2009-06-27 00:47:03 +08:00
|
|
|
//===-- mulsc3_test.c - Test __mulsc3 -------------------------------------===//
|
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
2010-11-17 06:13:33 +08:00
|
|
|
// This file is dual licensed under the MIT and the University of Illinois Open
|
|
|
|
// Source Licenses. See LICENSE.TXT for details.
|
2009-06-27 00:47:03 +08:00
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// This file tests __mulsc3 for the compiler_rt library.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#include "int_lib.h"
|
|
|
|
#include <math.h>
|
|
|
|
#include <complex.h>
|
|
|
|
#include <stdio.h>
|
|
|
|
|
|
|
|
// Returns: the product of a + ib and c + id
|
|
|
|
|
|
|
|
float _Complex __mulsc3(float __a, float __b, float __c, float __d);
|
|
|
|
|
|
|
|
enum {zero, non_zero, inf, NaN, non_zero_nan};
|
|
|
|
|
|
|
|
int
|
|
|
|
classify(float _Complex x)
|
|
|
|
{
|
|
|
|
if (x == 0)
|
|
|
|
return zero;
|
|
|
|
if (isinf(crealf(x)) || isinf(cimagf(x)))
|
|
|
|
return inf;
|
|
|
|
if (isnan(crealf(x)) && isnan(cimagf(x)))
|
|
|
|
return NaN;
|
|
|
|
if (isnan(crealf(x)))
|
|
|
|
{
|
|
|
|
if (cimagf(x) == 0)
|
|
|
|
return NaN;
|
|
|
|
return non_zero_nan;
|
|
|
|
}
|
|
|
|
if (isnan(cimagf(x)))
|
|
|
|
{
|
|
|
|
if (crealf(x) == 0)
|
|
|
|
return NaN;
|
|
|
|
return non_zero_nan;
|
|
|
|
}
|
|
|
|
return non_zero;
|
|
|
|
}
|
|
|
|
|
|
|
|
int test__mulsc3(float a, float b, float c, float d)
|
|
|
|
{
|
|
|
|
float _Complex r = __mulsc3(a, b, c, d);
|
|
|
|
// printf("test__mulsc3(%f, %f, %f, %f) = %f + I%f\n",
|
|
|
|
// a, b, c, d, crealf(r), cimagf(r));
|
|
|
|
float _Complex dividend;
|
|
|
|
float _Complex divisor;
|
|
|
|
|
|
|
|
__real__ dividend = a;
|
|
|
|
__imag__ dividend = b;
|
|
|
|
__real__ divisor = c;
|
|
|
|
__imag__ divisor = d;
|
|
|
|
|
|
|
|
switch (classify(dividend))
|
|
|
|
{
|
|
|
|
case zero:
|
|
|
|
switch (classify(divisor))
|
|
|
|
{
|
|
|
|
case zero:
|
|
|
|
if (classify(r) != zero)
|
|
|
|
return 1;
|
|
|
|
break;
|
|
|
|
case non_zero:
|
|
|
|
if (classify(r) != zero)
|
|
|
|
return 1;
|
|
|
|
break;
|
|
|
|
case inf:
|
|
|
|
if (classify(r) != NaN)
|
|
|
|
return 1;
|
|
|
|
break;
|
|
|
|
case NaN:
|
|
|
|
if (classify(r) != NaN)
|
|
|
|
return 1;
|
|
|
|
break;
|
|
|
|
case non_zero_nan:
|
|
|
|
if (classify(r) != NaN)
|
|
|
|
return 1;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case non_zero:
|
|
|
|
switch (classify(divisor))
|
|
|
|
{
|
|
|
|
case zero:
|
|
|
|
if (classify(r) != zero)
|
|
|
|
return 1;
|
|
|
|
break;
|
|
|
|
case non_zero:
|
|
|
|
if (classify(r) != non_zero)
|
|
|
|
return 1;
|
|
|
|
{
|
|
|
|
float _Complex z = a * c - b * d + _Complex_I*(a * d + b * c);
|
|
|
|
// relaxed tolerance to arbitrary (1.e-6) amount.
|
|
|
|
if (cabsf((r-z)/r) > 1.e-6)
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case inf:
|
|
|
|
if (classify(r) != inf)
|
|
|
|
return 1;
|
|
|
|
break;
|
|
|
|
case NaN:
|
|
|
|
if (classify(r) != NaN)
|
|
|
|
return 1;
|
|
|
|
break;
|
|
|
|
case non_zero_nan:
|
|
|
|
if (classify(r) != NaN)
|
|
|
|
return 1;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case inf:
|
|
|
|
switch (classify(divisor))
|
|
|
|
{
|
|
|
|
case zero:
|
|
|
|
if (classify(r) != NaN)
|
|
|
|
return 1;
|
|
|
|
break;
|
|
|
|
case non_zero:
|
|
|
|
if (classify(r) != inf)
|
|
|
|
return 1;
|
|
|
|
break;
|
|
|
|
case inf:
|
|
|
|
if (classify(r) != inf)
|
|
|
|
return 1;
|
|
|
|
break;
|
|
|
|
case NaN:
|
|
|
|
if (classify(r) != NaN)
|
|
|
|
return 1;
|
|
|
|
break;
|
|
|
|
case non_zero_nan:
|
|
|
|
if (classify(r) != inf)
|
|
|
|
return 1;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case NaN:
|
|
|
|
switch (classify(divisor))
|
|
|
|
{
|
|
|
|
case zero:
|
|
|
|
if (classify(r) != NaN)
|
|
|
|
return 1;
|
|
|
|
break;
|
|
|
|
case non_zero:
|
|
|
|
if (classify(r) != NaN)
|
|
|
|
return 1;
|
|
|
|
break;
|
|
|
|
case inf:
|
|
|
|
if (classify(r) != NaN)
|
|
|
|
return 1;
|
|
|
|
break;
|
|
|
|
case NaN:
|
|
|
|
if (classify(r) != NaN)
|
|
|
|
return 1;
|
|
|
|
break;
|
|
|
|
case non_zero_nan:
|
|
|
|
if (classify(r) != NaN)
|
|
|
|
return 1;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case non_zero_nan:
|
|
|
|
switch (classify(divisor))
|
|
|
|
{
|
|
|
|
case zero:
|
|
|
|
if (classify(r) != NaN)
|
|
|
|
return 1;
|
|
|
|
break;
|
|
|
|
case non_zero:
|
|
|
|
if (classify(r) != NaN)
|
|
|
|
return 1;
|
|
|
|
break;
|
|
|
|
case inf:
|
|
|
|
if (classify(r) != inf)
|
|
|
|
return 1;
|
|
|
|
break;
|
|
|
|
case NaN:
|
|
|
|
if (classify(r) != NaN)
|
|
|
|
return 1;
|
|
|
|
break;
|
|
|
|
case non_zero_nan:
|
|
|
|
if (classify(r) != NaN)
|
|
|
|
return 1;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
float x[][2] =
|
|
|
|
{
|
|
|
|
{ 1.e-6, 1.e-6},
|
|
|
|
{-1.e-6, 1.e-6},
|
|
|
|
{-1.e-6, -1.e-6},
|
|
|
|
{ 1.e-6, -1.e-6},
|
|
|
|
|
|
|
|
{ 1.e+6, 1.e-6},
|
|
|
|
{-1.e+6, 1.e-6},
|
|
|
|
{-1.e+6, -1.e-6},
|
|
|
|
{ 1.e+6, -1.e-6},
|
|
|
|
|
|
|
|
{ 1.e-6, 1.e+6},
|
|
|
|
{-1.e-6, 1.e+6},
|
|
|
|
{-1.e-6, -1.e+6},
|
|
|
|
{ 1.e-6, -1.e+6},
|
|
|
|
|
|
|
|
{ 1.e+6, 1.e+6},
|
|
|
|
{-1.e+6, 1.e+6},
|
|
|
|
{-1.e+6, -1.e+6},
|
|
|
|
{ 1.e+6, -1.e+6},
|
|
|
|
|
|
|
|
{NAN, NAN},
|
|
|
|
{-INFINITY, NAN},
|
|
|
|
{-2, NAN},
|
|
|
|
{-1, NAN},
|
|
|
|
{-0.5, NAN},
|
|
|
|
{-0., NAN},
|
|
|
|
{+0., NAN},
|
|
|
|
{0.5, NAN},
|
|
|
|
{1, NAN},
|
|
|
|
{2, NAN},
|
|
|
|
{INFINITY, NAN},
|
|
|
|
|
|
|
|
{NAN, -INFINITY},
|
|
|
|
{-INFINITY, -INFINITY},
|
|
|
|
{-2, -INFINITY},
|
|
|
|
{-1, -INFINITY},
|
|
|
|
{-0.5, -INFINITY},
|
|
|
|
{-0., -INFINITY},
|
|
|
|
{+0., -INFINITY},
|
|
|
|
{0.5, -INFINITY},
|
|
|
|
{1, -INFINITY},
|
|
|
|
{2, -INFINITY},
|
|
|
|
{INFINITY, -INFINITY},
|
|
|
|
|
|
|
|
{NAN, -2},
|
|
|
|
{-INFINITY, -2},
|
|
|
|
{-2, -2},
|
|
|
|
{-1, -2},
|
|
|
|
{-0.5, -2},
|
|
|
|
{-0., -2},
|
|
|
|
{+0., -2},
|
|
|
|
{0.5, -2},
|
|
|
|
{1, -2},
|
|
|
|
{2, -2},
|
|
|
|
{INFINITY, -2},
|
|
|
|
|
|
|
|
{NAN, -1},
|
|
|
|
{-INFINITY, -1},
|
|
|
|
{-2, -1},
|
|
|
|
{-1, -1},
|
|
|
|
{-0.5, -1},
|
|
|
|
{-0., -1},
|
|
|
|
{+0., -1},
|
|
|
|
{0.5, -1},
|
|
|
|
{1, -1},
|
|
|
|
{2, -1},
|
|
|
|
{INFINITY, -1},
|
|
|
|
|
|
|
|
{NAN, -0.5},
|
|
|
|
{-INFINITY, -0.5},
|
|
|
|
{-2, -0.5},
|
|
|
|
{-1, -0.5},
|
|
|
|
{-0.5, -0.5},
|
|
|
|
{-0., -0.5},
|
|
|
|
{+0., -0.5},
|
|
|
|
{0.5, -0.5},
|
|
|
|
{1, -0.5},
|
|
|
|
{2, -0.5},
|
|
|
|
{INFINITY, -0.5},
|
|
|
|
|
|
|
|
{NAN, -0.},
|
|
|
|
{-INFINITY, -0.},
|
|
|
|
{-2, -0.},
|
|
|
|
{-1, -0.},
|
|
|
|
{-0.5, -0.},
|
|
|
|
{-0., -0.},
|
|
|
|
{+0., -0.},
|
|
|
|
{0.5, -0.},
|
|
|
|
{1, -0.},
|
|
|
|
{2, -0.},
|
|
|
|
{INFINITY, -0.},
|
|
|
|
|
|
|
|
{NAN, 0.},
|
|
|
|
{-INFINITY, 0.},
|
|
|
|
{-2, 0.},
|
|
|
|
{-1, 0.},
|
|
|
|
{-0.5, 0.},
|
|
|
|
{-0., 0.},
|
|
|
|
{+0., 0.},
|
|
|
|
{0.5, 0.},
|
|
|
|
{1, 0.},
|
|
|
|
{2, 0.},
|
|
|
|
{INFINITY, 0.},
|
|
|
|
|
|
|
|
{NAN, 0.5},
|
|
|
|
{-INFINITY, 0.5},
|
|
|
|
{-2, 0.5},
|
|
|
|
{-1, 0.5},
|
|
|
|
{-0.5, 0.5},
|
|
|
|
{-0., 0.5},
|
|
|
|
{+0., 0.5},
|
|
|
|
{0.5, 0.5},
|
|
|
|
{1, 0.5},
|
|
|
|
{2, 0.5},
|
|
|
|
{INFINITY, 0.5},
|
|
|
|
|
|
|
|
{NAN, 1},
|
|
|
|
{-INFINITY, 1},
|
|
|
|
{-2, 1},
|
|
|
|
{-1, 1},
|
|
|
|
{-0.5, 1},
|
|
|
|
{-0., 1},
|
|
|
|
{+0., 1},
|
|
|
|
{0.5, 1},
|
|
|
|
{1, 1},
|
|
|
|
{2, 1},
|
|
|
|
{INFINITY, 1},
|
|
|
|
|
|
|
|
{NAN, 2},
|
|
|
|
{-INFINITY, 2},
|
|
|
|
{-2, 2},
|
|
|
|
{-1, 2},
|
|
|
|
{-0.5, 2},
|
|
|
|
{-0., 2},
|
|
|
|
{+0., 2},
|
|
|
|
{0.5, 2},
|
|
|
|
{1, 2},
|
|
|
|
{2, 2},
|
|
|
|
{INFINITY, 2},
|
|
|
|
|
|
|
|
{NAN, INFINITY},
|
|
|
|
{-INFINITY, INFINITY},
|
|
|
|
{-2, INFINITY},
|
|
|
|
{-1, INFINITY},
|
|
|
|
{-0.5, INFINITY},
|
|
|
|
{-0., INFINITY},
|
|
|
|
{+0., INFINITY},
|
|
|
|
{0.5, INFINITY},
|
|
|
|
{1, INFINITY},
|
|
|
|
{2, INFINITY},
|
|
|
|
{INFINITY, INFINITY}
|
|
|
|
|
|
|
|
};
|
|
|
|
|
|
|
|
int main()
|
|
|
|
{
|
|
|
|
const unsigned N = sizeof(x) / sizeof(x[0]);
|
|
|
|
unsigned i, j;
|
|
|
|
for (i = 0; i < N; ++i)
|
|
|
|
{
|
|
|
|
for (j = 0; j < N; ++j)
|
|
|
|
{
|
|
|
|
if (test__mulsc3(x[i][0], x[i][1], x[j][0], x[j][1]))
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|