llvm-project/compiler-rt/lib/xray/xray_basic_logging.cc

518 lines
18 KiB
C++
Raw Normal View History

//===-- xray_basic_logging.cc -----------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a dynamic runtime instrumentation system.
//
// Implementation of a simple in-memory log of XRay events. This defines a
// logging function that's compatible with the XRay handler interface, and
// routines for exporting data to files.
//
//===----------------------------------------------------------------------===//
#include <errno.h>
#include <fcntl.h>
#include <pthread.h>
#include <sys/stat.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <time.h>
#include <unistd.h>
#include "sanitizer_common/sanitizer_allocator_internal.h"
#include "sanitizer_common/sanitizer_libc.h"
#include "xray/xray_records.h"
#include "xray_recursion_guard.h"
#include "xray_basic_flags.h"
#include "xray_basic_logging.h"
#include "xray_defs.h"
#include "xray_flags.h"
#include "xray_interface_internal.h"
#include "xray_tsc.h"
[XRay][compiler-rt] XRay Flight Data Recorder Mode Summary: In this change we introduce the notion of a "flight data recorder" mode for XRay logging, where XRay logs in-memory first, and write out data on-demand as required (as opposed to the naive implementation that keeps logging while tracing is "on"). This depends on D26232 where we implement the core data structure for holding the buffers that threads will be using to write out records of operation. This implementation only currently works on x86_64 and depends heavily on the TSC math to write out smaller records to the inmemory buffers. Also, this implementation defines two different kinds of records with different sizes (compared to the current naive implementation): a MetadataRecord (16 bytes) and a FunctionRecord (8 bytes). MetadataRecord entries are meant to write out information like the thread ID for which the metadata record is defined for, whether the execution of a thread moved to a different CPU, etc. while a FunctionRecord represents the different kinds of function call entry/exit records we might encounter in the course of a thread's execution along with a delta from the last time the logging handler was called. While this implementation is not exactly what is described in the original XRay whitepaper, this one gives us an initial implementation that we can iterate and build upon. Reviewers: echristo, rSerge, majnemer Subscribers: mehdi_amini, llvm-commits, mgorny Differential Revision: https://reviews.llvm.org/D27038 llvm-svn: 293015
2017-01-25 11:50:46 +08:00
#include "xray_utils.h"
namespace __xray {
SpinMutex LogMutex;
// We use elements of this type to record the entry TSC of every function ID we
// see as we're tracing a particular thread's execution.
struct alignas(16) StackEntry {
int32_t FuncId;
uint16_t Type;
uint8_t CPU;
uint8_t Padding;
uint64_t TSC;
};
static_assert(sizeof(StackEntry) == 16, "Wrong size for StackEntry");
struct alignas(64) ThreadLocalData {
void *InMemoryBuffer = nullptr;
size_t BufferSize = 0;
size_t BufferOffset = 0;
void *ShadowStack = nullptr;
size_t StackSize = 0;
size_t StackEntries = 0;
int Fd = -1;
};
static pthread_key_t PThreadKey;
static atomic_uint8_t BasicInitialized{0};
BasicLoggingOptions GlobalOptions;
thread_local atomic_uint8_t Guard{0};
static atomic_uint8_t UseRealTSC{0};
static atomic_uint64_t ThresholdTicks{0};
static atomic_uint64_t TicksPerSec{0};
static atomic_uint64_t CycleFrequency{NanosecondsPerSecond};
static int openLogFile() XRAY_NEVER_INSTRUMENT {
[XRay][compiler-rt] XRay Flight Data Recorder Mode Summary: In this change we introduce the notion of a "flight data recorder" mode for XRay logging, where XRay logs in-memory first, and write out data on-demand as required (as opposed to the naive implementation that keeps logging while tracing is "on"). This depends on D26232 where we implement the core data structure for holding the buffers that threads will be using to write out records of operation. This implementation only currently works on x86_64 and depends heavily on the TSC math to write out smaller records to the inmemory buffers. Also, this implementation defines two different kinds of records with different sizes (compared to the current naive implementation): a MetadataRecord (16 bytes) and a FunctionRecord (8 bytes). MetadataRecord entries are meant to write out information like the thread ID for which the metadata record is defined for, whether the execution of a thread moved to a different CPU, etc. while a FunctionRecord represents the different kinds of function call entry/exit records we might encounter in the course of a thread's execution along with a delta from the last time the logging handler was called. While this implementation is not exactly what is described in the original XRay whitepaper, this one gives us an initial implementation that we can iterate and build upon. Reviewers: echristo, rSerge, majnemer Subscribers: mehdi_amini, llvm-commits, mgorny Differential Revision: https://reviews.llvm.org/D27038 llvm-svn: 293015
2017-01-25 11:50:46 +08:00
int F = getLogFD();
if (F == -1)
return -1;
static pthread_once_t DetectOnce = PTHREAD_ONCE_INIT;
pthread_once(&DetectOnce, +[] {
if (atomic_load(&UseRealTSC, memory_order_acquire))
atomic_store(&CycleFrequency, getTSCFrequency(), memory_order_release);
});
// Since we're here, we get to write the header. We set it up so that the
// header will only be written once, at the start, and let the threads
// logging do writes which just append.
XRayFileHeader Header;
// Version 2 includes tail exit records.
// Version 3 includes pid inside records.
Header.Version = 3;
Header.Type = FileTypes::NAIVE_LOG;
Header.CycleFrequency = atomic_load(&CycleFrequency, memory_order_acquire);
// FIXME: Actually check whether we have 'constant_tsc' and 'nonstop_tsc'
// before setting the values in the header.
Header.ConstantTSC = 1;
Header.NonstopTSC = 1;
[XRay][compiler-rt] XRay Flight Data Recorder Mode Summary: In this change we introduce the notion of a "flight data recorder" mode for XRay logging, where XRay logs in-memory first, and write out data on-demand as required (as opposed to the naive implementation that keeps logging while tracing is "on"). This depends on D26232 where we implement the core data structure for holding the buffers that threads will be using to write out records of operation. This implementation only currently works on x86_64 and depends heavily on the TSC math to write out smaller records to the inmemory buffers. Also, this implementation defines two different kinds of records with different sizes (compared to the current naive implementation): a MetadataRecord (16 bytes) and a FunctionRecord (8 bytes). MetadataRecord entries are meant to write out information like the thread ID for which the metadata record is defined for, whether the execution of a thread moved to a different CPU, etc. while a FunctionRecord represents the different kinds of function call entry/exit records we might encounter in the course of a thread's execution along with a delta from the last time the logging handler was called. While this implementation is not exactly what is described in the original XRay whitepaper, this one gives us an initial implementation that we can iterate and build upon. Reviewers: echristo, rSerge, majnemer Subscribers: mehdi_amini, llvm-commits, mgorny Differential Revision: https://reviews.llvm.org/D27038 llvm-svn: 293015
2017-01-25 11:50:46 +08:00
retryingWriteAll(F, reinterpret_cast<char *>(&Header),
reinterpret_cast<char *>(&Header) + sizeof(Header));
[XRay][compiler-rt] XRay Flight Data Recorder Mode Summary: In this change we introduce the notion of a "flight data recorder" mode for XRay logging, where XRay logs in-memory first, and write out data on-demand as required (as opposed to the naive implementation that keeps logging while tracing is "on"). This depends on D26232 where we implement the core data structure for holding the buffers that threads will be using to write out records of operation. This implementation only currently works on x86_64 and depends heavily on the TSC math to write out smaller records to the inmemory buffers. Also, this implementation defines two different kinds of records with different sizes (compared to the current naive implementation): a MetadataRecord (16 bytes) and a FunctionRecord (8 bytes). MetadataRecord entries are meant to write out information like the thread ID for which the metadata record is defined for, whether the execution of a thread moved to a different CPU, etc. while a FunctionRecord represents the different kinds of function call entry/exit records we might encounter in the course of a thread's execution along with a delta from the last time the logging handler was called. While this implementation is not exactly what is described in the original XRay whitepaper, this one gives us an initial implementation that we can iterate and build upon. Reviewers: echristo, rSerge, majnemer Subscribers: mehdi_amini, llvm-commits, mgorny Differential Revision: https://reviews.llvm.org/D27038 llvm-svn: 293015
2017-01-25 11:50:46 +08:00
return F;
}
static int getGlobalFd() XRAY_NEVER_INSTRUMENT {
static pthread_once_t OnceInit = PTHREAD_ONCE_INIT;
static int Fd = 0;
pthread_once(&OnceInit, +[] { Fd = openLogFile(); });
return Fd;
}
static ThreadLocalData &getThreadLocalData() XRAY_NEVER_INSTRUMENT {
thread_local ThreadLocalData TLD;
thread_local bool UNUSED TOnce = [] {
if (GlobalOptions.ThreadBufferSize == 0) {
if (Verbosity())
Report("Not initializing TLD since ThreadBufferSize == 0.\n");
return false;
}
pthread_setspecific(PThreadKey, &TLD);
TLD.Fd = getGlobalFd();
TLD.InMemoryBuffer = reinterpret_cast<XRayRecord *>(
InternalAlloc(sizeof(XRayRecord) * GlobalOptions.ThreadBufferSize,
nullptr, alignof(XRayRecord)));
TLD.BufferSize = GlobalOptions.ThreadBufferSize;
TLD.BufferOffset = 0;
if (GlobalOptions.MaxStackDepth == 0) {
if (Verbosity())
Report("Not initializing the ShadowStack since MaxStackDepth == 0.\n");
TLD.StackSize = 0;
TLD.StackEntries = 0;
TLD.ShadowStack = nullptr;
return false;
}
TLD.ShadowStack = reinterpret_cast<StackEntry *>(
InternalAlloc(sizeof(StackEntry) * GlobalOptions.MaxStackDepth, nullptr,
alignof(StackEntry)));
TLD.StackSize = GlobalOptions.MaxStackDepth;
TLD.StackEntries = 0;
return false;
}();
return TLD;
}
template <class RDTSC>
void InMemoryRawLog(int32_t FuncId, XRayEntryType Type,
RDTSC ReadTSC) XRAY_NEVER_INSTRUMENT {
auto &TLD = getThreadLocalData();
int Fd = getGlobalFd();
if (Fd == -1)
return;
// Use a simple recursion guard, to handle cases where we're already logging
// and for one reason or another, this function gets called again in the same
// thread.
RecursionGuard G(Guard);
if (!G)
return;
uint8_t CPU = 0;
uint64_t TSC = ReadTSC(CPU);
switch (Type) {
case XRayEntryType::ENTRY:
case XRayEntryType::LOG_ARGS_ENTRY: {
// Short circuit if we've reached the maximum depth of the stack.
if (TLD.StackEntries++ >= TLD.StackSize)
return;
// When we encounter an entry event, we keep track of the TSC and the CPU,
// and put it in the stack.
StackEntry E;
E.FuncId = FuncId;
E.CPU = CPU;
E.Type = Type;
E.TSC = TSC;
auto StackEntryPtr = static_cast<char *>(TLD.ShadowStack) +
(sizeof(StackEntry) * (TLD.StackEntries - 1));
internal_memcpy(StackEntryPtr, &E, sizeof(StackEntry));
break;
}
case XRayEntryType::EXIT:
case XRayEntryType::TAIL: {
if (TLD.StackEntries == 0)
break;
if (--TLD.StackEntries >= TLD.StackSize)
return;
// When we encounter an exit event, we check whether all the following are
// true:
//
// - The Function ID is the same as the most recent entry in the stack.
// - The CPU is the same as the most recent entry in the stack.
// - The Delta of the TSCs is less than the threshold amount of time we're
// looking to record.
//
// If all of these conditions are true, we pop the stack and don't write a
// record and move the record offset back.
StackEntry StackTop;
auto StackEntryPtr = static_cast<char *>(TLD.ShadowStack) +
(sizeof(StackEntry) * TLD.StackEntries);
internal_memcpy(&StackTop, StackEntryPtr, sizeof(StackEntry));
if (StackTop.FuncId == FuncId && StackTop.CPU == CPU &&
StackTop.TSC < TSC) {
auto Delta = TSC - StackTop.TSC;
if (Delta < atomic_load(&ThresholdTicks, memory_order_relaxed)) {
DCHECK(TLD.BufferOffset > 0);
TLD.BufferOffset -= StackTop.Type == XRayEntryType::ENTRY ? 1 : 2;
return;
}
}
break;
}
default:
// Should be unreachable.
DCHECK(false && "Unsupported XRayEntryType encountered.");
break;
}
// First determine whether the delta between the function's enter record and
// the exit record is higher than the threshold.
XRayRecord R;
R.RecordType = RecordTypes::NORMAL;
R.CPU = CPU;
R.TSC = TSC;
R.TId = GetTid();
R.PId = internal_getpid();
R.Type = Type;
R.FuncId = FuncId;
auto FirstEntry = reinterpret_cast<XRayRecord *>(TLD.InMemoryBuffer);
internal_memcpy(FirstEntry + TLD.BufferOffset, &R, sizeof(R));
if (++TLD.BufferOffset == TLD.BufferSize) {
SpinMutexLock L(&LogMutex);
retryingWriteAll(Fd, reinterpret_cast<char *>(FirstEntry),
reinterpret_cast<char *>(FirstEntry + TLD.BufferOffset));
TLD.BufferOffset = 0;
TLD.StackEntries = 0;
}
}
template <class RDTSC>
void InMemoryRawLogWithArg(int32_t FuncId, XRayEntryType Type, uint64_t Arg1,
RDTSC ReadTSC) XRAY_NEVER_INSTRUMENT {
auto &TLD = getThreadLocalData();
auto FirstEntry =
reinterpret_cast<XRayArgPayload *>(TLD.InMemoryBuffer);
const auto &BuffLen = TLD.BufferSize;
int Fd = getGlobalFd();
if (Fd == -1)
return;
// First we check whether there's enough space to write the data consecutively
// in the thread-local buffer. If not, we first flush the buffer before
// attempting to write the two records that must be consecutive.
if (TLD.BufferOffset + 2 > BuffLen) {
SpinMutexLock L(&LogMutex);
retryingWriteAll(Fd, reinterpret_cast<char *>(FirstEntry),
reinterpret_cast<char *>(FirstEntry + TLD.BufferOffset));
TLD.BufferOffset = 0;
TLD.StackEntries = 0;
}
// Then we write the "we have an argument" record.
InMemoryRawLog(FuncId, Type, ReadTSC);
RecursionGuard G(Guard);
if (!G)
return;
2018-07-16 22:54:29 +08:00
// And, from here on write the arg payload.
XRayArgPayload R;
R.RecordType = RecordTypes::ARG_PAYLOAD;
R.FuncId = FuncId;
R.TId = GetTid();
R.PId = internal_getpid();
R.Arg = Arg1;
internal_memcpy(FirstEntry + TLD.BufferOffset, &R, sizeof(R));
if (++TLD.BufferOffset == BuffLen) {
SpinMutexLock L(&LogMutex);
retryingWriteAll(Fd, reinterpret_cast<char *>(FirstEntry),
reinterpret_cast<char *>(FirstEntry + TLD.BufferOffset));
TLD.BufferOffset = 0;
TLD.StackEntries = 0;
}
}
void basicLoggingHandleArg0RealTSC(int32_t FuncId,
XRayEntryType Type) XRAY_NEVER_INSTRUMENT {
InMemoryRawLog(FuncId, Type, readTSC);
}
void basicLoggingHandleArg0EmulateTSC(int32_t FuncId, XRayEntryType Type)
XRAY_NEVER_INSTRUMENT {
InMemoryRawLog(FuncId, Type, [](uint8_t &CPU) XRAY_NEVER_INSTRUMENT {
timespec TS;
int result = clock_gettime(CLOCK_REALTIME, &TS);
if (result != 0) {
Report("clock_gettimg(2) return %d, errno=%d.", result, int(errno));
TS = {0, 0};
}
CPU = 0;
return TS.tv_sec * NanosecondsPerSecond + TS.tv_nsec;
});
}
void basicLoggingHandleArg1RealTSC(int32_t FuncId, XRayEntryType Type,
uint64_t Arg1) XRAY_NEVER_INSTRUMENT {
InMemoryRawLogWithArg(FuncId, Type, Arg1, readTSC);
}
void basicLoggingHandleArg1EmulateTSC(int32_t FuncId, XRayEntryType Type,
uint64_t Arg1) XRAY_NEVER_INSTRUMENT {
InMemoryRawLogWithArg(
FuncId, Type, Arg1, [](uint8_t &CPU) XRAY_NEVER_INSTRUMENT {
timespec TS;
int result = clock_gettime(CLOCK_REALTIME, &TS);
if (result != 0) {
Report("clock_gettimg(2) return %d, errno=%d.", result, int(errno));
TS = {0, 0};
}
CPU = 0;
return TS.tv_sec * NanosecondsPerSecond + TS.tv_nsec;
});
}
static void TLDDestructor(void *P) XRAY_NEVER_INSTRUMENT {
ThreadLocalData &TLD = *reinterpret_cast<ThreadLocalData *>(P);
auto ExitGuard = at_scope_exit([&TLD] {
// Clean up dynamic resources.
if (TLD.InMemoryBuffer)
InternalFree(TLD.InMemoryBuffer);
if (TLD.ShadowStack)
InternalFree(TLD.ShadowStack);
if (Verbosity())
Report("Cleaned up log for TID: %d\n", GetTid());
});
if (TLD.Fd == -1 || TLD.BufferOffset == 0) {
if (Verbosity())
Report("Skipping buffer for TID: %d; Fd = %d; Offset = %llu\n", GetTid(),
TLD.Fd, TLD.BufferOffset);
return;
}
{
SpinMutexLock L(&LogMutex);
retryingWriteAll(TLD.Fd, reinterpret_cast<char *>(TLD.InMemoryBuffer),
reinterpret_cast<char *>(TLD.InMemoryBuffer) +
(sizeof(XRayRecord) * TLD.BufferOffset));
}
// Because this thread's exit could be the last one trying to write to
// the file and that we're not able to close out the file properly, we
// sync instead and hope that the pending writes are flushed as the
// thread exits.
fsync(TLD.Fd);
}
XRayLogInitStatus basicLoggingInit(size_t BufferSize, size_t BufferMax,
void *Options,
size_t OptionsSize) XRAY_NEVER_INSTRUMENT {
uint8_t Expected = 0;
if (!atomic_compare_exchange_strong(&BasicInitialized, &Expected, 1,
memory_order_acq_rel)) {
if (Verbosity())
Report("Basic logging already initialized.\n");
return XRayLogInitStatus::XRAY_LOG_INITIALIZED;
}
static pthread_once_t OnceInit = PTHREAD_ONCE_INIT;
pthread_once(&OnceInit, +[] {
pthread_key_create(&PThreadKey, TLDDestructor);
atomic_store(&UseRealTSC, probeRequiredCPUFeatures(), memory_order_release);
// Initialize the global TicksPerSec value.
atomic_store(&TicksPerSec,
probeRequiredCPUFeatures() ? getTSCFrequency()
: NanosecondsPerSecond,
memory_order_release);
if (!atomic_load(&UseRealTSC, memory_order_relaxed) && Verbosity())
Report("WARNING: Required CPU features missing for XRay instrumentation, "
"using emulation instead.\n");
});
if (BufferSize == 0 && BufferMax == 0 && Options != nullptr) {
FlagParser P;
BasicFlags F;
F.setDefaults();
registerXRayBasicFlags(&P, &F);
P.ParseString(useCompilerDefinedBasicFlags());
auto *EnvOpts = GetEnv("XRAY_BASIC_OPTIONS");
if (EnvOpts == nullptr)
EnvOpts = "";
P.ParseString(EnvOpts);
// If XRAY_BASIC_OPTIONS was not defined, then we use the deprecated options
// set through XRAY_OPTIONS instead.
if (internal_strlen(EnvOpts) == 0) {
F.func_duration_threshold_us =
flags()->xray_naive_log_func_duration_threshold_us;
F.max_stack_depth = flags()->xray_naive_log_max_stack_depth;
F.thread_buffer_size = flags()->xray_naive_log_thread_buffer_size;
}
P.ParseString(static_cast<const char *>(Options));
GlobalOptions.ThreadBufferSize = F.thread_buffer_size;
GlobalOptions.DurationFilterMicros = F.func_duration_threshold_us;
GlobalOptions.MaxStackDepth = F.max_stack_depth;
*basicFlags() = F;
} else if (OptionsSize != sizeof(BasicLoggingOptions)) {
Report("Invalid options size, potential ABI mismatch; expected %d got %d",
sizeof(BasicLoggingOptions), OptionsSize);
return XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
} else {
if (Verbosity())
Report("XRay Basic: struct-based init is deprecated, please use "
"string-based configuration instead.\n");
GlobalOptions = *reinterpret_cast<BasicLoggingOptions *>(Options);
}
atomic_store(&ThresholdTicks,
atomic_load(&TicksPerSec, memory_order_acquire) *
GlobalOptions.DurationFilterMicros / 1000000,
memory_order_release);
__xray_set_handler_arg1(atomic_load(&UseRealTSC, memory_order_acquire)
? basicLoggingHandleArg1RealTSC
: basicLoggingHandleArg1EmulateTSC);
__xray_set_handler(atomic_load(&UseRealTSC, memory_order_acquire)
? basicLoggingHandleArg0RealTSC
: basicLoggingHandleArg0EmulateTSC);
// TODO: Implement custom event and typed event handling support in Basic
// Mode.
__xray_remove_customevent_handler();
__xray_remove_typedevent_handler();
return XRayLogInitStatus::XRAY_LOG_INITIALIZED;
}
XRayLogInitStatus basicLoggingFinalize() XRAY_NEVER_INSTRUMENT {
uint8_t Expected = 0;
if (!atomic_compare_exchange_strong(&BasicInitialized, &Expected, 0,
memory_order_acq_rel) &&
Verbosity())
Report("Basic logging already finalized.\n");
// Nothing really to do aside from marking state of the global to be
// uninitialized.
return XRayLogInitStatus::XRAY_LOG_FINALIZED;
}
XRayLogFlushStatus basicLoggingFlush() XRAY_NEVER_INSTRUMENT {
// This really does nothing, since flushing the logs happen at the end of a
// thread's lifetime, or when the buffers are full.
return XRayLogFlushStatus::XRAY_LOG_FLUSHED;
}
// This is a handler that, effectively, does nothing.
void basicLoggingHandleArg0Empty(int32_t, XRayEntryType) XRAY_NEVER_INSTRUMENT {
}
bool basicLogDynamicInitializer() XRAY_NEVER_INSTRUMENT {
XRayLogImpl Impl{
basicLoggingInit,
basicLoggingFinalize,
basicLoggingHandleArg0Empty,
basicLoggingFlush,
};
auto RegistrationResult = __xray_log_register_mode("xray-basic", Impl);
if (RegistrationResult != XRayLogRegisterStatus::XRAY_REGISTRATION_OK &&
Verbosity())
Report("Cannot register XRay Basic Mode to 'xray-basic'; error = %d\n",
RegistrationResult);
if (flags()->xray_naive_log ||
!internal_strcmp(flags()->xray_mode, "xray-basic")) {
auto SelectResult = __xray_log_select_mode("xray-basic");
if (SelectResult != XRayLogRegisterStatus::XRAY_REGISTRATION_OK) {
if (Verbosity())
Report("Failed selecting XRay Basic Mode; error = %d\n", SelectResult);
return false;
}
// We initialize the implementation using the data we get from the
// XRAY_BASIC_OPTIONS environment variable, at this point of the
// implementation.
auto *Env = GetEnv("XRAY_BASIC_OPTIONS");
auto InitResult =
__xray_log_init_mode("xray-basic", Env == nullptr ? "" : Env);
if (InitResult != XRayLogInitStatus::XRAY_LOG_INITIALIZED) {
if (Verbosity())
Report("Failed initializing XRay Basic Mode; error = %d\n", InitResult);
return false;
}
// At this point we know that we've successfully initialized Basic mode
// tracing, and the only chance we're going to get for the current thread to
// clean-up may be at thread/program exit. To ensure that we're going to get
// the cleanup even without calling the finalization routines, we're
// registering a program exit function that will do the cleanup.
static pthread_once_t DynamicOnce = PTHREAD_ONCE_INIT;
pthread_once(&DynamicOnce, +[] {
static void *FakeTLD = nullptr;
FakeTLD = &getThreadLocalData();
Atexit(+[] { TLDDestructor(FakeTLD); });
});
}
return true;
}
} // namespace __xray
static auto UNUSED Unused = __xray::basicLogDynamicInitializer();