llvm-project/mlir/lib/Dialect/StandardOps/Transforms/TensorConstantBufferize.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

125 lines
4.3 KiB
C++
Raw Normal View History

//===- Bufferize.cpp - Bufferization for std ops --------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements bufferization of tensor-valued std.constant ops.
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/Dialect/StandardOps/Transforms/Passes.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/Transforms/Bufferize.h"
#include "mlir/Transforms/DialectConversion.h"
using namespace mlir;
namespace {
// This class creates global ops for all tensor-valued constants in the program.
// It creates them with pretty names and makes sure that duplicate globals
// aren't created.
class GlobalCreator {
public:
explicit GlobalCreator(ModuleOp module);
GlobalMemrefOp getGlobalFor(Attribute attr) {
assert(globals.find(attr) != globals.end() && "unknown constant attr");
return globals[attr];
}
private:
DenseMap<Attribute, GlobalMemrefOp> globals;
};
GlobalCreator::GlobalCreator(ModuleOp module) {
BufferizeTypeConverter typeConverter;
// Create a builder without an insertion point. We will insert using the
// symbol table to guarantee unique names.
OpBuilder globalBuilder(module.getContext());
SymbolTable symbolTable(module);
module.walk([&](ConstantOp op) {
// We only want tensor constants for now.
auto type = op.getType().dyn_cast<RankedTensorType>();
if (!type)
return;
// If we already have a global for this constant value, no need to do
// anything else.
auto it = globals.find(op.getValue());
if (it != globals.end())
return;
// Create a pretty name.
SmallString<64> buf;
llvm::raw_svector_ostream os(buf);
interleave(type.getShape(), os, "x");
os << "x" << type.getElementType();
auto global = globalBuilder.create<GlobalMemrefOp>(
op.getLoc(), (Twine("__constant_") + os.str()).str(),
/*sym_visibility=*/globalBuilder.getStringAttr("private"),
/*type=*/typeConverter.convertType(type),
/*initial_value=*/op.getValue().cast<ElementsAttr>(),
/*constant=*/true);
symbolTable.insert(global);
// The symbol table inserts at the end of the module, but globals are a bit
// nicer if they are at the beginning.
global->moveBefore(&module.front());
globals[op.getValue()] = global;
});
}
} // namespace
namespace {
class BufferizeTensorConstantOp : public OpConversionPattern<ConstantOp> {
public:
BufferizeTensorConstantOp(GlobalCreator &globals,
TypeConverter &typeConverter, MLIRContext *context)
: OpConversionPattern<ConstantOp>(typeConverter, context, /*benefit=*/1),
globals(globals) {}
LogicalResult
matchAndRewrite(ConstantOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto type = op.getType().dyn_cast<RankedTensorType>();
if (!type)
return failure();
auto globalMemref = globals.getGlobalFor(op.value());
rewriter.replaceOpWithNewOp<GetGlobalMemrefOp>(op, globalMemref.type(),
globalMemref.getName());
return success();
}
GlobalCreator &globals;
};
} // namespace
namespace {
struct TensorConstantBufferizePass
: public TensorConstantBufferizeBase<TensorConstantBufferizePass> {
void runOnOperation() override {
auto module = getOperation();
GlobalCreator globals(module);
auto *context = &getContext();
BufferizeTypeConverter typeConverter;
OwningRewritePatternList patterns;
ConversionTarget target(*context);
target.addLegalDialect<StandardOpsDialect>();
patterns.insert<BufferizeTensorConstantOp>(globals, typeConverter, context);
target.addDynamicallyLegalOp<ConstantOp>(
[&](ConstantOp op) { return typeConverter.isLegal(op.getType()); });
if (failed(applyPartialConversion(module, target, std::move(patterns))))
signalPassFailure();
}
};
} // namespace
std::unique_ptr<Pass> mlir::createTensorConstantBufferizePass() {
return std::make_unique<TensorConstantBufferizePass>();
}