llvm-project/llvm/tools/llvm-objdump/MCFunction.cpp

139 lines
4.8 KiB
C++
Raw Normal View History

//===-- MCFunction.cpp ----------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the algorithm to break down a region of machine code
// into basic blocks and try to reconstruct a CFG from it.
//
//===----------------------------------------------------------------------===//
#include "MCFunction.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/MC/MCDisassembler.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/MC/MCInstrAnalysis.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/Support/MemoryObject.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/system_error.h"
#include <set>
using namespace llvm;
MCFunction
MCFunction::createFunctionFromMC(StringRef Name, const MCDisassembler *DisAsm,
const MemoryObject &Region, uint64_t Start,
uint64_t End, const MCInstrAnalysis *Ana,
raw_ostream &DebugOut,
SmallVectorImpl<uint64_t> &Calls) {
std::vector<MCDecodedInst> Instructions;
std::set<uint64_t> Splits;
Splits.insert(Start);
uint64_t Size;
MCFunction f(Name);
{
DenseSet<uint64_t> VisitedInsts;
SmallVector<uint64_t, 16> WorkList;
WorkList.push_back(Start);
// Disassemble code and gather basic block split points.
while (!WorkList.empty()) {
uint64_t Index = WorkList.pop_back_val();
if (VisitedInsts.find(Index) != VisitedInsts.end())
continue; // Already visited this location.
for (;Index < End; Index += Size) {
VisitedInsts.insert(Index);
MCInst Inst;
if (DisAsm->getInstruction(Inst, Size, Region, Index, DebugOut, nulls())){
Instructions.push_back(MCDecodedInst(Index, Size, Inst));
if (Ana->isBranch(Inst)) {
uint64_t targ = Ana->evaluateBranch(Inst, Index, Size);
if (targ != -1ULL && targ == Index+Size)
continue; // Skip nop jumps.
// If we could determine the branch target, make a note to start a
// new basic block there and add the target to the worklist.
if (targ != -1ULL) {
Splits.insert(targ);
WorkList.push_back(targ);
WorkList.push_back(Index+Size);
}
Splits.insert(Index+Size);
break;
} else if (Ana->isReturn(Inst)) {
// Return instruction. This basic block ends here.
Splits.insert(Index+Size);
break;
} else if (Ana->isCall(Inst)) {
uint64_t targ = Ana->evaluateBranch(Inst, Index, Size);
// Add the call to the call list if the destination is known.
if (targ != -1ULL && targ != Index+Size)
Calls.push_back(targ);
}
} else {
errs().write_hex(Index) << ": warning: invalid instruction encoding\n";
if (Size == 0)
Size = 1; // skip illegible bytes
}
}
}
}
// Make sure the instruction list is sorted.
std::sort(Instructions.begin(), Instructions.end());
// Create basic blocks.
unsigned ii = 0, ie = Instructions.size();
for (std::set<uint64_t>::iterator spi = Splits.begin(),
spe = llvm::prior(Splits.end()); spi != spe; ++spi) {
MCBasicBlock BB;
uint64_t BlockEnd = *llvm::next(spi);
// Add instructions to the BB.
for (; ii != ie; ++ii) {
if (Instructions[ii].Address < *spi ||
Instructions[ii].Address >= BlockEnd)
break;
BB.addInst(Instructions[ii]);
}
f.addBlock(*spi, BB);
}
std::sort(f.Blocks.begin(), f.Blocks.end());
// Calculate successors of each block.
for (MCFunction::iterator i = f.begin(), e = f.end(); i != e; ++i) {
MCBasicBlock &BB = const_cast<MCBasicBlock&>(i->second);
if (BB.getInsts().empty()) continue;
const MCDecodedInst &Inst = BB.getInsts().back();
if (Ana->isBranch(Inst.Inst)) {
uint64_t targ = Ana->evaluateBranch(Inst.Inst, Inst.Address, Inst.Size);
if (targ == -1ULL) {
// Indirect branch. Bail and add all blocks of the function as a
// successor.
for (MCFunction::iterator i = f.begin(), e = f.end(); i != e; ++i)
BB.addSucc(i->first);
} else if (targ != Inst.Address+Inst.Size)
BB.addSucc(targ);
// Conditional branches can also fall through to the next block.
if (Ana->isConditionalBranch(Inst.Inst) && llvm::next(i) != e)
BB.addSucc(llvm::next(i)->first);
} else {
// No branch. Fall through to the next block.
if (!Ana->isReturn(Inst.Inst) && llvm::next(i) != e)
BB.addSucc(llvm::next(i)->first);
}
}
return f;
}