2019-04-09 16:24:35 +08:00
|
|
|
# Background: declarative builders API
|
|
|
|
|
|
|
|
The main purpose of the declarative builders API is to provide an intuitive way
|
|
|
|
of constructing MLIR programmatically. In the majority of cases, the IR we wish
|
2020-04-11 06:40:31 +08:00
|
|
|
to construct exhibits structured control-flow. The Declarative builders in the
|
|
|
|
`EDSC` library (Embedded Domain Specific Constructs) provide an API to make MLIR
|
|
|
|
construction and manipulation very idiomatic, for the structured control-flow
|
|
|
|
case, in C++.
|
2019-04-09 16:24:35 +08:00
|
|
|
|
|
|
|
## ScopedContext
|
|
|
|
|
|
|
|
`mlir::edsc::ScopedContext` provides an implicit thread-local context,
|
|
|
|
supporting a simple declarative API with globally accessible builders. These
|
|
|
|
declarative builders are available within the lifetime of a `ScopedContext`.
|
|
|
|
|
|
|
|
## Intrinsics
|
|
|
|
|
2020-04-23 23:00:03 +08:00
|
|
|
`mlir::ValueBuilder` is a generic wrapper for the `mlir::OpBuilder::create`
|
|
|
|
method that operates on `Value` objects and return a single Value. For
|
|
|
|
instructions that return no values or that return multiple values, the
|
|
|
|
`mlir::edsc::OperationBuilder` can be used. Named intrinsics are provided as
|
2019-04-09 16:24:35 +08:00
|
|
|
syntactic sugar to further reduce boilerplate.
|
|
|
|
|
|
|
|
```c++
|
|
|
|
using load = ValueBuilder<LoadOp>;
|
2020-04-23 23:00:03 +08:00
|
|
|
using store = OperationBuilder<StoreOp>;
|
2019-04-09 16:24:35 +08:00
|
|
|
```
|
|
|
|
|
2019-10-18 03:13:25 +08:00
|
|
|
## LoopBuilder and AffineLoopNestBuilder
|
2019-04-09 16:24:35 +08:00
|
|
|
|
2019-10-18 21:44:41 +08:00
|
|
|
`mlir::edsc::AffineLoopNestBuilder` provides an interface to allow writing
|
|
|
|
concise and structured loop nests.
|
2019-04-09 16:24:35 +08:00
|
|
|
|
|
|
|
```c++
|
|
|
|
ScopedContext scope(f.get());
|
2020-04-23 23:00:03 +08:00
|
|
|
Value i, j, lb(f->getArgument(0)), ub(f->getArgument(1));
|
|
|
|
Value f7(std_constant_float(llvm::APFloat(7.0f), f32Type)),
|
|
|
|
f13(std_constant_float(llvm::APFloat(13.0f), f32Type)),
|
|
|
|
i7(constant_int(7, 32)),
|
|
|
|
i13(constant_int(13, 32));
|
2019-10-18 21:44:41 +08:00
|
|
|
AffineLoopNestBuilder(&i, lb, ub, 3)([&]{
|
2020-01-19 05:10:46 +08:00
|
|
|
lb * index_type(3) + ub;
|
|
|
|
lb + index_type(3);
|
2019-10-18 21:44:41 +08:00
|
|
|
AffineLoopNestBuilder(&j, lb, ub, 2)([&]{
|
2020-01-19 05:10:46 +08:00
|
|
|
ceilDiv(index_type(31) * floorDiv(i + j * index_type(3), index_type(32)),
|
|
|
|
index_type(32));
|
2019-05-21 04:32:35 +08:00
|
|
|
((f7 + f13) / f7) % f13 - f7 * f13;
|
|
|
|
((i7 + i13) / i7) % i13 - i7 * i13;
|
|
|
|
});
|
2019-04-09 16:24:35 +08:00
|
|
|
});
|
|
|
|
```
|
|
|
|
|
|
|
|
## IndexedValue
|
|
|
|
|
|
|
|
`mlir::edsc::IndexedValue` provides an index notation around load and store
|
|
|
|
operations on abstract data types by overloading the C++ assignment and
|
|
|
|
parenthesis operators. The relevant loads and stores are emitted as appropriate.
|
|
|
|
|
|
|
|
## Putting it all together
|
|
|
|
|
|
|
|
With declarative builders, it becomes fairly concise to build rank and
|
|
|
|
type-agnostic custom operations even though MLIR does not yet have generic
|
|
|
|
types. Here is what a definition of a general pointwise add looks in
|
|
|
|
Tablegen with declarative builders.
|
|
|
|
|
|
|
|
```c++
|
|
|
|
def AddOp : Op<"x.add">,
|
|
|
|
Arguments<(ins Tensor:$A, Tensor:$B)>,
|
|
|
|
Results<(outs Tensor: $C)> {
|
|
|
|
code referenceImplementation = [{
|
2020-04-23 23:00:03 +08:00
|
|
|
SmallVector<Value, 4> ivs(view_A.rank());
|
2019-04-09 16:24:35 +08:00
|
|
|
IndexedValue A(arg_A), B(arg_B), C(arg_C);
|
2020-04-23 23:00:03 +08:00
|
|
|
AffineLoopNestBuilder(
|
|
|
|
ivs, view_A.getLbs(), view_A.getUbs(), view_A.getSteps())([&]{
|
2019-05-21 04:32:35 +08:00
|
|
|
C(ivs) = A(ivs) + B(ivs)
|
|
|
|
});
|
2019-04-09 16:24:35 +08:00
|
|
|
}];
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
Depending on the function signature on which this emitter is called, the
|
|
|
|
generated IR resembles the following, for a 4-D memref of `vector<4xi8>`:
|
|
|
|
|
2019-12-10 19:00:29 +08:00
|
|
|
```
|
2019-04-09 16:24:35 +08:00
|
|
|
// CHECK-LABEL: func @t1(%lhs: memref<3x4x5x6xvector<4xi8>>, %rhs: memref<3x4x5x6xvector<4xi8>>, %result: memref<3x4x5x6xvector<4xi8>>) -> () {
|
2019-10-18 21:44:41 +08:00
|
|
|
// CHECK: affine.for {{.*}} = 0 to 3 {
|
|
|
|
// CHECK: affine.for {{.*}} = 0 to 4 {
|
|
|
|
// CHECK: affine.for {{.*}} = 0 to 5 {
|
|
|
|
// CHECK: affine.for {{.*}}= 0 to 6 {
|
2019-04-09 16:24:35 +08:00
|
|
|
// CHECK: {{.*}} = load %arg1[{{.*}}] : memref<3x4x5x6xvector<4xi8>>
|
|
|
|
// CHECK: {{.*}} = load %arg0[{{.*}}] : memref<3x4x5x6xvector<4xi8>>
|
|
|
|
// CHECK: {{.*}} = addi {{.*}} : vector<4xi8>
|
|
|
|
// CHECK: store {{.*}}, %arg2[{{.*}}] : memref<3x4x5x6xvector<4xi8>>
|
|
|
|
```
|
|
|
|
|
|
|
|
or the following, for a 0-D `memref<f32>`:
|
|
|
|
|
2019-12-10 19:00:29 +08:00
|
|
|
```
|
2019-04-09 16:24:35 +08:00
|
|
|
// CHECK-LABEL: func @t3(%lhs: memref<f32>, %rhs: memref<f32>, %result: memref<f32>) -> () {
|
|
|
|
// CHECK: {{.*}} = load %arg1[] : memref<f32>
|
|
|
|
// CHECK: {{.*}} = load %arg0[] : memref<f32>
|
|
|
|
// CHECK: {{.*}} = addf {{.*}}, {{.*}} : f32
|
|
|
|
// CHECK: store {{.*}}, %arg2[] : memref<f32>
|
|
|
|
```
|
|
|
|
|
2020-05-13 18:12:30 +08:00
|
|
|
Similar APIs are provided to emit the lower-level `scf.for` op with
|
2019-10-18 21:44:41 +08:00
|
|
|
`LoopNestBuilder`. See the `builder-api-test.cpp` test for more usage examples.
|
|
|
|
|
2019-04-09 16:24:35 +08:00
|
|
|
Since the implementation of declarative builders is in C++, it is also available
|
2020-04-23 23:00:03 +08:00
|
|
|
to program the IR with an embedded-DSL flavor directly integrated in MLIR.
|