llvm-project/clang/lib/Sema/SemaCodeComplete.cpp

1633 lines
61 KiB
C++
Raw Normal View History

//===---------------- SemaCodeComplete.cpp - Code Completion ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the code-completion semantic actions.
//
//===----------------------------------------------------------------------===//
#include "Sema.h"
#include "clang/Sema/CodeCompleteConsumer.h"
#include "clang/AST/ExprCXX.h"
#include "clang/Lex/MacroInfo.h"
#include "clang/Lex/Preprocessor.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/StringExtras.h"
#include <list>
#include <map>
#include <vector>
using namespace clang;
namespace {
/// \brief A container of code-completion results.
class ResultBuilder {
public:
/// \brief The type of a name-lookup filter, which can be provided to the
/// name-lookup routines to specify which declarations should be included in
/// the result set (when it returns true) and which declarations should be
/// filtered out (returns false).
typedef bool (ResultBuilder::*LookupFilter)(NamedDecl *) const;
typedef CodeCompleteConsumer::Result Result;
private:
/// \brief The actual results we have found.
std::vector<Result> Results;
/// \brief A record of all of the declarations we have found and placed
/// into the result set, used to ensure that no declaration ever gets into
/// the result set twice.
llvm::SmallPtrSet<Decl*, 16> AllDeclsFound;
/// \brief A mapping from declaration names to the declarations that have
/// this name within a particular scope and their index within the list of
/// results.
typedef std::multimap<DeclarationName,
std::pair<NamedDecl *, unsigned> > ShadowMap;
/// \brief The semantic analysis object for which results are being
/// produced.
Sema &SemaRef;
/// \brief If non-NULL, a filter function used to remove any code-completion
/// results that are not desirable.
LookupFilter Filter;
/// \brief A list of shadow maps, which is used to model name hiding at
/// different levels of, e.g., the inheritance hierarchy.
std::list<ShadowMap> ShadowMaps;
public:
explicit ResultBuilder(Sema &SemaRef, LookupFilter Filter = 0)
: SemaRef(SemaRef), Filter(Filter) { }
/// \brief Set the filter used for code-completion results.
void setFilter(LookupFilter Filter) {
this->Filter = Filter;
}
typedef std::vector<Result>::iterator iterator;
iterator begin() { return Results.begin(); }
iterator end() { return Results.end(); }
Result *data() { return Results.empty()? 0 : &Results.front(); }
unsigned size() const { return Results.size(); }
bool empty() const { return Results.empty(); }
/// \brief Add a new result to this result set (if it isn't already in one
/// of the shadow maps), or replace an existing result (for, e.g., a
/// redeclaration).
///
/// \param R the result to add (if it is unique).
///
/// \param R the context in which this result will be named.
void MaybeAddResult(Result R, DeclContext *CurContext = 0);
/// \brief Enter into a new scope.
void EnterNewScope();
/// \brief Exit from the current scope.
void ExitScope();
/// \name Name lookup predicates
///
/// These predicates can be passed to the name lookup functions to filter the
/// results of name lookup. All of the predicates have the same type, so that
///
//@{
bool IsOrdinaryName(NamedDecl *ND) const;
bool IsNestedNameSpecifier(NamedDecl *ND) const;
bool IsEnum(NamedDecl *ND) const;
bool IsClassOrStruct(NamedDecl *ND) const;
bool IsUnion(NamedDecl *ND) const;
bool IsNamespace(NamedDecl *ND) const;
bool IsNamespaceOrAlias(NamedDecl *ND) const;
bool IsType(NamedDecl *ND) const;
bool IsMember(NamedDecl *ND) const;
//@}
};
}
/// \brief Determines whether the given hidden result could be found with
/// some extra work, e.g., by qualifying the name.
///
/// \param Hidden the declaration that is hidden by the currenly \p Visible
/// declaration.
///
/// \param Visible the declaration with the same name that is already visible.
///
/// \returns true if the hidden result can be found by some mechanism,
/// false otherwise.
static bool canHiddenResultBeFound(const LangOptions &LangOpts,
NamedDecl *Hidden, NamedDecl *Visible) {
// In C, there is no way to refer to a hidden name.
if (!LangOpts.CPlusPlus)
return false;
DeclContext *HiddenCtx = Hidden->getDeclContext()->getLookupContext();
// There is no way to qualify a name declared in a function or method.
if (HiddenCtx->isFunctionOrMethod())
return false;
return HiddenCtx != Visible->getDeclContext()->getLookupContext();
}
/// \brief Compute the qualification required to get from the current context
/// (\p CurContext) to the target context (\p TargetContext).
///
/// \param Context the AST context in which the qualification will be used.
///
/// \param CurContext the context where an entity is being named, which is
/// typically based on the current scope.
///
/// \param TargetContext the context in which the named entity actually
/// resides.
///
/// \returns a nested name specifier that refers into the target context, or
/// NULL if no qualification is needed.
static NestedNameSpecifier *
getRequiredQualification(ASTContext &Context,
DeclContext *CurContext,
DeclContext *TargetContext) {
llvm::SmallVector<DeclContext *, 4> TargetParents;
for (DeclContext *CommonAncestor = TargetContext;
CommonAncestor && !CommonAncestor->Encloses(CurContext);
CommonAncestor = CommonAncestor->getLookupParent()) {
if (CommonAncestor->isTransparentContext() ||
CommonAncestor->isFunctionOrMethod())
continue;
TargetParents.push_back(CommonAncestor);
}
NestedNameSpecifier *Result = 0;
while (!TargetParents.empty()) {
DeclContext *Parent = TargetParents.back();
TargetParents.pop_back();
if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(Parent))
Result = NestedNameSpecifier::Create(Context, Result, Namespace);
else if (TagDecl *TD = dyn_cast<TagDecl>(Parent))
Result = NestedNameSpecifier::Create(Context, Result,
false,
Context.getTypeDeclType(TD).getTypePtr());
else
assert(Parent->isTranslationUnit());
}
return Result;
}
void ResultBuilder::MaybeAddResult(Result R, DeclContext *CurContext) {
assert(!ShadowMaps.empty() && "Must enter into a results scope");
if (R.Kind != Result::RK_Declaration) {
// For non-declaration results, just add the result.
Results.push_back(R);
return;
}
// Skip unnamed entities.
if (!R.Declaration->getDeclName())
return;
// Look through using declarations.
if (UsingShadowDecl *Using = dyn_cast<UsingShadowDecl>(R.Declaration))
MaybeAddResult(Result(Using->getTargetDecl(), R.Rank, R.Qualifier),
CurContext);
// Handle each declaration in an overload set separately.
if (OverloadedFunctionDecl *Ovl
= dyn_cast<OverloadedFunctionDecl>(R.Declaration)) {
for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
FEnd = Ovl->function_end();
F != FEnd; ++F)
MaybeAddResult(Result(*F, R.Rank, R.Qualifier), CurContext);
return;
}
Decl *CanonDecl = R.Declaration->getCanonicalDecl();
unsigned IDNS = CanonDecl->getIdentifierNamespace();
// Friend declarations and declarations introduced due to friends are never
// added as results.
if (isa<FriendDecl>(CanonDecl) ||
(IDNS & (Decl::IDNS_OrdinaryFriend | Decl::IDNS_TagFriend)))
return;
if (const IdentifierInfo *Id = R.Declaration->getIdentifier()) {
// __va_list_tag is a freak of nature. Find it and skip it.
if (Id->isStr("__va_list_tag") || Id->isStr("__builtin_va_list"))
return;
// Filter out names reserved for the implementation (C99 7.1.3,
// C++ [lib.global.names]). Users don't need to see those.
//
// FIXME: Add predicate for this.
if (Id->getLength() >= 2) {
const char *Name = Id->getNameStart();
if (Name[0] == '_' &&
(Name[1] == '_' || (Name[1] >= 'A' && Name[1] <= 'Z')))
return;
}
}
// C++ constructors are never found by name lookup.
if (isa<CXXConstructorDecl>(CanonDecl))
return;
// Filter out any unwanted results.
if (Filter && !(this->*Filter)(R.Declaration))
return;
ShadowMap &SMap = ShadowMaps.back();
ShadowMap::iterator I, IEnd;
for (llvm::tie(I, IEnd) = SMap.equal_range(R.Declaration->getDeclName());
I != IEnd; ++I) {
NamedDecl *ND = I->second.first;
unsigned Index = I->second.second;
if (ND->getCanonicalDecl() == CanonDecl) {
// This is a redeclaration. Always pick the newer declaration.
I->second.first = R.Declaration;
Results[Index].Declaration = R.Declaration;
// Pick the best rank of the two.
Results[Index].Rank = std::min(Results[Index].Rank, R.Rank);
// We're done.
return;
}
}
// This is a new declaration in this scope. However, check whether this
// declaration name is hidden by a similarly-named declaration in an outer
// scope.
std::list<ShadowMap>::iterator SM, SMEnd = ShadowMaps.end();
--SMEnd;
for (SM = ShadowMaps.begin(); SM != SMEnd; ++SM) {
for (llvm::tie(I, IEnd) = SM->equal_range(R.Declaration->getDeclName());
I != IEnd; ++I) {
// A tag declaration does not hide a non-tag declaration.
if (I->second.first->getIdentifierNamespace() == Decl::IDNS_Tag &&
(IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
Decl::IDNS_ObjCProtocol)))
continue;
// Protocols are in distinct namespaces from everything else.
if (((I->second.first->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
|| (IDNS & Decl::IDNS_ObjCProtocol)) &&
I->second.first->getIdentifierNamespace() != IDNS)
continue;
// The newly-added result is hidden by an entry in the shadow map.
if (canHiddenResultBeFound(SemaRef.getLangOptions(), R.Declaration,
I->second.first)) {
// Note that this result was hidden.
R.Hidden = true;
R.QualifierIsInformative = false;
if (!R.Qualifier)
R.Qualifier = getRequiredQualification(SemaRef.Context,
CurContext,
R.Declaration->getDeclContext());
} else {
// This result was hidden and cannot be found; don't bother adding
// it.
return;
}
break;
}
}
// Make sure that any given declaration only shows up in the result set once.
if (!AllDeclsFound.insert(CanonDecl))
return;
// If the filter is for nested-name-specifiers, then this result starts a
// nested-name-specifier.
if ((Filter == &ResultBuilder::IsNestedNameSpecifier) ||
(Filter == &ResultBuilder::IsMember &&
isa<CXXRecordDecl>(R.Declaration) &&
cast<CXXRecordDecl>(R.Declaration)->isInjectedClassName()))
R.StartsNestedNameSpecifier = true;
// If this result is supposed to have an informative qualifier, add one.
if (R.QualifierIsInformative && !R.Qualifier &&
!R.StartsNestedNameSpecifier) {
DeclContext *Ctx = R.Declaration->getDeclContext();
if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(Ctx))
R.Qualifier = NestedNameSpecifier::Create(SemaRef.Context, 0, Namespace);
else if (TagDecl *Tag = dyn_cast<TagDecl>(Ctx))
R.Qualifier = NestedNameSpecifier::Create(SemaRef.Context, 0, false,
SemaRef.Context.getTypeDeclType(Tag).getTypePtr());
else
R.QualifierIsInformative = false;
}
// Insert this result into the set of results and into the current shadow
// map.
SMap.insert(std::make_pair(R.Declaration->getDeclName(),
std::make_pair(R.Declaration, Results.size())));
Results.push_back(R);
}
/// \brief Enter into a new scope.
void ResultBuilder::EnterNewScope() {
ShadowMaps.push_back(ShadowMap());
}
/// \brief Exit from the current scope.
void ResultBuilder::ExitScope() {
ShadowMaps.pop_back();
}
/// \brief Determines whether this given declaration will be found by
/// ordinary name lookup.
bool ResultBuilder::IsOrdinaryName(NamedDecl *ND) const {
unsigned IDNS = Decl::IDNS_Ordinary;
if (SemaRef.getLangOptions().CPlusPlus)
IDNS |= Decl::IDNS_Tag;
return ND->getIdentifierNamespace() & IDNS;
}
/// \brief Determines whether the given declaration is suitable as the
/// start of a C++ nested-name-specifier, e.g., a class or namespace.
bool ResultBuilder::IsNestedNameSpecifier(NamedDecl *ND) const {
// Allow us to find class templates, too.
if (ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(ND))
ND = ClassTemplate->getTemplatedDecl();
return SemaRef.isAcceptableNestedNameSpecifier(ND);
}
/// \brief Determines whether the given declaration is an enumeration.
bool ResultBuilder::IsEnum(NamedDecl *ND) const {
return isa<EnumDecl>(ND);
}
/// \brief Determines whether the given declaration is a class or struct.
bool ResultBuilder::IsClassOrStruct(NamedDecl *ND) const {
// Allow us to find class templates, too.
if (ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(ND))
ND = ClassTemplate->getTemplatedDecl();
if (RecordDecl *RD = dyn_cast<RecordDecl>(ND))
return RD->getTagKind() == TagDecl::TK_class ||
RD->getTagKind() == TagDecl::TK_struct;
return false;
}
/// \brief Determines whether the given declaration is a union.
bool ResultBuilder::IsUnion(NamedDecl *ND) const {
// Allow us to find class templates, too.
if (ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(ND))
ND = ClassTemplate->getTemplatedDecl();
if (RecordDecl *RD = dyn_cast<RecordDecl>(ND))
return RD->getTagKind() == TagDecl::TK_union;
return false;
}
/// \brief Determines whether the given declaration is a namespace.
bool ResultBuilder::IsNamespace(NamedDecl *ND) const {
return isa<NamespaceDecl>(ND);
}
/// \brief Determines whether the given declaration is a namespace or
/// namespace alias.
bool ResultBuilder::IsNamespaceOrAlias(NamedDecl *ND) const {
return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
}
/// \brief Brief determines whether the given declaration is a namespace or
/// namespace alias.
bool ResultBuilder::IsType(NamedDecl *ND) const {
return isa<TypeDecl>(ND);
}
/// \brief Since every declaration found within a class is a member that we
/// care about, always returns true. This predicate exists mostly to
/// communicate to the result builder that we are performing a lookup for
/// member access.
bool ResultBuilder::IsMember(NamedDecl *ND) const {
return true;
}
// Find the next outer declaration context corresponding to this scope.
static DeclContext *findOuterContext(Scope *S) {
for (S = S->getParent(); S; S = S->getParent())
if (S->getEntity())
return static_cast<DeclContext *>(S->getEntity())->getPrimaryContext();
return 0;
}
/// \brief Collect the results of searching for members within the given
/// declaration context.
///
/// \param Ctx the declaration context from which we will gather results.
///
/// \param Rank the rank given to results in this declaration context.
///
/// \param Visited the set of declaration contexts that have already been
/// visited. Declaration contexts will only be visited once.
///
/// \param Results the result set that will be extended with any results
/// found within this declaration context (and, for a C++ class, its bases).
///
/// \param InBaseClass whether we are in a base class.
///
/// \returns the next higher rank value, after considering all of the
/// names within this declaration context.
static unsigned CollectMemberLookupResults(DeclContext *Ctx,
unsigned Rank,
DeclContext *CurContext,
llvm::SmallPtrSet<DeclContext *, 16> &Visited,
ResultBuilder &Results,
bool InBaseClass = false) {
// Make sure we don't visit the same context twice.
if (!Visited.insert(Ctx->getPrimaryContext()))
return Rank;
// Enumerate all of the results in this context.
typedef CodeCompleteConsumer::Result Result;
Results.EnterNewScope();
for (DeclContext *CurCtx = Ctx->getPrimaryContext(); CurCtx;
CurCtx = CurCtx->getNextContext()) {
for (DeclContext::decl_iterator D = CurCtx->decls_begin(),
DEnd = CurCtx->decls_end();
D != DEnd; ++D) {
if (NamedDecl *ND = dyn_cast<NamedDecl>(*D))
Results.MaybeAddResult(Result(ND, Rank, 0, InBaseClass), CurContext);
// Visit transparent contexts inside this context.
if (DeclContext *InnerCtx = dyn_cast<DeclContext>(*D)) {
if (InnerCtx->isTransparentContext())
CollectMemberLookupResults(InnerCtx, Rank, CurContext, Visited,
Results, InBaseClass);
}
}
}
// Traverse the contexts of inherited classes.
if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
for (CXXRecordDecl::base_class_iterator B = Record->bases_begin(),
BEnd = Record->bases_end();
B != BEnd; ++B) {
QualType BaseType = B->getType();
// Don't look into dependent bases, because name lookup can't look
// there anyway.
if (BaseType->isDependentType())
continue;
const RecordType *Record = BaseType->getAs<RecordType>();
if (!Record)
continue;
// FIXME: It would be nice to be able to determine whether referencing
// a particular member would be ambiguous. For example, given
//
// struct A { int member; };
// struct B { int member; };
// struct C : A, B { };
//
// void f(C *c) { c->### }
// accessing 'member' would result in an ambiguity. However, code
// completion could be smart enough to qualify the member with the
// base class, e.g.,
//
// c->B::member
//
// or
//
// c->A::member
// Collect results from this base class (and its bases).
CollectMemberLookupResults(Record->getDecl(), Rank, CurContext, Visited,
Results, /*InBaseClass=*/true);
}
}
// FIXME: Look into base classes in Objective-C!
Results.ExitScope();
return Rank + 1;
}
/// \brief Collect the results of searching for members within the given
/// declaration context.
///
/// \param Ctx the declaration context from which we will gather results.
///
/// \param InitialRank the initial rank given to results in this declaration
/// context. Larger rank values will be used for, e.g., members found in
/// base classes.
///
/// \param Results the result set that will be extended with any results
/// found within this declaration context (and, for a C++ class, its bases).
///
/// \returns the next higher rank value, after considering all of the
/// names within this declaration context.
static unsigned CollectMemberLookupResults(DeclContext *Ctx,
unsigned InitialRank,
DeclContext *CurContext,
ResultBuilder &Results) {
llvm::SmallPtrSet<DeclContext *, 16> Visited;
return CollectMemberLookupResults(Ctx, InitialRank, CurContext, Visited,
Results);
}
/// \brief Collect the results of searching for declarations within the given
/// scope and its parent scopes.
///
/// \param S the scope in which we will start looking for declarations.
///
/// \param InitialRank the initial rank given to results in this scope.
/// Larger rank values will be used for results found in parent scopes.
///
/// \param CurContext the context from which lookup results will be found.
///
/// \param Results the builder object that will receive each result.
static unsigned CollectLookupResults(Scope *S,
TranslationUnitDecl *TranslationUnit,
unsigned InitialRank,
DeclContext *CurContext,
ResultBuilder &Results) {
if (!S)
return InitialRank;
// FIXME: Using directives!
unsigned NextRank = InitialRank;
Results.EnterNewScope();
if (S->getEntity() &&
!((DeclContext *)S->getEntity())->isFunctionOrMethod()) {
// Look into this scope's declaration context, along with any of its
// parent lookup contexts (e.g., enclosing classes), up to the point
// where we hit the context stored in the next outer scope.
DeclContext *Ctx = (DeclContext *)S->getEntity();
DeclContext *OuterCtx = findOuterContext(S);
for (; Ctx && Ctx->getPrimaryContext() != OuterCtx;
Ctx = Ctx->getLookupParent()) {
if (Ctx->isFunctionOrMethod())
continue;
NextRank = CollectMemberLookupResults(Ctx, NextRank + 1, CurContext,
Results);
}
} else if (!S->getParent()) {
// Look into the translation unit scope. We walk through the translation
// unit's declaration context, because the Scope itself won't have all of
// the declarations if we loaded a precompiled header.
// FIXME: We would like the translation unit's Scope object to point to the
// translation unit, so we don't need this special "if" branch. However,
// doing so would force the normal C++ name-lookup code to look into the
// translation unit decl when the IdentifierInfo chains would suffice.
// Once we fix that problem (which is part of a more general "don't look
// in DeclContexts unless we have to" optimization), we can eliminate the
// TranslationUnit parameter entirely.
NextRank = CollectMemberLookupResults(TranslationUnit, NextRank + 1,
CurContext, Results);
} else {
// Walk through the declarations in this Scope.
for (Scope::decl_iterator D = S->decl_begin(), DEnd = S->decl_end();
D != DEnd; ++D) {
if (NamedDecl *ND = dyn_cast<NamedDecl>((Decl *)((*D).get())))
Results.MaybeAddResult(CodeCompleteConsumer::Result(ND, NextRank),
CurContext);
}
NextRank = NextRank + 1;
}
// Lookup names in the parent scope.
NextRank = CollectLookupResults(S->getParent(), TranslationUnit, NextRank,
CurContext, Results);
Results.ExitScope();
return NextRank;
}
/// \brief Add type specifiers for the current language as keyword results.
static void AddTypeSpecifierResults(const LangOptions &LangOpts, unsigned Rank,
ResultBuilder &Results) {
typedef CodeCompleteConsumer::Result Result;
Results.MaybeAddResult(Result("short", Rank));
Results.MaybeAddResult(Result("long", Rank));
Results.MaybeAddResult(Result("signed", Rank));
Results.MaybeAddResult(Result("unsigned", Rank));
Results.MaybeAddResult(Result("void", Rank));
Results.MaybeAddResult(Result("char", Rank));
Results.MaybeAddResult(Result("int", Rank));
Results.MaybeAddResult(Result("float", Rank));
Results.MaybeAddResult(Result("double", Rank));
Results.MaybeAddResult(Result("enum", Rank));
Results.MaybeAddResult(Result("struct", Rank));
Results.MaybeAddResult(Result("union", Rank));
if (LangOpts.C99) {
// C99-specific
Results.MaybeAddResult(Result("_Complex", Rank));
Results.MaybeAddResult(Result("_Imaginary", Rank));
Results.MaybeAddResult(Result("_Bool", Rank));
}
if (LangOpts.CPlusPlus) {
// C++-specific
Results.MaybeAddResult(Result("bool", Rank));
Results.MaybeAddResult(Result("class", Rank));
Results.MaybeAddResult(Result("typename", Rank));
Results.MaybeAddResult(Result("wchar_t", Rank));
if (LangOpts.CPlusPlus0x) {
Results.MaybeAddResult(Result("char16_t", Rank));
Results.MaybeAddResult(Result("char32_t", Rank));
Results.MaybeAddResult(Result("decltype", Rank));
}
}
// GNU extensions
if (LangOpts.GNUMode) {
// FIXME: Enable when we actually support decimal floating point.
// Results.MaybeAddResult(Result("_Decimal32", Rank));
// Results.MaybeAddResult(Result("_Decimal64", Rank));
// Results.MaybeAddResult(Result("_Decimal128", Rank));
Results.MaybeAddResult(Result("typeof", Rank));
}
}
/// \brief Add function parameter chunks to the given code completion string.
static void AddFunctionParameterChunks(ASTContext &Context,
FunctionDecl *Function,
CodeCompletionString *Result) {
typedef CodeCompletionString::Chunk Chunk;
CodeCompletionString *CCStr = Result;
for (unsigned P = 0, N = Function->getNumParams(); P != N; ++P) {
ParmVarDecl *Param = Function->getParamDecl(P);
if (Param->hasDefaultArg()) {
// When we see an optional default argument, put that argument and
// the remaining default arguments into a new, optional string.
CodeCompletionString *Opt = new CodeCompletionString;
CCStr->AddOptionalChunk(std::auto_ptr<CodeCompletionString>(Opt));
CCStr = Opt;
}
if (P != 0)
CCStr->AddChunk(Chunk(CodeCompletionString::CK_Comma));
// Format the placeholder string.
std::string PlaceholderStr;
if (Param->getIdentifier())
PlaceholderStr = Param->getIdentifier()->getName();
Param->getType().getAsStringInternal(PlaceholderStr,
Context.PrintingPolicy);
// Add the placeholder string.
CCStr->AddPlaceholderChunk(PlaceholderStr.c_str());
}
if (const FunctionProtoType *Proto
= Function->getType()->getAs<FunctionProtoType>())
if (Proto->isVariadic())
CCStr->AddPlaceholderChunk(", ...");
}
/// \brief Add template parameter chunks to the given code completion string.
static void AddTemplateParameterChunks(ASTContext &Context,
TemplateDecl *Template,
CodeCompletionString *Result,
unsigned MaxParameters = 0) {
typedef CodeCompletionString::Chunk Chunk;
CodeCompletionString *CCStr = Result;
bool FirstParameter = true;
TemplateParameterList *Params = Template->getTemplateParameters();
TemplateParameterList::iterator PEnd = Params->end();
if (MaxParameters)
PEnd = Params->begin() + MaxParameters;
for (TemplateParameterList::iterator P = Params->begin(); P != PEnd; ++P) {
bool HasDefaultArg = false;
std::string PlaceholderStr;
if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
if (TTP->wasDeclaredWithTypename())
PlaceholderStr = "typename";
else
PlaceholderStr = "class";
if (TTP->getIdentifier()) {
PlaceholderStr += ' ';
PlaceholderStr += TTP->getIdentifier()->getName();
}
HasDefaultArg = TTP->hasDefaultArgument();
} else if (NonTypeTemplateParmDecl *NTTP
= dyn_cast<NonTypeTemplateParmDecl>(*P)) {
if (NTTP->getIdentifier())
PlaceholderStr = NTTP->getIdentifier()->getName();
NTTP->getType().getAsStringInternal(PlaceholderStr,
Context.PrintingPolicy);
HasDefaultArg = NTTP->hasDefaultArgument();
} else {
assert(isa<TemplateTemplateParmDecl>(*P));
TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
// Since putting the template argument list into the placeholder would
// be very, very long, we just use an abbreviation.
PlaceholderStr = "template<...> class";
if (TTP->getIdentifier()) {
PlaceholderStr += ' ';
PlaceholderStr += TTP->getIdentifier()->getName();
}
HasDefaultArg = TTP->hasDefaultArgument();
}
if (HasDefaultArg) {
// When we see an optional default argument, put that argument and
// the remaining default arguments into a new, optional string.
CodeCompletionString *Opt = new CodeCompletionString;
CCStr->AddOptionalChunk(std::auto_ptr<CodeCompletionString>(Opt));
CCStr = Opt;
}
if (FirstParameter)
FirstParameter = false;
else
CCStr->AddChunk(Chunk(CodeCompletionString::CK_Comma));
// Add the placeholder string.
CCStr->AddPlaceholderChunk(PlaceholderStr.c_str());
}
}
/// \brief Add a qualifier to the given code-completion string, if the
/// provided nested-name-specifier is non-NULL.
void AddQualifierToCompletionString(CodeCompletionString *Result,
NestedNameSpecifier *Qualifier,
bool QualifierIsInformative,
ASTContext &Context) {
if (!Qualifier)
return;
std::string PrintedNNS;
{
llvm::raw_string_ostream OS(PrintedNNS);
Qualifier->print(OS, Context.PrintingPolicy);
}
if (QualifierIsInformative)
Result->AddInformativeChunk(PrintedNNS.c_str());
else
Result->AddTextChunk(PrintedNNS.c_str());
}
/// \brief If possible, create a new code completion string for the given
/// result.
///
/// \returns Either a new, heap-allocated code completion string describing
/// how to use this result, or NULL to indicate that the string or name of the
/// result is all that is needed.
CodeCompletionString *
CodeCompleteConsumer::Result::CreateCodeCompletionString(Sema &S) {
typedef CodeCompletionString::Chunk Chunk;
if (Kind == RK_Keyword)
return 0;
if (Kind == RK_Macro) {
MacroInfo *MI = S.PP.getMacroInfo(Macro);
if (!MI || !MI->isFunctionLike())
return 0;
// Format a function-like macro with placeholders for the arguments.
CodeCompletionString *Result = new CodeCompletionString;
Result->AddTypedTextChunk(Macro->getName().str().c_str());
Result->AddChunk(Chunk(CodeCompletionString::CK_LeftParen));
for (MacroInfo::arg_iterator A = MI->arg_begin(), AEnd = MI->arg_end();
A != AEnd; ++A) {
if (A != MI->arg_begin())
Result->AddChunk(Chunk(CodeCompletionString::CK_Comma));
if (!MI->isVariadic() || A != AEnd - 1) {
// Non-variadic argument.
Result->AddPlaceholderChunk((*A)->getName().str().c_str());
continue;
}
// Variadic argument; cope with the different between GNU and C99
// variadic macros, providing a single placeholder for the rest of the
// arguments.
if ((*A)->isStr("__VA_ARGS__"))
Result->AddPlaceholderChunk("...");
else {
std::string Arg = (*A)->getName();
Arg += "...";
Result->AddPlaceholderChunk(Arg.c_str());
}
}
Result->AddChunk(Chunk(CodeCompletionString::CK_RightParen));
return Result;
}
assert(Kind == RK_Declaration && "Missed a macro kind?");
NamedDecl *ND = Declaration;
if (StartsNestedNameSpecifier) {
CodeCompletionString *Result = new CodeCompletionString;
Result->AddTypedTextChunk(ND->getNameAsString().c_str());
Result->AddTextChunk("::");
return Result;
}
if (FunctionDecl *Function = dyn_cast<FunctionDecl>(ND)) {
CodeCompletionString *Result = new CodeCompletionString;
AddQualifierToCompletionString(Result, Qualifier, QualifierIsInformative,
S.Context);
Result->AddTypedTextChunk(Function->getNameAsString().c_str());
Result->AddChunk(Chunk(CodeCompletionString::CK_LeftParen));
AddFunctionParameterChunks(S.Context, Function, Result);
Result->AddChunk(Chunk(CodeCompletionString::CK_RightParen));
return Result;
}
if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(ND)) {
CodeCompletionString *Result = new CodeCompletionString;
AddQualifierToCompletionString(Result, Qualifier, QualifierIsInformative,
S.Context);
FunctionDecl *Function = FunTmpl->getTemplatedDecl();
Result->AddTypedTextChunk(Function->getNameAsString().c_str());
// Figure out which template parameters are deduced (or have default
// arguments).
llvm::SmallVector<bool, 16> Deduced;
S.MarkDeducedTemplateParameters(FunTmpl, Deduced);
unsigned LastDeducibleArgument;
for (LastDeducibleArgument = Deduced.size(); LastDeducibleArgument > 0;
--LastDeducibleArgument) {
if (!Deduced[LastDeducibleArgument - 1]) {
// C++0x: Figure out if the template argument has a default. If so,
// the user doesn't need to type this argument.
// FIXME: We need to abstract template parameters better!
bool HasDefaultArg = false;
NamedDecl *Param = FunTmpl->getTemplateParameters()->getParam(
LastDeducibleArgument - 1);
if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
HasDefaultArg = TTP->hasDefaultArgument();
else if (NonTypeTemplateParmDecl *NTTP
= dyn_cast<NonTypeTemplateParmDecl>(Param))
HasDefaultArg = NTTP->hasDefaultArgument();
else {
assert(isa<TemplateTemplateParmDecl>(Param));
HasDefaultArg
= cast<TemplateTemplateParmDecl>(Param)->hasDefaultArgument();
}
if (!HasDefaultArg)
break;
}
}
if (LastDeducibleArgument) {
// Some of the function template arguments cannot be deduced from a
// function call, so we introduce an explicit template argument list
// containing all of the arguments up to the first deducible argument.
Result->AddChunk(Chunk(CodeCompletionString::CK_LeftAngle));
AddTemplateParameterChunks(S.Context, FunTmpl, Result,
LastDeducibleArgument);
Result->AddChunk(Chunk(CodeCompletionString::CK_RightAngle));
}
// Add the function parameters
Result->AddChunk(Chunk(CodeCompletionString::CK_LeftParen));
AddFunctionParameterChunks(S.Context, Function, Result);
Result->AddChunk(Chunk(CodeCompletionString::CK_RightParen));
return Result;
}
if (TemplateDecl *Template = dyn_cast<TemplateDecl>(ND)) {
CodeCompletionString *Result = new CodeCompletionString;
AddQualifierToCompletionString(Result, Qualifier, QualifierIsInformative,
S.Context);
Result->AddTypedTextChunk(Template->getNameAsString().c_str());
Result->AddChunk(Chunk(CodeCompletionString::CK_LeftAngle));
AddTemplateParameterChunks(S.Context, Template, Result);
Result->AddChunk(Chunk(CodeCompletionString::CK_RightAngle));
return Result;
}
if (Qualifier) {
CodeCompletionString *Result = new CodeCompletionString;
AddQualifierToCompletionString(Result, Qualifier, QualifierIsInformative,
S.Context);
Result->AddTypedTextChunk(ND->getNameAsString().c_str());
return Result;
}
return 0;
}
CodeCompletionString *
CodeCompleteConsumer::OverloadCandidate::CreateSignatureString(
unsigned CurrentArg,
Sema &S) const {
typedef CodeCompletionString::Chunk Chunk;
CodeCompletionString *Result = new CodeCompletionString;
FunctionDecl *FDecl = getFunction();
const FunctionProtoType *Proto
= dyn_cast<FunctionProtoType>(getFunctionType());
if (!FDecl && !Proto) {
// Function without a prototype. Just give the return type and a
// highlighted ellipsis.
const FunctionType *FT = getFunctionType();
Result->AddTextChunk(
FT->getResultType().getAsString(S.Context.PrintingPolicy).c_str());
Result->AddChunk(Chunk(CodeCompletionString::CK_LeftParen));
Result->AddChunk(Chunk(CodeCompletionString::CK_CurrentParameter, "..."));
Result->AddChunk(Chunk(CodeCompletionString::CK_RightParen));
return Result;
}
if (FDecl)
Result->AddTextChunk(FDecl->getNameAsString().c_str());
else
Result->AddTextChunk(
Proto->getResultType().getAsString(S.Context.PrintingPolicy).c_str());
Result->AddChunk(Chunk(CodeCompletionString::CK_LeftParen));
unsigned NumParams = FDecl? FDecl->getNumParams() : Proto->getNumArgs();
for (unsigned I = 0; I != NumParams; ++I) {
if (I)
Result->AddChunk(Chunk(CodeCompletionString::CK_Comma));
std::string ArgString;
QualType ArgType;
if (FDecl) {
ArgString = FDecl->getParamDecl(I)->getNameAsString();
ArgType = FDecl->getParamDecl(I)->getOriginalType();
} else {
ArgType = Proto->getArgType(I);
}
ArgType.getAsStringInternal(ArgString, S.Context.PrintingPolicy);
if (I == CurrentArg)
Result->AddChunk(Chunk(CodeCompletionString::CK_CurrentParameter,
ArgString.c_str()));
else
Result->AddTextChunk(ArgString.c_str());
}
if (Proto && Proto->isVariadic()) {
Result->AddChunk(Chunk(CodeCompletionString::CK_Comma));
if (CurrentArg < NumParams)
Result->AddTextChunk("...");
else
Result->AddChunk(Chunk(CodeCompletionString::CK_CurrentParameter, "..."));
}
Result->AddChunk(Chunk(CodeCompletionString::CK_RightParen));
return Result;
}
namespace {
struct SortCodeCompleteResult {
typedef CodeCompleteConsumer::Result Result;
bool isEarlierDeclarationName(DeclarationName X, DeclarationName Y) const {
if (X.getNameKind() != Y.getNameKind())
return X.getNameKind() < Y.getNameKind();
return llvm::LowercaseString(X.getAsString())
< llvm::LowercaseString(Y.getAsString());
}
bool operator()(const Result &X, const Result &Y) const {
// Sort first by rank.
if (X.Rank < Y.Rank)
return true;
else if (X.Rank > Y.Rank)
return false;
// Result kinds are ordered by decreasing importance.
if (X.Kind < Y.Kind)
return true;
else if (X.Kind > Y.Kind)
return false;
// Non-hidden names precede hidden names.
if (X.Hidden != Y.Hidden)
return !X.Hidden;
// Non-nested-name-specifiers precede nested-name-specifiers.
if (X.StartsNestedNameSpecifier != Y.StartsNestedNameSpecifier)
return !X.StartsNestedNameSpecifier;
// Ordering depends on the kind of result.
switch (X.Kind) {
case Result::RK_Declaration:
// Order based on the declaration names.
return isEarlierDeclarationName(X.Declaration->getDeclName(),
Y.Declaration->getDeclName());
case Result::RK_Keyword:
return strcmp(X.Keyword, Y.Keyword) < 0;
case Result::RK_Macro:
return llvm::LowercaseString(X.Macro->getName()) <
llvm::LowercaseString(Y.Macro->getName());
}
// Silence GCC warning.
return false;
}
};
}
static void AddMacroResults(Preprocessor &PP, unsigned Rank,
ResultBuilder &Results) {
Results.EnterNewScope();
for (Preprocessor::macro_iterator M = PP.macro_begin(),
MEnd = PP.macro_end();
M != MEnd; ++M)
Results.MaybeAddResult(CodeCompleteConsumer::Result(M->first, Rank));
Results.ExitScope();
}
static void HandleCodeCompleteResults(Sema *S,
CodeCompleteConsumer *CodeCompleter,
CodeCompleteConsumer::Result *Results,
unsigned NumResults) {
// Sort the results by rank/kind/etc.
std::stable_sort(Results, Results + NumResults, SortCodeCompleteResult());
if (CodeCompleter)
CodeCompleter->ProcessCodeCompleteResults(*S, Results, NumResults);
}
void Sema::CodeCompleteOrdinaryName(Scope *S) {
ResultBuilder Results(*this, &ResultBuilder::IsOrdinaryName);
unsigned NextRank = CollectLookupResults(S, Context.getTranslationUnitDecl(),
0, CurContext, Results);
if (CodeCompleter->includeMacros())
AddMacroResults(PP, NextRank, Results);
HandleCodeCompleteResults(this, CodeCompleter, Results.data(),Results.size());
}
void Sema::CodeCompleteMemberReferenceExpr(Scope *S, ExprTy *BaseE,
SourceLocation OpLoc,
bool IsArrow) {
if (!BaseE || !CodeCompleter)
return;
typedef CodeCompleteConsumer::Result Result;
Expr *Base = static_cast<Expr *>(BaseE);
QualType BaseType = Base->getType();
if (IsArrow) {
if (const PointerType *Ptr = BaseType->getAs<PointerType>())
BaseType = Ptr->getPointeeType();
else if (BaseType->isObjCObjectPointerType())
/*Do nothing*/ ;
else
return;
}
ResultBuilder Results(*this, &ResultBuilder::IsMember);
unsigned NextRank = 0;
// If this isn't a record type, we are done.
const RecordType *Record = BaseType->getAs<RecordType>();
if (!Record)
return;
NextRank = CollectMemberLookupResults(Record->getDecl(), NextRank,
Record->getDecl(), Results);
if (getLangOptions().CPlusPlus) {
if (!Results.empty()) {
// The "template" keyword can follow "->" or "." in the grammar.
// However, we only want to suggest the template keyword if something
// is dependent.
bool IsDependent = BaseType->isDependentType();
if (!IsDependent) {
for (Scope *DepScope = S; DepScope; DepScope = DepScope->getParent())
if (DeclContext *Ctx = (DeclContext *)DepScope->getEntity()) {
IsDependent = Ctx->isDependentContext();
break;
}
}
if (IsDependent)
Results.MaybeAddResult(Result("template", NextRank++));
}
// We could have the start of a nested-name-specifier. Add those
// results as well.
Results.setFilter(&ResultBuilder::IsNestedNameSpecifier);
CollectLookupResults(S, Context.getTranslationUnitDecl(), NextRank,
CurContext, Results);
}
// Add macros
if (CodeCompleter->includeMacros())
AddMacroResults(PP, NextRank, Results);
// Hand off the results found for code completion.
HandleCodeCompleteResults(this, CodeCompleter, Results.data(),Results.size());
}
void Sema::CodeCompleteTag(Scope *S, unsigned TagSpec) {
if (!CodeCompleter)
return;
typedef CodeCompleteConsumer::Result Result;
ResultBuilder::LookupFilter Filter = 0;
switch ((DeclSpec::TST)TagSpec) {
case DeclSpec::TST_enum:
Filter = &ResultBuilder::IsEnum;
break;
case DeclSpec::TST_union:
Filter = &ResultBuilder::IsUnion;
break;
case DeclSpec::TST_struct:
case DeclSpec::TST_class:
Filter = &ResultBuilder::IsClassOrStruct;
break;
default:
assert(false && "Unknown type specifier kind in CodeCompleteTag");
return;
}
ResultBuilder Results(*this, Filter);
unsigned NextRank = CollectLookupResults(S, Context.getTranslationUnitDecl(),
0, CurContext, Results);
if (getLangOptions().CPlusPlus) {
// We could have the start of a nested-name-specifier. Add those
// results as well.
Results.setFilter(&ResultBuilder::IsNestedNameSpecifier);
NextRank = CollectLookupResults(S, Context.getTranslationUnitDecl(),
NextRank, CurContext, Results);
}
if (CodeCompleter->includeMacros())
AddMacroResults(PP, NextRank, Results);
HandleCodeCompleteResults(this, CodeCompleter, Results.data(),Results.size());
}
void Sema::CodeCompleteCase(Scope *S) {
if (getSwitchStack().empty() || !CodeCompleter)
return;
SwitchStmt *Switch = getSwitchStack().back();
if (!Switch->getCond()->getType()->isEnumeralType())
return;
// Code-complete the cases of a switch statement over an enumeration type
// by providing the list of
EnumDecl *Enum = Switch->getCond()->getType()->getAs<EnumType>()->getDecl();
// Determine which enumerators we have already seen in the switch statement.
// FIXME: Ideally, we would also be able to look *past* the code-completion
// token, in case we are code-completing in the middle of the switch and not
// at the end. However, we aren't able to do so at the moment.
llvm::SmallPtrSet<EnumConstantDecl *, 8> EnumeratorsSeen;
NestedNameSpecifier *Qualifier = 0;
for (SwitchCase *SC = Switch->getSwitchCaseList(); SC;
SC = SC->getNextSwitchCase()) {
CaseStmt *Case = dyn_cast<CaseStmt>(SC);
if (!Case)
continue;
Expr *CaseVal = Case->getLHS()->IgnoreParenCasts();
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CaseVal))
if (EnumConstantDecl *Enumerator
= dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
// We look into the AST of the case statement to determine which
// enumerator was named. Alternatively, we could compute the value of
// the integral constant expression, then compare it against the
// values of each enumerator. However, value-based approach would not
// work as well with C++ templates where enumerators declared within a
// template are type- and value-dependent.
EnumeratorsSeen.insert(Enumerator);
// If this is a qualified-id, keep track of the nested-name-specifier
// so that we can reproduce it as part of code completion, e.g.,
//
// switch (TagD.getKind()) {
// case TagDecl::TK_enum:
// break;
// case XXX
//
// At the XXX, our completions are TagDecl::TK_union,
// TagDecl::TK_struct, and TagDecl::TK_class, rather than TK_union,
// TK_struct, and TK_class.
Qualifier = DRE->getQualifier();
}
}
if (getLangOptions().CPlusPlus && !Qualifier && EnumeratorsSeen.empty()) {
// If there are no prior enumerators in C++, check whether we have to
// qualify the names of the enumerators that we suggest, because they
// may not be visible in this scope.
Qualifier = getRequiredQualification(Context, CurContext,
Enum->getDeclContext());
// FIXME: Scoped enums need to start with "EnumDecl" as the context!
}
// Add any enumerators that have not yet been mentioned.
ResultBuilder Results(*this);
Results.EnterNewScope();
for (EnumDecl::enumerator_iterator E = Enum->enumerator_begin(),
EEnd = Enum->enumerator_end();
E != EEnd; ++E) {
if (EnumeratorsSeen.count(*E))
continue;
Results.MaybeAddResult(CodeCompleteConsumer::Result(*E, 0, Qualifier));
}
Results.ExitScope();
if (CodeCompleter->includeMacros())
AddMacroResults(PP, 1, Results);
HandleCodeCompleteResults(this, CodeCompleter, Results.data(),Results.size());
}
namespace {
struct IsBetterOverloadCandidate {
Sema &S;
public:
explicit IsBetterOverloadCandidate(Sema &S) : S(S) { }
bool
operator()(const OverloadCandidate &X, const OverloadCandidate &Y) const {
return S.isBetterOverloadCandidate(X, Y);
}
};
}
void Sema::CodeCompleteCall(Scope *S, ExprTy *FnIn,
ExprTy **ArgsIn, unsigned NumArgs) {
if (!CodeCompleter)
return;
Expr *Fn = (Expr *)FnIn;
Expr **Args = (Expr **)ArgsIn;
// Ignore type-dependent call expressions entirely.
if (Fn->isTypeDependent() ||
Expr::hasAnyTypeDependentArguments(Args, NumArgs))
return;
NamedDecl *Function;
DeclarationName UnqualifiedName;
NestedNameSpecifier *Qualifier;
SourceRange QualifierRange;
bool ArgumentDependentLookup;
bool HasExplicitTemplateArgs;
const TemplateArgumentLoc *ExplicitTemplateArgs;
unsigned NumExplicitTemplateArgs;
DeconstructCallFunction(Fn,
Function, UnqualifiedName, Qualifier, QualifierRange,
ArgumentDependentLookup, HasExplicitTemplateArgs,
ExplicitTemplateArgs, NumExplicitTemplateArgs);
// FIXME: What if we're calling something that isn't a function declaration?
// FIXME: What if we're calling a pseudo-destructor?
// FIXME: What if we're calling a member function?
// Build an overload candidate set based on the functions we find.
OverloadCandidateSet CandidateSet;
AddOverloadedCallCandidates(Function, UnqualifiedName,
ArgumentDependentLookup, HasExplicitTemplateArgs,
ExplicitTemplateArgs, NumExplicitTemplateArgs,
Args, NumArgs,
CandidateSet,
/*PartialOverloading=*/true);
// Sort the overload candidate set by placing the best overloads first.
std::stable_sort(CandidateSet.begin(), CandidateSet.end(),
IsBetterOverloadCandidate(*this));
// Add the remaining viable overload candidates as code-completion reslults.
typedef CodeCompleteConsumer::OverloadCandidate ResultCandidate;
llvm::SmallVector<ResultCandidate, 8> Results;
for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
CandEnd = CandidateSet.end();
Cand != CandEnd; ++Cand) {
if (Cand->Viable)
Results.push_back(ResultCandidate(Cand->Function));
}
CodeCompleter->ProcessOverloadCandidates(*this, NumArgs, Results.data(),
Results.size());
}
void Sema::CodeCompleteQualifiedId(Scope *S, const CXXScopeSpec &SS,
bool EnteringContext) {
if (!SS.getScopeRep() || !CodeCompleter)
return;
DeclContext *Ctx = computeDeclContext(SS, EnteringContext);
if (!Ctx)
return;
ResultBuilder Results(*this);
unsigned NextRank = CollectMemberLookupResults(Ctx, 0, Ctx, Results);
// The "template" keyword can follow "::" in the grammar, but only
// put it into the grammar if the nested-name-specifier is dependent.
NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
if (!Results.empty() && NNS->isDependent())
Results.MaybeAddResult(CodeCompleteConsumer::Result("template", NextRank));
if (CodeCompleter->includeMacros())
AddMacroResults(PP, NextRank + 1, Results);
HandleCodeCompleteResults(this, CodeCompleter, Results.data(),Results.size());
}
void Sema::CodeCompleteUsing(Scope *S) {
if (!CodeCompleter)
return;
ResultBuilder Results(*this, &ResultBuilder::IsNestedNameSpecifier);
Results.EnterNewScope();
// If we aren't in class scope, we could see the "namespace" keyword.
if (!S->isClassScope())
Results.MaybeAddResult(CodeCompleteConsumer::Result("namespace", 0));
// After "using", we can see anything that would start a
// nested-name-specifier.
unsigned NextRank = CollectLookupResults(S, Context.getTranslationUnitDecl(),
0, CurContext, Results);
Results.ExitScope();
if (CodeCompleter->includeMacros())
AddMacroResults(PP, NextRank, Results);
HandleCodeCompleteResults(this, CodeCompleter, Results.data(),Results.size());
}
void Sema::CodeCompleteUsingDirective(Scope *S) {
if (!CodeCompleter)
return;
// After "using namespace", we expect to see a namespace name or namespace
// alias.
ResultBuilder Results(*this, &ResultBuilder::IsNamespaceOrAlias);
Results.EnterNewScope();
unsigned NextRank = CollectLookupResults(S, Context.getTranslationUnitDecl(),
0, CurContext, Results);
Results.ExitScope();
if (CodeCompleter->includeMacros())
AddMacroResults(PP, NextRank, Results);
HandleCodeCompleteResults(this, CodeCompleter, Results.data(),Results.size());
}
void Sema::CodeCompleteNamespaceDecl(Scope *S) {
if (!CodeCompleter)
return;
ResultBuilder Results(*this, &ResultBuilder::IsNamespace);
DeclContext *Ctx = (DeclContext *)S->getEntity();
if (!S->getParent())
Ctx = Context.getTranslationUnitDecl();
if (Ctx && Ctx->isFileContext()) {
// We only want to see those namespaces that have already been defined
// within this scope, because its likely that the user is creating an
// extended namespace declaration. Keep track of the most recent
// definition of each namespace.
std::map<NamespaceDecl *, NamespaceDecl *> OrigToLatest;
for (DeclContext::specific_decl_iterator<NamespaceDecl>
NS(Ctx->decls_begin()), NSEnd(Ctx->decls_end());
NS != NSEnd; ++NS)
OrigToLatest[NS->getOriginalNamespace()] = *NS;
// Add the most recent definition (or extended definition) of each
// namespace to the list of results.
Results.EnterNewScope();
for (std::map<NamespaceDecl *, NamespaceDecl *>::iterator
NS = OrigToLatest.begin(), NSEnd = OrigToLatest.end();
NS != NSEnd; ++NS)
Results.MaybeAddResult(CodeCompleteConsumer::Result(NS->second, 0),
CurContext);
Results.ExitScope();
}
if (CodeCompleter->includeMacros())
AddMacroResults(PP, 1, Results);
HandleCodeCompleteResults(this, CodeCompleter, Results.data(),Results.size());
}
void Sema::CodeCompleteNamespaceAliasDecl(Scope *S) {
if (!CodeCompleter)
return;
// After "namespace", we expect to see a namespace or alias.
ResultBuilder Results(*this, &ResultBuilder::IsNamespaceOrAlias);
unsigned NextRank = CollectLookupResults(S, Context.getTranslationUnitDecl(),
0, CurContext, Results);
if (CodeCompleter->includeMacros())
AddMacroResults(PP, NextRank, Results);
HandleCodeCompleteResults(this, CodeCompleter, Results.data(),Results.size());
}
void Sema::CodeCompleteOperatorName(Scope *S) {
if (!CodeCompleter)
return;
typedef CodeCompleteConsumer::Result Result;
ResultBuilder Results(*this, &ResultBuilder::IsType);
Results.EnterNewScope();
// Add the names of overloadable operators.
#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
if (std::strcmp(Spelling, "?")) \
Results.MaybeAddResult(Result(Spelling, 0));
#include "clang/Basic/OperatorKinds.def"
// Add any type names visible from the current scope
unsigned NextRank = CollectLookupResults(S, Context.getTranslationUnitDecl(),
0, CurContext, Results);
// Add any type specifiers
AddTypeSpecifierResults(getLangOptions(), 0, Results);
// Add any nested-name-specifiers
Results.setFilter(&ResultBuilder::IsNestedNameSpecifier);
NextRank = CollectLookupResults(S, Context.getTranslationUnitDecl(),
NextRank + 1, CurContext, Results);
Results.ExitScope();
if (CodeCompleter->includeMacros())
AddMacroResults(PP, NextRank, Results);
HandleCodeCompleteResults(this, CodeCompleter, Results.data(),Results.size());
}
void Sema::CodeCompleteObjCProperty(Scope *S, ObjCDeclSpec &ODS) {
if (!CodeCompleter)
return;
unsigned Attributes = ODS.getPropertyAttributes();
typedef CodeCompleteConsumer::Result Result;
ResultBuilder Results(*this);
Results.EnterNewScope();
if (!(Attributes & ObjCDeclSpec::DQ_PR_readonly))
Results.MaybeAddResult(CodeCompleteConsumer::Result("readonly", 0));
if (!(Attributes & ObjCDeclSpec::DQ_PR_assign))
Results.MaybeAddResult(CodeCompleteConsumer::Result("assign", 0));
if (!(Attributes & ObjCDeclSpec::DQ_PR_readwrite))
Results.MaybeAddResult(CodeCompleteConsumer::Result("readwrite", 0));
if (!(Attributes & ObjCDeclSpec::DQ_PR_retain))
Results.MaybeAddResult(CodeCompleteConsumer::Result("retain", 0));
if (!(Attributes & ObjCDeclSpec::DQ_PR_copy))
Results.MaybeAddResult(CodeCompleteConsumer::Result("copy", 0));
if (!(Attributes & ObjCDeclSpec::DQ_PR_nonatomic))
Results.MaybeAddResult(CodeCompleteConsumer::Result("nonatomic", 0));
if (!(Attributes & ObjCDeclSpec::DQ_PR_setter))
Results.MaybeAddResult(CodeCompleteConsumer::Result("setter", 0));
if (!(Attributes & ObjCDeclSpec::DQ_PR_getter))
Results.MaybeAddResult(CodeCompleteConsumer::Result("getter", 0));
Results.ExitScope();
HandleCodeCompleteResults(this, CodeCompleter, Results.data(),Results.size());
}
void Sema::CodeCompleteObjCFactoryMethod(Scope *S, IdentifierInfo *FName) {
typedef CodeCompleteConsumer::Result Result;
ResultBuilder Results(*this);
Results.EnterNewScope();
ObjCInterfaceDecl *CDecl = getObjCInterfaceDecl(FName);
while (CDecl != NULL) {
for (ObjCInterfaceDecl::classmeth_iterator I = CDecl->classmeth_begin(),
E = CDecl->classmeth_end();
I != E; ++I) {
Results.MaybeAddResult(Result(*I, 0), CurContext);
}
// Add class methods in protocols.
const ObjCList<ObjCProtocolDecl> &Protocols=CDecl->getReferencedProtocols();
for (ObjCList<ObjCProtocolDecl>::iterator I = Protocols.begin(),
E = Protocols.end(); I != E; ++I) {
for (ObjCProtocolDecl::classmeth_iterator I2 = (*I)->classmeth_begin(),
E2 = (*I)->classmeth_end();
I2 != E2; ++I2) {
Results.MaybeAddResult(Result(*I2, 0), CurContext);
}
}
// Add class methods in categories.
ObjCCategoryDecl *CatDecl = CDecl->getCategoryList();
while (CatDecl) {
for (ObjCCategoryDecl::classmeth_iterator I = CatDecl->classmeth_begin(),
E = CatDecl->classmeth_end();
I != E; ++I) {
Results.MaybeAddResult(Result(*I, 0), CurContext);
}
// Add a categories protocol methods.
const ObjCList<ObjCProtocolDecl> &Protocols =
CatDecl->getReferencedProtocols();
for (ObjCList<ObjCProtocolDecl>::iterator I = Protocols.begin(),
E = Protocols.end(); I != E; ++I) {
for (ObjCProtocolDecl::classmeth_iterator I2 = (*I)->classmeth_begin(),
E2 = (*I)->classmeth_end();
I2 != E2; ++I2) {
Results.MaybeAddResult(Result(*I2, 0), CurContext);
}
}
CatDecl = CatDecl->getNextClassCategory();
}
CDecl = CDecl->getSuperClass();
}
Results.ExitScope();
// This also suppresses remaining diagnostics.
HandleCodeCompleteResults(this, CodeCompleter, Results.data(),Results.size());
}
void Sema::CodeCompleteObjCInstanceMethod(Scope *S, ExprTy *Receiver) {
typedef CodeCompleteConsumer::Result Result;
ResultBuilder Results(*this);
Results.EnterNewScope();
Expr *RecExpr = static_cast<Expr *>(Receiver);
QualType RecType = RecExpr->getType();
const ObjCObjectPointerType* OCOPT = RecType->getAs<ObjCObjectPointerType>();
if (!OCOPT)
return;
// FIXME: handle 'id', 'Class', and qualified types.
ObjCInterfaceDecl *CDecl = OCOPT->getInterfaceDecl();
while (CDecl != NULL) {
for (ObjCInterfaceDecl::instmeth_iterator I = CDecl->instmeth_begin(),
E = CDecl->instmeth_end();
I != E; ++I) {
Results.MaybeAddResult(Result(*I, 0), CurContext);
}
// Add class methods in protocols.
const ObjCList<ObjCProtocolDecl> &Protocols=CDecl->getReferencedProtocols();
for (ObjCList<ObjCProtocolDecl>::iterator I = Protocols.begin(),
E = Protocols.end(); I != E; ++I) {
for (ObjCProtocolDecl::instmeth_iterator I2 = (*I)->instmeth_begin(),
E2 = (*I)->instmeth_end();
I2 != E2; ++I2) {
Results.MaybeAddResult(Result(*I2, 0), CurContext);
}
}
// Add class methods in categories.
ObjCCategoryDecl *CatDecl = CDecl->getCategoryList();
while (CatDecl) {
for (ObjCCategoryDecl::instmeth_iterator I = CatDecl->instmeth_begin(),
E = CatDecl->instmeth_end();
I != E; ++I) {
Results.MaybeAddResult(Result(*I, 0), CurContext);
}
// Add a categories protocol methods.
const ObjCList<ObjCProtocolDecl> &Protocols =
CatDecl->getReferencedProtocols();
for (ObjCList<ObjCProtocolDecl>::iterator I = Protocols.begin(),
E = Protocols.end(); I != E; ++I) {
for (ObjCProtocolDecl::instmeth_iterator I2 = (*I)->instmeth_begin(),
E2 = (*I)->instmeth_end();
I2 != E2; ++I2) {
Results.MaybeAddResult(Result(*I2, 0), CurContext);
}
}
CatDecl = CatDecl->getNextClassCategory();
}
CDecl = CDecl->getSuperClass();
}
Results.ExitScope();
// This also suppresses remaining diagnostics.
HandleCodeCompleteResults(this, CodeCompleter, Results.data(),Results.size());
}