llvm-project/llvm/lib/Target/X86/X86MCCodeEmitter.cpp

570 lines
18 KiB
C++
Raw Normal View History

//===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the X86MCCodeEmitter class.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "x86-emitter"
#include "X86.h"
#include "X86InstrInfo.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCInst.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
namespace {
class X86MCCodeEmitter : public MCCodeEmitter {
X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
const TargetMachine &TM;
const TargetInstrInfo &TII;
bool Is64BitMode;
public:
X86MCCodeEmitter(TargetMachine &tm)
: TM(tm), TII(*TM.getInstrInfo()) {
// FIXME: Get this from the right place.
Is64BitMode = false;
}
~X86MCCodeEmitter() {}
static unsigned GetX86RegNum(const MCOperand &MO) {
return X86RegisterInfo::getX86RegNum(MO.getReg());
}
void EmitByte(unsigned char C, raw_ostream &OS) const {
OS << (char)C;
}
void EmitConstant(uint64_t Val, unsigned Size, raw_ostream &OS) const {
// Output the constant in little endian byte order.
for (unsigned i = 0; i != Size; ++i) {
EmitByte(Val & 255, OS);
Val >>= 8;
}
}
void EmitDisplacementField(const MCOperand *RelocOp, int DispVal,
int64_t Adj, bool IsPCRel, raw_ostream &OS) const;
inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
unsigned RM) {
assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
return RM | (RegOpcode << 3) | (Mod << 6);
}
void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
raw_ostream &OS) const {
EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), OS);
}
void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
raw_ostream &OS) const {
// SIB byte is in the same format as the ModRMByte...
EmitByte(ModRMByte(SS, Index, Base), OS);
}
void EmitMemModRMByte(const MCInst &MI, unsigned Op,
unsigned RegOpcodeField, intptr_t PCAdj,
raw_ostream &OS) const;
void EncodeInstruction(const MCInst &MI, raw_ostream &OS) const;
};
} // end anonymous namespace
MCCodeEmitter *llvm::createX86MCCodeEmitter(const Target &,
TargetMachine &TM) {
return new X86MCCodeEmitter(TM);
}
/// isDisp8 - Return true if this signed displacement fits in a 8-bit
/// sign-extended field.
static bool isDisp8(int Value) {
return Value == (signed char)Value;
}
void X86MCCodeEmitter::
EmitDisplacementField(const MCOperand *RelocOp, int DispVal,
int64_t Adj, bool IsPCRel, raw_ostream &OS) const {
// If this is a simple integer displacement that doesn't require a relocation,
// emit it now.
if (!RelocOp) {
EmitConstant(DispVal, 4, OS);
return;
}
assert(0 && "Reloc not handled yet");
#if 0
// Otherwise, this is something that requires a relocation. Emit it as such
// now.
unsigned RelocType = Is64BitMode ?
(IsPCRel ? X86::reloc_pcrel_word : X86::reloc_absolute_word_sext)
: (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
if (RelocOp->isGlobal()) {
// In 64-bit static small code model, we could potentially emit absolute.
// But it's probably not beneficial. If the MCE supports using RIP directly
// do it, otherwise fallback to absolute (this is determined by IsPCRel).
// 89 05 00 00 00 00 mov %eax,0(%rip) # PC-relative
// 89 04 25 00 00 00 00 mov %eax,0x0 # Absolute
bool Indirect = gvNeedsNonLazyPtr(*RelocOp, TM);
emitGlobalAddress(RelocOp->getGlobal(), RelocType, RelocOp->getOffset(),
Adj, Indirect);
} else if (RelocOp->isSymbol()) {
emitExternalSymbolAddress(RelocOp->getSymbolName(), RelocType);
} else if (RelocOp->isCPI()) {
emitConstPoolAddress(RelocOp->getIndex(), RelocType,
RelocOp->getOffset(), Adj);
} else {
assert(RelocOp->isJTI() && "Unexpected machine operand!");
emitJumpTableAddress(RelocOp->getIndex(), RelocType, Adj);
}
#endif
}
void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
unsigned RegOpcodeField,
intptr_t PCAdj,
raw_ostream &OS) const {
const MCOperand &Op3 = MI.getOperand(Op+3);
int DispVal = 0;
const MCOperand *DispForReloc = 0;
// Figure out what sort of displacement we have to handle here.
if (Op3.isImm()) {
DispVal = Op3.getImm();
} else {
assert(0 && "relocatable operand");
#if 0
if (Op3.isGlobal()) {
DispForReloc = &Op3;
} else if (Op3.isSymbol()) {
DispForReloc = &Op3;
} else if (Op3.isCPI()) {
if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
DispForReloc = &Op3;
} else {
DispVal += MCE.getConstantPoolEntryAddress(Op3.getIndex());
DispVal += Op3.getOffset();
}
} else {
assert(Op3.isJTI());
if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
DispForReloc = &Op3;
} else {
DispVal += MCE.getJumpTableEntryAddress(Op3.getIndex());
}
#endif
}
const MCOperand &Base = MI.getOperand(Op);
const MCOperand &Scale = MI.getOperand(Op+1);
const MCOperand &IndexReg = MI.getOperand(Op+2);
unsigned BaseReg = Base.getReg();
// FIXME: Eliminate!
bool IsPCRel = false;
// Is a SIB byte needed?
// If no BaseReg, issue a RIP relative instruction only if the MCE can
// resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
// 2-7) and absolute references.
if ((!Is64BitMode || DispForReloc || BaseReg != 0) &&
IndexReg.getReg() == 0 &&
(BaseReg == X86::RIP || (BaseReg != 0 && BaseReg != X86::ESP))) {
if (BaseReg == 0 || BaseReg == X86::RIP) { // Just a displacement?
// Emit special case [disp32] encoding
EmitByte(ModRMByte(0, RegOpcodeField, 5), OS);
EmitDisplacementField(DispForReloc, DispVal, PCAdj, true, OS);
} else {
unsigned BaseRegNo = GetX86RegNum(Base);
if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
// Emit simple indirect register encoding... [EAX] f.e.
EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), OS);
} else if (!DispForReloc && isDisp8(DispVal)) {
// Emit the disp8 encoding... [REG+disp8]
EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), OS);
EmitConstant(DispVal, 1, OS);
} else {
// Emit the most general non-SIB encoding: [REG+disp32]
EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), OS);
EmitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel, OS);
}
}
return;
}
// We need a SIB byte, so start by outputting the ModR/M byte first
assert(IndexReg.getReg() != X86::ESP &&
IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
bool ForceDisp32 = false;
bool ForceDisp8 = false;
if (BaseReg == 0) {
// If there is no base register, we emit the special case SIB byte with
// MOD=0, BASE=5, to JUST get the index, scale, and displacement.
EmitByte(ModRMByte(0, RegOpcodeField, 4), OS);
ForceDisp32 = true;
} else if (DispForReloc) {
// Emit the normal disp32 encoding.
EmitByte(ModRMByte(2, RegOpcodeField, 4), OS);
ForceDisp32 = true;
} else if (DispVal == 0 && BaseReg != X86::EBP) {
// Emit no displacement ModR/M byte
EmitByte(ModRMByte(0, RegOpcodeField, 4), OS);
} else if (isDisp8(DispVal)) {
// Emit the disp8 encoding.
EmitByte(ModRMByte(1, RegOpcodeField, 4), OS);
ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
} else {
// Emit the normal disp32 encoding.
EmitByte(ModRMByte(2, RegOpcodeField, 4), OS);
}
// Calculate what the SS field value should be...
static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
unsigned SS = SSTable[Scale.getImm()];
if (BaseReg == 0) {
// Handle the SIB byte for the case where there is no base, see Intel
// Manual 2A, table 2-7. The displacement has already been output.
unsigned IndexRegNo;
if (IndexReg.getReg())
IndexRegNo = GetX86RegNum(IndexReg);
else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
IndexRegNo = 4;
EmitSIBByte(SS, IndexRegNo, 5, OS);
} else {
unsigned IndexRegNo;
if (IndexReg.getReg())
IndexRegNo = GetX86RegNum(IndexReg);
else
IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), OS);
}
// Do we need to output a displacement?
if (ForceDisp8)
EmitConstant(DispVal, 1, OS);
else if (DispVal != 0 || ForceDisp32)
EmitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel, OS);
}
void X86MCCodeEmitter::
EncodeInstruction(const MCInst &MI, raw_ostream &OS) const {
unsigned Opcode = MI.getOpcode();
const TargetInstrDesc &Desc = TII.get(Opcode);
unsigned TSFlags = Desc.TSFlags;
// FIXME: We should emit the prefixes in exactly the same order as GAS does,
// in order to provide diffability.
// Emit the lock opcode prefix as needed.
if (TSFlags & X86II::LOCK)
EmitByte(0xF0, OS);
// Emit segment override opcode prefix as needed.
switch (TSFlags & X86II::SegOvrMask) {
default: assert(0 && "Invalid segment!");
case 0: break; // No segment override!
case X86II::FS:
EmitByte(0x64, OS);
break;
case X86II::GS:
EmitByte(0x65, OS);
break;
}
// Emit the repeat opcode prefix as needed.
if ((TSFlags & X86II::Op0Mask) == X86II::REP)
EmitByte(0xF3, OS);
// Emit the operand size opcode prefix as needed.
if (TSFlags & X86II::OpSize)
EmitByte(0x66, OS);
// Emit the address size opcode prefix as needed.
if (TSFlags & X86II::AdSize)
EmitByte(0x67, OS);
bool Need0FPrefix = false;
switch (TSFlags & X86II::Op0Mask) {
default: assert(0 && "Invalid prefix!");
case 0: break; // No prefix!
case X86II::REP: break; // already handled.
case X86II::TB: // Two-byte opcode prefix
case X86II::T8: // 0F 38
case X86II::TA: // 0F 3A
Need0FPrefix = true;
break;
case X86II::TF: // F2 0F 38
EmitByte(0xF2, OS);
Need0FPrefix = true;
break;
case X86II::XS: // F3 0F
EmitByte(0xF3, OS);
Need0FPrefix = true;
break;
case X86II::XD: // F2 0F
EmitByte(0xF2, OS);
Need0FPrefix = true;
break;
case X86II::D8: EmitByte(0xD8, OS); break;
case X86II::D9: EmitByte(0xD9, OS); break;
case X86II::DA: EmitByte(0xDA, OS); break;
case X86II::DB: EmitByte(0xDB, OS); break;
case X86II::DC: EmitByte(0xDC, OS); break;
case X86II::DD: EmitByte(0xDD, OS); break;
case X86II::DE: EmitByte(0xDE, OS); break;
case X86II::DF: EmitByte(0xDF, OS); break;
}
// Handle REX prefix.
#if 0 // FIXME: Add in, also, can this come before F2 etc to simplify emission?
if (Is64BitMode) {
if (unsigned REX = X86InstrInfo::determineREX(MI))
EmitByte(0x40 | REX, OS);
}
#endif
// 0x0F escape code must be emitted just before the opcode.
if (Need0FPrefix)
EmitByte(0x0F, OS);
// FIXME: Pull this up into previous switch if REX can be moved earlier.
switch (TSFlags & X86II::Op0Mask) {
case X86II::TF: // F2 0F 38
case X86II::T8: // 0F 38
EmitByte(0x38, OS);
break;
case X86II::TA: // 0F 3A
EmitByte(0x3A, OS);
break;
}
// If this is a two-address instruction, skip one of the register operands.
unsigned NumOps = Desc.getNumOperands();
unsigned CurOp = 0;
if (NumOps > 1 && Desc.getOperandConstraint(1, TOI::TIED_TO) != -1)
++CurOp;
else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
// Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
--NumOps;
// FIXME: Can we kill off MRMInitReg??
unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
switch (TSFlags & X86II::FormMask) {
default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
assert(0 && "Unknown FormMask value in X86MCCodeEmitter!");
case X86II::RawFrm: {
EmitByte(BaseOpcode, OS);
if (CurOp == NumOps)
break;
assert(0 && "Unimpl RawFrm expr");
break;
}
case X86II::AddRegFrm: {
EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)),OS);
if (CurOp == NumOps)
break;
const MCOperand &MO1 = MI.getOperand(CurOp++);
if (MO1.isImm()) {
unsigned Size = X86II::getSizeOfImm(TSFlags);
EmitConstant(MO1.getImm(), Size, OS);
break;
}
assert(0 && "Unimpl AddRegFrm expr");
break;
}
case X86II::MRMDestReg:
EmitByte(BaseOpcode, OS);
EmitRegModRMByte(MI.getOperand(CurOp),
GetX86RegNum(MI.getOperand(CurOp+1)), OS);
CurOp += 2;
if (CurOp != NumOps)
EmitConstant(MI.getOperand(CurOp++).getImm(),
X86II::getSizeOfImm(TSFlags), OS);
break;
case X86II::MRMDestMem:
EmitByte(BaseOpcode, OS);
EmitMemModRMByte(MI, CurOp,
GetX86RegNum(MI.getOperand(CurOp + X86AddrNumOperands)),
0, OS);
CurOp += X86AddrNumOperands + 1;
if (CurOp != NumOps)
EmitConstant(MI.getOperand(CurOp++).getImm(),
X86II::getSizeOfImm(TSFlags), OS);
break;
case X86II::MRMSrcReg:
EmitByte(BaseOpcode, OS);
EmitRegModRMByte(MI.getOperand(CurOp+1), GetX86RegNum(MI.getOperand(CurOp)),
OS);
CurOp += 2;
if (CurOp != NumOps)
EmitConstant(MI.getOperand(CurOp++).getImm(),
X86II::getSizeOfImm(TSFlags), OS);
break;
case X86II::MRMSrcMem: {
EmitByte(BaseOpcode, OS);
// FIXME: Maybe lea should have its own form? This is a horrible hack.
int AddrOperands;
if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
Opcode == X86::LEA16r || Opcode == X86::LEA32r)
AddrOperands = X86AddrNumOperands - 1; // No segment register
else
AddrOperands = X86AddrNumOperands;
// FIXME: What is this actually doing?
intptr_t PCAdj = (CurOp + AddrOperands + 1 != NumOps) ?
X86II::getSizeOfImm(TSFlags) : 0;
EmitMemModRMByte(MI, CurOp+1, GetX86RegNum(MI.getOperand(CurOp)),
PCAdj, OS);
CurOp += AddrOperands + 1;
if (CurOp != NumOps)
EmitConstant(MI.getOperand(CurOp++).getImm(),
X86II::getSizeOfImm(TSFlags), OS);
break;
}
case X86II::MRM0r: case X86II::MRM1r:
case X86II::MRM2r: case X86II::MRM3r:
case X86II::MRM4r: case X86II::MRM5r:
case X86II::MRM6r: case X86II::MRM7r: {
EmitByte(BaseOpcode, OS);
// Special handling of lfence, mfence, monitor, and mwait.
// FIXME: This is terrible, they should get proper encoding bits in TSFlags.
if (Opcode == X86::LFENCE || Opcode == X86::MFENCE ||
Opcode == X86::MONITOR || Opcode == X86::MWAIT) {
EmitByte(ModRMByte(3, (TSFlags & X86II::FormMask)-X86II::MRM0r, 0), OS);
switch (Opcode) {
default: break;
case X86::MONITOR: EmitByte(0xC8, OS); break;
case X86::MWAIT: EmitByte(0xC9, OS); break;
}
} else {
EmitRegModRMByte(MI.getOperand(CurOp++),
(TSFlags & X86II::FormMask)-X86II::MRM0r,
OS);
}
if (CurOp == NumOps)
break;
const MCOperand &MO1 = MI.getOperand(CurOp++);
if (MO1.isImm()) {
EmitConstant(MO1.getImm(), X86II::getSizeOfImm(TSFlags), OS);
break;
}
assert(0 && "relo unimpl");
#if 0
unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
: (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
if (Opcode == X86::MOV64ri32)
rt = X86::reloc_absolute_word_sext; // FIXME: add X86II flag?
if (MO1.isGlobal()) {
bool Indirect = gvNeedsNonLazyPtr(MO1, TM);
emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
Indirect);
} else if (MO1.isSymbol())
emitExternalSymbolAddress(MO1.getSymbolName(), rt);
else if (MO1.isCPI())
emitConstPoolAddress(MO1.getIndex(), rt);
else if (MO1.isJTI())
emitJumpTableAddress(MO1.getIndex(), rt);
break;
#endif
}
case X86II::MRM0m: case X86II::MRM1m:
case X86II::MRM2m: case X86II::MRM3m:
case X86II::MRM4m: case X86II::MRM5m:
case X86II::MRM6m: case X86II::MRM7m: {
intptr_t PCAdj = 0;
if (CurOp + X86AddrNumOperands != NumOps) {
if (MI.getOperand(CurOp+X86AddrNumOperands).isImm())
PCAdj = X86II::getSizeOfImm(TSFlags);
else
PCAdj = 4;
}
EmitByte(BaseOpcode, OS);
EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
PCAdj, OS);
CurOp += X86AddrNumOperands;
if (CurOp == NumOps)
break;
const MCOperand &MO = MI.getOperand(CurOp++);
if (MO.isImm()) {
EmitConstant(MO.getImm(), X86II::getSizeOfImm(TSFlags), OS);
break;
}
assert(0 && "relo not handled");
#if 0
unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
: (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
if (Opcode == X86::MOV64mi32)
rt = X86::reloc_absolute_word_sext; // FIXME: add X86II flag?
if (MO.isGlobal()) {
bool Indirect = gvNeedsNonLazyPtr(MO, TM);
emitGlobalAddress(MO.getGlobal(), rt, MO.getOffset(), 0,
Indirect);
} else if (MO.isSymbol())
emitExternalSymbolAddress(MO.getSymbolName(), rt);
else if (MO.isCPI())
emitConstPoolAddress(MO.getIndex(), rt);
else if (MO.isJTI())
emitJumpTableAddress(MO.getIndex(), rt);
#endif
break;
}
case X86II::MRMInitReg:
EmitByte(BaseOpcode, OS);
// Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
EmitRegModRMByte(MI.getOperand(CurOp),
GetX86RegNum(MI.getOperand(CurOp)), OS);
++CurOp;
break;
}
#ifndef NDEBUG
// FIXME: Verify.
if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
errs() << "Cannot encode all operands of: ";
MI.dump();
errs() << '\n';
abort();
}
#endif
}