llvm-project/lld/wasm/SymbolTable.cpp

697 lines
23 KiB
C++
Raw Normal View History

//===- SymbolTable.cpp ----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "SymbolTable.h"
#include "Config.h"
#include "InputChunks.h"
#include "InputEvent.h"
#include "InputGlobal.h"
#include "WriterUtils.h"
#include "lld/Common/ErrorHandler.h"
#include "lld/Common/Memory.h"
#include "llvm/ADT/SetVector.h"
#define DEBUG_TYPE "lld"
using namespace llvm;
using namespace llvm::wasm;
using namespace llvm::object;
using namespace lld;
using namespace lld::wasm;
SymbolTable *lld::wasm::Symtab;
void SymbolTable::addFile(InputFile *File) {
log("Processing: " + toString(File));
// .a file
if (auto *F = dyn_cast<ArchiveFile>(File)) {
F->parse();
return;
}
// .so file
if (auto *F = dyn_cast<SharedFile>(File)) {
SharedFiles.push_back(F);
return;
}
if (Config->Trace)
message(toString(File));
// LLVM bitcode file
if (auto *F = dyn_cast<BitcodeFile>(File)) {
F->parse();
BitcodeFiles.push_back(F);
return;
}
// Regular object file
auto *F = cast<ObjFile>(File);
F->parse(false);
ObjectFiles.push_back(F);
}
// This function is where all the optimizations of link-time
// optimization happens. When LTO is in use, some input files are
// not in native object file format but in the LLVM bitcode format.
// This function compiles bitcode files into a few big native files
// using LLVM functions and replaces bitcode symbols with the results.
// Because all bitcode files that the program consists of are passed
// to the compiler at once, it can do whole-program optimization.
void SymbolTable::addCombinedLTOObject() {
if (BitcodeFiles.empty())
return;
// Compile bitcode files and replace bitcode symbols.
LTO.reset(new BitcodeCompiler);
for (BitcodeFile *F : BitcodeFiles)
LTO->add(*F);
for (StringRef Filename : LTO->compile()) {
auto *Obj = make<ObjFile>(MemoryBufferRef(Filename, "lto.tmp"), "");
Obj->parse(true);
ObjectFiles.push_back(Obj);
}
}
void SymbolTable::reportRemainingUndefines() {
for (const auto& Pair : SymMap) {
const Symbol *Sym = SymVector[Pair.second];
if (!Sym->isUndefined() || Sym->isWeak())
continue;
if (Config->AllowUndefinedSymbols.count(Sym->getName()) != 0)
continue;
if (!Sym->IsUsedInRegularObj)
continue;
error(toString(Sym->getFile()) + ": undefined symbol: " + toString(*Sym));
}
}
Symbol *SymbolTable::find(StringRef Name) {
auto It = SymMap.find(CachedHashStringRef(Name));
if (It == SymMap.end() || It->second == -1)
return nullptr;
return SymVector[It->second];
}
void SymbolTable::replace(StringRef Name, Symbol* Sym) {
auto It = SymMap.find(CachedHashStringRef(Name));
SymVector[It->second] = Sym;
}
std::pair<Symbol *, bool> SymbolTable::insertName(StringRef Name) {
bool Trace = false;
auto P = SymMap.insert({CachedHashStringRef(Name), (int)SymVector.size()});
int &SymIndex = P.first->second;
bool IsNew = P.second;
if (SymIndex == -1) {
SymIndex = SymVector.size();
Trace = true;
IsNew = true;
}
if (!IsNew)
return {SymVector[SymIndex], false};
Symbol *Sym = reinterpret_cast<Symbol *>(make<SymbolUnion>());
Sym->IsUsedInRegularObj = false;
Sym->CanInline = true;
Sym->Traced = Trace;
SymVector.emplace_back(Sym);
return {Sym, true};
}
std::pair<Symbol *, bool> SymbolTable::insert(StringRef Name,
const InputFile *File) {
Symbol *S;
bool WasInserted;
std::tie(S, WasInserted) = insertName(Name);
if (!File || File->kind() == InputFile::ObjectKind)
S->IsUsedInRegularObj = true;
return {S, WasInserted};
}
static void reportTypeError(const Symbol *Existing, const InputFile *File,
llvm::wasm::WasmSymbolType Type) {
error("symbol type mismatch: " + toString(*Existing) + "\n>>> defined as " +
toString(Existing->getWasmType()) + " in " +
toString(Existing->getFile()) + "\n>>> defined as " + toString(Type) +
" in " + toString(File));
}
// Check the type of new symbol matches that of the symbol is replacing.
// Returns true if the function types match, false is there is a singature
// mismatch.
static bool signatureMatches(FunctionSymbol *Existing,
const WasmSignature *NewSig) {
const WasmSignature *OldSig = Existing->Signature;
// If either function is missing a signature (this happend for bitcode
// symbols) then assume they match. Any mismatch will be reported later
// when the LTO objects are added.
if (!NewSig || !OldSig)
return true;
return *NewSig == *OldSig;
}
static void checkGlobalType(const Symbol *Existing, const InputFile *File,
const WasmGlobalType *NewType) {
if (!isa<GlobalSymbol>(Existing)) {
reportTypeError(Existing, File, WASM_SYMBOL_TYPE_GLOBAL);
return;
}
const WasmGlobalType *OldType = cast<GlobalSymbol>(Existing)->getGlobalType();
if (*NewType != *OldType) {
error("Global type mismatch: " + Existing->getName() + "\n>>> defined as " +
toString(*OldType) + " in " + toString(Existing->getFile()) +
"\n>>> defined as " + toString(*NewType) + " in " + toString(File));
}
}
static void checkEventType(const Symbol *Existing, const InputFile *File,
const WasmEventType *NewType,
const WasmSignature *NewSig) {
auto ExistingEvent = dyn_cast<EventSymbol>(Existing);
if (!isa<EventSymbol>(Existing)) {
reportTypeError(Existing, File, WASM_SYMBOL_TYPE_EVENT);
return;
}
const WasmEventType *OldType = cast<EventSymbol>(Existing)->getEventType();
const WasmSignature *OldSig = ExistingEvent->Signature;
if (NewType->Attribute != OldType->Attribute)
error("Event type mismatch: " + Existing->getName() + "\n>>> defined as " +
toString(*OldType) + " in " + toString(Existing->getFile()) +
"\n>>> defined as " + toString(*NewType) + " in " + toString(File));
if (*NewSig != *OldSig)
warn("Event signature mismatch: " + Existing->getName() +
"\n>>> defined as " + toString(*OldSig) + " in " +
toString(Existing->getFile()) + "\n>>> defined as " +
toString(*NewSig) + " in " + toString(File));
}
static void checkDataType(const Symbol *Existing, const InputFile *File) {
if (!isa<DataSymbol>(Existing))
reportTypeError(Existing, File, WASM_SYMBOL_TYPE_DATA);
}
DefinedFunction *SymbolTable::addSyntheticFunction(StringRef Name,
uint32_t Flags,
InputFunction *Function) {
LLVM_DEBUG(dbgs() << "addSyntheticFunction: " << Name << "\n");
assert(!find(Name));
SyntheticFunctions.emplace_back(Function);
return replaceSymbol<DefinedFunction>(insertName(Name).first, Name,
Flags, nullptr, Function);
}
// Adds an optional, linker generated, data symbols. The symbol will only be
// added if there is an undefine reference to it, or if it is explictly exported
// via the --export flag. Otherwise we don't add the symbol and return nullptr.
DefinedData *SymbolTable::addOptionalDataSymbol(StringRef Name, uint32_t Value,
uint32_t Flags) {
Symbol *S = find(Name);
if (!S && (Config->ExportAll || Config->ExportedSymbols.count(Name) != 0))
S = insertName(Name).first;
else if (!S || S->isDefined())
return nullptr;
LLVM_DEBUG(dbgs() << "addOptionalDataSymbol: " << Name << "\n");
auto *rtn = replaceSymbol<DefinedData>(S, Name, Flags);
rtn->setVirtualAddress(Value);
return rtn;
}
DefinedData *SymbolTable::addSyntheticDataSymbol(StringRef Name,
uint32_t Flags) {
LLVM_DEBUG(dbgs() << "addSyntheticDataSymbol: " << Name << "\n");
assert(!find(Name));
return replaceSymbol<DefinedData>(insertName(Name).first, Name, Flags);
}
DefinedGlobal *SymbolTable::addSyntheticGlobal(StringRef Name, uint32_t Flags,
InputGlobal *Global) {
LLVM_DEBUG(dbgs() << "addSyntheticGlobal: " << Name << " -> " << Global
<< "\n");
assert(!find(Name));
SyntheticGlobals.emplace_back(Global);
return replaceSymbol<DefinedGlobal>(insertName(Name).first, Name, Flags,
nullptr, Global);
}
static bool shouldReplace(const Symbol *Existing, InputFile *NewFile,
uint32_t NewFlags) {
// If existing symbol is undefined, replace it.
if (!Existing->isDefined()) {
LLVM_DEBUG(dbgs() << "resolving existing undefined symbol: "
<< Existing->getName() << "\n");
return true;
}
// Now we have two defined symbols. If the new one is weak, we can ignore it.
if ((NewFlags & WASM_SYMBOL_BINDING_MASK) == WASM_SYMBOL_BINDING_WEAK) {
LLVM_DEBUG(dbgs() << "existing symbol takes precedence\n");
return false;
}
// If the existing symbol is weak, we should replace it.
if (Existing->isWeak()) {
LLVM_DEBUG(dbgs() << "replacing existing weak symbol\n");
return true;
}
// Neither symbol is week. They conflict.
error("duplicate symbol: " + toString(*Existing) + "\n>>> defined in " +
toString(Existing->getFile()) + "\n>>> defined in " +
toString(NewFile));
return true;
}
Symbol *SymbolTable::addDefinedFunction(StringRef Name, uint32_t Flags,
InputFile *File,
InputFunction *Function) {
LLVM_DEBUG(dbgs() << "addDefinedFunction: " << Name << " ["
<< (Function ? toString(Function->Signature) : "none")
<< "]\n");
Symbol *S;
bool WasInserted;
std::tie(S, WasInserted) = insert(Name, File);
auto Replace = [&](Symbol* Sym) {
// If the new defined function doesn't have signture (i.e. bitcode
// functions) but the old symbol does, then preserve the old signature
const WasmSignature *OldSig = S->getSignature();
auto* NewSym = replaceSymbol<DefinedFunction>(Sym, Name, Flags, File, Function);
if (!NewSym->Signature)
NewSym->Signature = OldSig;
};
if (WasInserted || S->isLazy()) {
Replace(S);
return S;
}
auto ExistingFunction = dyn_cast<FunctionSymbol>(S);
if (!ExistingFunction) {
reportTypeError(S, File, WASM_SYMBOL_TYPE_FUNCTION);
return S;
}
bool CheckSig = true;
if (auto UD = dyn_cast<UndefinedFunction>(ExistingFunction))
CheckSig = UD->IsCalledDirectly;
if (CheckSig && Function && !signatureMatches(ExistingFunction, &Function->Signature)) {
Symbol* Variant;
if (getFunctionVariant(S, &Function->Signature, File, &Variant))
// New variant, always replace
Replace(Variant);
else if (shouldReplace(S, File, Flags))
// Variant already exists, replace it after checking shouldReplace
Replace(Variant);
// This variant we found take the place in the symbol table as the primary
// variant.
replace(Name, Variant);
return Variant;
}
// Existing function with matching signature.
if (shouldReplace(S, File, Flags))
Replace(S);
return S;
}
Symbol *SymbolTable::addDefinedData(StringRef Name, uint32_t Flags,
InputFile *File, InputSegment *Segment,
uint32_t Address, uint32_t Size) {
LLVM_DEBUG(dbgs() << "addDefinedData:" << Name << " addr:" << Address
<< "\n");
Symbol *S;
bool WasInserted;
std::tie(S, WasInserted) = insert(Name, File);
auto Replace = [&]() {
replaceSymbol<DefinedData>(S, Name, Flags, File, Segment, Address, Size);
};
if (WasInserted || S->isLazy()) {
Replace();
return S;
}
checkDataType(S, File);
if (shouldReplace(S, File, Flags))
Replace();
return S;
}
Symbol *SymbolTable::addDefinedGlobal(StringRef Name, uint32_t Flags,
InputFile *File, InputGlobal *Global) {
LLVM_DEBUG(dbgs() << "addDefinedGlobal:" << Name << "\n");
Symbol *S;
bool WasInserted;
std::tie(S, WasInserted) = insert(Name, File);
auto Replace = [&]() {
replaceSymbol<DefinedGlobal>(S, Name, Flags, File, Global);
};
if (WasInserted || S->isLazy()) {
Replace();
return S;
}
checkGlobalType(S, File, &Global->getType());
if (shouldReplace(S, File, Flags))
Replace();
return S;
}
Symbol *SymbolTable::addDefinedEvent(StringRef Name, uint32_t Flags,
InputFile *File, InputEvent *Event) {
LLVM_DEBUG(dbgs() << "addDefinedEvent:" << Name << "\n");
Symbol *S;
bool WasInserted;
std::tie(S, WasInserted) = insert(Name, File);
auto Replace = [&]() {
replaceSymbol<DefinedEvent>(S, Name, Flags, File, Event);
};
if (WasInserted || S->isLazy()) {
Replace();
return S;
}
checkEventType(S, File, &Event->getType(), &Event->Signature);
if (shouldReplace(S, File, Flags))
Replace();
return S;
}
Symbol *SymbolTable::addUndefinedFunction(StringRef Name, StringRef ImportName,
StringRef ImportModule,
uint32_t Flags, InputFile *File,
const WasmSignature *Sig,
bool IsCalledDirectly) {
LLVM_DEBUG(dbgs() << "addUndefinedFunction: " << Name << " ["
<< (Sig ? toString(*Sig) : "none")
<< "] IsCalledDirectly:" << IsCalledDirectly << "\n");
Symbol *S;
bool WasInserted;
std::tie(S, WasInserted) = insert(Name, File);
if (S->Traced)
printTraceSymbolUndefined(Name, File);
auto Replace = [&]() {
replaceSymbol<UndefinedFunction>(S, Name, ImportName, ImportModule, Flags,
File, Sig, IsCalledDirectly);
};
if (WasInserted)
Replace();
else if (auto *Lazy = dyn_cast<LazySymbol>(S))
Lazy->fetch();
else {
auto ExistingFunction = dyn_cast<FunctionSymbol>(S);
if (!ExistingFunction) {
reportTypeError(S, File, WASM_SYMBOL_TYPE_FUNCTION);
return S;
}
if (!ExistingFunction->Signature && Sig)
ExistingFunction->Signature = Sig;
if (IsCalledDirectly && !signatureMatches(ExistingFunction, Sig))
if (getFunctionVariant(S, Sig, File, &S))
Replace();
}
return S;
}
Symbol *SymbolTable::addUndefinedData(StringRef Name, uint32_t Flags,
InputFile *File) {
LLVM_DEBUG(dbgs() << "addUndefinedData: " << Name << "\n");
Symbol *S;
bool WasInserted;
std::tie(S, WasInserted) = insert(Name, File);
if (S->Traced)
printTraceSymbolUndefined(Name, File);
if (WasInserted)
replaceSymbol<UndefinedData>(S, Name, Flags, File);
else if (auto *Lazy = dyn_cast<LazySymbol>(S))
Lazy->fetch();
else if (S->isDefined())
checkDataType(S, File);
return S;
}
Symbol *SymbolTable::addUndefinedGlobal(StringRef Name, StringRef ImportName,
StringRef ImportModule, uint32_t Flags,
InputFile *File,
const WasmGlobalType *Type) {
LLVM_DEBUG(dbgs() << "addUndefinedGlobal: " << Name << "\n");
Symbol *S;
bool WasInserted;
std::tie(S, WasInserted) = insert(Name, File);
if (S->Traced)
printTraceSymbolUndefined(Name, File);
if (WasInserted)
replaceSymbol<UndefinedGlobal>(S, Name, ImportName, ImportModule, Flags,
File, Type);
else if (auto *Lazy = dyn_cast<LazySymbol>(S))
Lazy->fetch();
else if (S->isDefined())
checkGlobalType(S, File, Type);
return S;
}
void SymbolTable::addLazy(ArchiveFile *File, const Archive::Symbol *Sym) {
LLVM_DEBUG(dbgs() << "addLazy: " << Sym->getName() << "\n");
StringRef Name = Sym->getName();
Symbol *S;
bool WasInserted;
std::tie(S, WasInserted) = insertName(Name);
if (WasInserted) {
replaceSymbol<LazySymbol>(S, Name, 0, File, *Sym);
return;
}
if (!S->isUndefined())
return;
// The existing symbol is undefined, load a new one from the archive,
// unless the the existing symbol is weak in which case replace the undefined
// symbols with a LazySymbol.
if (S->isWeak()) {
const WasmSignature *OldSig = nullptr;
// In the case of an UndefinedFunction we need to preserve the expected
// signature.
if (auto *F = dyn_cast<UndefinedFunction>(S))
OldSig = F->Signature;
LLVM_DEBUG(dbgs() << "replacing existing weak undefined symbol\n");
auto NewSym = replaceSymbol<LazySymbol>(S, Name, WASM_SYMBOL_BINDING_WEAK,
File, *Sym);
NewSym->Signature = OldSig;
return;
}
LLVM_DEBUG(dbgs() << "replacing existing undefined\n");
File->addMember(Sym);
}
bool SymbolTable::addComdat(StringRef Name) {
return ComdatGroups.insert(CachedHashStringRef(Name)).second;
}
// The new signature doesn't match. Create a variant to the symbol with the
// signature encoded in the name and return that instead. These symbols are
// then unified later in handleSymbolVariants.
bool SymbolTable::getFunctionVariant(Symbol* Sym, const WasmSignature *Sig,
const InputFile *File, Symbol **Out) {
LLVM_DEBUG(dbgs() << "getFunctionVariant: " << Sym->getName() << " -> "
<< " " << toString(*Sig) << "\n");
Symbol *Variant = nullptr;
// Linear search through symbol variants. Should never be more than two
// or three entries here.
auto &Variants = SymVariants[CachedHashStringRef(Sym->getName())];
2019-04-18 21:33:29 +08:00
if (Variants.empty())
Variants.push_back(Sym);
for (Symbol* V : Variants) {
if (*V->getSignature() == *Sig) {
Variant = V;
break;
}
}
bool WasAdded = !Variant;
if (WasAdded) {
// Create a new variant;
LLVM_DEBUG(dbgs() << "added new variant\n");
Variant = reinterpret_cast<Symbol *>(make<SymbolUnion>());
Variants.push_back(Variant);
} else {
LLVM_DEBUG(dbgs() << "variant already exists: " << toString(*Variant) << "\n");
assert(*Variant->getSignature() == *Sig);
}
*Out = Variant;
return WasAdded;
}
// Set a flag for --trace-symbol so that we can print out a log message
// if a new symbol with the same name is inserted into the symbol table.
void SymbolTable::trace(StringRef Name) {
SymMap.insert({CachedHashStringRef(Name), -1});
}
void SymbolTable::wrap(Symbol *Sym, Symbol *Real, Symbol *Wrap) {
// Swap symbols as instructed by -wrap.
int &OrigIdx = SymMap[CachedHashStringRef(Sym->getName())];
int &RealIdx= SymMap[CachedHashStringRef(Real->getName())];
int &WrapIdx = SymMap[CachedHashStringRef(Wrap->getName())];
LLVM_DEBUG(dbgs() << "wrap: " << Sym->getName() << "\n");
// Anyone looking up __real symbols should get the original
RealIdx = OrigIdx;
// Anyone looking up the original should get the __wrap symbol
OrigIdx = WrapIdx;
}
static const uint8_t UnreachableFn[] = {
0x03 /* ULEB length */, 0x00 /* ULEB num locals */,
0x00 /* opcode unreachable */, 0x0b /* opcode end */
};
// Replace the given symbol body with an unreachable function.
// This is used by handleWeakUndefines in order to generate a callable
// equivalent of an undefined function and also handleSymbolVariants for
// undefined functions that don't match the signature of the definition.
InputFunction *SymbolTable::replaceWithUnreachable(Symbol *Sym,
const WasmSignature &Sig,
StringRef DebugName) {
auto *Func = make<SyntheticFunction>(Sig, Sym->getName(), DebugName);
Func->setBody(UnreachableFn);
SyntheticFunctions.emplace_back(Func);
replaceSymbol<DefinedFunction>(Sym, Sym->getName(), Sym->getFlags(), nullptr,
Func);
return Func;
}
// For weak undefined functions, there may be "call" instructions that reference
// the symbol. In this case, we need to synthesise a dummy/stub function that
// will abort at runtime, so that relocations can still provided an operand to
// the call instruction that passes Wasm validation.
void SymbolTable::handleWeakUndefines() {
for (Symbol *Sym : getSymbols()) {
if (!Sym->isUndefWeak())
continue;
const WasmSignature *Sig = Sym->getSignature();
if (!Sig) {
// It is possible for undefined functions not to have a signature (eg. if
// added via "--undefined"), but weak undefined ones do have a signature.
// Lazy symbols may not be functions and therefore Sig can still be null
// in some circumstantce.
assert(!isa<FunctionSymbol>(Sym));
continue;
}
// Add a synthetic dummy for weak undefined functions. These dummies will
// be GC'd if not used as the target of any "call" instructions.
StringRef DebugName = Saver.save("undefined:" + toString(*Sym));
InputFunction* Func = replaceWithUnreachable(Sym, *Sig, DebugName);
// Ensure it compares equal to the null pointer, and so that table relocs
// don't pull in the stub body (only call-operand relocs should do that).
Func->setTableIndex(0);
// Hide our dummy to prevent export.
Sym->setHidden(true);
}
}
static void reportFunctionSignatureMismatch(StringRef SymName,
FunctionSymbol *A,
FunctionSymbol *B, bool Error) {
std::string msg = ("function signature mismatch: " + SymName +
"\n>>> defined as " + toString(*A->Signature) + " in " +
toString(A->getFile()) + "\n>>> defined as " +
toString(*B->Signature) + " in " + toString(B->getFile()))
.str();
if (Error)
error(msg);
else
warn(msg);
}
// Remove any variant symbols that were created due to function signature
// mismatches.
void SymbolTable::handleSymbolVariants() {
for (auto Pair : SymVariants) {
// Push the initial symbol onto the list of variants.
StringRef SymName = Pair.first.val();
std::vector<Symbol *> &Variants = Pair.second;
#ifndef NDEBUG
LLVM_DEBUG(dbgs() << "symbol with (" << Variants.size()
<< ") variants: " << SymName << "\n");
for (auto *S: Variants) {
auto *F = cast<FunctionSymbol>(S);
LLVM_DEBUG(dbgs() << " variant: " + F->getName() << " "
<< toString(*F->Signature) << "\n");
}
#endif
// Find the one definition.
DefinedFunction *Defined = nullptr;
for (auto *Symbol : Variants) {
if (auto F = dyn_cast<DefinedFunction>(Symbol)) {
Defined = F;
break;
}
}
// If there are no definitions, and the undefined symbols disagree on
// the signature, there is not we can do since we don't know which one
// to use as the signature on the import.
if (!Defined) {
reportFunctionSignatureMismatch(SymName,
cast<FunctionSymbol>(Variants[0]),
cast<FunctionSymbol>(Variants[1]), true);
return;
}
for (auto *Symbol : Variants) {
if (Symbol != Defined) {
auto *F = cast<FunctionSymbol>(Symbol);
reportFunctionSignatureMismatch(SymName, F, Defined, false);
StringRef DebugName = Saver.save("unreachable:" + toString(*F));
replaceWithUnreachable(F, *F->Signature, DebugName);
}
}
}
}