llvm-project/llvm/lib/IR/LLVMContextImpl.h

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1551 lines
56 KiB
C
Raw Normal View History

//===- LLVMContextImpl.h - The LLVMContextImpl opaque class -----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file declares LLVMContextImpl, the opaque implementation
// of LLVMContext.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_IR_LLVMCONTEXTIMPL_H
#define LLVM_LIB_IR_LLVMCONTEXTIMPL_H
#include "AttributeImpl.h"
#include "ConstantsContext.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/LLVMRemarkStreamer.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/TrackingMDRef.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/StringSaver.h"
Output optimization remarks in YAML (Re-committed after moving the template specialization under the yaml namespace. GCC was complaining about this.) This allows various presentation of this data using an external tool. This was first recommended here[1]. As an example, consider this module: 1 int foo(); 2 int bar(); 3 4 int baz() { 5 return foo() + bar(); 6 } The inliner generates these missed-optimization remarks today (the hotness information is pulled from PGO): remark: /tmp/s.c:5:10: foo will not be inlined into baz (hotness: 30) remark: /tmp/s.c:5:18: bar will not be inlined into baz (hotness: 30) Now with -pass-remarks-output=<yaml-file>, we generate this YAML file: --- !Missed Pass: inline Name: NotInlined DebugLoc: { File: /tmp/s.c, Line: 5, Column: 10 } Function: baz Hotness: 30 Args: - Callee: foo - String: will not be inlined into - Caller: baz ... --- !Missed Pass: inline Name: NotInlined DebugLoc: { File: /tmp/s.c, Line: 5, Column: 18 } Function: baz Hotness: 30 Args: - Callee: bar - String: will not be inlined into - Caller: baz ... This is a summary of the high-level decisions: * There is a new streaming interface to emit optimization remarks. E.g. for the inliner remark above: ORE.emit(DiagnosticInfoOptimizationRemarkMissed( DEBUG_TYPE, "NotInlined", &I) << NV("Callee", Callee) << " will not be inlined into " << NV("Caller", CS.getCaller()) << setIsVerbose()); NV stands for named value and allows the YAML client to process a remark using its name (NotInlined) and the named arguments (Callee and Caller) without parsing the text of the message. Subsequent patches will update ORE users to use the new streaming API. * I am using YAML I/O for writing the YAML file. YAML I/O requires you to specify reading and writing at once but reading is highly non-trivial for some of the more complex LLVM types. Since it's not clear that we (ever) want to use LLVM to parse this YAML file, the code supports and asserts that we're writing only. On the other hand, I did experiment that the class hierarchy starting at DiagnosticInfoOptimizationBase can be mapped back from YAML generated here (see D24479). * The YAML stream is stored in the LLVM context. * In the example, we can probably further specify the IR value used, i.e. print "Function" rather than "Value". * As before hotness is computed in the analysis pass instead of DiganosticInfo. This avoids the layering problem since BFI is in Analysis while DiagnosticInfo is in IR. [1] https://reviews.llvm.org/D19678#419445 Differential Revision: https://reviews.llvm.org/D24587 llvm-svn: 282539
2016-09-28 04:55:07 +08:00
#include "llvm/Support/YAMLTraits.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <memory>
#include <string>
#include <utility>
#include <vector>
namespace llvm {
class StringRef;
class Type;
class Value;
class ValueHandleBase;
using DenseMapAPIntKeyInfo = DenseMapInfo<APInt>;
struct DenseMapAPFloatKeyInfo {
static inline APFloat getEmptyKey() { return APFloat(APFloat::Bogus(), 1); }
static inline APFloat getTombstoneKey() {
return APFloat(APFloat::Bogus(), 2);
}
static unsigned getHashValue(const APFloat &Key) {
return static_cast<unsigned>(hash_value(Key));
}
static bool isEqual(const APFloat &LHS, const APFloat &RHS) {
return LHS.bitwiseIsEqual(RHS);
}
};
struct AnonStructTypeKeyInfo {
struct KeyTy {
ArrayRef<Type *> ETypes;
bool isPacked;
KeyTy(const ArrayRef<Type *> &E, bool P) : ETypes(E), isPacked(P) {}
KeyTy(const StructType *ST)
: ETypes(ST->elements()), isPacked(ST->isPacked()) {}
bool operator==(const KeyTy &that) const {
if (isPacked != that.isPacked)
return false;
if (ETypes != that.ETypes)
return false;
return true;
}
bool operator!=(const KeyTy &that) const { return !this->operator==(that); }
};
static inline StructType *getEmptyKey() {
return DenseMapInfo<StructType *>::getEmptyKey();
}
static inline StructType *getTombstoneKey() {
return DenseMapInfo<StructType *>::getTombstoneKey();
}
static unsigned getHashValue(const KeyTy &Key) {
return hash_combine(
hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()), Key.isPacked);
}
static unsigned getHashValue(const StructType *ST) {
return getHashValue(KeyTy(ST));
}
static bool isEqual(const KeyTy &LHS, const StructType *RHS) {
if (RHS == getEmptyKey() || RHS == getTombstoneKey())
return false;
return LHS == KeyTy(RHS);
}
static bool isEqual(const StructType *LHS, const StructType *RHS) {
return LHS == RHS;
}
};
struct FunctionTypeKeyInfo {
struct KeyTy {
const Type *ReturnType;
ArrayRef<Type *> Params;
bool isVarArg;
KeyTy(const Type *R, const ArrayRef<Type *> &P, bool V)
: ReturnType(R), Params(P), isVarArg(V) {}
KeyTy(const FunctionType *FT)
: ReturnType(FT->getReturnType()), Params(FT->params()),
isVarArg(FT->isVarArg()) {}
bool operator==(const KeyTy &that) const {
if (ReturnType != that.ReturnType)
return false;
if (isVarArg != that.isVarArg)
return false;
if (Params != that.Params)
return false;
return true;
}
bool operator!=(const KeyTy &that) const { return !this->operator==(that); }
};
static inline FunctionType *getEmptyKey() {
return DenseMapInfo<FunctionType *>::getEmptyKey();
}
static inline FunctionType *getTombstoneKey() {
return DenseMapInfo<FunctionType *>::getTombstoneKey();
}
static unsigned getHashValue(const KeyTy &Key) {
return hash_combine(
Key.ReturnType,
hash_combine_range(Key.Params.begin(), Key.Params.end()), Key.isVarArg);
}
static unsigned getHashValue(const FunctionType *FT) {
return getHashValue(KeyTy(FT));
}
static bool isEqual(const KeyTy &LHS, const FunctionType *RHS) {
if (RHS == getEmptyKey() || RHS == getTombstoneKey())
return false;
return LHS == KeyTy(RHS);
}
static bool isEqual(const FunctionType *LHS, const FunctionType *RHS) {
return LHS == RHS;
}
};
/// Structure for hashing arbitrary MDNode operands.
class MDNodeOpsKey {
ArrayRef<Metadata *> RawOps;
ArrayRef<MDOperand> Ops;
unsigned Hash;
protected:
MDNodeOpsKey(ArrayRef<Metadata *> Ops)
: RawOps(Ops), Hash(calculateHash(Ops)) {}
template <class NodeTy>
MDNodeOpsKey(const NodeTy *N, unsigned Offset = 0)
: Ops(N->op_begin() + Offset, N->op_end()), Hash(N->getHash()) {}
template <class NodeTy>
bool compareOps(const NodeTy *RHS, unsigned Offset = 0) const {
if (getHash() != RHS->getHash())
return false;
assert((RawOps.empty() || Ops.empty()) && "Two sets of operands?");
return RawOps.empty() ? compareOps(Ops, RHS, Offset)
: compareOps(RawOps, RHS, Offset);
}
static unsigned calculateHash(MDNode *N, unsigned Offset = 0);
private:
template <class T>
static bool compareOps(ArrayRef<T> Ops, const MDNode *RHS, unsigned Offset) {
if (Ops.size() != RHS->getNumOperands() - Offset)
return false;
return std::equal(Ops.begin(), Ops.end(), RHS->op_begin() + Offset);
}
static unsigned calculateHash(ArrayRef<Metadata *> Ops);
public:
unsigned getHash() const { return Hash; }
};
template <class NodeTy> struct MDNodeKeyImpl;
/// Configuration point for MDNodeInfo::isEqual().
template <class NodeTy> struct MDNodeSubsetEqualImpl {
using KeyTy = MDNodeKeyImpl<NodeTy>;
static bool isSubsetEqual(const KeyTy &LHS, const NodeTy *RHS) {
return false;
}
static bool isSubsetEqual(const NodeTy *LHS, const NodeTy *RHS) {
return false;
}
};
/// DenseMapInfo for MDTuple.
///
/// Note that we don't need the is-function-local bit, since that's implicit in
/// the operands.
template <> struct MDNodeKeyImpl<MDTuple> : MDNodeOpsKey {
MDNodeKeyImpl(ArrayRef<Metadata *> Ops) : MDNodeOpsKey(Ops) {}
MDNodeKeyImpl(const MDTuple *N) : MDNodeOpsKey(N) {}
bool isKeyOf(const MDTuple *RHS) const { return compareOps(RHS); }
unsigned getHashValue() const { return getHash(); }
static unsigned calculateHash(MDTuple *N) {
return MDNodeOpsKey::calculateHash(N);
}
};
/// DenseMapInfo for DILocation.
template <> struct MDNodeKeyImpl<DILocation> {
unsigned Line;
unsigned Column;
Metadata *Scope;
Metadata *InlinedAt;
bool ImplicitCode;
MDNodeKeyImpl(unsigned Line, unsigned Column, Metadata *Scope,
Metadata *InlinedAt, bool ImplicitCode)
: Line(Line), Column(Column), Scope(Scope), InlinedAt(InlinedAt),
ImplicitCode(ImplicitCode) {}
MDNodeKeyImpl(const DILocation *L)
: Line(L->getLine()), Column(L->getColumn()), Scope(L->getRawScope()),
InlinedAt(L->getRawInlinedAt()), ImplicitCode(L->isImplicitCode()) {}
bool isKeyOf(const DILocation *RHS) const {
return Line == RHS->getLine() && Column == RHS->getColumn() &&
Scope == RHS->getRawScope() && InlinedAt == RHS->getRawInlinedAt() &&
ImplicitCode == RHS->isImplicitCode();
}
unsigned getHashValue() const {
return hash_combine(Line, Column, Scope, InlinedAt, ImplicitCode);
}
};
/// DenseMapInfo for GenericDINode.
template <> struct MDNodeKeyImpl<GenericDINode> : MDNodeOpsKey {
unsigned Tag;
MDString *Header;
MDNodeKeyImpl(unsigned Tag, MDString *Header, ArrayRef<Metadata *> DwarfOps)
: MDNodeOpsKey(DwarfOps), Tag(Tag), Header(Header) {}
MDNodeKeyImpl(const GenericDINode *N)
: MDNodeOpsKey(N, 1), Tag(N->getTag()), Header(N->getRawHeader()) {}
bool isKeyOf(const GenericDINode *RHS) const {
return Tag == RHS->getTag() && Header == RHS->getRawHeader() &&
compareOps(RHS, 1);
}
unsigned getHashValue() const { return hash_combine(getHash(), Tag, Header); }
static unsigned calculateHash(GenericDINode *N) {
return MDNodeOpsKey::calculateHash(N, 1);
}
};
template <> struct MDNodeKeyImpl<DISubrange> {
Metadata *CountNode;
Metadata *LowerBound;
Metadata *UpperBound;
Metadata *Stride;
MDNodeKeyImpl(Metadata *CountNode, Metadata *LowerBound, Metadata *UpperBound,
Metadata *Stride)
: CountNode(CountNode), LowerBound(LowerBound), UpperBound(UpperBound),
Stride(Stride) {}
MDNodeKeyImpl(const DISubrange *N)
: CountNode(N->getRawCountNode()), LowerBound(N->getRawLowerBound()),
UpperBound(N->getRawUpperBound()), Stride(N->getRawStride()) {}
bool isKeyOf(const DISubrange *RHS) const {
auto BoundsEqual = [=](Metadata *Node1, Metadata *Node2) -> bool {
if (Node1 == Node2)
return true;
ConstantAsMetadata *MD1 = dyn_cast_or_null<ConstantAsMetadata>(Node1);
ConstantAsMetadata *MD2 = dyn_cast_or_null<ConstantAsMetadata>(Node2);
if (MD1 && MD2) {
ConstantInt *CV1 = cast<ConstantInt>(MD1->getValue());
ConstantInt *CV2 = cast<ConstantInt>(MD2->getValue());
if (CV1->getSExtValue() == CV2->getSExtValue())
return true;
}
return false;
};
return BoundsEqual(CountNode, RHS->getRawCountNode()) &&
BoundsEqual(LowerBound, RHS->getRawLowerBound()) &&
BoundsEqual(UpperBound, RHS->getRawUpperBound()) &&
BoundsEqual(Stride, RHS->getRawStride());
}
unsigned getHashValue() const {
if (CountNode)
if (auto *MD = dyn_cast<ConstantAsMetadata>(CountNode))
return hash_combine(cast<ConstantInt>(MD->getValue())->getSExtValue(),
LowerBound, UpperBound, Stride);
return hash_combine(CountNode, LowerBound, UpperBound, Stride);
}
};
template <> struct MDNodeKeyImpl<DIGenericSubrange> {
Metadata *CountNode;
Metadata *LowerBound;
Metadata *UpperBound;
Metadata *Stride;
MDNodeKeyImpl(Metadata *CountNode, Metadata *LowerBound, Metadata *UpperBound,
Metadata *Stride)
: CountNode(CountNode), LowerBound(LowerBound), UpperBound(UpperBound),
Stride(Stride) {}
MDNodeKeyImpl(const DIGenericSubrange *N)
: CountNode(N->getRawCountNode()), LowerBound(N->getRawLowerBound()),
UpperBound(N->getRawUpperBound()), Stride(N->getRawStride()) {}
bool isKeyOf(const DIGenericSubrange *RHS) const {
return (CountNode == RHS->getRawCountNode()) &&
(LowerBound == RHS->getRawLowerBound()) &&
(UpperBound == RHS->getRawUpperBound()) &&
(Stride == RHS->getRawStride());
}
unsigned getHashValue() const {
auto *MD = dyn_cast_or_null<ConstantAsMetadata>(CountNode);
if (CountNode && MD)
return hash_combine(cast<ConstantInt>(MD->getValue())->getSExtValue(),
LowerBound, UpperBound, Stride);
return hash_combine(CountNode, LowerBound, UpperBound, Stride);
}
};
template <> struct MDNodeKeyImpl<DIEnumerator> {
APInt Value;
MDString *Name;
bool IsUnsigned;
MDNodeKeyImpl(APInt Value, bool IsUnsigned, MDString *Name)
: Value(Value), Name(Name), IsUnsigned(IsUnsigned) {}
MDNodeKeyImpl(int64_t Value, bool IsUnsigned, MDString *Name)
: Value(APInt(64, Value, !IsUnsigned)), Name(Name),
IsUnsigned(IsUnsigned) {}
MDNodeKeyImpl(const DIEnumerator *N)
: Value(N->getValue()), Name(N->getRawName()),
IsUnsigned(N->isUnsigned()) {}
bool isKeyOf(const DIEnumerator *RHS) const {
return Value.getBitWidth() == RHS->getValue().getBitWidth() &&
Value == RHS->getValue() && IsUnsigned == RHS->isUnsigned() &&
Name == RHS->getRawName();
}
unsigned getHashValue() const { return hash_combine(Value, Name); }
};
template <> struct MDNodeKeyImpl<DIBasicType> {
unsigned Tag;
MDString *Name;
uint64_t SizeInBits;
uint32_t AlignInBits;
unsigned Encoding;
unsigned Flags;
MDNodeKeyImpl(unsigned Tag, MDString *Name, uint64_t SizeInBits,
uint32_t AlignInBits, unsigned Encoding, unsigned Flags)
: Tag(Tag), Name(Name), SizeInBits(SizeInBits), AlignInBits(AlignInBits),
Encoding(Encoding), Flags(Flags) {}
MDNodeKeyImpl(const DIBasicType *N)
: Tag(N->getTag()), Name(N->getRawName()), SizeInBits(N->getSizeInBits()),
AlignInBits(N->getAlignInBits()), Encoding(N->getEncoding()),
Flags(N->getFlags()) {}
bool isKeyOf(const DIBasicType *RHS) const {
return Tag == RHS->getTag() && Name == RHS->getRawName() &&
SizeInBits == RHS->getSizeInBits() &&
AlignInBits == RHS->getAlignInBits() &&
Encoding == RHS->getEncoding() && Flags == RHS->getFlags();
}
unsigned getHashValue() const {
return hash_combine(Tag, Name, SizeInBits, AlignInBits, Encoding);
}
};
template <> struct MDNodeKeyImpl<DIStringType> {
unsigned Tag;
MDString *Name;
Metadata *StringLength;
Metadata *StringLengthExp;
uint64_t SizeInBits;
uint32_t AlignInBits;
unsigned Encoding;
MDNodeKeyImpl(unsigned Tag, MDString *Name, Metadata *StringLength,
Metadata *StringLengthExp, uint64_t SizeInBits,
uint32_t AlignInBits, unsigned Encoding)
: Tag(Tag), Name(Name), StringLength(StringLength),
StringLengthExp(StringLengthExp), SizeInBits(SizeInBits),
AlignInBits(AlignInBits), Encoding(Encoding) {}
MDNodeKeyImpl(const DIStringType *N)
: Tag(N->getTag()), Name(N->getRawName()),
StringLength(N->getRawStringLength()),
StringLengthExp(N->getRawStringLengthExp()),
SizeInBits(N->getSizeInBits()), AlignInBits(N->getAlignInBits()),
Encoding(N->getEncoding()) {}
bool isKeyOf(const DIStringType *RHS) const {
return Tag == RHS->getTag() && Name == RHS->getRawName() &&
SizeInBits == RHS->getSizeInBits() &&
AlignInBits == RHS->getAlignInBits() &&
Encoding == RHS->getEncoding();
}
unsigned getHashValue() const { return hash_combine(Tag, Name, Encoding); }
};
template <> struct MDNodeKeyImpl<DIDerivedType> {
unsigned Tag;
MDString *Name;
Metadata *File;
unsigned Line;
Metadata *Scope;
Metadata *BaseType;
uint64_t SizeInBits;
uint64_t OffsetInBits;
uint32_t AlignInBits;
Optional<unsigned> DWARFAddressSpace;
unsigned Flags;
Metadata *ExtraData;
Metadata *Annotations;
MDNodeKeyImpl(unsigned Tag, MDString *Name, Metadata *File, unsigned Line,
Metadata *Scope, Metadata *BaseType, uint64_t SizeInBits,
uint32_t AlignInBits, uint64_t OffsetInBits,
Optional<unsigned> DWARFAddressSpace, unsigned Flags,
Metadata *ExtraData, Metadata *Annotations)
: Tag(Tag), Name(Name), File(File), Line(Line), Scope(Scope),
BaseType(BaseType), SizeInBits(SizeInBits), OffsetInBits(OffsetInBits),
AlignInBits(AlignInBits), DWARFAddressSpace(DWARFAddressSpace),
Flags(Flags), ExtraData(ExtraData), Annotations(Annotations) {}
MDNodeKeyImpl(const DIDerivedType *N)
: Tag(N->getTag()), Name(N->getRawName()), File(N->getRawFile()),
Line(N->getLine()), Scope(N->getRawScope()),
BaseType(N->getRawBaseType()), SizeInBits(N->getSizeInBits()),
OffsetInBits(N->getOffsetInBits()), AlignInBits(N->getAlignInBits()),
DWARFAddressSpace(N->getDWARFAddressSpace()), Flags(N->getFlags()),
ExtraData(N->getRawExtraData()), Annotations(N->getRawAnnotations()) {}
bool isKeyOf(const DIDerivedType *RHS) const {
return Tag == RHS->getTag() && Name == RHS->getRawName() &&
File == RHS->getRawFile() && Line == RHS->getLine() &&
Scope == RHS->getRawScope() && BaseType == RHS->getRawBaseType() &&
SizeInBits == RHS->getSizeInBits() &&
AlignInBits == RHS->getAlignInBits() &&
OffsetInBits == RHS->getOffsetInBits() &&
DWARFAddressSpace == RHS->getDWARFAddressSpace() &&
Flags == RHS->getFlags() && ExtraData == RHS->getRawExtraData() &&
Annotations == RHS->getRawAnnotations();
}
unsigned getHashValue() const {
// If this is a member inside an ODR type, only hash the type and the name.
// Otherwise the hash will be stronger than
// MDNodeSubsetEqualImpl::isODRMember().
if (Tag == dwarf::DW_TAG_member && Name)
if (auto *CT = dyn_cast_or_null<DICompositeType>(Scope))
if (CT->getRawIdentifier())
return hash_combine(Name, Scope);
// Intentionally computes the hash on a subset of the operands for
// performance reason. The subset has to be significant enough to avoid
// collision "most of the time". There is no correctness issue in case of
// collision because of the full check above.
return hash_combine(Tag, Name, File, Line, Scope, BaseType, Flags);
}
};
template <> struct MDNodeSubsetEqualImpl<DIDerivedType> {
using KeyTy = MDNodeKeyImpl<DIDerivedType>;
static bool isSubsetEqual(const KeyTy &LHS, const DIDerivedType *RHS) {
return isODRMember(LHS.Tag, LHS.Scope, LHS.Name, RHS);
}
static bool isSubsetEqual(const DIDerivedType *LHS,
const DIDerivedType *RHS) {
return isODRMember(LHS->getTag(), LHS->getRawScope(), LHS->getRawName(),
RHS);
}
/// Subprograms compare equal if they declare the same function in an ODR
/// type.
static bool isODRMember(unsigned Tag, const Metadata *Scope,
const MDString *Name, const DIDerivedType *RHS) {
// Check whether the LHS is eligible.
if (Tag != dwarf::DW_TAG_member || !Name)
return false;
auto *CT = dyn_cast_or_null<DICompositeType>(Scope);
if (!CT || !CT->getRawIdentifier())
return false;
// Compare to the RHS.
return Tag == RHS->getTag() && Name == RHS->getRawName() &&
Scope == RHS->getRawScope();
}
};
template <> struct MDNodeKeyImpl<DICompositeType> {
unsigned Tag;
MDString *Name;
Metadata *File;
unsigned Line;
Metadata *Scope;
Metadata *BaseType;
uint64_t SizeInBits;
uint64_t OffsetInBits;
uint32_t AlignInBits;
unsigned Flags;
Metadata *Elements;
unsigned RuntimeLang;
Metadata *VTableHolder;
Metadata *TemplateParams;
MDString *Identifier;
Metadata *Discriminator;
Metadata *DataLocation;
Metadata *Associated;
Metadata *Allocated;
Metadata *Rank;
Metadata *Annotations;
MDNodeKeyImpl(unsigned Tag, MDString *Name, Metadata *File, unsigned Line,
Metadata *Scope, Metadata *BaseType, uint64_t SizeInBits,
uint32_t AlignInBits, uint64_t OffsetInBits, unsigned Flags,
Metadata *Elements, unsigned RuntimeLang,
Metadata *VTableHolder, Metadata *TemplateParams,
MDString *Identifier, Metadata *Discriminator,
Metadata *DataLocation, Metadata *Associated,
Metadata *Allocated, Metadata *Rank, Metadata *Annotations)
: Tag(Tag), Name(Name), File(File), Line(Line), Scope(Scope),
BaseType(BaseType), SizeInBits(SizeInBits), OffsetInBits(OffsetInBits),
AlignInBits(AlignInBits), Flags(Flags), Elements(Elements),
RuntimeLang(RuntimeLang), VTableHolder(VTableHolder),
TemplateParams(TemplateParams), Identifier(Identifier),
Discriminator(Discriminator), DataLocation(DataLocation),
Associated(Associated), Allocated(Allocated), Rank(Rank),
Annotations(Annotations) {}
MDNodeKeyImpl(const DICompositeType *N)
: Tag(N->getTag()), Name(N->getRawName()), File(N->getRawFile()),
Line(N->getLine()), Scope(N->getRawScope()),
BaseType(N->getRawBaseType()), SizeInBits(N->getSizeInBits()),
OffsetInBits(N->getOffsetInBits()), AlignInBits(N->getAlignInBits()),
Flags(N->getFlags()), Elements(N->getRawElements()),
RuntimeLang(N->getRuntimeLang()), VTableHolder(N->getRawVTableHolder()),
TemplateParams(N->getRawTemplateParams()),
Identifier(N->getRawIdentifier()),
Discriminator(N->getRawDiscriminator()),
DataLocation(N->getRawDataLocation()),
Associated(N->getRawAssociated()), Allocated(N->getRawAllocated()),
Rank(N->getRawRank()), Annotations(N->getRawAnnotations()) {}
bool isKeyOf(const DICompositeType *RHS) const {
return Tag == RHS->getTag() && Name == RHS->getRawName() &&
File == RHS->getRawFile() && Line == RHS->getLine() &&
Scope == RHS->getRawScope() && BaseType == RHS->getRawBaseType() &&
SizeInBits == RHS->getSizeInBits() &&
AlignInBits == RHS->getAlignInBits() &&
OffsetInBits == RHS->getOffsetInBits() && Flags == RHS->getFlags() &&
Elements == RHS->getRawElements() &&
RuntimeLang == RHS->getRuntimeLang() &&
VTableHolder == RHS->getRawVTableHolder() &&
TemplateParams == RHS->getRawTemplateParams() &&
Identifier == RHS->getRawIdentifier() &&
Discriminator == RHS->getRawDiscriminator() &&
DataLocation == RHS->getRawDataLocation() &&
Associated == RHS->getRawAssociated() &&
Allocated == RHS->getRawAllocated() && Rank == RHS->getRawRank() &&
Annotations == RHS->getRawAnnotations();
}
unsigned getHashValue() const {
// Intentionally computes the hash on a subset of the operands for
// performance reason. The subset has to be significant enough to avoid
// collision "most of the time". There is no correctness issue in case of
// collision because of the full check above.
return hash_combine(Name, File, Line, BaseType, Scope, Elements,
TemplateParams, Annotations);
}
};
template <> struct MDNodeKeyImpl<DISubroutineType> {
unsigned Flags;
uint8_t CC;
Metadata *TypeArray;
MDNodeKeyImpl(unsigned Flags, uint8_t CC, Metadata *TypeArray)
: Flags(Flags), CC(CC), TypeArray(TypeArray) {}
MDNodeKeyImpl(const DISubroutineType *N)
: Flags(N->getFlags()), CC(N->getCC()), TypeArray(N->getRawTypeArray()) {}
bool isKeyOf(const DISubroutineType *RHS) const {
return Flags == RHS->getFlags() && CC == RHS->getCC() &&
TypeArray == RHS->getRawTypeArray();
}
unsigned getHashValue() const { return hash_combine(Flags, CC, TypeArray); }
};
template <> struct MDNodeKeyImpl<DIFile> {
MDString *Filename;
MDString *Directory;
Optional<DIFile::ChecksumInfo<MDString *>> Checksum;
Optional<MDString *> Source;
MDNodeKeyImpl(MDString *Filename, MDString *Directory,
Optional<DIFile::ChecksumInfo<MDString *>> Checksum,
Optional<MDString *> Source)
: Filename(Filename), Directory(Directory), Checksum(Checksum),
Source(Source) {}
MDNodeKeyImpl(const DIFile *N)
: Filename(N->getRawFilename()), Directory(N->getRawDirectory()),
Checksum(N->getRawChecksum()), Source(N->getRawSource()) {}
bool isKeyOf(const DIFile *RHS) const {
return Filename == RHS->getRawFilename() &&
Directory == RHS->getRawDirectory() &&
Checksum == RHS->getRawChecksum() && Source == RHS->getRawSource();
}
unsigned getHashValue() const {
return hash_combine(Filename, Directory, Checksum ? Checksum->Kind : 0,
Checksum ? Checksum->Value : nullptr,
Source.getValueOr(nullptr));
}
};
template <> struct MDNodeKeyImpl<DISubprogram> {
Metadata *Scope;
MDString *Name;
MDString *LinkageName;
Metadata *File;
unsigned Line;
Metadata *Type;
unsigned ScopeLine;
Metadata *ContainingType;
unsigned VirtualIndex;
int ThisAdjustment;
unsigned Flags;
unsigned SPFlags;
Metadata *Unit;
Metadata *TemplateParams;
Metadata *Declaration;
Metadata *RetainedNodes;
Metadata *ThrownTypes;
Metadata *Annotations;
MDNodeKeyImpl(Metadata *Scope, MDString *Name, MDString *LinkageName,
Metadata *File, unsigned Line, Metadata *Type,
unsigned ScopeLine, Metadata *ContainingType,
unsigned VirtualIndex, int ThisAdjustment, unsigned Flags,
unsigned SPFlags, Metadata *Unit, Metadata *TemplateParams,
Metadata *Declaration, Metadata *RetainedNodes,
Metadata *ThrownTypes, Metadata *Annotations)
: Scope(Scope), Name(Name), LinkageName(LinkageName), File(File),
Line(Line), Type(Type), ScopeLine(ScopeLine),
ContainingType(ContainingType), VirtualIndex(VirtualIndex),
ThisAdjustment(ThisAdjustment), Flags(Flags), SPFlags(SPFlags),
Unit(Unit), TemplateParams(TemplateParams), Declaration(Declaration),
RetainedNodes(RetainedNodes), ThrownTypes(ThrownTypes),
Annotations(Annotations) {}
MDNodeKeyImpl(const DISubprogram *N)
: Scope(N->getRawScope()), Name(N->getRawName()),
LinkageName(N->getRawLinkageName()), File(N->getRawFile()),
Line(N->getLine()), Type(N->getRawType()), ScopeLine(N->getScopeLine()),
ContainingType(N->getRawContainingType()),
VirtualIndex(N->getVirtualIndex()),
ThisAdjustment(N->getThisAdjustment()), Flags(N->getFlags()),
SPFlags(N->getSPFlags()), Unit(N->getRawUnit()),
TemplateParams(N->getRawTemplateParams()),
Declaration(N->getRawDeclaration()),
RetainedNodes(N->getRawRetainedNodes()),
ThrownTypes(N->getRawThrownTypes()),
Annotations(N->getRawAnnotations()) {}
bool isKeyOf(const DISubprogram *RHS) const {
return Scope == RHS->getRawScope() && Name == RHS->getRawName() &&
LinkageName == RHS->getRawLinkageName() &&
File == RHS->getRawFile() && Line == RHS->getLine() &&
Type == RHS->getRawType() && ScopeLine == RHS->getScopeLine() &&
ContainingType == RHS->getRawContainingType() &&
VirtualIndex == RHS->getVirtualIndex() &&
ThisAdjustment == RHS->getThisAdjustment() &&
Flags == RHS->getFlags() && SPFlags == RHS->getSPFlags() &&
Unit == RHS->getUnit() &&
TemplateParams == RHS->getRawTemplateParams() &&
Declaration == RHS->getRawDeclaration() &&
RetainedNodes == RHS->getRawRetainedNodes() &&
ThrownTypes == RHS->getRawThrownTypes() &&
Annotations == RHS->getRawAnnotations();
}
bool isDefinition() const { return SPFlags & DISubprogram::SPFlagDefinition; }
unsigned getHashValue() const {
// If this is a declaration inside an ODR type, only hash the type and the
// name. Otherwise the hash will be stronger than
// MDNodeSubsetEqualImpl::isDeclarationOfODRMember().
if (!isDefinition() && LinkageName)
if (auto *CT = dyn_cast_or_null<DICompositeType>(Scope))
if (CT->getRawIdentifier())
return hash_combine(LinkageName, Scope);
// Intentionally computes the hash on a subset of the operands for
// performance reason. The subset has to be significant enough to avoid
// collision "most of the time". There is no correctness issue in case of
// collision because of the full check above.
return hash_combine(Name, Scope, File, Type, Line);
}
};
template <> struct MDNodeSubsetEqualImpl<DISubprogram> {
using KeyTy = MDNodeKeyImpl<DISubprogram>;
static bool isSubsetEqual(const KeyTy &LHS, const DISubprogram *RHS) {
return isDeclarationOfODRMember(LHS.isDefinition(), LHS.Scope,
LHS.LinkageName, LHS.TemplateParams, RHS);
}
static bool isSubsetEqual(const DISubprogram *LHS, const DISubprogram *RHS) {
return isDeclarationOfODRMember(LHS->isDefinition(), LHS->getRawScope(),
LHS->getRawLinkageName(),
LHS->getRawTemplateParams(), RHS);
}
/// Subprograms compare equal if they declare the same function in an ODR
/// type.
static bool isDeclarationOfODRMember(bool IsDefinition, const Metadata *Scope,
const MDString *LinkageName,
const Metadata *TemplateParams,
const DISubprogram *RHS) {
// Check whether the LHS is eligible.
if (IsDefinition || !Scope || !LinkageName)
return false;
auto *CT = dyn_cast_or_null<DICompositeType>(Scope);
if (!CT || !CT->getRawIdentifier())
return false;
// Compare to the RHS.
// FIXME: We need to compare template parameters here to avoid incorrect
// collisions in mapMetadata when RF_ReuseAndMutateDistinctMDs and a
// ODR-DISubprogram has a non-ODR template parameter (i.e., a
// DICompositeType that does not have an identifier). Eventually we should
// decouple ODR logic from uniquing logic.
return IsDefinition == RHS->isDefinition() && Scope == RHS->getRawScope() &&
LinkageName == RHS->getRawLinkageName() &&
TemplateParams == RHS->getRawTemplateParams();
}
};
template <> struct MDNodeKeyImpl<DILexicalBlock> {
Metadata *Scope;
Metadata *File;
unsigned Line;
unsigned Column;
MDNodeKeyImpl(Metadata *Scope, Metadata *File, unsigned Line, unsigned Column)
: Scope(Scope), File(File), Line(Line), Column(Column) {}
MDNodeKeyImpl(const DILexicalBlock *N)
: Scope(N->getRawScope()), File(N->getRawFile()), Line(N->getLine()),
Column(N->getColumn()) {}
bool isKeyOf(const DILexicalBlock *RHS) const {
return Scope == RHS->getRawScope() && File == RHS->getRawFile() &&
Line == RHS->getLine() && Column == RHS->getColumn();
}
unsigned getHashValue() const {
return hash_combine(Scope, File, Line, Column);
}
};
template <> struct MDNodeKeyImpl<DILexicalBlockFile> {
Metadata *Scope;
Metadata *File;
unsigned Discriminator;
MDNodeKeyImpl(Metadata *Scope, Metadata *File, unsigned Discriminator)
: Scope(Scope), File(File), Discriminator(Discriminator) {}
MDNodeKeyImpl(const DILexicalBlockFile *N)
: Scope(N->getRawScope()), File(N->getRawFile()),
Discriminator(N->getDiscriminator()) {}
bool isKeyOf(const DILexicalBlockFile *RHS) const {
return Scope == RHS->getRawScope() && File == RHS->getRawFile() &&
Discriminator == RHS->getDiscriminator();
}
unsigned getHashValue() const {
return hash_combine(Scope, File, Discriminator);
}
};
template <> struct MDNodeKeyImpl<DINamespace> {
Metadata *Scope;
MDString *Name;
bool ExportSymbols;
MDNodeKeyImpl(Metadata *Scope, MDString *Name, bool ExportSymbols)
: Scope(Scope), Name(Name), ExportSymbols(ExportSymbols) {}
MDNodeKeyImpl(const DINamespace *N)
: Scope(N->getRawScope()), Name(N->getRawName()),
ExportSymbols(N->getExportSymbols()) {}
bool isKeyOf(const DINamespace *RHS) const {
return Scope == RHS->getRawScope() && Name == RHS->getRawName() &&
ExportSymbols == RHS->getExportSymbols();
}
unsigned getHashValue() const { return hash_combine(Scope, Name); }
};
Add LLVM IR debug info support for Fortran COMMON blocks COMMON blocks are a feature of Fortran that has no direct analog in C languages, but they are similar to data sections in assembly language programming. A COMMON block is a named area of memory that holds a collection of variables. Fortran subprograms may map the COMMON block memory area to their own, possibly distinct, non-empty list of variables. A Fortran COMMON block might look like the following example. COMMON /ALPHA/ I, J For this construct, the compiler generates a new scope-like DI construct (!DICommonBlock) into which variables (see I, J above) can be placed. As the common block implies a range of storage with global lifetime, the !DICommonBlock refers to a !DIGlobalVariable. The Fortran variable that comprise the COMMON block are also linked via metadata to offsets within the global variable that stands for the entire common block. @alpha_ = common global %alphabytes_ zeroinitializer, align 64, !dbg !27, !dbg !30, !dbg !33 !14 = distinct !DISubprogram(…) !20 = distinct !DICommonBlock(scope: !14, declaration: !25, name: "alpha") !25 = distinct !DIGlobalVariable(scope: !20, name: "common alpha", type: !24) !27 = !DIGlobalVariableExpression(var: !25, expr: !DIExpression()) !29 = distinct !DIGlobalVariable(scope: !20, name: "i", file: !3, type: !28) !30 = !DIGlobalVariableExpression(var: !29, expr: !DIExpression()) !31 = distinct !DIGlobalVariable(scope: !20, name: "j", file: !3, type: !28) !32 = !DIExpression(DW_OP_plus_uconst, 4) !33 = !DIGlobalVariableExpression(var: !31, expr: !32) The DWARF generated for this is as follows. DW_TAG_common_block: DW_AT_name: alpha DW_AT_location: @alpha_+0 DW_TAG_variable: DW_AT_name: common alpha DW_AT_type: array of 8 bytes DW_AT_location: @alpha_+0 DW_TAG_variable: DW_AT_name: i DW_AT_type: integer*4 DW_AT_location: @Alpha+0 DW_TAG_variable: DW_AT_name: j DW_AT_type: integer*4 DW_AT_location: @Alpha+4 Patch by Eric Schweitz! Differential Revision: https://reviews.llvm.org/D54327 llvm-svn: 357934
2019-04-09 03:13:55 +08:00
template <> struct MDNodeKeyImpl<DICommonBlock> {
Metadata *Scope;
Metadata *Decl;
MDString *Name;
Metadata *File;
unsigned LineNo;
MDNodeKeyImpl(Metadata *Scope, Metadata *Decl, MDString *Name, Metadata *File,
unsigned LineNo)
Add LLVM IR debug info support for Fortran COMMON blocks COMMON blocks are a feature of Fortran that has no direct analog in C languages, but they are similar to data sections in assembly language programming. A COMMON block is a named area of memory that holds a collection of variables. Fortran subprograms may map the COMMON block memory area to their own, possibly distinct, non-empty list of variables. A Fortran COMMON block might look like the following example. COMMON /ALPHA/ I, J For this construct, the compiler generates a new scope-like DI construct (!DICommonBlock) into which variables (see I, J above) can be placed. As the common block implies a range of storage with global lifetime, the !DICommonBlock refers to a !DIGlobalVariable. The Fortran variable that comprise the COMMON block are also linked via metadata to offsets within the global variable that stands for the entire common block. @alpha_ = common global %alphabytes_ zeroinitializer, align 64, !dbg !27, !dbg !30, !dbg !33 !14 = distinct !DISubprogram(…) !20 = distinct !DICommonBlock(scope: !14, declaration: !25, name: "alpha") !25 = distinct !DIGlobalVariable(scope: !20, name: "common alpha", type: !24) !27 = !DIGlobalVariableExpression(var: !25, expr: !DIExpression()) !29 = distinct !DIGlobalVariable(scope: !20, name: "i", file: !3, type: !28) !30 = !DIGlobalVariableExpression(var: !29, expr: !DIExpression()) !31 = distinct !DIGlobalVariable(scope: !20, name: "j", file: !3, type: !28) !32 = !DIExpression(DW_OP_plus_uconst, 4) !33 = !DIGlobalVariableExpression(var: !31, expr: !32) The DWARF generated for this is as follows. DW_TAG_common_block: DW_AT_name: alpha DW_AT_location: @alpha_+0 DW_TAG_variable: DW_AT_name: common alpha DW_AT_type: array of 8 bytes DW_AT_location: @alpha_+0 DW_TAG_variable: DW_AT_name: i DW_AT_type: integer*4 DW_AT_location: @Alpha+0 DW_TAG_variable: DW_AT_name: j DW_AT_type: integer*4 DW_AT_location: @Alpha+4 Patch by Eric Schweitz! Differential Revision: https://reviews.llvm.org/D54327 llvm-svn: 357934
2019-04-09 03:13:55 +08:00
: Scope(Scope), Decl(Decl), Name(Name), File(File), LineNo(LineNo) {}
MDNodeKeyImpl(const DICommonBlock *N)
: Scope(N->getRawScope()), Decl(N->getRawDecl()), Name(N->getRawName()),
File(N->getRawFile()), LineNo(N->getLineNo()) {}
bool isKeyOf(const DICommonBlock *RHS) const {
return Scope == RHS->getRawScope() && Decl == RHS->getRawDecl() &&
Name == RHS->getRawName() && File == RHS->getRawFile() &&
LineNo == RHS->getLineNo();
Add LLVM IR debug info support for Fortran COMMON blocks COMMON blocks are a feature of Fortran that has no direct analog in C languages, but they are similar to data sections in assembly language programming. A COMMON block is a named area of memory that holds a collection of variables. Fortran subprograms may map the COMMON block memory area to their own, possibly distinct, non-empty list of variables. A Fortran COMMON block might look like the following example. COMMON /ALPHA/ I, J For this construct, the compiler generates a new scope-like DI construct (!DICommonBlock) into which variables (see I, J above) can be placed. As the common block implies a range of storage with global lifetime, the !DICommonBlock refers to a !DIGlobalVariable. The Fortran variable that comprise the COMMON block are also linked via metadata to offsets within the global variable that stands for the entire common block. @alpha_ = common global %alphabytes_ zeroinitializer, align 64, !dbg !27, !dbg !30, !dbg !33 !14 = distinct !DISubprogram(…) !20 = distinct !DICommonBlock(scope: !14, declaration: !25, name: "alpha") !25 = distinct !DIGlobalVariable(scope: !20, name: "common alpha", type: !24) !27 = !DIGlobalVariableExpression(var: !25, expr: !DIExpression()) !29 = distinct !DIGlobalVariable(scope: !20, name: "i", file: !3, type: !28) !30 = !DIGlobalVariableExpression(var: !29, expr: !DIExpression()) !31 = distinct !DIGlobalVariable(scope: !20, name: "j", file: !3, type: !28) !32 = !DIExpression(DW_OP_plus_uconst, 4) !33 = !DIGlobalVariableExpression(var: !31, expr: !32) The DWARF generated for this is as follows. DW_TAG_common_block: DW_AT_name: alpha DW_AT_location: @alpha_+0 DW_TAG_variable: DW_AT_name: common alpha DW_AT_type: array of 8 bytes DW_AT_location: @alpha_+0 DW_TAG_variable: DW_AT_name: i DW_AT_type: integer*4 DW_AT_location: @Alpha+0 DW_TAG_variable: DW_AT_name: j DW_AT_type: integer*4 DW_AT_location: @Alpha+4 Patch by Eric Schweitz! Differential Revision: https://reviews.llvm.org/D54327 llvm-svn: 357934
2019-04-09 03:13:55 +08:00
}
unsigned getHashValue() const {
return hash_combine(Scope, Decl, Name, File, LineNo);
}
};
template <> struct MDNodeKeyImpl<DIModule> {
Metadata *File;
Metadata *Scope;
MDString *Name;
MDString *ConfigurationMacros;
MDString *IncludePath;
MDString *APINotesFile;
unsigned LineNo;
bool IsDecl;
MDNodeKeyImpl(Metadata *File, Metadata *Scope, MDString *Name,
MDString *ConfigurationMacros, MDString *IncludePath,
MDString *APINotesFile, unsigned LineNo, bool IsDecl)
: File(File), Scope(Scope), Name(Name),
ConfigurationMacros(ConfigurationMacros), IncludePath(IncludePath),
APINotesFile(APINotesFile), LineNo(LineNo), IsDecl(IsDecl) {}
MDNodeKeyImpl(const DIModule *N)
: File(N->getRawFile()), Scope(N->getRawScope()), Name(N->getRawName()),
ConfigurationMacros(N->getRawConfigurationMacros()),
IncludePath(N->getRawIncludePath()),
APINotesFile(N->getRawAPINotesFile()), LineNo(N->getLineNo()),
IsDecl(N->getIsDecl()) {}
bool isKeyOf(const DIModule *RHS) const {
return Scope == RHS->getRawScope() && Name == RHS->getRawName() &&
ConfigurationMacros == RHS->getRawConfigurationMacros() &&
IncludePath == RHS->getRawIncludePath() &&
APINotesFile == RHS->getRawAPINotesFile() &&
File == RHS->getRawFile() && LineNo == RHS->getLineNo() &&
IsDecl == RHS->getIsDecl();
}
unsigned getHashValue() const {
return hash_combine(Scope, Name, ConfigurationMacros, IncludePath);
}
};
template <> struct MDNodeKeyImpl<DITemplateTypeParameter> {
MDString *Name;
Metadata *Type;
bool IsDefault;
MDNodeKeyImpl(MDString *Name, Metadata *Type, bool IsDefault)
: Name(Name), Type(Type), IsDefault(IsDefault) {}
MDNodeKeyImpl(const DITemplateTypeParameter *N)
: Name(N->getRawName()), Type(N->getRawType()),
IsDefault(N->isDefault()) {}
bool isKeyOf(const DITemplateTypeParameter *RHS) const {
return Name == RHS->getRawName() && Type == RHS->getRawType() &&
IsDefault == RHS->isDefault();
}
unsigned getHashValue() const { return hash_combine(Name, Type, IsDefault); }
};
template <> struct MDNodeKeyImpl<DITemplateValueParameter> {
unsigned Tag;
MDString *Name;
Metadata *Type;
bool IsDefault;
Metadata *Value;
MDNodeKeyImpl(unsigned Tag, MDString *Name, Metadata *Type, bool IsDefault,
Metadata *Value)
: Tag(Tag), Name(Name), Type(Type), IsDefault(IsDefault), Value(Value) {}
MDNodeKeyImpl(const DITemplateValueParameter *N)
: Tag(N->getTag()), Name(N->getRawName()), Type(N->getRawType()),
IsDefault(N->isDefault()), Value(N->getValue()) {}
bool isKeyOf(const DITemplateValueParameter *RHS) const {
return Tag == RHS->getTag() && Name == RHS->getRawName() &&
Type == RHS->getRawType() && IsDefault == RHS->isDefault() &&
Value == RHS->getValue();
}
unsigned getHashValue() const {
return hash_combine(Tag, Name, Type, IsDefault, Value);
}
};
template <> struct MDNodeKeyImpl<DIGlobalVariable> {
Metadata *Scope;
MDString *Name;
MDString *LinkageName;
Metadata *File;
unsigned Line;
Metadata *Type;
bool IsLocalToUnit;
bool IsDefinition;
Metadata *StaticDataMemberDeclaration;
Metadata *TemplateParams;
uint32_t AlignInBits;
Metadata *Annotations;
MDNodeKeyImpl(Metadata *Scope, MDString *Name, MDString *LinkageName,
Metadata *File, unsigned Line, Metadata *Type,
bool IsLocalToUnit, bool IsDefinition,
Metadata *StaticDataMemberDeclaration, Metadata *TemplateParams,
uint32_t AlignInBits, Metadata *Annotations)
: Scope(Scope), Name(Name), LinkageName(LinkageName), File(File),
Line(Line), Type(Type), IsLocalToUnit(IsLocalToUnit),
IsDefinition(IsDefinition),
StaticDataMemberDeclaration(StaticDataMemberDeclaration),
TemplateParams(TemplateParams), AlignInBits(AlignInBits),
Annotations(Annotations) {}
MDNodeKeyImpl(const DIGlobalVariable *N)
: Scope(N->getRawScope()), Name(N->getRawName()),
LinkageName(N->getRawLinkageName()), File(N->getRawFile()),
Line(N->getLine()), Type(N->getRawType()),
IsLocalToUnit(N->isLocalToUnit()), IsDefinition(N->isDefinition()),
StaticDataMemberDeclaration(N->getRawStaticDataMemberDeclaration()),
TemplateParams(N->getRawTemplateParams()),
AlignInBits(N->getAlignInBits()), Annotations(N->getRawAnnotations()) {}
bool isKeyOf(const DIGlobalVariable *RHS) const {
return Scope == RHS->getRawScope() && Name == RHS->getRawName() &&
LinkageName == RHS->getRawLinkageName() &&
File == RHS->getRawFile() && Line == RHS->getLine() &&
Type == RHS->getRawType() && IsLocalToUnit == RHS->isLocalToUnit() &&
IsDefinition == RHS->isDefinition() &&
StaticDataMemberDeclaration ==
RHS->getRawStaticDataMemberDeclaration() &&
TemplateParams == RHS->getRawTemplateParams() &&
AlignInBits == RHS->getAlignInBits() &&
Annotations == RHS->getRawAnnotations();
}
unsigned getHashValue() const {
// We do not use AlignInBits in hashing function here on purpose:
// in most cases this param for local variable is zero (for function param
// it is always zero). This leads to lots of hash collisions and errors on
// cases with lots of similar variables.
// clang/test/CodeGen/debug-info-257-args.c is an example of this problem,
// generated IR is random for each run and test fails with Align included.
// TODO: make hashing work fine with such situations
return hash_combine(Scope, Name, LinkageName, File, Line, Type,
IsLocalToUnit, IsDefinition, /* AlignInBits, */
StaticDataMemberDeclaration, Annotations);
}
};
template <> struct MDNodeKeyImpl<DILocalVariable> {
Metadata *Scope;
MDString *Name;
Metadata *File;
unsigned Line;
Metadata *Type;
unsigned Arg;
unsigned Flags;
uint32_t AlignInBits;
Metadata *Annotations;
MDNodeKeyImpl(Metadata *Scope, MDString *Name, Metadata *File, unsigned Line,
Metadata *Type, unsigned Arg, unsigned Flags,
uint32_t AlignInBits, Metadata *Annotations)
: Scope(Scope), Name(Name), File(File), Line(Line), Type(Type), Arg(Arg),
Flags(Flags), AlignInBits(AlignInBits), Annotations(Annotations) {}
MDNodeKeyImpl(const DILocalVariable *N)
: Scope(N->getRawScope()), Name(N->getRawName()), File(N->getRawFile()),
Line(N->getLine()), Type(N->getRawType()), Arg(N->getArg()),
Flags(N->getFlags()), AlignInBits(N->getAlignInBits()),
Annotations(N->getRawAnnotations()) {}
bool isKeyOf(const DILocalVariable *RHS) const {
return Scope == RHS->getRawScope() && Name == RHS->getRawName() &&
File == RHS->getRawFile() && Line == RHS->getLine() &&
Type == RHS->getRawType() && Arg == RHS->getArg() &&
Flags == RHS->getFlags() && AlignInBits == RHS->getAlignInBits() &&
Annotations == RHS->getRawAnnotations();
}
unsigned getHashValue() const {
// We do not use AlignInBits in hashing function here on purpose:
// in most cases this param for local variable is zero (for function param
// it is always zero). This leads to lots of hash collisions and errors on
// cases with lots of similar variables.
// clang/test/CodeGen/debug-info-257-args.c is an example of this problem,
// generated IR is random for each run and test fails with Align included.
// TODO: make hashing work fine with such situations
return hash_combine(Scope, Name, File, Line, Type, Arg, Flags, Annotations);
}
};
template <> struct MDNodeKeyImpl<DILabel> {
Metadata *Scope;
MDString *Name;
Metadata *File;
unsigned Line;
MDNodeKeyImpl(Metadata *Scope, MDString *Name, Metadata *File, unsigned Line)
: Scope(Scope), Name(Name), File(File), Line(Line) {}
MDNodeKeyImpl(const DILabel *N)
: Scope(N->getRawScope()), Name(N->getRawName()), File(N->getRawFile()),
Line(N->getLine()) {}
bool isKeyOf(const DILabel *RHS) const {
return Scope == RHS->getRawScope() && Name == RHS->getRawName() &&
File == RHS->getRawFile() && Line == RHS->getLine();
}
/// Using name and line to get hash value. It should already be mostly unique.
unsigned getHashValue() const { return hash_combine(Scope, Name, Line); }
};
template <> struct MDNodeKeyImpl<DIExpression> {
ArrayRef<uint64_t> Elements;
MDNodeKeyImpl(ArrayRef<uint64_t> Elements) : Elements(Elements) {}
MDNodeKeyImpl(const DIExpression *N) : Elements(N->getElements()) {}
bool isKeyOf(const DIExpression *RHS) const {
return Elements == RHS->getElements();
}
unsigned getHashValue() const {
return hash_combine_range(Elements.begin(), Elements.end());
}
};
template <> struct MDNodeKeyImpl<DIGlobalVariableExpression> {
Metadata *Variable;
Metadata *Expression;
MDNodeKeyImpl(Metadata *Variable, Metadata *Expression)
: Variable(Variable), Expression(Expression) {}
MDNodeKeyImpl(const DIGlobalVariableExpression *N)
: Variable(N->getRawVariable()), Expression(N->getRawExpression()) {}
bool isKeyOf(const DIGlobalVariableExpression *RHS) const {
return Variable == RHS->getRawVariable() &&
Expression == RHS->getRawExpression();
}
unsigned getHashValue() const { return hash_combine(Variable, Expression); }
};
template <> struct MDNodeKeyImpl<DIObjCProperty> {
MDString *Name;
Metadata *File;
unsigned Line;
MDString *GetterName;
MDString *SetterName;
unsigned Attributes;
Metadata *Type;
MDNodeKeyImpl(MDString *Name, Metadata *File, unsigned Line,
MDString *GetterName, MDString *SetterName, unsigned Attributes,
Metadata *Type)
: Name(Name), File(File), Line(Line), GetterName(GetterName),
SetterName(SetterName), Attributes(Attributes), Type(Type) {}
MDNodeKeyImpl(const DIObjCProperty *N)
: Name(N->getRawName()), File(N->getRawFile()), Line(N->getLine()),
GetterName(N->getRawGetterName()), SetterName(N->getRawSetterName()),
Attributes(N->getAttributes()), Type(N->getRawType()) {}
bool isKeyOf(const DIObjCProperty *RHS) const {
return Name == RHS->getRawName() && File == RHS->getRawFile() &&
Line == RHS->getLine() && GetterName == RHS->getRawGetterName() &&
SetterName == RHS->getRawSetterName() &&
Attributes == RHS->getAttributes() && Type == RHS->getRawType();
}
unsigned getHashValue() const {
return hash_combine(Name, File, Line, GetterName, SetterName, Attributes,
Type);
}
};
template <> struct MDNodeKeyImpl<DIImportedEntity> {
unsigned Tag;
Metadata *Scope;
Metadata *Entity;
Metadata *File;
unsigned Line;
MDString *Name;
Metadata *Elements;
MDNodeKeyImpl(unsigned Tag, Metadata *Scope, Metadata *Entity, Metadata *File,
unsigned Line, MDString *Name, Metadata *Elements)
: Tag(Tag), Scope(Scope), Entity(Entity), File(File), Line(Line),
Name(Name), Elements(Elements) {}
MDNodeKeyImpl(const DIImportedEntity *N)
: Tag(N->getTag()), Scope(N->getRawScope()), Entity(N->getRawEntity()),
File(N->getRawFile()), Line(N->getLine()), Name(N->getRawName()),
Elements(N->getRawElements()) {}
bool isKeyOf(const DIImportedEntity *RHS) const {
return Tag == RHS->getTag() && Scope == RHS->getRawScope() &&
Entity == RHS->getRawEntity() && File == RHS->getFile() &&
Line == RHS->getLine() && Name == RHS->getRawName() &&
Elements == RHS->getRawElements();
}
unsigned getHashValue() const {
return hash_combine(Tag, Scope, Entity, File, Line, Name, Elements);
}
};
template <> struct MDNodeKeyImpl<DIMacro> {
unsigned MIType;
unsigned Line;
MDString *Name;
MDString *Value;
MDNodeKeyImpl(unsigned MIType, unsigned Line, MDString *Name, MDString *Value)
: MIType(MIType), Line(Line), Name(Name), Value(Value) {}
MDNodeKeyImpl(const DIMacro *N)
: MIType(N->getMacinfoType()), Line(N->getLine()), Name(N->getRawName()),
Value(N->getRawValue()) {}
bool isKeyOf(const DIMacro *RHS) const {
return MIType == RHS->getMacinfoType() && Line == RHS->getLine() &&
Name == RHS->getRawName() && Value == RHS->getRawValue();
}
unsigned getHashValue() const {
return hash_combine(MIType, Line, Name, Value);
}
};
template <> struct MDNodeKeyImpl<DIMacroFile> {
unsigned MIType;
unsigned Line;
Metadata *File;
Metadata *Elements;
MDNodeKeyImpl(unsigned MIType, unsigned Line, Metadata *File,
Metadata *Elements)
: MIType(MIType), Line(Line), File(File), Elements(Elements) {}
MDNodeKeyImpl(const DIMacroFile *N)
: MIType(N->getMacinfoType()), Line(N->getLine()), File(N->getRawFile()),
Elements(N->getRawElements()) {}
bool isKeyOf(const DIMacroFile *RHS) const {
return MIType == RHS->getMacinfoType() && Line == RHS->getLine() &&
File == RHS->getRawFile() && Elements == RHS->getRawElements();
}
unsigned getHashValue() const {
return hash_combine(MIType, Line, File, Elements);
}
};
template <> struct MDNodeKeyImpl<DIArgList> {
ArrayRef<ValueAsMetadata *> Args;
MDNodeKeyImpl(ArrayRef<ValueAsMetadata *> Args) : Args(Args) {}
MDNodeKeyImpl(const DIArgList *N) : Args(N->getArgs()) {}
bool isKeyOf(const DIArgList *RHS) const { return Args == RHS->getArgs(); }
unsigned getHashValue() const {
return hash_combine_range(Args.begin(), Args.end());
}
};
/// DenseMapInfo for MDNode subclasses.
template <class NodeTy> struct MDNodeInfo {
using KeyTy = MDNodeKeyImpl<NodeTy>;
using SubsetEqualTy = MDNodeSubsetEqualImpl<NodeTy>;
static inline NodeTy *getEmptyKey() {
return DenseMapInfo<NodeTy *>::getEmptyKey();
}
static inline NodeTy *getTombstoneKey() {
return DenseMapInfo<NodeTy *>::getTombstoneKey();
}
static unsigned getHashValue(const KeyTy &Key) { return Key.getHashValue(); }
static unsigned getHashValue(const NodeTy *N) {
return KeyTy(N).getHashValue();
}
static bool isEqual(const KeyTy &LHS, const NodeTy *RHS) {
if (RHS == getEmptyKey() || RHS == getTombstoneKey())
return false;
return SubsetEqualTy::isSubsetEqual(LHS, RHS) || LHS.isKeyOf(RHS);
}
static bool isEqual(const NodeTy *LHS, const NodeTy *RHS) {
if (LHS == RHS)
return true;
if (RHS == getEmptyKey() || RHS == getTombstoneKey())
return false;
return SubsetEqualTy::isSubsetEqual(LHS, RHS);
}
};
#define HANDLE_MDNODE_LEAF(CLASS) using CLASS##Info = MDNodeInfo<CLASS>;
#include "llvm/IR/Metadata.def"
/// Multimap-like storage for metadata attachments.
class MDAttachments {
public:
struct Attachment {
unsigned MDKind;
TrackingMDNodeRef Node;
};
private:
SmallVector<Attachment, 1> Attachments;
public:
bool empty() const { return Attachments.empty(); }
size_t size() const { return Attachments.size(); }
/// Returns the first attachment with the given ID or nullptr if no such
/// attachment exists.
MDNode *lookup(unsigned ID) const;
/// Appends all attachments with the given ID to \c Result in insertion order.
/// If the global has no attachments with the given ID, or if ID is invalid,
/// leaves Result unchanged.
void get(unsigned ID, SmallVectorImpl<MDNode *> &Result) const;
/// Appends all attachments for the global to \c Result, sorting by attachment
/// ID. Attachments with the same ID appear in insertion order. This function
/// does \em not clear \c Result.
void getAll(SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const;
/// Set an attachment to a particular node.
///
/// Set the \c ID attachment to \c MD, replacing the current attachments at \c
/// ID (if anyway).
void set(unsigned ID, MDNode *MD);
/// Adds an attachment to a particular node.
void insert(unsigned ID, MDNode &MD);
/// Remove attachments with the given ID.
///
/// Remove the attachments at \c ID, if any.
bool erase(unsigned ID);
/// Erase matching attachments.
///
/// Erases all attachments matching the \c shouldRemove predicate.
template <class PredTy> void remove_if(PredTy shouldRemove) {
llvm::erase_if(Attachments, shouldRemove);
}
};
class LLVMContextImpl {
public:
/// OwnedModules - The set of modules instantiated in this context, and which
/// will be automatically deleted if this context is deleted.
SmallPtrSet<Module *, 4> OwnedModules;
/// The main remark streamer used by all the other streamers (e.g. IR, MIR,
/// frontends, etc.). This should only be used by the specific streamers, and
/// never directly.
std::unique_ptr<remarks::RemarkStreamer> MainRemarkStreamer;
std::unique_ptr<DiagnosticHandler> DiagHandler;
bool RespectDiagnosticFilters = false;
bool DiagnosticsHotnessRequested = false;
/// The minimum hotness value a diagnostic needs in order to be included in
/// optimization diagnostics.
///
/// The threshold is an Optional value, which maps to one of the 3 states:
/// 1). 0 => threshold disabled. All emarks will be printed.
/// 2). positive int => manual threshold by user. Remarks with hotness exceed
/// threshold will be printed.
/// 3). None => 'auto' threshold by user. The actual value is not
/// available at command line, but will be synced with
/// hotness threhold from profile summary during
/// compilation.
///
/// State 1 and 2 are considered as terminal states. State transition is
/// only allowed from 3 to 2, when the threshold is first synced with profile
/// summary. This ensures that the threshold is set only once and stays
/// constant.
///
/// If threshold option is not specified, it is disabled (0) by default.
Optional<uint64_t> DiagnosticsHotnessThreshold = 0;
/// The specialized remark streamer used by LLVM's OptimizationRemarkEmitter.
2020-02-05 09:42:47 +08:00
std::unique_ptr<LLVMRemarkStreamer> LLVMRS;
LLVMContext::YieldCallbackTy YieldCallback = nullptr;
void *YieldOpaqueHandle = nullptr;
using IntMapTy =
DenseMap<APInt, std::unique_ptr<ConstantInt>, DenseMapAPIntKeyInfo>;
IntMapTy IntConstants;
2014-12-06 13:57:06 +08:00
using FPMapTy =
DenseMap<APFloat, std::unique_ptr<ConstantFP>, DenseMapAPFloatKeyInfo>;
FPMapTy FPConstants;
FoldingSet<AttributeImpl> AttrsSet;
FoldingSet<AttributeListImpl> AttrsLists;
FoldingSet<AttributeSetNode> AttrsSetNodes;
StringMap<MDString, BumpPtrAllocator> MDStringCache;
IR: Split Metadata from Value Split `Metadata` away from the `Value` class hierarchy, as part of PR21532. Assembly and bitcode changes are in the wings, but this is the bulk of the change for the IR C++ API. I have a follow-up patch prepared for `clang`. If this breaks other sub-projects, I apologize in advance :(. Help me compile it on Darwin I'll try to fix it. FWIW, the errors should be easy to fix, so it may be simpler to just fix it yourself. This breaks the build for all metadata-related code that's out-of-tree. Rest assured the transition is mechanical and the compiler should catch almost all of the problems. Here's a quick guide for updating your code: - `Metadata` is the root of a class hierarchy with three main classes: `MDNode`, `MDString`, and `ValueAsMetadata`. It is distinct from the `Value` class hierarchy. It is typeless -- i.e., instances do *not* have a `Type`. - `MDNode`'s operands are all `Metadata *` (instead of `Value *`). - `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively. If you're referring solely to resolved `MDNode`s -- post graph construction -- just use `MDNode*`. - `MDNode` (and the rest of `Metadata`) have only limited support for `replaceAllUsesWith()`. As long as an `MDNode` is pointing at a forward declaration -- the result of `MDNode::getTemporary()` -- it maintains a side map of its uses and can RAUW itself. Once the forward declarations are fully resolved RAUW support is dropped on the ground. This means that uniquing collisions on changing operands cause nodes to become "distinct". (This already happened fairly commonly, whenever an operand went to null.) If you're constructing complex (non self-reference) `MDNode` cycles, you need to call `MDNode::resolveCycles()` on each node (or on a top-level node that somehow references all of the nodes). Also, don't do that. Metadata cycles (and the RAUW machinery needed to construct them) are expensive. - An `MDNode` can only refer to a `Constant` through a bridge called `ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`). As a side effect, accessing an operand of an `MDNode` that is known to be, e.g., `ConstantInt`, takes three steps: first, cast from `Metadata` to `ConstantAsMetadata`; second, extract the `Constant`; third, cast down to `ConstantInt`. The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have metadata schema owners transition away from using `Constant`s when the type isn't important (and they don't care about referring to `GlobalValue`s). In the meantime, I've added transitional API to the `mdconst` namespace that matches semantics with the old code, in order to avoid adding the error-prone three-step equivalent to every call site. If your old code was: MDNode *N = foo(); bar(isa <ConstantInt>(N->getOperand(0))); baz(cast <ConstantInt>(N->getOperand(1))); bak(cast_or_null <ConstantInt>(N->getOperand(2))); bat(dyn_cast <ConstantInt>(N->getOperand(3))); bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4))); you can trivially match its semantics with: MDNode *N = foo(); bar(mdconst::hasa <ConstantInt>(N->getOperand(0))); baz(mdconst::extract <ConstantInt>(N->getOperand(1))); bak(mdconst::extract_or_null <ConstantInt>(N->getOperand(2))); bat(mdconst::dyn_extract <ConstantInt>(N->getOperand(3))); bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4))); and when you transition your metadata schema to `MDInt`: MDNode *N = foo(); bar(isa <MDInt>(N->getOperand(0))); baz(cast <MDInt>(N->getOperand(1))); bak(cast_or_null <MDInt>(N->getOperand(2))); bat(dyn_cast <MDInt>(N->getOperand(3))); bay(dyn_cast_or_null<MDInt>(N->getOperand(4))); - A `CallInst` -- specifically, intrinsic instructions -- can refer to metadata through a bridge called `MetadataAsValue`. This is a subclass of `Value` where `getType()->isMetadataTy()`. `MetadataAsValue` is the *only* class that can legally refer to a `LocalAsMetadata`, which is a bridged form of non-`Constant` values like `Argument` and `Instruction`. It can also refer to any other `Metadata` subclass. (I'll break all your testcases in a follow-up commit, when I propagate this change to assembly.) llvm-svn: 223802
2014-12-10 02:38:53 +08:00
DenseMap<Value *, ValueAsMetadata *> ValuesAsMetadata;
DenseMap<Metadata *, MetadataAsValue *> MetadataAsValues;
DenseMap<const Value *, ValueName *> ValueNames;
#define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \
DenseSet<CLASS *, CLASS##Info> CLASS##s;
#include "llvm/IR/Metadata.def"
// Optional map for looking up composite types by identifier.
Optional<DenseMap<const MDString *, DICompositeType *>> DITypeMap;
// MDNodes may be uniqued or not uniqued. When they're not uniqued, they
// aren't in the MDNodeSet, but they're still shared between objects, so no
// one object can destroy them. Keep track of them here so we can delete
// them on context teardown.
std::vector<MDNode *> DistinctMDNodes;
DenseMap<Type *, std::unique_ptr<ConstantAggregateZero>> CAZConstants;
using ArrayConstantsTy = ConstantUniqueMap<ConstantArray>;
ArrayConstantsTy ArrayConstants;
using StructConstantsTy = ConstantUniqueMap<ConstantStruct>;
StructConstantsTy StructConstants;
using VectorConstantsTy = ConstantUniqueMap<ConstantVector>;
VectorConstantsTy VectorConstants;
DenseMap<PointerType *, std::unique_ptr<ConstantPointerNull>> CPNConstants;
DenseMap<Type *, std::unique_ptr<UndefValue>> UVConstants;
DenseMap<Type *, std::unique_ptr<PoisonValue>> PVConstants;
StringMap<std::unique_ptr<ConstantDataSequential>> CDSConstants;
DenseMap<std::pair<const Function *, const BasicBlock *>, BlockAddress *>
BlockAddresses;
[llvm][IR] Add dso_local_equivalent Constant The `dso_local_equivalent` constant is a wrapper for functions that represents a value which is functionally equivalent to the global passed to this. That is, if this accepts a function, calling this constant should have the same effects as calling the function directly. This could be a direct reference to the function, the `@plt` modifier on X86/AArch64, a thunk, or anything that's equivalent to the resolved function as a call target. When lowered, the returned address must have a constant offset at link time from some other symbol defined within the same binary. The address of this value is also insignificant. The name is leveraged from `dso_local` where use of a function or variable is resolved to a symbol in the same linkage unit. In this patch: - Addition of `dso_local_equivalent` and handling it - Update Constant::needsRelocation() to strip constant inbound GEPs and take advantage of `dso_local_equivalent` for relative references This is useful for the [Relative VTables C++ ABI](https://reviews.llvm.org/D72959) which makes vtables readonly. This works by replacing the dynamic relocations for function pointers in them with static relocations that represent the offset between the vtable and virtual functions. If a function is externally defined, `dso_local_equivalent` can be used as a generic wrapper for the function to still allow for this static offset calculation to be done. See [RFC](http://lists.llvm.org/pipermail/llvm-dev/2020-August/144469.html) for more details. Differential Revision: https://reviews.llvm.org/D77248
2020-04-02 06:25:04 +08:00
DenseMap<const GlobalValue *, DSOLocalEquivalent *> DSOLocalEquivalents;
DenseMap<const GlobalValue *, NoCFIValue *> NoCFIValues;
ConstantUniqueMap<ConstantExpr> ExprConstants;
ConstantUniqueMap<InlineAsm> InlineAsms;
ConstantInt *TheTrueVal = nullptr;
ConstantInt *TheFalseVal = nullptr;
IR: Split Metadata from Value Split `Metadata` away from the `Value` class hierarchy, as part of PR21532. Assembly and bitcode changes are in the wings, but this is the bulk of the change for the IR C++ API. I have a follow-up patch prepared for `clang`. If this breaks other sub-projects, I apologize in advance :(. Help me compile it on Darwin I'll try to fix it. FWIW, the errors should be easy to fix, so it may be simpler to just fix it yourself. This breaks the build for all metadata-related code that's out-of-tree. Rest assured the transition is mechanical and the compiler should catch almost all of the problems. Here's a quick guide for updating your code: - `Metadata` is the root of a class hierarchy with three main classes: `MDNode`, `MDString`, and `ValueAsMetadata`. It is distinct from the `Value` class hierarchy. It is typeless -- i.e., instances do *not* have a `Type`. - `MDNode`'s operands are all `Metadata *` (instead of `Value *`). - `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively. If you're referring solely to resolved `MDNode`s -- post graph construction -- just use `MDNode*`. - `MDNode` (and the rest of `Metadata`) have only limited support for `replaceAllUsesWith()`. As long as an `MDNode` is pointing at a forward declaration -- the result of `MDNode::getTemporary()` -- it maintains a side map of its uses and can RAUW itself. Once the forward declarations are fully resolved RAUW support is dropped on the ground. This means that uniquing collisions on changing operands cause nodes to become "distinct". (This already happened fairly commonly, whenever an operand went to null.) If you're constructing complex (non self-reference) `MDNode` cycles, you need to call `MDNode::resolveCycles()` on each node (or on a top-level node that somehow references all of the nodes). Also, don't do that. Metadata cycles (and the RAUW machinery needed to construct them) are expensive. - An `MDNode` can only refer to a `Constant` through a bridge called `ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`). As a side effect, accessing an operand of an `MDNode` that is known to be, e.g., `ConstantInt`, takes three steps: first, cast from `Metadata` to `ConstantAsMetadata`; second, extract the `Constant`; third, cast down to `ConstantInt`. The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have metadata schema owners transition away from using `Constant`s when the type isn't important (and they don't care about referring to `GlobalValue`s). In the meantime, I've added transitional API to the `mdconst` namespace that matches semantics with the old code, in order to avoid adding the error-prone three-step equivalent to every call site. If your old code was: MDNode *N = foo(); bar(isa <ConstantInt>(N->getOperand(0))); baz(cast <ConstantInt>(N->getOperand(1))); bak(cast_or_null <ConstantInt>(N->getOperand(2))); bat(dyn_cast <ConstantInt>(N->getOperand(3))); bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4))); you can trivially match its semantics with: MDNode *N = foo(); bar(mdconst::hasa <ConstantInt>(N->getOperand(0))); baz(mdconst::extract <ConstantInt>(N->getOperand(1))); bak(mdconst::extract_or_null <ConstantInt>(N->getOperand(2))); bat(mdconst::dyn_extract <ConstantInt>(N->getOperand(3))); bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4))); and when you transition your metadata schema to `MDInt`: MDNode *N = foo(); bar(isa <MDInt>(N->getOperand(0))); baz(cast <MDInt>(N->getOperand(1))); bak(cast_or_null <MDInt>(N->getOperand(2))); bat(dyn_cast <MDInt>(N->getOperand(3))); bay(dyn_cast_or_null<MDInt>(N->getOperand(4))); - A `CallInst` -- specifically, intrinsic instructions -- can refer to metadata through a bridge called `MetadataAsValue`. This is a subclass of `Value` where `getType()->isMetadataTy()`. `MetadataAsValue` is the *only* class that can legally refer to a `LocalAsMetadata`, which is a bridged form of non-`Constant` values like `Argument` and `Instruction`. It can also refer to any other `Metadata` subclass. (I'll break all your testcases in a follow-up commit, when I propagate this change to assembly.) llvm-svn: 223802
2014-12-10 02:38:53 +08:00
std::unique_ptr<ConstantTokenNone> TheNoneToken;
// Basic type instances.
Type VoidTy, LabelTy, HalfTy, BFloatTy, FloatTy, DoubleTy, MetadataTy,
TokenTy;
Type X86_FP80Ty, FP128Ty, PPC_FP128Ty, X86_MMXTy, X86_AMXTy;
IntegerType Int1Ty, Int8Ty, Int16Ty, Int32Ty, Int64Ty, Int128Ty;
BumpPtrAllocator Alloc;
UniqueStringSaver Saver{Alloc};
DenseMap<unsigned, IntegerType *> IntegerTypes;
using FunctionTypeSet = DenseSet<FunctionType *, FunctionTypeKeyInfo>;
FunctionTypeSet FunctionTypes;
using StructTypeSet = DenseSet<StructType *, AnonStructTypeKeyInfo>;
StructTypeSet AnonStructTypes;
StringMap<StructType *> NamedStructTypes;
unsigned NamedStructTypesUniqueID = 0;
DenseMap<std::pair<Type *, uint64_t>, ArrayType *> ArrayTypes;
DenseMap<std::pair<Type *, ElementCount>, VectorType *> VectorTypes;
DenseMap<Type *, PointerType *> PointerTypes; // Pointers in AddrSpace = 0
DenseMap<std::pair<Type *, unsigned>, PointerType *> ASPointerTypes;
/// ValueHandles - This map keeps track of all of the value handles that are
/// watching a Value*. The Value::HasValueHandle bit is used to know
/// whether or not a value has an entry in this map.
using ValueHandlesTy = DenseMap<Value *, ValueHandleBase *>;
ValueHandlesTy ValueHandles;
/// CustomMDKindNames - Map to hold the metadata string to ID mapping.
StringMap<unsigned> CustomMDKindNames;
IR: Split Metadata from Value Split `Metadata` away from the `Value` class hierarchy, as part of PR21532. Assembly and bitcode changes are in the wings, but this is the bulk of the change for the IR C++ API. I have a follow-up patch prepared for `clang`. If this breaks other sub-projects, I apologize in advance :(. Help me compile it on Darwin I'll try to fix it. FWIW, the errors should be easy to fix, so it may be simpler to just fix it yourself. This breaks the build for all metadata-related code that's out-of-tree. Rest assured the transition is mechanical and the compiler should catch almost all of the problems. Here's a quick guide for updating your code: - `Metadata` is the root of a class hierarchy with three main classes: `MDNode`, `MDString`, and `ValueAsMetadata`. It is distinct from the `Value` class hierarchy. It is typeless -- i.e., instances do *not* have a `Type`. - `MDNode`'s operands are all `Metadata *` (instead of `Value *`). - `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively. If you're referring solely to resolved `MDNode`s -- post graph construction -- just use `MDNode*`. - `MDNode` (and the rest of `Metadata`) have only limited support for `replaceAllUsesWith()`. As long as an `MDNode` is pointing at a forward declaration -- the result of `MDNode::getTemporary()` -- it maintains a side map of its uses and can RAUW itself. Once the forward declarations are fully resolved RAUW support is dropped on the ground. This means that uniquing collisions on changing operands cause nodes to become "distinct". (This already happened fairly commonly, whenever an operand went to null.) If you're constructing complex (non self-reference) `MDNode` cycles, you need to call `MDNode::resolveCycles()` on each node (or on a top-level node that somehow references all of the nodes). Also, don't do that. Metadata cycles (and the RAUW machinery needed to construct them) are expensive. - An `MDNode` can only refer to a `Constant` through a bridge called `ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`). As a side effect, accessing an operand of an `MDNode` that is known to be, e.g., `ConstantInt`, takes three steps: first, cast from `Metadata` to `ConstantAsMetadata`; second, extract the `Constant`; third, cast down to `ConstantInt`. The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have metadata schema owners transition away from using `Constant`s when the type isn't important (and they don't care about referring to `GlobalValue`s). In the meantime, I've added transitional API to the `mdconst` namespace that matches semantics with the old code, in order to avoid adding the error-prone three-step equivalent to every call site. If your old code was: MDNode *N = foo(); bar(isa <ConstantInt>(N->getOperand(0))); baz(cast <ConstantInt>(N->getOperand(1))); bak(cast_or_null <ConstantInt>(N->getOperand(2))); bat(dyn_cast <ConstantInt>(N->getOperand(3))); bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4))); you can trivially match its semantics with: MDNode *N = foo(); bar(mdconst::hasa <ConstantInt>(N->getOperand(0))); baz(mdconst::extract <ConstantInt>(N->getOperand(1))); bak(mdconst::extract_or_null <ConstantInt>(N->getOperand(2))); bat(mdconst::dyn_extract <ConstantInt>(N->getOperand(3))); bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4))); and when you transition your metadata schema to `MDInt`: MDNode *N = foo(); bar(isa <MDInt>(N->getOperand(0))); baz(cast <MDInt>(N->getOperand(1))); bak(cast_or_null <MDInt>(N->getOperand(2))); bat(dyn_cast <MDInt>(N->getOperand(3))); bay(dyn_cast_or_null<MDInt>(N->getOperand(4))); - A `CallInst` -- specifically, intrinsic instructions -- can refer to metadata through a bridge called `MetadataAsValue`. This is a subclass of `Value` where `getType()->isMetadataTy()`. `MetadataAsValue` is the *only* class that can legally refer to a `LocalAsMetadata`, which is a bridged form of non-`Constant` values like `Argument` and `Instruction`. It can also refer to any other `Metadata` subclass. (I'll break all your testcases in a follow-up commit, when I propagate this change to assembly.) llvm-svn: 223802
2014-12-10 02:38:53 +08:00
/// Collection of metadata used in this context.
DenseMap<const Value *, MDAttachments> ValueMetadata;
/// Collection of per-GlobalObject sections used in this context.
DenseMap<const GlobalObject *, StringRef> GlobalObjectSections;
/// Collection of per-GlobalValue partitions used in this context.
DenseMap<const GlobalValue *, StringRef> GlobalValuePartitions;
/// DiscriminatorTable - This table maps file:line locations to an
/// integer representing the next DWARF path discriminator to assign to
/// instructions in different blocks at the same location.
DenseMap<std::pair<const char *, unsigned>, unsigned> DiscriminatorTable;
/// A set of interned tags for operand bundles. The StringMap maps
/// bundle tags to their IDs.
///
/// \see LLVMContext::getOperandBundleTagID
StringMap<uint32_t> BundleTagCache;
StringMapEntry<uint32_t> *getOrInsertBundleTag(StringRef Tag);
void getOperandBundleTags(SmallVectorImpl<StringRef> &Tags) const;
uint32_t getOperandBundleTagID(StringRef Tag) const;
/// A set of interned synchronization scopes. The StringMap maps
/// synchronization scope names to their respective synchronization scope IDs.
StringMap<SyncScope::ID> SSC;
/// getOrInsertSyncScopeID - Maps synchronization scope name to
/// synchronization scope ID. Every synchronization scope registered with
/// LLVMContext has unique ID except pre-defined ones.
SyncScope::ID getOrInsertSyncScopeID(StringRef SSN);
/// getSyncScopeNames - Populates client supplied SmallVector with
/// synchronization scope names registered with LLVMContext. Synchronization
/// scope names are ordered by increasing synchronization scope IDs.
void getSyncScopeNames(SmallVectorImpl<StringRef> &SSNs) const;
/// Maintain the GC name for each function.
///
/// This saves allocating an additional word in Function for programs which
/// do not use GC (i.e., most programs) at the cost of increased overhead for
/// clients which do use GC.
DenseMap<const Function *, std::string> GCNames;
/// Flag to indicate if Value (other than GlobalValue) retains their name or
/// not.
bool DiscardValueNames = false;
LLVMContextImpl(LLVMContext &C);
~LLVMContextImpl();
/// Destroy the ConstantArrays if they are not used.
void dropTriviallyDeadConstantArrays();
mutable OptPassGate *OPG = nullptr;
/// Access the object which can disable optional passes and individual
/// optimizations at compile time.
OptPassGate &getOptPassGate() const;
/// Set the object which can disable optional passes and individual
/// optimizations at compile time.
///
/// The lifetime of the object must be guaranteed to extend as long as the
/// LLVMContext is used by compilation.
void setOptPassGate(OptPassGate &);
// TODO: clean up the following after we no longer support non-opaque pointer
// types.
bool getOpaquePointers();
void setOpaquePointers(bool OP);
private:
Optional<bool> OpaquePointers;
};
} // end namespace llvm
#endif // LLVM_LIB_IR_LLVMCONTEXTIMPL_H