llvm-project/lldb/source/Expression/ClangExpression.cpp

749 lines
26 KiB
C++
Raw Normal View History

//===-- ClangExpression.cpp -------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// C Includes
#include <stdio.h>
#if HAVE_SYS_TYPES_H
# include <sys/types.h>
#endif
// C++ Includes
#include <cstdlib>
#include <string>
#include <map>
// Other libraries and framework includes
#include "clang/AST/ASTContext.h"
#include "clang/AST/ExternalASTSource.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/Version.h"
#include "clang/Checker/FrontendActions.h"
#include "clang/CodeGen/CodeGenAction.h"
#include "clang/CodeGen/ModuleBuilder.h"
#include "clang/Driver/CC1Options.h"
#include "clang/Driver/OptTable.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Frontend/CompilerInvocation.h"
#include "clang/Frontend/FrontendActions.h"
#include "clang/Frontend/FrontendDiagnostic.h"
#include "clang/Frontend/FrontendPluginRegistry.h"
#include "clang/Frontend/TextDiagnosticBuffer.h"
#include "clang/Frontend/TextDiagnosticPrinter.h"
#include "clang/Frontend/VerifyDiagnosticsClient.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Rewrite/FrontendActions.h"
#include "clang/Sema/ParseAST.h"
#include "clang/Sema/SemaConsumer.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/JIT.h"
#include "llvm/Module.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/LLVMContext.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/System/DynamicLibrary.h"
#include "llvm/System/Host.h"
#include "llvm/System/Signals.h"
#include "llvm/Target/TargetRegistry.h"
#include "llvm/Target/TargetSelect.h"
// Project includes
#include "lldb/Core/Log.h"
#include "lldb/Core/ClangForward.h"
#include "lldb/Core/DataBufferHeap.h"
#include "lldb/Core/Disassembler.h"
#include "lldb/Expression/ClangExpression.h"
#include "lldb/Expression/ClangASTSource.h"
#include "lldb/Expression/ClangResultSynthesizer.h"
#include "lldb/Expression/IRForTarget.h"
#include "lldb/Expression/IRToDWARF.h"
#include "lldb/Symbol/ClangASTContext.h"
#include "lldb/Expression/RecordingMemoryManager.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/Target.h"
#include "lldb/Core/StreamString.h"
#include "lldb/Host/Mutex.h"
using namespace lldb_private;
using namespace clang;
using namespace llvm;
//===----------------------------------------------------------------------===//
// Utility Methods
//===----------------------------------------------------------------------===//
std::string GetBuiltinIncludePath(const char *Argv0) {
llvm::sys::Path P =
llvm::sys::Path::GetMainExecutable(Argv0,
(void*)(intptr_t) GetBuiltinIncludePath);
if (!P.isEmpty()) {
P.eraseComponent(); // Remove /clang from foo/bin/clang
P.eraseComponent(); // Remove /bin from foo/bin
// Get foo/lib/clang/<version>/include
P.appendComponent("lib");
P.appendComponent("clang");
P.appendComponent(CLANG_VERSION_STRING);
P.appendComponent("include");
}
return P.str();
}
//===----------------------------------------------------------------------===//
// Main driver
//===----------------------------------------------------------------------===//
static void LLVMErrorHandler(void *UserData, const std::string &Message) {
Diagnostic &Diags = *static_cast<Diagnostic*>(UserData);
Diags.Report(diag::err_fe_error_backend) << Message;
// We cannot recover from llvm errors.
exit(1);
}
static FrontendAction *CreateFrontendBaseAction(CompilerInstance &CI) {
using namespace clang::frontend;
switch (CI.getFrontendOpts().ProgramAction) {
default:
llvm_unreachable("Invalid program action!");
case ASTDump: return new ASTDumpAction();
case ASTPrint: return new ASTPrintAction();
case ASTPrintXML: return new ASTPrintXMLAction();
case ASTView: return new ASTViewAction();
case BoostCon: return new BoostConAction();
case DumpRawTokens: return new DumpRawTokensAction();
case DumpTokens: return new DumpTokensAction();
case EmitAssembly: return new EmitAssemblyAction();
case EmitBC: return new EmitBCAction();
case EmitHTML: return new HTMLPrintAction();
case EmitLLVM: return new EmitLLVMAction();
case EmitLLVMOnly: return new EmitLLVMOnlyAction();
case EmitCodeGenOnly: return new EmitCodeGenOnlyAction();
case EmitObj: return new EmitObjAction();
case FixIt: return new FixItAction();
case GeneratePCH: return new GeneratePCHAction();
case GeneratePTH: return new GeneratePTHAction();
case InheritanceView: return new InheritanceViewAction();
case InitOnly: return new InitOnlyAction();
case ParseSyntaxOnly: return new SyntaxOnlyAction();
case PluginAction: {
for (FrontendPluginRegistry::iterator it =
FrontendPluginRegistry::begin(), ie = FrontendPluginRegistry::end();
it != ie; ++it) {
if (it->getName() == CI.getFrontendOpts().ActionName) {
llvm::OwningPtr<PluginASTAction> P(it->instantiate());
if (!P->ParseArgs(CI, CI.getFrontendOpts().PluginArgs))
return 0;
return P.take();
}
}
CI.getDiagnostics().Report(diag::err_fe_invalid_plugin_name)
<< CI.getFrontendOpts().ActionName;
return 0;
}
case PrintDeclContext: return new DeclContextPrintAction();
case PrintPreamble: return new PrintPreambleAction();
case PrintPreprocessedInput: return new PrintPreprocessedAction();
case RewriteMacros: return new RewriteMacrosAction();
case RewriteObjC: return new RewriteObjCAction();
case RewriteTest: return new RewriteTestAction();
case RunAnalysis: return new AnalysisAction();
case RunPreprocessorOnly: return new PreprocessOnlyAction();
}
}
static FrontendAction *CreateFrontendAction(CompilerInstance &CI) {
// Create the underlying action.
FrontendAction *Act = CreateFrontendBaseAction(CI);
if (!Act)
return 0;
// If there are any AST files to merge, create a frontend action
// adaptor to perform the merge.
if (!CI.getFrontendOpts().ASTMergeFiles.empty())
Act = new ASTMergeAction(Act, &CI.getFrontendOpts().ASTMergeFiles[0],
CI.getFrontendOpts().ASTMergeFiles.size());
return Act;
}
//----------------------------------------------------------------------
// ClangExpression constructor
//----------------------------------------------------------------------
ClangExpression::ClangExpression(const char *target_triple,
ClangExpressionDeclMap *decl_map) :
m_target_triple (),
m_decl_map (decl_map),
m_clang_ap (),
m_code_generator_ptr (NULL),
m_jit_mm_ptr (NULL),
m_execution_engine (),
m_jitted_functions ()
{
if (target_triple && target_triple[0])
m_target_triple = target_triple;
else
m_target_triple = llvm::sys::getHostTriple();
}
//----------------------------------------------------------------------
// Destructor
//----------------------------------------------------------------------
ClangExpression::~ClangExpression()
{
if (m_code_generator_ptr && !m_execution_engine.get())
delete m_code_generator_ptr;
}
bool
ClangExpression::CreateCompilerInstance ()
{
// Initialize targets first, so that --version shows registered targets.
static struct InitializeLLVM {
InitializeLLVM() {
llvm::InitializeAllTargets();
llvm::InitializeAllAsmPrinters();
}
} InitializeLLVM;
// 1. Create a new compiler instance.
m_clang_ap.reset(new CompilerInstance());
m_clang_ap->setLLVMContext(new LLVMContext());
// 2. Set options.
// Parse expressions as Objective C++ regardless of context.
// Our hook into Clang's lookup mechanism only works in C++.
m_clang_ap->getLangOpts().CPlusPlus = true;
m_clang_ap->getLangOpts().ObjC1 = true;
m_clang_ap->getLangOpts().ThreadsafeStatics = false;
m_clang_ap->getLangOpts().AccessControl = false; // Debuggers get universal access
m_clang_ap->getLangOpts().DollarIdents = true; // $ indicates a persistent variable name
// Set CodeGen options
m_clang_ap->getCodeGenOpts().EmitDeclMetadata = true;
m_clang_ap->getCodeGenOpts().InstrumentFunctions = false;
// Disable some warnings.
m_clang_ap->getDiagnosticOpts().Warnings.push_back("no-unused-value");
// Set the target triple.
m_clang_ap->getTargetOpts().Triple = m_target_triple;
// 3. Set up various important bits of infrastructure.
m_clang_ap->createDiagnostics(0, 0);
// Create the target instance.
m_clang_ap->setTarget(TargetInfo::CreateTargetInfo(m_clang_ap->getDiagnostics(),
m_clang_ap->getTargetOpts()));
if (!m_clang_ap->hasTarget())
{
m_clang_ap.reset();
return false;
}
// Inform the target of the language options
//
// FIXME: We shouldn't need to do this, the target should be immutable once
// created. This complexity should be lifted elsewhere.
m_clang_ap->getTarget().setForcedLangOptions(m_clang_ap->getLangOpts());
return m_clang_ap.get();
}
Mutex &
ClangExpression::GetClangMutex ()
{
static Mutex g_clang_mutex(Mutex::eMutexTypeRecursive); // Control access to the clang compiler
return g_clang_mutex;
}
clang::ASTContext *
ClangExpression::GetASTContext ()
{
CompilerInstance *compiler_instance = GetCompilerInstance();
if (compiler_instance)
return &compiler_instance->getASTContext();
return NULL;
}
unsigned
ClangExpression::ParseExpression (const char *expr_text,
Stream &stream,
bool add_result_var)
{
// HACK: for now we have to make a function body around our expression
// since there is no way to parse a single expression line in LLVM/Clang.
std::string func_expr("extern \"C\" void ___clang_expr(void *___clang_arg)\n{\n\t");
func_expr.append(expr_text);
func_expr.append(";\n}");
return ParseBareExpression (func_expr, stream, add_result_var);
}
unsigned
ClangExpression::ParseBareExpression (llvm::StringRef expr_text,
Stream &stream,
bool add_result_var)
{
Mutex::Locker locker(GetClangMutex ());
TextDiagnosticBuffer text_diagnostic_buffer;
if (!CreateCompilerInstance ())
{
stream.Printf("error: couldn't create compiler instance\n");
return 1;
}
// This code is matched below by a setClient to NULL.
// We cannot return out of this code without doing that.
m_clang_ap->getDiagnostics().setClient(&text_diagnostic_buffer);
text_diagnostic_buffer.FlushDiagnostics (m_clang_ap->getDiagnostics());
MemoryBuffer *memory_buffer = MemoryBuffer::getMemBufferCopy(expr_text, __FUNCTION__);
if (!m_clang_ap->hasSourceManager())
m_clang_ap->createSourceManager();
m_clang_ap->createFileManager();
m_clang_ap->createPreprocessor();
// Build the ASTContext. Most of this we inherit from the
// CompilerInstance, but we also want to give the context
// an ExternalASTSource.
SelectorTable selector_table;
std::auto_ptr<Builtin::Context> builtin_ap(new Builtin::Context(m_clang_ap->getTarget()));
ASTContext *Context = new ASTContext(m_clang_ap->getLangOpts(),
m_clang_ap->getSourceManager(),
m_clang_ap->getTarget(),
m_clang_ap->getPreprocessor().getIdentifierTable(),
selector_table,
*builtin_ap.get(),
0);
llvm::OwningPtr<ExternalASTSource> ASTSource(new ClangASTSource(*Context, *m_decl_map));
if (m_decl_map)
{
Context->setExternalSource(ASTSource);
}
m_clang_ap->setASTContext(Context);
FileID memory_buffer_file_id = m_clang_ap->getSourceManager().createMainFileIDForMemBuffer (memory_buffer);
std::string module_name("test_func");
text_diagnostic_buffer.BeginSourceFile(m_clang_ap->getLangOpts(), &m_clang_ap->getPreprocessor());
if (m_code_generator_ptr)
delete m_code_generator_ptr;
m_code_generator_ptr = CreateLLVMCodeGen(m_clang_ap->getDiagnostics(),
module_name,
m_clang_ap->getCodeGenOpts(),
m_clang_ap->getLLVMContext());
// - CodeGeneration ASTConsumer (include/clang/ModuleBuilder.h), which will be passed in when you call...
// - Call clang::ParseAST (in lib/Sema/ParseAST.cpp) to parse the buffer. The CodeGenerator will generate code for __dbg_expr.
// - Once ParseAST completes, you can grab the llvm::Module from the CodeGenerator, which will have an llvm::Function you can hand off to the JIT.
if (add_result_var)
{
ClangResultSynthesizer result_synthesizer(m_code_generator_ptr);
ParseAST(m_clang_ap->getPreprocessor(), &result_synthesizer, m_clang_ap->getASTContext());
}
else
{
ParseAST(m_clang_ap->getPreprocessor(), m_code_generator_ptr, m_clang_ap->getASTContext());
}
text_diagnostic_buffer.EndSourceFile();
//compiler_instance->getASTContext().getTranslationUnitDecl()->dump();
//if (compiler_instance->getFrontendOpts().ShowStats) {
// compiler_instance->getFileManager().PrintStats();
// fprintf(stderr, "\n");
//}
// This code resolves the setClient above.
m_clang_ap->getDiagnostics().setClient(0);
TextDiagnosticBuffer::const_iterator diag_iterator;
int num_errors = 0;
#ifdef COUNT_WARNINGS_AND_ERRORS
int num_warnings = 0;
for (diag_iterator = text_diagnostic_buffer.warn_begin();
diag_iterator != text_diagnostic_buffer.warn_end();
++diag_iterator)
num_warnings++;
for (diag_iterator = text_diagnostic_buffer.err_begin();
diag_iterator != text_diagnostic_buffer.err_end();
++diag_iterator)
num_errors++;
if (num_warnings || num_errors)
{
if (num_warnings)
stream.Printf("%u warning%s%s", num_warnings, (num_warnings == 1 ? "" : "s"), (num_errors ? " and " : ""));
if (num_errors)
stream.Printf("%u error%s", num_errors, (num_errors == 1 ? "" : "s"));
stream.Printf("\n");
}
#endif
for (diag_iterator = text_diagnostic_buffer.warn_begin();
diag_iterator != text_diagnostic_buffer.warn_end();
++diag_iterator)
stream.Printf("warning: %s\n", (*diag_iterator).second.c_str());
num_errors = 0;
for (diag_iterator = text_diagnostic_buffer.err_begin();
diag_iterator != text_diagnostic_buffer.err_end();
++diag_iterator)
{
num_errors++;
stream.Printf("error: %s\n", (*diag_iterator).second.c_str());
}
return num_errors;
}
bool
ClangExpression::ConvertIRToDWARF (ClangExpressionVariableList &expr_local_variable_list,
StreamString &dwarf_opcode_strm)
{
Log *log = lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS);
llvm::Module *module = m_code_generator_ptr->GetModule();
if (!module)
{
if (log)
log->Printf("IR doesn't contain a module");
return 1;
}
IRToDWARF ir_to_dwarf(expr_local_variable_list, m_decl_map, dwarf_opcode_strm);
return ir_to_dwarf.runOnModule(*module);
}
bool
ClangExpression::PrepareIRForTarget ()
{
Log *log = lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS);
llvm::Module *module = m_code_generator_ptr->GetModule();
if (!module)
{
if (log)
log->Printf("IR doesn't contain a module");
return 1;
}
llvm::Triple target_triple = m_clang_ap->getTarget().getTriple();
std::string err;
const llvm::Target *target = llvm::TargetRegistry::lookupTarget(m_target_triple, err);
if (!target)
{
if (log)
log->Printf("Couldn't find a target for %s", m_target_triple.c_str());
return 1;
}
std::auto_ptr<llvm::TargetMachine> target_machine(target->createTargetMachine(m_target_triple, ""));
IRForTarget ir_for_target(m_decl_map, target_machine->getTargetData());
return ir_for_target.runOnModule(*module);
}
bool
ClangExpression::JITFunction (const char *name)
{
Log *log = lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS);
llvm::Module *module = m_code_generator_ptr->GetModule();
if (module)
{
std::string error;
if (m_jit_mm_ptr == NULL)
m_jit_mm_ptr = new RecordingMemoryManager();
//llvm::InitializeNativeTarget();
if (log)
{
const char *relocation_model_string;
switch (llvm::TargetMachine::getRelocationModel())
{
case llvm::Reloc::Default:
relocation_model_string = "Default";
break;
case llvm::Reloc::Static:
relocation_model_string = "Static";
break;
case llvm::Reloc::PIC_:
relocation_model_string = "PIC_";
break;
case llvm::Reloc::DynamicNoPIC:
relocation_model_string = "DynamicNoPIC";
break;
}
log->Printf("Target machine's relocation model: %s", relocation_model_string);
}
if (m_execution_engine.get() == 0)
m_execution_engine.reset(llvm::ExecutionEngine::createJIT (module,
&error,
m_jit_mm_ptr,
CodeGenOpt::Default,
true,
CodeModel::Small)); // set to small so RIP-relative relocations work in PIC
m_execution_engine->DisableLazyCompilation();
llvm::Function *function = module->getFunction (llvm::StringRef (name));
// We don't actually need the function pointer here, this just forces it to get resolved.
void *fun_ptr = m_execution_engine->getPointerToFunction(function);
// Note, you probably won't get here on error, since the LLVM JIT tends to just
// exit on error at present... So be careful.
if (fun_ptr == 0)
return false;
m_jitted_functions.push_back(ClangExpression::JittedFunction(name, (lldb::addr_t) fun_ptr));
}
return true;
}
bool
ClangExpression::WriteJITCode (const ExecutionContext &exc_context)
{
Log *log = lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS);
if (m_jit_mm_ptr == NULL)
return false;
if (exc_context.process == NULL)
return false;
// Look over the regions allocated for the function compiled. The JIT
// tries to allocate the functions & stubs close together, so we should try to
// write them that way too...
// For now I only write functions with no stubs, globals, exception tables,
// etc. So I only need to write the functions.
size_t alloc_size = 0;
std::map<uint8_t *, uint8_t *>::iterator fun_pos, fun_end = m_jit_mm_ptr->m_functions.end();
for (fun_pos = m_jit_mm_ptr->m_functions.begin(); fun_pos != fun_end; fun_pos++)
{
alloc_size += (*fun_pos).second - (*fun_pos).first;
}
Error error;
lldb::addr_t target_addr = exc_context.process->AllocateMemory (alloc_size, lldb::ePermissionsReadable|lldb::ePermissionsExecutable, error);
if (target_addr == LLDB_INVALID_ADDRESS)
return false;
lldb::addr_t cursor = target_addr;
for (fun_pos = m_jit_mm_ptr->m_functions.begin(); fun_pos != fun_end; fun_pos++)
{
if (log)
log->Printf("Reading [%p-%p] from m_functions", fun_pos->first, fun_pos->second);
lldb::addr_t lstart = (lldb::addr_t) (*fun_pos).first;
lldb::addr_t lend = (lldb::addr_t) (*fun_pos).second;
size_t size = lend - lstart;
exc_context.process->WriteMemory(cursor, (void *) lstart, size, error);
m_jit_mm_ptr->AddToLocalToRemoteMap (lstart, size, cursor);
cursor += size;
}
std::vector<JittedFunction>::iterator pos, end = m_jitted_functions.end();
for (pos = m_jitted_functions.begin(); pos != end; pos++)
{
(*pos).m_remote_addr = m_jit_mm_ptr->GetRemoteAddressForLocal ((*pos).m_local_addr);
}
return true;
}
lldb::addr_t
ClangExpression::GetFunctionAddress (const char *name)
{
std::vector<JittedFunction>::iterator pos, end = m_jitted_functions.end();
for (pos = m_jitted_functions.begin(); pos < end; pos++)
{
if (strcmp ((*pos).m_name.c_str(), name) == 0)
return (*pos).m_remote_addr;
}
return LLDB_INVALID_ADDRESS;
}
Error
ClangExpression::DisassembleFunction (Stream &stream, ExecutionContext &exe_ctx, const char *name)
{
Log *log = lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS);
Error ret;
ret.Clear();
lldb::addr_t func_local_addr = LLDB_INVALID_ADDRESS;
lldb::addr_t func_remote_addr = LLDB_INVALID_ADDRESS;
std::vector<JittedFunction>::iterator pos, end = m_jitted_functions.end();
for (pos = m_jitted_functions.begin(); pos < end; pos++)
{
if (strcmp(pos->m_name.c_str(), name) == 0)
{
func_local_addr = pos->m_local_addr;
func_remote_addr = pos->m_remote_addr;
}
}
if (func_local_addr == LLDB_INVALID_ADDRESS)
{
ret.SetErrorToGenericError();
ret.SetErrorStringWithFormat("Couldn't find function %s for disassembly", name);
return ret;
}
if(log)
log->Printf("Found function, has local address 0x%llx and remote address 0x%llx", (uint64_t)func_local_addr, (uint64_t)func_remote_addr);
std::pair <lldb::addr_t, lldb::addr_t> func_range;
func_range = m_jit_mm_ptr->GetRemoteRangeForLocal(func_local_addr);
if (func_range.first == 0 && func_range.second == 0)
{
ret.SetErrorToGenericError();
ret.SetErrorStringWithFormat("Couldn't find code range for function %s", name);
return ret;
}
if(log)
log->Printf("Function's code range is [0x%llx-0x%llx]", func_range.first, func_range.second);
if (!exe_ctx.target)
{
ret.SetErrorToGenericError();
ret.SetErrorString("Couldn't find the target");
}
lldb::DataBufferSP buffer_sp(new DataBufferHeap(func_range.second - func_remote_addr, 0));
Error err;
exe_ctx.process->ReadMemory(func_remote_addr, buffer_sp->GetBytes(), buffer_sp->GetByteSize(), err);
if (!err.Success())
{
ret.SetErrorToGenericError();
ret.SetErrorStringWithFormat("Couldn't read from process: %s", err.AsCString("unknown error"));
return ret;
}
ArchSpec arch(exe_ctx.target->GetArchitecture());
Disassembler *disassembler = Disassembler::FindPlugin(arch);
if (disassembler == NULL)
{
ret.SetErrorToGenericError();
ret.SetErrorStringWithFormat("Unable to find disassembler plug-in for %s architecture.", arch.AsCString());
return ret;
}
if (!exe_ctx.process)
{
ret.SetErrorToGenericError();
ret.SetErrorString("Couldn't find the process");
return ret;
}
DataExtractor extractor(buffer_sp,
exe_ctx.process->GetByteOrder(),
exe_ctx.target->GetArchitecture().GetAddressByteSize());
if(log)
{
log->Printf("Function data has contents:");
extractor.PutToLog (log,
0,
extractor.GetByteSize(),
func_remote_addr,
16,
DataExtractor::TypeUInt8);
}
disassembler->DecodeInstructions(extractor, 0, UINT32_MAX);
Disassembler::InstructionList &instruction_list = disassembler->GetInstructionList();
uint32_t bytes_offset = 0;
for (uint32_t instruction_index = 0, num_instructions = instruction_list.GetSize();
instruction_index < num_instructions;
++instruction_index)
{
Disassembler::Instruction *instruction = instruction_list.GetInstructionAtIndex(instruction_index);
Address addr(NULL, func_remote_addr + bytes_offset);
instruction->Dump (&stream,
&addr,
&extractor,
bytes_offset,
exe_ctx,
true);
stream.PutChar('\n');
bytes_offset += instruction->GetByteSize();
}
return ret;
}