2012-11-27 09:00:22 +08:00
|
|
|
; RUN: opt < %s -instsimplify -S | FileCheck %s
|
|
|
|
|
|
|
|
;; x * 0 ==> 0 when no-nans and no-signed-zero
|
|
|
|
; CHECK: mul_zero_1
|
|
|
|
define float @mul_zero_1(float %a) {
|
|
|
|
%b = fmul nsz nnan float %a, 0.0
|
|
|
|
; CHECK: ret float 0.0
|
|
|
|
ret float %b
|
|
|
|
}
|
|
|
|
; CHECK: mul_zero_2
|
|
|
|
define float @mul_zero_2(float %a) {
|
|
|
|
%b = fmul fast float 0.0, %a
|
|
|
|
; CHECK: ret float 0.0
|
|
|
|
ret float %b
|
|
|
|
}
|
|
|
|
|
|
|
|
;; x * 0 =/=> 0 when there could be nans or -0
|
|
|
|
; CHECK: no_mul_zero_1
|
|
|
|
define float @no_mul_zero_1(float %a) {
|
|
|
|
%b = fmul nsz float %a, 0.0
|
|
|
|
; CHECK: ret float %b
|
|
|
|
ret float %b
|
|
|
|
}
|
|
|
|
; CHECK: no_mul_zero_2
|
|
|
|
define float @no_mul_zero_2(float %a) {
|
|
|
|
%b = fmul nnan float %a, 0.0
|
|
|
|
; CHECK: ret float %b
|
|
|
|
ret float %b
|
|
|
|
}
|
|
|
|
; CHECK: no_mul_zero_3
|
|
|
|
define float @no_mul_zero_3(float %a) {
|
|
|
|
%b = fmul float %a, 0.0
|
|
|
|
; CHECK: ret float %b
|
|
|
|
ret float %b
|
|
|
|
}
|
Added a slew of SimplifyInstruction floating-point optimizations, many of which take advantage of fast-math flags. Test cases included.
fsub X, +0 ==> X
fsub X, -0 ==> X, when we know X is not -0
fsub +/-0.0, (fsub -0.0, X) ==> X
fsub nsz +/-0.0, (fsub +/-0.0, X) ==> X
fsub nnan ninf X, X ==> 0.0
fadd nsz X, 0 ==> X
fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0
where nnan and ninf have to occur at least once somewhere in this expression
fmul X, 1.0 ==> X
llvm-svn: 169940
2012-12-12 08:27:46 +08:00
|
|
|
|
|
|
|
; fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0
|
|
|
|
; where nnan and ninf have to occur at least once somewhere in this
|
|
|
|
; expression
|
|
|
|
; CHECK: fadd_fsub_0
|
|
|
|
define float @fadd_fsub_0(float %a) {
|
|
|
|
; X + -X ==> 0
|
|
|
|
%t1 = fsub nnan ninf float 0.0, %a
|
|
|
|
%zero1 = fadd nnan ninf float %t1, %a
|
|
|
|
|
|
|
|
%t2 = fsub nnan float 0.0, %a
|
|
|
|
%zero2 = fadd ninf float %t2, %a
|
|
|
|
|
|
|
|
%t3 = fsub nnan ninf float 0.0, %a
|
|
|
|
%zero3 = fadd float %t3, %a
|
|
|
|
|
|
|
|
%t4 = fsub float 0.0, %a
|
|
|
|
%zero4 = fadd nnan ninf float %t4, %a
|
|
|
|
|
|
|
|
; Dont fold this
|
|
|
|
; CHECK: %nofold = fsub float 0.0
|
|
|
|
%nofold = fsub float 0.0, %a
|
|
|
|
; CHECK: %no_zero = fadd nnan float %nofold, %a
|
|
|
|
%no_zero = fadd nnan float %nofold, %a
|
|
|
|
|
|
|
|
; Coalesce the folded zeros
|
|
|
|
%zero5 = fadd float %zero1, %zero2
|
|
|
|
%zero6 = fadd float %zero3, %zero4
|
|
|
|
%zero7 = fadd float %zero5, %zero6
|
|
|
|
|
|
|
|
; Should get folded
|
|
|
|
%ret = fadd nsz float %no_zero, %zero7
|
|
|
|
|
|
|
|
; CHECK: ret float %no_zero
|
|
|
|
ret float %ret
|
|
|
|
}
|
|
|
|
|
|
|
|
; fsub nnan ninf x, x ==> 0.0
|
2013-07-14 09:42:54 +08:00
|
|
|
; CHECK-LABEL: @fsub_x_x(
|
Added a slew of SimplifyInstruction floating-point optimizations, many of which take advantage of fast-math flags. Test cases included.
fsub X, +0 ==> X
fsub X, -0 ==> X, when we know X is not -0
fsub +/-0.0, (fsub -0.0, X) ==> X
fsub nsz +/-0.0, (fsub +/-0.0, X) ==> X
fsub nnan ninf X, X ==> 0.0
fadd nsz X, 0 ==> X
fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0
where nnan and ninf have to occur at least once somewhere in this expression
fmul X, 1.0 ==> X
llvm-svn: 169940
2012-12-12 08:27:46 +08:00
|
|
|
define float @fsub_x_x(float %a) {
|
|
|
|
; X - X ==> 0
|
|
|
|
%zero1 = fsub nnan ninf float %a, %a
|
|
|
|
|
|
|
|
; Dont fold
|
|
|
|
; CHECK: %no_zero1 = fsub
|
|
|
|
%no_zero1 = fsub ninf float %a, %a
|
|
|
|
; CHECK: %no_zero2 = fsub
|
|
|
|
%no_zero2 = fsub nnan float %a, %a
|
|
|
|
; CHECK: %no_zero = fadd
|
|
|
|
%no_zero = fadd float %no_zero1, %no_zero2
|
|
|
|
|
|
|
|
; Should get folded
|
|
|
|
%ret = fadd nsz float %no_zero, %zero1
|
|
|
|
|
|
|
|
; CHECK: ret float %no_zero
|
|
|
|
ret float %ret
|
|
|
|
}
|
|
|
|
|
|
|
|
; fadd nsz X, 0 ==> X
|
2013-07-14 09:42:54 +08:00
|
|
|
; CHECK-LABEL: @nofold_fadd_x_0(
|
Added a slew of SimplifyInstruction floating-point optimizations, many of which take advantage of fast-math flags. Test cases included.
fsub X, +0 ==> X
fsub X, -0 ==> X, when we know X is not -0
fsub +/-0.0, (fsub -0.0, X) ==> X
fsub nsz +/-0.0, (fsub +/-0.0, X) ==> X
fsub nnan ninf X, X ==> 0.0
fadd nsz X, 0 ==> X
fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0
where nnan and ninf have to occur at least once somewhere in this expression
fmul X, 1.0 ==> X
llvm-svn: 169940
2012-12-12 08:27:46 +08:00
|
|
|
define float @nofold_fadd_x_0(float %a) {
|
|
|
|
; Dont fold
|
|
|
|
; CHECK: %no_zero1 = fadd
|
|
|
|
%no_zero1 = fadd ninf float %a, 0.0
|
|
|
|
; CHECK: %no_zero2 = fadd
|
|
|
|
%no_zero2 = fadd nnan float %a, 0.0
|
|
|
|
; CHECK: %no_zero = fadd
|
|
|
|
%no_zero = fadd float %no_zero1, %no_zero2
|
|
|
|
|
|
|
|
; CHECK: ret float %no_zero
|
|
|
|
ret float %no_zero
|
|
|
|
}
|