
|
|
|
|
|
ByteArraySizeBits = BAB.BitAllocs[0] + BAB.BitAllocs[1] + BAB.BitAllocs[2] +
|
|
|
|
BAB.BitAllocs[3] + BAB.BitAllocs[4] + BAB.BitAllocs[5] +
|
|
|
|
BAB.BitAllocs[6] + BAB.BitAllocs[7];
|
|
|
|
ByteArraySizeBytes = BAB.Bytes.size();
|
|
|
|
}
|
|
|
|
|
2015-02-22 17:51:42 +08:00
|
|
|
/// Build a test that bit BitOffset is set in BSI, where
|
|
|
|
/// BitSetGlobal is a global containing the bits in BSI.
|
LowerBitSets: Use byte arrays instead of bit sets to represent in-memory bit sets.
By loading from indexed offsets into a byte array and applying a mask, a
program can test bits from the bit set with a relatively short instruction
sequence. For example, suppose we have 15 bit sets to lay out:
A (16 bits), B (15 bits), C (14 bits), D (13 bits), E (12 bits),
F (11 bits), G (10 bits), H (9 bits), I (7 bits), J (6 bits), K (5 bits),
L (4 bits), M (3 bits), N (2 bits), O (1 bit)
These bits can be laid out in a 16-byte array like this:
Byte Offset
0123456789ABCDEF
Bit
7 HHHHHHHHHIIIIIII
6 GGGGGGGGGGJJJJJJ
5 FFFFFFFFFFFKKKKK
4 EEEEEEEEEEEELLLL
3 DDDDDDDDDDDDDMMM
2 CCCCCCCCCCCCCCNN
1 BBBBBBBBBBBBBBBO
0 AAAAAAAAAAAAAAAA
For example, to test bit X of A, we evaluate ((bits[X] & 1) != 0), or to
test bit X of I, we evaluate ((bits[9 + X] & 0x80) != 0). This can be done
in 1-2 machine instructions on x86, or 4-6 instructions on ARM.
This uses the LPT multiprocessor scheduling algorithm to lay out the bits
efficiently.
Saves ~450KB of instructions in a recent build of Chromium.
Differential Revision: http://reviews.llvm.org/D7954
llvm-svn: 231043
2015-03-03 08:49:28 +08:00
|
|
|
Value *LowerBitSets::createBitSetTest(IRBuilder<> &B, BitSetInfo &BSI,
|
|
|
|
ByteArrayInfo *&BAI, Value *BitOffset) {
|
|
|
|
if (BSI.BitSize <= 64) {
|
2015-02-21 04:30:47 +08:00
|
|
|
// If the bit set is sufficiently small, we can avoid a load by bit testing
|
|
|
|
// a constant.
|
|
|
|
IntegerType *BitsTy;
|
LowerBitSets: Use byte arrays instead of bit sets to represent in-memory bit sets.
By loading from indexed offsets into a byte array and applying a mask, a
program can test bits from the bit set with a relatively short instruction
sequence. For example, suppose we have 15 bit sets to lay out:
A (16 bits), B (15 bits), C (14 bits), D (13 bits), E (12 bits),
F (11 bits), G (10 bits), H (9 bits), I (7 bits), J (6 bits), K (5 bits),
L (4 bits), M (3 bits), N (2 bits), O (1 bit)
These bits can be laid out in a 16-byte array like this:
Byte Offset
0123456789ABCDEF
Bit
7 HHHHHHHHHIIIIIII
6 GGGGGGGGGGJJJJJJ
5 FFFFFFFFFFFKKKKK
4 EEEEEEEEEEEELLLL
3 DDDDDDDDDDDDDMMM
2 CCCCCCCCCCCCCCNN
1 BBBBBBBBBBBBBBBO
0 AAAAAAAAAAAAAAAA
For example, to test bit X of A, we evaluate ((bits[X] & 1) != 0), or to
test bit X of I, we evaluate ((bits[9 + X] & 0x80) != 0). This can be done
in 1-2 machine instructions on x86, or 4-6 instructions on ARM.
This uses the LPT multiprocessor scheduling algorithm to lay out the bits
efficiently.
Saves ~450KB of instructions in a recent build of Chromium.
Differential Revision: http://reviews.llvm.org/D7954
llvm-svn: 231043
2015-03-03 08:49:28 +08:00
|
|
|
if (BSI.BitSize <= 32)
|
2015-02-21 04:30:47 +08:00
|
|
|
BitsTy = Int32Ty;
|
|
|
|
else
|
|
|
|
BitsTy = Int64Ty;
|
|
|
|
|
|
|
|
uint64_t Bits = 0;
|
LowerBitSets: Use byte arrays instead of bit sets to represent in-memory bit sets.
By loading from indexed offsets into a byte array and applying a mask, a
program can test bits from the bit set with a relatively short instruction
sequence. For example, suppose we have 15 bit sets to lay out:
A (16 bits), B (15 bits), C (14 bits), D (13 bits), E (12 bits),
F (11 bits), G (10 bits), H (9 bits), I (7 bits), J (6 bits), K (5 bits),
L (4 bits), M (3 bits), N (2 bits), O (1 bit)
These bits can be laid out in a 16-byte array like this:
Byte Offset
0123456789ABCDEF
Bit
7 HHHHHHHHHIIIIIII
6 GGGGGGGGGGJJJJJJ
5 FFFFFFFFFFFKKKKK
4 EEEEEEEEEEEELLLL
3 DDDDDDDDDDDDDMMM
2 CCCCCCCCCCCCCCNN
1 BBBBBBBBBBBBBBBO
0 AAAAAAAAAAAAAAAA
For example, to test bit X of A, we evaluate ((bits[X] & 1) != 0), or to
test bit X of I, we evaluate ((bits[9 + X] & 0x80) != 0). This can be done
in 1-2 machine instructions on x86, or 4-6 instructions on ARM.
This uses the LPT multiprocessor scheduling algorithm to lay out the bits
efficiently.
Saves ~450KB of instructions in a recent build of Chromium.
Differential Revision: http://reviews.llvm.org/D7954
llvm-svn: 231043
2015-03-03 08:49:28 +08:00
|
|
|
for (auto Bit : BSI.Bits)
|
|
|
|
Bits |= uint64_t(1) << Bit;
|
2015-02-21 04:30:47 +08:00
|
|
|
Constant *BitsConst = ConstantInt::get(BitsTy, Bits);
|
|
|
|
return createMaskedBitTest(B, BitsConst, BitOffset);
|
|
|
|
} else {
|
LowerBitSets: Use byte arrays instead of bit sets to represent in-memory bit sets.
By loading from indexed offsets into a byte array and applying a mask, a
program can test bits from the bit set with a relatively short instruction
sequence. For example, suppose we have 15 bit sets to lay out:
A (16 bits), B (15 bits), C (14 bits), D (13 bits), E (12 bits),
F (11 bits), G (10 bits), H (9 bits), I (7 bits), J (6 bits), K (5 bits),
L (4 bits), M (3 bits), N (2 bits), O (1 bit)
These bits can be laid out in a 16-byte array like this:
Byte Offset
0123456789ABCDEF
Bit
7 HHHHHHHHHIIIIIII
6 GGGGGGGGGGJJJJJJ
5 FFFFFFFFFFFKKKKK
4 EEEEEEEEEEEELLLL
3 DDDDDDDDDDDDDMMM
2 CCCCCCCCCCCCCCNN
1 BBBBBBBBBBBBBBBO
0 AAAAAAAAAAAAAAAA
For example, to test bit X of A, we evaluate ((bits[X] & 1) != 0), or to
test bit X of I, we evaluate ((bits[9 + X] & 0x80) != 0). This can be done
in 1-2 machine instructions on x86, or 4-6 instructions on ARM.
This uses the LPT multiprocessor scheduling algorithm to lay out the bits
efficiently.
Saves ~450KB of instructions in a recent build of Chromium.
Differential Revision: http://reviews.llvm.org/D7954
llvm-svn: 231043
2015-03-03 08:49:28 +08:00
|
|
|
if (!BAI) {
|
|
|
|
++NumByteArraysCreated;
|
|
|
|
BAI = createByteArray(BSI);
|
|
|
|
}
|
|
|
|
|
2015-03-20 06:02:10 +08:00
|
|
|
Constant *ByteArray = BAI->ByteArray;
|
2015-04-04 03:41:44 +08:00
|
|
|
Type *Ty = BAI->ByteArray->getValueType();
|
2015-03-20 06:02:10 +08:00
|
|
|
if (!LinkerSubsectionsViaSymbols && AvoidReuse) {
|
|
|
|
// Each use of the byte array uses a different alias. This makes the
|
|
|
|
// backend less likely to reuse previously computed byte array addresses,
|
|
|
|
// improving the security of the CFI mechanism based on this pass.
|
2015-04-30 05:22:39 +08:00
|
|
|
ByteArray = GlobalAlias::create(BAI->ByteArray->getType(),
|
2015-04-04 03:41:44 +08:00
|
|
|
GlobalValue::PrivateLinkage, "bits_use",
|
|
|
|
ByteArray, M);
|
2015-03-20 06:02:10 +08:00
|
|
|
}
|
|
|
|
|
2015-04-04 03:41:44 +08:00
|
|
|
Value *ByteAddr = B.CreateGEP(Ty, ByteArray, BitOffset);
|
LowerBitSets: Use byte arrays instead of bit sets to represent in-memory bit sets.
By loading from indexed offsets into a byte array and applying a mask, a
program can test bits from the bit set with a relatively short instruction
sequence. For example, suppose we have 15 bit sets to lay out:
A (16 bits), B (15 bits), C (14 bits), D (13 bits), E (12 bits),
F (11 bits), G (10 bits), H (9 bits), I (7 bits), J (6 bits), K (5 bits),
L (4 bits), M (3 bits), N (2 bits), O (1 bit)
These bits can be laid out in a 16-byte array like this:
Byte Offset
0123456789ABCDEF
Bit
7 HHHHHHHHHIIIIIII
6 GGGGGGGGGGJJJJJJ
5 FFFFFFFFFFFKKKKK
4 EEEEEEEEEEEELLLL
3 DDDDDDDDDDDDDMMM
2 CCCCCCCCCCCCCCNN
1 BBBBBBBBBBBBBBBO
0 AAAAAAAAAAAAAAAA
For example, to test bit X of A, we evaluate ((bits[X] & 1) != 0), or to
test bit X of I, we evaluate ((bits[9 + X] & 0x80) != 0). This can be done
in 1-2 machine instructions on x86, or 4-6 instructions on ARM.
This uses the LPT multiprocessor scheduling algorithm to lay out the bits
efficiently.
Saves ~450KB of instructions in a recent build of Chromium.
Differential Revision: http://reviews.llvm.org/D7954
llvm-svn: 231043
2015-03-03 08:49:28 +08:00
|
|
|
Value *Byte = B.CreateLoad(ByteAddr);
|
|
|
|
|
|
|
|
Value *ByteAndMask = B.CreateAnd(Byte, BAI->Mask);
|
|
|
|
return B.CreateICmpNE(ByteAndMask, ConstantInt::get(Int8Ty, 0));
|
2015-02-21 04:30:47 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-02-26 04:42:41 +08:00
|
|
|
/// Lower a llvm.bitset.test call to its implementation. Returns the value to
|
|
|
|
/// replace the call with.
|
|
|
|
Value *LowerBitSets::lowerBitSetCall(
|
LowerBitSets: Use byte arrays instead of bit sets to represent in-memory bit sets.
By loading from indexed offsets into a byte array and applying a mask, a
program can test bits from the bit set with a relatively short instruction
sequence. For example, suppose we have 15 bit sets to lay out:
A (16 bits), B (15 bits), C (14 bits), D (13 bits), E (12 bits),
F (11 bits), G (10 bits), H (9 bits), I (7 bits), J (6 bits), K (5 bits),
L (4 bits), M (3 bits), N (2 bits), O (1 bit)
These bits can be laid out in a 16-byte array like this:
Byte Offset
0123456789ABCDEF
Bit
7 HHHHHHHHHIIIIIII
6 GGGGGGGGGGJJJJJJ
5 FFFFFFFFFFFKKKKK
4 EEEEEEEEEEEELLLL
3 DDDDDDDDDDDDDMMM
2 CCCCCCCCCCCCCCNN
1 BBBBBBBBBBBBBBBO
0 AAAAAAAAAAAAAAAA
For example, to test bit X of A, we evaluate ((bits[X] & 1) != 0), or to
test bit X of I, we evaluate ((bits[9 + X] & 0x80) != 0). This can be done
in 1-2 machine instructions on x86, or 4-6 instructions on ARM.
This uses the LPT multiprocessor scheduling algorithm to lay out the bits
efficiently.
Saves ~450KB of instructions in a recent build of Chromium.
Differential Revision: http://reviews.llvm.org/D7954
llvm-svn: 231043
2015-03-03 08:49:28 +08:00
|
|
|
CallInst *CI, BitSetInfo &BSI, ByteArrayInfo *&BAI,
|
2015-09-09 06:49:35 +08:00
|
|
|
Constant *CombinedGlobalIntAddr,
|
|
|
|
const DenseMap<GlobalObject *, uint64_t> &GlobalLayout) {
|
2015-02-21 04:30:47 +08:00
|
|
|
Value *Ptr = CI->getArgOperand(0);
|
2015-03-10 10:37:25 +08:00
|
|
|
const DataLayout &DL = M->getDataLayout();
|
2015-02-21 04:30:47 +08:00
|
|
|
|
2015-02-26 04:42:41 +08:00
|
|
|
if (BSI.containsValue(DL, GlobalLayout, Ptr))
|
2015-09-09 06:49:35 +08:00
|
|
|
return ConstantInt::getTrue(M->getContext());
|
2015-02-21 04:30:47 +08:00
|
|
|
|
|
|
|
Constant *OffsetedGlobalAsInt = ConstantExpr::getAdd(
|
2015-09-09 06:49:35 +08:00
|
|
|
CombinedGlobalIntAddr, ConstantInt::get(IntPtrTy, BSI.ByteOffset));
|
2015-02-21 04:30:47 +08:00
|
|
|
|
|
|
|
BasicBlock *InitialBB = CI->getParent();
|
|
|
|
|
|
|
|
IRBuilder<> B(CI);
|
|
|
|
|
|
|
|
Value *PtrAsInt = B.CreatePtrToInt(Ptr, IntPtrTy);
|
|
|
|
|
2015-02-26 04:42:41 +08:00
|
|
|
if (BSI.isSingleOffset())
|
|
|
|
return B.CreateICmpEQ(PtrAsInt, OffsetedGlobalAsInt);
|
2015-02-21 04:30:47 +08:00
|
|
|
|
|
|
|
Value *PtrOffset = B.CreateSub(PtrAsInt, OffsetedGlobalAsInt);
|
|
|
|
|
|
|
|
Value *BitOffset;
|
|
|
|
if (BSI.AlignLog2 == 0) {
|
|
|
|
BitOffset = PtrOffset;
|
|
|
|
} else {
|
|
|
|
// We need to check that the offset both falls within our range and is
|
|
|
|
// suitably aligned. We can check both properties at the same time by
|
|
|
|
// performing a right rotate by log2(alignment) followed by an integer
|
|
|
|
// comparison against the bitset size. The rotate will move the lower
|
|
|
|
// order bits that need to be zero into the higher order bits of the
|
|
|
|
// result, causing the comparison to fail if they are nonzero. The rotate
|
|
|
|
// also conveniently gives us a bit offset to use during the load from
|
|
|
|
// the bitset.
|
|
|
|
Value *OffsetSHR =
|
|
|
|
B.CreateLShr(PtrOffset, ConstantInt::get(IntPtrTy, BSI.AlignLog2));
|
|
|
|
Value *OffsetSHL = B.CreateShl(
|
2015-03-10 10:37:25 +08:00
|
|
|
PtrOffset,
|
|
|
|
ConstantInt::get(IntPtrTy, DL.getPointerSizeInBits(0) - BSI.AlignLog2));
|
2015-02-21 04:30:47 +08:00
|
|
|
BitOffset = B.CreateOr(OffsetSHR, OffsetSHL);
|
|
|
|
}
|
|
|
|
|
|
|
|
Constant *BitSizeConst = ConstantInt::get(IntPtrTy, BSI.BitSize);
|
|
|
|
Value *OffsetInRange = B.CreateICmpULT(BitOffset, BitSizeConst);
|
|
|
|
|
2015-02-26 04:42:41 +08:00
|
|
|
// If the bit set is all ones, testing against it is unnecessary.
|
|
|
|
if (BSI.isAllOnes())
|
|
|
|
return OffsetInRange;
|
|
|
|
|
2015-02-21 04:30:47 +08:00
|
|
|
TerminatorInst *Term = SplitBlockAndInsertIfThen(OffsetInRange, CI, false);
|
|
|
|
IRBuilder<> ThenB(Term);
|
|
|
|
|
|
|
|
// Now that we know that the offset is in range and aligned, load the
|
|
|
|
// appropriate bit from the bitset.
|
LowerBitSets: Use byte arrays instead of bit sets to represent in-memory bit sets.
By loading from indexed offsets into a byte array and applying a mask, a
program can test bits from the bit set with a relatively short instruction
sequence. For example, suppose we have 15 bit sets to lay out:
A (16 bits), B (15 bits), C (14 bits), D (13 bits), E (12 bits),
F (11 bits), G (10 bits), H (9 bits), I (7 bits), J (6 bits), K (5 bits),
L (4 bits), M (3 bits), N (2 bits), O (1 bit)
These bits can be laid out in a 16-byte array like this:
Byte Offset
0123456789ABCDEF
Bit
7 HHHHHHHHHIIIIIII
6 GGGGGGGGGGJJJJJJ
5 FFFFFFFFFFFKKKKK
4 EEEEEEEEEEEELLLL
3 DDDDDDDDDDDDDMMM
2 CCCCCCCCCCCCCCNN
1 BBBBBBBBBBBBBBBO
0 AAAAAAAAAAAAAAAA
For example, to test bit X of A, we evaluate ((bits[X] & 1) != 0), or to
test bit X of I, we evaluate ((bits[9 + X] & 0x80) != 0). This can be done
in 1-2 machine instructions on x86, or 4-6 instructions on ARM.
This uses the LPT multiprocessor scheduling algorithm to lay out the bits
efficiently.
Saves ~450KB of instructions in a recent build of Chromium.
Differential Revision: http://reviews.llvm.org/D7954
llvm-svn: 231043
2015-03-03 08:49:28 +08:00
|
|
|
Value *Bit = createBitSetTest(ThenB, BSI, BAI, BitOffset);
|
2015-02-21 04:30:47 +08:00
|
|
|
|
|
|
|
// The value we want is 0 if we came directly from the initial block
|
|
|
|
// (having failed the range or alignment checks), or the loaded bit if
|
|
|
|
// we came from the block in which we loaded it.
|
|
|
|
B.SetInsertPoint(CI);
|
|
|
|
PHINode *P = B.CreatePHI(Int1Ty, 2);
|
|
|
|
P->addIncoming(ConstantInt::get(Int1Ty, 0), InitialBB);
|
|
|
|
P->addIncoming(Bit, ThenB.GetInsertBlock());
|
2015-02-26 04:42:41 +08:00
|
|
|
return P;
|
2015-02-21 04:30:47 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/// Given a disjoint set of bitsets and globals, layout the globals, build the
|
|
|
|
/// bit sets and lower the llvm.bitset.test calls.
|
2015-09-09 06:49:35 +08:00
|
|
|
void LowerBitSets::buildBitSetsFromGlobalVariables(
|
|
|
|
ArrayRef<Metadata *> BitSets, ArrayRef<GlobalVariable *> Globals) {
|
2015-02-21 04:30:47 +08:00
|
|
|
// Build a new global with the combined contents of the referenced globals.
|
2015-09-09 06:49:35 +08:00
|
|
|
// This global is a struct whose even-indexed elements contain the original
|
|
|
|
// contents of the referenced globals and whose odd-indexed elements contain
|
|
|
|
// any padding required to align the next element to the next power of 2.
|
2015-02-21 04:30:47 +08:00
|
|
|
std::vector<Constant *> GlobalInits;
|
2015-03-10 10:37:25 +08:00
|
|
|
const DataLayout &DL = M->getDataLayout();
|
2015-02-26 04:42:41 +08:00
|
|
|
for (GlobalVariable *G : Globals) {
|
2015-02-21 04:30:47 +08:00
|
|
|
GlobalInits.push_back(G->getInitializer());
|
2015-03-10 10:37:25 +08:00
|
|
|
uint64_t InitSize = DL.getTypeAllocSize(G->getInitializer()->getType());
|
2015-02-26 04:42:41 +08:00
|
|
|
|
2015-09-09 06:49:35 +08:00
|
|
|
// Compute the amount of padding required.
|
2015-02-26 04:42:41 +08:00
|
|
|
uint64_t Padding = NextPowerOf2(InitSize - 1) - InitSize;
|
|
|
|
|
|
|
|
// Cap at 128 was found experimentally to have a good data/instruction
|
|
|
|
// overhead tradeoff.
|
|
|
|
if (Padding > 128)
|
|
|
|
Padding = RoundUpToAlignment(InitSize, 128) - InitSize;
|
|
|
|
|
|
|
|
GlobalInits.push_back(
|
|
|
|
ConstantAggregateZero::get(ArrayType::get(Int8Ty, Padding)));
|
|
|
|
}
|
|
|
|
if (!GlobalInits.empty())
|
|
|
|
GlobalInits.pop_back();
|
LowerBitSets: Use byte arrays instead of bit sets to represent in-memory bit sets.
By loading from indexed offsets into a byte array and applying a mask, a
program can test bits from the bit set with a relatively short instruction
sequence. For example, suppose we have 15 bit sets to lay out:
A (16 bits), B (15 bits), C (14 bits), D (13 bits), E (12 bits),
F (11 bits), G (10 bits), H (9 bits), I (7 bits), J (6 bits), K (5 bits),
L (4 bits), M (3 bits), N (2 bits), O (1 bit)
These bits can be laid out in a 16-byte array like this:
Byte Offset
0123456789ABCDEF
Bit
7 HHHHHHHHHIIIIIII
6 GGGGGGGGGGJJJJJJ
5 FFFFFFFFFFFKKKKK
4 EEEEEEEEEEEELLLL
3 DDDDDDDDDDDDDMMM
2 CCCCCCCCCCCCCCNN
1 BBBBBBBBBBBBBBBO
0 AAAAAAAAAAAAAAAA
For example, to test bit X of A, we evaluate ((bits[X] & 1) != 0), or to
test bit X of I, we evaluate ((bits[9 + X] & 0x80) != 0). This can be done
in 1-2 machine instructions on x86, or 4-6 instructions on ARM.
This uses the LPT multiprocessor scheduling algorithm to lay out the bits
efficiently.
Saves ~450KB of instructions in a recent build of Chromium.
Differential Revision: http://reviews.llvm.org/D7954
llvm-svn: 231043
2015-03-03 08:49:28 +08:00
|
|
|
Constant *NewInit = ConstantStruct::getAnon(M->getContext(), GlobalInits);
|
2015-02-21 04:30:47 +08:00
|
|
|
auto CombinedGlobal =
|
LowerBitSets: Use byte arrays instead of bit sets to represent in-memory bit sets.
By loading from indexed offsets into a byte array and applying a mask, a
program can test bits from the bit set with a relatively short instruction
sequence. For example, suppose we have 15 bit sets to lay out:
A (16 bits), B (15 bits), C (14 bits), D (13 bits), E (12 bits),
F (11 bits), G (10 bits), H (9 bits), I (7 bits), J (6 bits), K (5 bits),
L (4 bits), M (3 bits), N (2 bits), O (1 bit)
These bits can be laid out in a 16-byte array like this:
Byte Offset
0123456789ABCDEF
Bit
7 HHHHHHHHHIIIIIII
6 GGGGGGGGGGJJJJJJ
5 FFFFFFFFFFFKKKKK
4 EEEEEEEEEEEELLLL
3 DDDDDDDDDDDDDMMM
2 CCCCCCCCCCCCCCNN
1 BBBBBBBBBBBBBBBO
0 AAAAAAAAAAAAAAAA
For example, to test bit X of A, we evaluate ((bits[X] & 1) != 0), or to
test bit X of I, we evaluate ((bits[9 + X] & 0x80) != 0). This can be done
in 1-2 machine instructions on x86, or 4-6 instructions on ARM.
This uses the LPT multiprocessor scheduling algorithm to lay out the bits
efficiently.
Saves ~450KB of instructions in a recent build of Chromium.
Differential Revision: http://reviews.llvm.org/D7954
llvm-svn: 231043
2015-03-03 08:49:28 +08:00
|
|
|
new GlobalVariable(*M, NewInit->getType(), /*isConstant=*/true,
|
2015-02-21 04:30:47 +08:00
|
|
|
GlobalValue::PrivateLinkage, NewInit);
|
|
|
|
|
|
|
|
const StructLayout *CombinedGlobalLayout =
|
2015-03-10 10:37:25 +08:00
|
|
|
DL.getStructLayout(cast<StructType>(NewInit->getType()));
|
2015-02-21 04:30:47 +08:00
|
|
|
|
|
|
|
// Compute the offsets of the original globals within the new global.
|
2015-09-09 06:49:35 +08:00
|
|
|
DenseMap<GlobalObject *, uint64_t> GlobalLayout;
|
2015-02-21 04:30:47 +08:00
|
|
|
for (unsigned I = 0; I != Globals.size(); ++I)
|
2015-02-26 04:42:41 +08:00
|
|
|
// Multiply by 2 to account for padding elements.
|
|
|
|
GlobalLayout[Globals[I]] = CombinedGlobalLayout->getElementOffset(I * 2);
|
2015-02-21 04:30:47 +08:00
|
|
|
|
2015-09-09 06:49:35 +08:00
|
|
|
lowerBitSetCalls(BitSets, CombinedGlobal, GlobalLayout);
|
2015-02-21 04:30:47 +08:00
|
|
|
|
|
|
|
// Build aliases pointing to offsets into the combined global for each
|
|
|
|
// global from which we built the combined global, and replace references
|
|
|
|
// to the original globals with references to the aliases.
|
|
|
|
for (unsigned I = 0; I != Globals.size(); ++I) {
|
2015-02-26 04:42:41 +08:00
|
|
|
// Multiply by 2 to account for padding elements.
|
2015-02-21 04:30:47 +08:00
|
|
|
Constant *CombinedGlobalIdxs[] = {ConstantInt::get(Int32Ty, 0),
|
2015-02-26 04:42:41 +08:00
|
|
|
ConstantInt::get(Int32Ty, I * 2)};
|
2015-04-03 02:55:32 +08:00
|
|
|
Constant *CombinedGlobalElemPtr = ConstantExpr::getGetElementPtr(
|
|
|
|
NewInit->getType(), CombinedGlobal, CombinedGlobalIdxs);
|
2015-03-17 07:36:24 +08:00
|
|
|
if (LinkerSubsectionsViaSymbols) {
|
|
|
|
Globals[I]->replaceAllUsesWith(CombinedGlobalElemPtr);
|
|
|
|
} else {
|
2015-04-30 05:22:39 +08:00
|
|
|
GlobalAlias *GAlias =
|
|
|
|
GlobalAlias::create(Globals[I]->getType(), Globals[I]->getLinkage(),
|
2015-06-18 02:31:02 +08:00
|
|
|
"", CombinedGlobalElemPtr, M);
|
2015-09-09 06:49:35 +08:00
|
|
|
GAlias->setVisibility(Globals[I]->getVisibility());
|
2015-06-18 02:31:02 +08:00
|
|
|
GAlias->takeName(Globals[I]);
|
2015-03-17 07:36:24 +08:00
|
|
|
Globals[I]->replaceAllUsesWith(GAlias);
|
|
|
|
}
|
2015-02-21 04:30:47 +08:00
|
|
|
Globals[I]->eraseFromParent();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-09-09 06:49:35 +08:00
|
|
|
void LowerBitSets::lowerBitSetCalls(
|
|
|
|
ArrayRef<Metadata *> BitSets, Constant *CombinedGlobalAddr,
|
|
|
|
const DenseMap<GlobalObject *, uint64_t> &GlobalLayout) {
|
|
|
|
Constant *CombinedGlobalIntAddr =
|
|
|
|
ConstantExpr::getPtrToInt(CombinedGlobalAddr, IntPtrTy);
|
|
|
|
|
|
|
|
// For each bitset in this disjoint set...
|
|
|
|
for (Metadata *BS : BitSets) {
|
|
|
|
// Build the bitset.
|
|
|
|
BitSetInfo BSI = buildBitSet(BS, GlobalLayout);
|
|
|
|
DEBUG({
|
|
|
|
if (auto BSS = dyn_cast<MDString>(BS))
|
|
|
|
dbgs() << BSS->getString() << ": ";
|
|
|
|
else
|
|
|
|
dbgs() << "<unnamed>: ";
|
|
|
|
BSI.print(dbgs());
|
|
|
|
});
|
|
|
|
|
|
|
|
ByteArrayInfo *BAI = 0;
|
|
|
|
|
|
|
|
// Lower each call to llvm.bitset.test for this bitset.
|
|
|
|
for (CallInst *CI : BitSetTestCallSites[BS]) {
|
|
|
|
++NumBitSetCallsLowered;
|
|
|
|
Value *Lowered =
|
|
|
|
lowerBitSetCall(CI, BSI, BAI, CombinedGlobalIntAddr, GlobalLayout);
|
|
|
|
CI->replaceAllUsesWith(Lowered);
|
|
|
|
CI->eraseFromParent();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void LowerBitSets::verifyBitSetMDNode(MDNode *Op) {
|
|
|
|
if (Op->getNumOperands() != 3)
|
|
|
|
report_fatal_error(
|
|
|
|
"All operands of llvm.bitsets metadata must have 3 elements");
|
|
|
|
if (!Op->getOperand(1))
|
|
|
|
return;
|
|
|
|
|
|
|
|
auto OpConstMD = dyn_cast<ConstantAsMetadata>(Op->getOperand(1));
|
|
|
|
if (!OpConstMD)
|
|
|
|
report_fatal_error("Bit set element must be a constant");
|
|
|
|
auto OpGlobal = dyn_cast<GlobalObject>(OpConstMD->getValue());
|
|
|
|
if (!OpGlobal)
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (OpGlobal->isThreadLocal())
|
|
|
|
report_fatal_error("Bit set element may not be thread-local");
|
|
|
|
if (OpGlobal->hasSection())
|
|
|
|
report_fatal_error("Bit set element may not have an explicit section");
|
|
|
|
|
|
|
|
if (isa<GlobalVariable>(OpGlobal) && OpGlobal->isDeclarationForLinker())
|
|
|
|
report_fatal_error("Bit set global var element must be a definition");
|
|
|
|
|
|
|
|
auto OffsetConstMD = dyn_cast<ConstantAsMetadata>(Op->getOperand(2));
|
|
|
|
if (!OffsetConstMD)
|
|
|
|
report_fatal_error("Bit set element offset must be a constant");
|
|
|
|
auto OffsetInt = dyn_cast<ConstantInt>(OffsetConstMD->getValue());
|
|
|
|
if (!OffsetInt)
|
|
|
|
report_fatal_error("Bit set element offset must be an integer constant");
|
|
|
|
}
|
|
|
|
|
|
|
|
static const unsigned kX86JumpTableEntrySize = 8;
|
|
|
|
|
|
|
|
unsigned LowerBitSets::getJumpTableEntrySize() {
|
|
|
|
if (Arch != Triple::x86 && Arch != Triple::x86_64)
|
|
|
|
report_fatal_error("Unsupported architecture for jump tables");
|
|
|
|
|
|
|
|
return kX86JumpTableEntrySize;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Create a constant representing a jump table entry for the target. This
|
|
|
|
// consists of an instruction sequence containing a relative branch to Dest. The
|
|
|
|
// constant will be laid out at address Src+(Len*Distance) where Len is the
|
|
|
|
// target-specific jump table entry size.
|
|
|
|
Constant *LowerBitSets::createJumpTableEntry(GlobalObject *Src, Function *Dest,
|
|
|
|
unsigned Distance) {
|
|
|
|
if (Arch != Triple::x86 && Arch != Triple::x86_64)
|
|
|
|
report_fatal_error("Unsupported architecture for jump tables");
|
|
|
|
|
|
|
|
const unsigned kJmpPCRel32Code = 0xe9;
|
|
|
|
const unsigned kInt3Code = 0xcc;
|
|
|
|
|
|
|
|
ConstantInt *Jmp = ConstantInt::get(Int8Ty, kJmpPCRel32Code);
|
|
|
|
|
|
|
|
// Build a constant representing the displacement between the constant's
|
|
|
|
// address and Dest. This will resolve to a PC32 relocation referring to Dest.
|
|
|
|
Constant *DestInt = ConstantExpr::getPtrToInt(Dest, IntPtrTy);
|
|
|
|
Constant *SrcInt = ConstantExpr::getPtrToInt(Src, IntPtrTy);
|
|
|
|
Constant *Disp = ConstantExpr::getSub(DestInt, SrcInt);
|
|
|
|
ConstantInt *DispOffset =
|
|
|
|
ConstantInt::get(IntPtrTy, Distance * kX86JumpTableEntrySize + 5);
|
|
|
|
Constant *OffsetedDisp = ConstantExpr::getSub(Disp, DispOffset);
|
|
|
|
OffsetedDisp = ConstantExpr::getTrunc(OffsetedDisp, Int32Ty);
|
|
|
|
|
|
|
|
ConstantInt *Int3 = ConstantInt::get(Int8Ty, kInt3Code);
|
|
|
|
|
|
|
|
Constant *Fields[] = {
|
|
|
|
Jmp, OffsetedDisp, Int3, Int3, Int3,
|
|
|
|
};
|
|
|
|
return ConstantStruct::getAnon(Fields, /*Packed=*/true);
|
|
|
|
}
|
|
|
|
|
|
|
|
Type *LowerBitSets::getJumpTableEntryType() {
|
|
|
|
if (Arch != Triple::x86 && Arch != Triple::x86_64)
|
|
|
|
report_fatal_error("Unsupported architecture for jump tables");
|
|
|
|
|
|
|
|
return StructType::get(M->getContext(),
|
|
|
|
{Int8Ty, Int32Ty, Int8Ty, Int8Ty, Int8Ty},
|
|
|
|
/*Packed=*/true);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Given a disjoint set of bitsets and functions, build a jump table for the
|
|
|
|
/// functions, build the bit sets and lower the llvm.bitset.test calls.
|
|
|
|
void LowerBitSets::buildBitSetsFromFunctions(ArrayRef<Metadata *> BitSets,
|
|
|
|
ArrayRef<Function *> Functions) {
|
|
|
|
// Unlike the global bitset builder, the function bitset builder cannot
|
|
|
|
// re-arrange functions in a particular order and base its calculations on the
|
|
|
|
// layout of the functions' entry points, as we have no idea how large a
|
|
|
|
// particular function will end up being (the size could even depend on what
|
|
|
|
// this pass does!) Instead, we build a jump table, which is a block of code
|
|
|
|
// consisting of one branch instruction for each of the functions in the bit
|
|
|
|
// set that branches to the target function, and redirect any taken function
|
|
|
|
// addresses to the corresponding jump table entry. In the object file's
|
|
|
|
// symbol table, the symbols for the target functions also refer to the jump
|
|
|
|
// table entries, so that addresses taken outside the module will pass any
|
|
|
|
// verification done inside the module.
|
|
|
|
//
|
|
|
|
// In more concrete terms, suppose we have three functions f, g, h which are
|
|
|
|
// members of a single bitset, and a function foo that returns their
|
|
|
|
// addresses:
|
|
|
|
//
|
|
|
|
// f:
|
|
|
|
// mov 0, %eax
|
|
|
|
// ret
|
|
|
|
//
|
|
|
|
// g:
|
|
|
|
// mov 1, %eax
|
|
|
|
// ret
|
|
|
|
//
|
|
|
|
// h:
|
|
|
|
// mov 2, %eax
|
|
|
|
// ret
|
|
|
|
//
|
|
|
|
// foo:
|
|
|
|
// mov f, %eax
|
|
|
|
// mov g, %edx
|
|
|
|
// mov h, %ecx
|
|
|
|
// ret
|
|
|
|
//
|
|
|
|
// To create a jump table for these functions, we instruct the LLVM code
|
|
|
|
// generator to output a jump table in the .text section. This is done by
|
|
|
|
// representing the instructions in the jump table as an LLVM constant and
|
|
|
|
// placing them in a global variable in the .text section. The end result will
|
|
|
|
// (conceptually) look like this:
|
|
|
|
//
|
|
|
|
// f:
|
|
|
|
// jmp .Ltmp0 ; 5 bytes
|
|
|
|
// int3 ; 1 byte
|
|
|
|
// int3 ; 1 byte
|
|
|
|
// int3 ; 1 byte
|
|
|
|
//
|
|
|
|
// g:
|
|
|
|
// jmp .Ltmp1 ; 5 bytes
|
|
|
|
// int3 ; 1 byte
|
|
|
|
// int3 ; 1 byte
|
|
|
|
// int3 ; 1 byte
|
|
|
|
//
|
|
|
|
// h:
|
|
|
|
// jmp .Ltmp2 ; 5 bytes
|
|
|
|
// int3 ; 1 byte
|
|
|
|
// int3 ; 1 byte
|
|
|
|
// int3 ; 1 byte
|
|
|
|
//
|
|
|
|
// .Ltmp0:
|
|
|
|
// mov 0, %eax
|
|
|
|
// ret
|
|
|
|
//
|
|
|
|
// .Ltmp1:
|
|
|
|
// mov 1, %eax
|
|
|
|
// ret
|
|
|
|
//
|
|
|
|
// .Ltmp2:
|
|
|
|
// mov 2, %eax
|
|
|
|
// ret
|
|
|
|
//
|
|
|
|
// foo:
|
|
|
|
// mov f, %eax
|
|
|
|
// mov g, %edx
|
|
|
|
// mov h, %ecx
|
|
|
|
// ret
|
|
|
|
//
|
|
|
|
// Because the addresses of f, g, h are evenly spaced at a power of 2, in the
|
|
|
|
// normal case the check can be carried out using the same kind of simple
|
|
|
|
// arithmetic that we normally use for globals.
|
|
|
|
|
|
|
|
assert(!Functions.empty());
|
|
|
|
|
|
|
|
// Build a simple layout based on the regular layout of jump tables.
|
|
|
|
DenseMap<GlobalObject *, uint64_t> GlobalLayout;
|
|
|
|
unsigned EntrySize = getJumpTableEntrySize();
|
|
|
|
for (unsigned I = 0; I != Functions.size(); ++I)
|
|
|
|
GlobalLayout[Functions[I]] = I * EntrySize;
|
|
|
|
|
|
|
|
// Create a constant to hold the jump table.
|
|
|
|
ArrayType *JumpTableType =
|
|
|
|
ArrayType::get(getJumpTableEntryType(), Functions.size());
|
|
|
|
auto JumpTable = new GlobalVariable(*M, JumpTableType,
|
|
|
|
/*isConstant=*/true,
|
|
|
|
GlobalValue::PrivateLinkage, nullptr);
|
|
|
|
JumpTable->setSection(ObjectFormat == Triple::MachO
|
|
|
|
? "__TEXT,__text,regular,pure_instructions"
|
|
|
|
: ".text");
|
|
|
|
lowerBitSetCalls(BitSets, JumpTable, GlobalLayout);
|
|
|
|
|
|
|
|
// Build aliases pointing to offsets into the jump table, and replace
|
|
|
|
// references to the original functions with references to the aliases.
|
|
|
|
for (unsigned I = 0; I != Functions.size(); ++I) {
|
|
|
|
Constant *CombinedGlobalElemPtr = ConstantExpr::getBitCast(
|
|
|
|
ConstantExpr::getGetElementPtr(
|
|
|
|
JumpTableType, JumpTable,
|
|
|
|
ArrayRef<Constant *>{ConstantInt::get(IntPtrTy, 0),
|
|
|
|
ConstantInt::get(IntPtrTy, I)}),
|
|
|
|
Functions[I]->getType());
|
|
|
|
if (LinkerSubsectionsViaSymbols || Functions[I]->isDeclarationForLinker()) {
|
|
|
|
Functions[I]->replaceAllUsesWith(CombinedGlobalElemPtr);
|
|
|
|
} else {
|
|
|
|
GlobalAlias *GAlias = GlobalAlias::create(Functions[I]->getType(),
|
|
|
|
Functions[I]->getLinkage(), "",
|
|
|
|
CombinedGlobalElemPtr, M);
|
|
|
|
GAlias->setVisibility(Functions[I]->getVisibility());
|
|
|
|
GAlias->takeName(Functions[I]);
|
|
|
|
Functions[I]->replaceAllUsesWith(GAlias);
|
|
|
|
}
|
|
|
|
if (!Functions[I]->isDeclarationForLinker())
|
|
|
|
Functions[I]->setLinkage(GlobalValue::PrivateLinkage);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Build and set the jump table's initializer.
|
|
|
|
std::vector<Constant *> JumpTableEntries;
|
|
|
|
for (unsigned I = 0; I != Functions.size(); ++I)
|
|
|
|
JumpTableEntries.push_back(
|
|
|
|
createJumpTableEntry(JumpTable, Functions[I], I));
|
|
|
|
JumpTable->setInitializer(
|
|
|
|
ConstantArray::get(JumpTableType, JumpTableEntries));
|
|
|
|
}
|
|
|
|
|
|
|
|
void LowerBitSets::buildBitSetsFromDisjointSet(
|
|
|
|
ArrayRef<Metadata *> BitSets, ArrayRef<GlobalObject *> Globals) {
|
|
|
|
llvm::DenseMap<Metadata *, uint64_t> BitSetIndices;
|
|
|
|
llvm::DenseMap<GlobalObject *, uint64_t> GlobalIndices;
|
|
|
|
for (unsigned I = 0; I != BitSets.size(); ++I)
|
|
|
|
BitSetIndices[BitSets[I]] = I;
|
|
|
|
for (unsigned I = 0; I != Globals.size(); ++I)
|
|
|
|
GlobalIndices[Globals[I]] = I;
|
|
|
|
|
|
|
|
// For each bitset, build a set of indices that refer to globals referenced by
|
|
|
|
// the bitset.
|
|
|
|
std::vector<std::set<uint64_t>> BitSetMembers(BitSets.size());
|
|
|
|
if (BitSetNM) {
|
|
|
|
for (MDNode *Op : BitSetNM->operands()) {
|
|
|
|
// Op = { bitset name, global, offset }
|
|
|
|
if (!Op->getOperand(1))
|
|
|
|
continue;
|
|
|
|
auto I = BitSetIndices.find(Op->getOperand(0));
|
|
|
|
if (I == BitSetIndices.end())
|
|
|
|
continue;
|
|
|
|
|
|
|
|
auto OpGlobal = dyn_cast<GlobalObject>(
|
|
|
|
cast<ConstantAsMetadata>(Op->getOperand(1))->getValue());
|
|
|
|
if (!OpGlobal)
|
|
|
|
continue;
|
|
|
|
BitSetMembers[I->second].insert(GlobalIndices[OpGlobal]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Order the sets of indices by size. The GlobalLayoutBuilder works best
|
|
|
|
// when given small index sets first.
|
|
|
|
std::stable_sort(
|
|
|
|
BitSetMembers.begin(), BitSetMembers.end(),
|
|
|
|
[](const std::set<uint64_t> &O1, const std::set<uint64_t> &O2) {
|
|
|
|
return O1.size() < O2.size();
|
|
|
|
});
|
|
|
|
|
|
|
|
// Create a GlobalLayoutBuilder and provide it with index sets as layout
|
|
|
|
// fragments. The GlobalLayoutBuilder tries to lay out members of fragments as
|
|
|
|
// close together as possible.
|
|
|
|
GlobalLayoutBuilder GLB(Globals.size());
|
|
|
|
for (auto &&MemSet : BitSetMembers)
|
|
|
|
GLB.addFragment(MemSet);
|
|
|
|
|
|
|
|
// Build the bitsets from this disjoint set.
|
|
|
|
if (Globals.empty() || isa<GlobalVariable>(Globals[0])) {
|
|
|
|
// Build a vector of global variables with the computed layout.
|
|
|
|
std::vector<GlobalVariable *> OrderedGVs(Globals.size());
|
|
|
|
auto OGI = OrderedGVs.begin();
|
|
|
|
for (auto &&F : GLB.Fragments) {
|
|
|
|
for (auto &&Offset : F) {
|
|
|
|
auto GV = dyn_cast<GlobalVariable>(Globals[Offset]);
|
|
|
|
if (!GV)
|
|
|
|
report_fatal_error(
|
|
|
|
"Bit set may not contain both global variables and functions");
|
|
|
|
*OGI++ = GV;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
buildBitSetsFromGlobalVariables(BitSets, OrderedGVs);
|
|
|
|
} else {
|
|
|
|
// Build a vector of functions with the computed layout.
|
|
|
|
std::vector<Function *> OrderedFns(Globals.size());
|
|
|
|
auto OFI = OrderedFns.begin();
|
|
|
|
for (auto &&F : GLB.Fragments) {
|
|
|
|
for (auto &&Offset : F) {
|
|
|
|
auto Fn = dyn_cast<Function>(Globals[Offset]);
|
|
|
|
if (!Fn)
|
|
|
|
report_fatal_error(
|
|
|
|
"Bit set may not contain both global variables and functions");
|
|
|
|
*OFI++ = Fn;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
buildBitSetsFromFunctions(BitSets, OrderedFns);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-02-21 04:30:47 +08:00
|
|
|
/// Lower all bit sets in this module.
|
LowerBitSets: Use byte arrays instead of bit sets to represent in-memory bit sets.
By loading from indexed offsets into a byte array and applying a mask, a
program can test bits from the bit set with a relatively short instruction
sequence. For example, suppose we have 15 bit sets to lay out:
A (16 bits), B (15 bits), C (14 bits), D (13 bits), E (12 bits),
F (11 bits), G (10 bits), H (9 bits), I (7 bits), J (6 bits), K (5 bits),
L (4 bits), M (3 bits), N (2 bits), O (1 bit)
These bits can be laid out in a 16-byte array like this:
Byte Offset
0123456789ABCDEF
Bit
7 HHHHHHHHHIIIIIII
6 GGGGGGGGGGJJJJJJ
5 FFFFFFFFFFFKKKKK
4 EEEEEEEEEEEELLLL
3 DDDDDDDDDDDDDMMM
2 CCCCCCCCCCCCCCNN
1 BBBBBBBBBBBBBBBO
0 AAAAAAAAAAAAAAAA
For example, to test bit X of A, we evaluate ((bits[X] & 1) != 0), or to
test bit X of I, we evaluate ((bits[9 + X] & 0x80) != 0). This can be done
in 1-2 machine instructions on x86, or 4-6 instructions on ARM.
This uses the LPT multiprocessor scheduling algorithm to lay out the bits
efficiently.
Saves ~450KB of instructions in a recent build of Chromium.
Differential Revision: http://reviews.llvm.org/D7954
llvm-svn: 231043
2015-03-03 08:49:28 +08:00
|
|
|
bool LowerBitSets::buildBitSets() {
|
2015-02-21 04:30:47 +08:00
|
|
|
Function *BitSetTestFunc =
|
LowerBitSets: Use byte arrays instead of bit sets to represent in-memory bit sets.
By loading from indexed offsets into a byte array and applying a mask, a
program can test bits from the bit set with a relatively short instruction
sequence. For example, suppose we have 15 bit sets to lay out:
A (16 bits), B (15 bits), C (14 bits), D (13 bits), E (12 bits),
F (11 bits), G (10 bits), H (9 bits), I (7 bits), J (6 bits), K (5 bits),
L (4 bits), M (3 bits), N (2 bits), O (1 bit)
These bits can be laid out in a 16-byte array like this:
Byte Offset
0123456789ABCDEF
Bit
7 HHHHHHHHHIIIIIII
6 GGGGGGGGGGJJJJJJ
5 FFFFFFFFFFFKKKKK
4 EEEEEEEEEEEELLLL
3 DDDDDDDDDDDDDMMM
2 CCCCCCCCCCCCCCNN
1 BBBBBBBBBBBBBBBO
0 AAAAAAAAAAAAAAAA
For example, to test bit X of A, we evaluate ((bits[X] & 1) != 0), or to
test bit X of I, we evaluate ((bits[9 + X] & 0x80) != 0). This can be done
in 1-2 machine instructions on x86, or 4-6 instructions on ARM.
This uses the LPT multiprocessor scheduling algorithm to lay out the bits
efficiently.
Saves ~450KB of instructions in a recent build of Chromium.
Differential Revision: http://reviews.llvm.org/D7954
llvm-svn: 231043
2015-03-03 08:49:28 +08:00
|
|
|
M->getFunction(Intrinsic::getName(Intrinsic::bitset_test));
|
2015-02-21 04:30:47 +08:00
|
|
|
if (!BitSetTestFunc)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// Equivalence class set containing bitsets and the globals they reference.
|
|
|
|
// This is used to partition the set of bitsets in the module into disjoint
|
|
|
|
// sets.
|
2015-09-09 06:49:35 +08:00
|
|
|
typedef EquivalenceClasses<PointerUnion<GlobalObject *, Metadata *>>
|
2015-02-21 04:30:47 +08:00
|
|
|
GlobalClassesTy;
|
|
|
|
GlobalClassesTy GlobalClasses;
|
|
|
|
|
2015-09-09 06:49:35 +08:00
|
|
|
// Verify the bitset metadata and build a mapping from bitset identifiers to
|
|
|
|
// their last observed index in BitSetNM. This will used later to
|
|
|
|
// deterministically order the list of bitset identifiers.
|
|
|
|
llvm::DenseMap<Metadata *, unsigned> BitSetIdIndices;
|
|
|
|
if (BitSetNM) {
|
|
|
|
for (unsigned I = 0, E = BitSetNM->getNumOperands(); I != E; ++I) {
|
|
|
|
MDNode *Op = BitSetNM->getOperand(I);
|
|
|
|
verifyBitSetMDNode(Op);
|
|
|
|
BitSetIdIndices[Op] = I;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-02-21 04:30:47 +08:00
|
|
|
for (const Use &U : BitSetTestFunc->uses()) {
|
|
|
|
auto CI = cast<CallInst>(U.getUser());
|
|
|
|
|
|
|
|
auto BitSetMDVal = dyn_cast<MetadataAsValue>(CI->getArgOperand(1));
|
2015-09-09 06:49:35 +08:00
|
|
|
if (!BitSetMDVal)
|
2015-02-21 04:30:47 +08:00
|
|
|
report_fatal_error(
|
2015-09-09 06:49:35 +08:00
|
|
|
"Second argument of llvm.bitset.test must be metadata");
|
|
|
|
auto BitSet = BitSetMDVal->getMetadata();
|
2015-02-21 04:30:47 +08:00
|
|
|
|
|
|
|
// Add the call site to the list of call sites for this bit set. We also use
|
|
|
|
// BitSetTestCallSites to keep track of whether we have seen this bit set
|
|
|
|
// before. If we have, we don't need to re-add the referenced globals to the
|
|
|
|
// equivalence class.
|
2015-09-09 06:49:35 +08:00
|
|
|
std::pair<DenseMap<Metadata *, std::vector<CallInst *>>::iterator,
|
2015-02-21 04:30:47 +08:00
|
|
|
bool> Ins =
|
|
|
|
BitSetTestCallSites.insert(
|
|
|
|
std::make_pair(BitSet, std::vector<CallInst *>()));
|
|
|
|
Ins.first->second.push_back(CI);
|
|
|
|
if (!Ins.second)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
// Add the bitset to the equivalence class.
|
|
|
|
GlobalClassesTy::iterator GCI = GlobalClasses.insert(BitSet);
|
|
|
|
GlobalClassesTy::member_iterator CurSet = GlobalClasses.findLeader(GCI);
|
|
|
|
|
|
|
|
if (!BitSetNM)
|
|
|
|
continue;
|
|
|
|
|
2015-09-09 06:49:35 +08:00
|
|
|
// Add the referenced globals to the bitset's equivalence class.
|
2015-02-21 04:30:47 +08:00
|
|
|
for (MDNode *Op : BitSetNM->operands()) {
|
|
|
|
if (Op->getOperand(0) != BitSet || !Op->getOperand(1))
|
|
|
|
continue;
|
|
|
|
|
2015-09-09 06:49:35 +08:00
|
|
|
auto OpGlobal = dyn_cast<GlobalObject>(
|
|
|
|
cast<ConstantAsMetadata>(Op->getOperand(1))->getValue());
|
2015-02-21 04:30:47 +08:00
|
|
|
if (!OpGlobal)
|
2015-06-27 08:17:51 +08:00
|
|
|
continue;
|
2015-02-21 04:30:47 +08:00
|
|
|
|
|
|
|
CurSet = GlobalClasses.unionSets(
|
|
|
|
CurSet, GlobalClasses.findLeader(GlobalClasses.insert(OpGlobal)));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (GlobalClasses.empty())
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// For each disjoint set we found...
|
|
|
|
for (GlobalClassesTy::iterator I = GlobalClasses.begin(),
|
|
|
|
E = GlobalClasses.end();
|
|
|
|
I != E; ++I) {
|
|
|
|
if (!I->isLeader()) continue;
|
|
|
|
|
|
|
|
++NumBitSetDisjointSets;
|
|
|
|
|
2015-09-09 06:49:35 +08:00
|
|
|
// Build the list of bitsets in this disjoint set.
|
|
|
|
std::vector<Metadata *> BitSets;
|
|
|
|
std::vector<GlobalObject *> Globals;
|
2015-02-21 04:30:47 +08:00
|
|
|
for (GlobalClassesTy::member_iterator MI = GlobalClasses.member_begin(I);
|
|
|
|
MI != GlobalClasses.member_end(); ++MI) {
|
2015-09-09 06:49:35 +08:00
|
|
|
if ((*MI).is<Metadata *>())
|
|
|
|
BitSets.push_back(MI->get<Metadata *>());
|
|
|
|
else
|
|
|
|
Globals.push_back(MI->get<GlobalObject *>());
|
2015-02-21 04:30:47 +08:00
|
|
|
}
|
|
|
|
|
2015-09-09 06:49:35 +08:00
|
|
|
// Order bitsets by BitSetNM index for determinism. This ordering is stable
|
|
|
|
// as there is a one-to-one mapping between metadata and indices.
|
|
|
|
std::sort(BitSets.begin(), BitSets.end(), [&](Metadata *M1, Metadata *M2) {
|
|
|
|
return BitSetIdIndices[M1] < BitSetIdIndices[M2];
|
2015-02-21 04:30:47 +08:00
|
|
|
});
|
|
|
|
|
2015-09-09 06:49:35 +08:00
|
|
|
// Lower the bitsets in this disjoint set.
|
|
|
|
buildBitSetsFromDisjointSet(BitSets, Globals);
|
2015-02-21 04:30:47 +08:00
|
|
|
}
|
|
|
|
|
LowerBitSets: Use byte arrays instead of bit sets to represent in-memory bit sets.
By loading from indexed offsets into a byte array and applying a mask, a
program can test bits from the bit set with a relatively short instruction
sequence. For example, suppose we have 15 bit sets to lay out:
A (16 bits), B (15 bits), C (14 bits), D (13 bits), E (12 bits),
F (11 bits), G (10 bits), H (9 bits), I (7 bits), J (6 bits), K (5 bits),
L (4 bits), M (3 bits), N (2 bits), O (1 bit)
These bits can be laid out in a 16-byte array like this:
Byte Offset
0123456789ABCDEF
Bit
7 HHHHHHHHHIIIIIII
6 GGGGGGGGGGJJJJJJ
5 FFFFFFFFFFFKKKKK
4 EEEEEEEEEEEELLLL
3 DDDDDDDDDDDDDMMM
2 CCCCCCCCCCCCCCNN
1 BBBBBBBBBBBBBBBO
0 AAAAAAAAAAAAAAAA
For example, to test bit X of A, we evaluate ((bits[X] & 1) != 0), or to
test bit X of I, we evaluate ((bits[9 + X] & 0x80) != 0). This can be done
in 1-2 machine instructions on x86, or 4-6 instructions on ARM.
This uses the LPT multiprocessor scheduling algorithm to lay out the bits
efficiently.
Saves ~450KB of instructions in a recent build of Chromium.
Differential Revision: http://reviews.llvm.org/D7954
llvm-svn: 231043
2015-03-03 08:49:28 +08:00
|
|
|
allocateByteArrays();
|
|
|
|
|
2015-02-21 04:30:47 +08:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
LowerBitSets: Use byte arrays instead of bit sets to represent in-memory bit sets.
By loading from indexed offsets into a byte array and applying a mask, a
program can test bits from the bit set with a relatively short instruction
sequence. For example, suppose we have 15 bit sets to lay out:
A (16 bits), B (15 bits), C (14 bits), D (13 bits), E (12 bits),
F (11 bits), G (10 bits), H (9 bits), I (7 bits), J (6 bits), K (5 bits),
L (4 bits), M (3 bits), N (2 bits), O (1 bit)
These bits can be laid out in a 16-byte array like this:
Byte Offset
0123456789ABCDEF
Bit
7 HHHHHHHHHIIIIIII
6 GGGGGGGGGGJJJJJJ
5 FFFFFFFFFFFKKKKK
4 EEEEEEEEEEEELLLL
3 DDDDDDDDDDDDDMMM
2 CCCCCCCCCCCCCCNN
1 BBBBBBBBBBBBBBBO
0 AAAAAAAAAAAAAAAA
For example, to test bit X of A, we evaluate ((bits[X] & 1) != 0), or to
test bit X of I, we evaluate ((bits[9 + X] & 0x80) != 0). This can be done
in 1-2 machine instructions on x86, or 4-6 instructions on ARM.
This uses the LPT multiprocessor scheduling algorithm to lay out the bits
efficiently.
Saves ~450KB of instructions in a recent build of Chromium.
Differential Revision: http://reviews.llvm.org/D7954
llvm-svn: 231043
2015-03-03 08:49:28 +08:00
|
|
|
bool LowerBitSets::eraseBitSetMetadata() {
|
2015-02-21 04:30:47 +08:00
|
|
|
if (!BitSetNM)
|
|
|
|
return false;
|
|
|
|
|
LowerBitSets: Use byte arrays instead of bit sets to represent in-memory bit sets.
By loading from indexed offsets into a byte array and applying a mask, a
program can test bits from the bit set with a relatively short instruction
sequence. For example, suppose we have 15 bit sets to lay out:
A (16 bits), B (15 bits), C (14 bits), D (13 bits), E (12 bits),
F (11 bits), G (10 bits), H (9 bits), I (7 bits), J (6 bits), K (5 bits),
L (4 bits), M (3 bits), N (2 bits), O (1 bit)
These bits can be laid out in a 16-byte array like this:
Byte Offset
0123456789ABCDEF
Bit
7 HHHHHHHHHIIIIIII
6 GGGGGGGGGGJJJJJJ
5 FFFFFFFFFFFKKKKK
4 EEEEEEEEEEEELLLL
3 DDDDDDDDDDDDDMMM
2 CCCCCCCCCCCCCCNN
1 BBBBBBBBBBBBBBBO
0 AAAAAAAAAAAAAAAA
For example, to test bit X of A, we evaluate ((bits[X] & 1) != 0), or to
test bit X of I, we evaluate ((bits[9 + X] & 0x80) != 0). This can be done
in 1-2 machine instructions on x86, or 4-6 instructions on ARM.
This uses the LPT multiprocessor scheduling algorithm to lay out the bits
efficiently.
Saves ~450KB of instructions in a recent build of Chromium.
Differential Revision: http://reviews.llvm.org/D7954
llvm-svn: 231043
2015-03-03 08:49:28 +08:00
|
|
|
M->eraseNamedMetadata(BitSetNM);
|
2015-02-21 04:30:47 +08:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool LowerBitSets::runOnModule(Module &M) {
|
LowerBitSets: Use byte arrays instead of bit sets to represent in-memory bit sets.
By loading from indexed offsets into a byte array and applying a mask, a
program can test bits from the bit set with a relatively short instruction
sequence. For example, suppose we have 15 bit sets to lay out:
A (16 bits), B (15 bits), C (14 bits), D (13 bits), E (12 bits),
F (11 bits), G (10 bits), H (9 bits), I (7 bits), J (6 bits), K (5 bits),
L (4 bits), M (3 bits), N (2 bits), O (1 bit)
These bits can be laid out in a 16-byte array like this:
Byte Offset
0123456789ABCDEF
Bit
7 HHHHHHHHHIIIIIII
6 GGGGGGGGGGJJJJJJ
5 FFFFFFFFFFFKKKKK
4 EEEEEEEEEEEELLLL
3 DDDDDDDDDDDDDMMM
2 CCCCCCCCCCCCCCNN
1 BBBBBBBBBBBBBBBO
0 AAAAAAAAAAAAAAAA
For example, to test bit X of A, we evaluate ((bits[X] & 1) != 0), or to
test bit X of I, we evaluate ((bits[9 + X] & 0x80) != 0). This can be done
in 1-2 machine instructions on x86, or 4-6 instructions on ARM.
This uses the LPT multiprocessor scheduling algorithm to lay out the bits
efficiently.
Saves ~450KB of instructions in a recent build of Chromium.
Differential Revision: http://reviews.llvm.org/D7954
llvm-svn: 231043
2015-03-03 08:49:28 +08:00
|
|
|
bool Changed = buildBitSets();
|
|
|
|
Changed |= eraseBitSetMetadata();
|
2015-02-21 04:30:47 +08:00
|
|
|
return Changed;
|
|
|
|
}
|