llvm-project/clang/lib/CodeGen/CodeGenPGO.cpp

496 lines
18 KiB
C++
Raw Normal View History

//===--- CodeGenPGO.cpp - PGO Instrumentation for LLVM CodeGen --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Instrumentation-based profile-guided optimization
//
//===----------------------------------------------------------------------===//
#include "CodeGenPGO.h"
#include "CodeGenFunction.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/StmtVisitor.h"
#include "llvm/Config/config.h" // for strtoull()/strtoll() define
#include "llvm/IR/MDBuilder.h"
#include "llvm/Support/FileSystem.h"
using namespace clang;
using namespace CodeGen;
static void ReportBadPGOData(CodeGenModule &CGM, const char *Message) {
DiagnosticsEngine &Diags = CGM.getDiags();
unsigned diagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, "%0");
Diags.Report(diagID) << Message;
}
PGOProfileData::PGOProfileData(CodeGenModule &CGM, std::string Path)
: CGM(CGM) {
if (llvm::MemoryBuffer::getFile(Path, DataBuffer)) {
ReportBadPGOData(CGM, "failed to open pgo data file");
return;
}
if (DataBuffer->getBufferSize() > std::numeric_limits<unsigned>::max()) {
ReportBadPGOData(CGM, "pgo data file too big");
return;
}
// Scan through the data file and map each function to the corresponding
// file offset where its counts are stored.
const char *BufferStart = DataBuffer->getBufferStart();
const char *BufferEnd = DataBuffer->getBufferEnd();
const char *CurPtr = BufferStart;
uint64_t MaxCount = 0;
while (CurPtr < BufferEnd) {
// Read the mangled function name.
const char *FuncName = CurPtr;
// FIXME: Something will need to be added to distinguish static functions.
CurPtr = strchr(CurPtr, ' ');
if (!CurPtr) {
ReportBadPGOData(CGM, "pgo data file has malformed function entry");
return;
}
StringRef MangledName(FuncName, CurPtr - FuncName);
// Read the number of counters.
char *EndPtr;
unsigned NumCounters = strtol(++CurPtr, &EndPtr, 10);
if (EndPtr == CurPtr || *EndPtr != '\n' || NumCounters <= 0) {
ReportBadPGOData(CGM, "pgo data file has unexpected number of counters");
return;
}
CurPtr = EndPtr;
// Read function count.
uint64_t Count = strtoll(CurPtr, &EndPtr, 10);
if (EndPtr == CurPtr || *EndPtr != '\n') {
ReportBadPGOData(CGM, "pgo-data file has bad count value");
return;
}
CurPtr = EndPtr; // Point to '\n'.
FunctionCounts[MangledName] = Count;
MaxCount = Count > MaxCount ? Count : MaxCount;
// There is one line for each counter; skip over those lines.
// Since function count is already read, we start the loop from 1.
for (unsigned N = 1; N < NumCounters; ++N) {
CurPtr = strchr(++CurPtr, '\n');
if (!CurPtr) {
ReportBadPGOData(CGM, "pgo data file is missing some counter info");
return;
}
}
// Skip over the blank line separating functions.
CurPtr += 2;
DataOffsets[MangledName] = FuncName - BufferStart;
}
MaxFunctionCount = MaxCount;
}
/// Return true if a function is hot. If we know nothing about the function,
/// return false.
bool PGOProfileData::isHotFunction(StringRef MangledName) {
llvm::StringMap<uint64_t>::const_iterator CountIter =
FunctionCounts.find(MangledName);
// If we know nothing about the function, return false.
if (CountIter == FunctionCounts.end())
return false;
// FIXME: functions with >= 30% of the maximal function count are
// treated as hot. This number is from preliminary tuning on SPEC.
return CountIter->getValue() >= (uint64_t)(0.3 * (double)MaxFunctionCount);
}
/// Return true if a function is cold. If we know nothing about the function,
/// return false.
bool PGOProfileData::isColdFunction(StringRef MangledName) {
llvm::StringMap<uint64_t>::const_iterator CountIter =
FunctionCounts.find(MangledName);
// If we know nothing about the function, return false.
if (CountIter == FunctionCounts.end())
return false;
// FIXME: functions with <= 1% of the maximal function count are treated as
// cold. This number is from preliminary tuning on SPEC.
return CountIter->getValue() <= (uint64_t)(0.01 * (double)MaxFunctionCount);
}
bool PGOProfileData::getFunctionCounts(StringRef MangledName,
std::vector<uint64_t> &Counts) {
// Find the relevant section of the pgo-data file.
llvm::StringMap<unsigned>::const_iterator OffsetIter =
DataOffsets.find(MangledName);
if (OffsetIter == DataOffsets.end())
return true;
const char *CurPtr = DataBuffer->getBufferStart() + OffsetIter->getValue();
// Skip over the function name.
CurPtr = strchr(CurPtr, ' ');
assert(CurPtr && "pgo-data has corrupted function entry");
// Read the number of counters.
char *EndPtr;
unsigned NumCounters = strtol(++CurPtr, &EndPtr, 10);
assert(EndPtr != CurPtr && *EndPtr == '\n' && NumCounters > 0 &&
"pgo-data file has corrupted number of counters");
CurPtr = EndPtr;
Counts.reserve(NumCounters);
for (unsigned N = 0; N < NumCounters; ++N) {
// Read the count value.
uint64_t Count = strtoll(CurPtr, &EndPtr, 10);
if (EndPtr == CurPtr || *EndPtr != '\n') {
ReportBadPGOData(CGM, "pgo-data file has bad count value");
return true;
}
Counts.push_back(Count);
CurPtr = EndPtr + 1;
}
// Make sure the number of counters matches up.
if (Counts.size() != NumCounters) {
ReportBadPGOData(CGM, "pgo-data file has inconsistent counters");
return true;
}
return false;
}
void CodeGenPGO::emitWriteoutFunction(GlobalDecl &GD) {
if (!CGM.getCodeGenOpts().ProfileInstrGenerate)
return;
llvm::LLVMContext &Ctx = CGM.getLLVMContext();
llvm::Type *Int32Ty = llvm::Type::getInt32Ty(Ctx);
llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(Ctx);
llvm::Function *WriteoutF =
CGM.getModule().getFunction("__llvm_pgo_writeout");
if (!WriteoutF) {
llvm::FunctionType *WriteoutFTy =
llvm::FunctionType::get(llvm::Type::getVoidTy(Ctx), false);
WriteoutF = llvm::Function::Create(WriteoutFTy,
llvm::GlobalValue::InternalLinkage,
"__llvm_pgo_writeout", &CGM.getModule());
}
WriteoutF->setUnnamedAddr(true);
WriteoutF->addFnAttr(llvm::Attribute::NoInline);
if (CGM.getCodeGenOpts().DisableRedZone)
WriteoutF->addFnAttr(llvm::Attribute::NoRedZone);
llvm::BasicBlock *BB = WriteoutF->empty() ?
llvm::BasicBlock::Create(Ctx, "", WriteoutF) : &WriteoutF->getEntryBlock();
CGBuilderTy PGOBuilder(BB);
llvm::Instruction *I = BB->getTerminator();
if (!I)
I = PGOBuilder.CreateRetVoid();
PGOBuilder.SetInsertPoint(I);
llvm::Type *Int64PtrTy = llvm::Type::getInt64PtrTy(Ctx);
llvm::Type *Args[] = {
Int8PtrTy, // const char *MangledName
Int32Ty, // uint32_t NumCounters
Int64PtrTy // uint64_t *Counters
};
llvm::FunctionType *FTy =
llvm::FunctionType::get(PGOBuilder.getVoidTy(), Args, false);
llvm::Constant *EmitFunc =
CGM.getModule().getOrInsertFunction("llvm_pgo_emit", FTy);
llvm::Constant *MangledName =
CGM.GetAddrOfConstantCString(CGM.getMangledName(GD), "__llvm_pgo_name");
MangledName = llvm::ConstantExpr::getBitCast(MangledName, Int8PtrTy);
PGOBuilder.CreateCall3(EmitFunc, MangledName,
PGOBuilder.getInt32(NumRegionCounters),
PGOBuilder.CreateBitCast(RegionCounters, Int64PtrTy));
}
llvm::Function *CodeGenPGO::emitInitialization(CodeGenModule &CGM) {
llvm::Function *WriteoutF =
CGM.getModule().getFunction("__llvm_pgo_writeout");
if (!WriteoutF)
return NULL;
// Create a small bit of code that registers the "__llvm_pgo_writeout" to
// be executed at exit.
llvm::Function *F = CGM.getModule().getFunction("__llvm_pgo_init");
if (F)
return NULL;
llvm::LLVMContext &Ctx = CGM.getLLVMContext();
llvm::FunctionType *FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(Ctx),
false);
F = llvm::Function::Create(FTy, llvm::GlobalValue::InternalLinkage,
"__llvm_pgo_init", &CGM.getModule());
F->setUnnamedAddr(true);
F->setLinkage(llvm::GlobalValue::InternalLinkage);
F->addFnAttr(llvm::Attribute::NoInline);
if (CGM.getCodeGenOpts().DisableRedZone)
F->addFnAttr(llvm::Attribute::NoRedZone);
llvm::BasicBlock *BB = llvm::BasicBlock::Create(CGM.getLLVMContext(), "", F);
CGBuilderTy PGOBuilder(BB);
FTy = llvm::FunctionType::get(PGOBuilder.getVoidTy(), false);
llvm::Type *Params[] = {
llvm::PointerType::get(FTy, 0)
};
FTy = llvm::FunctionType::get(PGOBuilder.getVoidTy(), Params, false);
// Inialize the environment and register the local writeout function.
llvm::Constant *PGOInit =
CGM.getModule().getOrInsertFunction("llvm_pgo_init", FTy);
PGOBuilder.CreateCall(PGOInit, WriteoutF);
PGOBuilder.CreateRetVoid();
return F;
}
namespace {
/// A StmtVisitor that fills a map of statements to PGO counters.
struct MapRegionCounters : public ConstStmtVisitor<MapRegionCounters> {
/// The next counter value to assign.
unsigned NextCounter;
/// The map of statements to counters.
llvm::DenseMap<const Stmt*, unsigned> *CounterMap;
MapRegionCounters(llvm::DenseMap<const Stmt*, unsigned> *CounterMap) :
NextCounter(0), CounterMap(CounterMap) {
}
void VisitChildren(const Stmt *S) {
for (Stmt::const_child_range I = S->children(); I; ++I)
if (*I)
this->Visit(*I);
}
void VisitStmt(const Stmt *S) { VisitChildren(S); }
/// Assign a counter to track entry to the function body.
void VisitFunctionDecl(const FunctionDecl *S) {
(*CounterMap)[S->getBody()] = NextCounter++;
Visit(S->getBody());
}
/// Assign a counter to track the block following a label.
void VisitLabelStmt(const LabelStmt *S) {
(*CounterMap)[S] = NextCounter++;
Visit(S->getSubStmt());
}
/// Assign three counters - one for the body of the loop, one for breaks
/// from the loop, and one for continues.
///
/// The break and continue counters cover all such statements in this loop,
/// and are used in calculations to find the number of times the condition
/// and exit of the loop occur. They are needed so we can differentiate
/// these statements from non-local exits like return and goto.
void VisitWhileStmt(const WhileStmt *S) {
(*CounterMap)[S] = NextCounter;
NextCounter += 3;
Visit(S->getCond());
Visit(S->getBody());
}
/// Assign counters for the body of the loop, and for breaks and
/// continues. See VisitWhileStmt.
void VisitDoStmt(const DoStmt *S) {
(*CounterMap)[S] = NextCounter;
NextCounter += 3;
Visit(S->getBody());
Visit(S->getCond());
}
/// Assign counters for the body of the loop, and for breaks and
/// continues. See VisitWhileStmt.
void VisitForStmt(const ForStmt *S) {
(*CounterMap)[S] = NextCounter;
NextCounter += 3;
const Expr *E;
if ((E = S->getCond()))
Visit(E);
Visit(S->getBody());
if ((E = S->getInc()))
Visit(E);
}
/// Assign counters for the body of the loop, and for breaks and
/// continues. See VisitWhileStmt.
void VisitCXXForRangeStmt(const CXXForRangeStmt *S) {
(*CounterMap)[S] = NextCounter;
NextCounter += 3;
const Expr *E;
if ((E = S->getCond()))
Visit(E);
Visit(S->getBody());
if ((E = S->getInc()))
Visit(E);
}
/// Assign counters for the body of the loop, and for breaks and
/// continues. See VisitWhileStmt.
void VisitObjCForCollectionStmt(const ObjCForCollectionStmt *S) {
(*CounterMap)[S] = NextCounter;
NextCounter += 3;
Visit(S->getElement());
Visit(S->getBody());
}
/// Assign a counter for the exit block of the switch statement.
void VisitSwitchStmt(const SwitchStmt *S) {
(*CounterMap)[S] = NextCounter++;
Visit(S->getCond());
Visit(S->getBody());
}
/// Assign a counter for a particular case in a switch. This counts jumps
/// from the switch header as well as fallthrough from the case before this
/// one.
void VisitCaseStmt(const CaseStmt *S) {
(*CounterMap)[S] = NextCounter++;
Visit(S->getSubStmt());
}
/// Assign a counter for the default case of a switch statement. The count
/// is the number of branches from the loop header to the default, and does
/// not include fallthrough from previous cases. If we have multiple
/// conditional branch blocks from the switch instruction to the default
/// block, as with large GNU case ranges, this is the counter for the last
/// edge in that series, rather than the first.
void VisitDefaultStmt(const DefaultStmt *S) {
(*CounterMap)[S] = NextCounter++;
Visit(S->getSubStmt());
}
/// Assign a counter for the "then" part of an if statement. The count for
/// the "else" part, if it exists, will be calculated from this counter.
void VisitIfStmt(const IfStmt *S) {
(*CounterMap)[S] = NextCounter++;
Visit(S->getCond());
Visit(S->getThen());
if (S->getElse())
Visit(S->getElse());
}
/// Assign a counter for the continuation block of a C++ try statement.
void VisitCXXTryStmt(const CXXTryStmt *S) {
(*CounterMap)[S] = NextCounter++;
Visit(S->getTryBlock());
for (unsigned I = 0, E = S->getNumHandlers(); I < E; ++I)
Visit(S->getHandler(I));
}
/// Assign a counter for a catch statement's handler block.
void VisitCXXCatchStmt(const CXXCatchStmt *S) {
(*CounterMap)[S] = NextCounter++;
Visit(S->getHandlerBlock());
}
/// Assign a counter for the "true" part of a conditional operator. The
/// count in the "false" part will be calculated from this counter.
void VisitConditionalOperator(const ConditionalOperator *E) {
(*CounterMap)[E] = NextCounter++;
Visit(E->getCond());
Visit(E->getTrueExpr());
Visit(E->getFalseExpr());
}
/// Assign a counter for the right hand side of a logical and operator.
void VisitBinLAnd(const BinaryOperator *E) {
(*CounterMap)[E] = NextCounter++;
Visit(E->getLHS());
Visit(E->getRHS());
}
/// Assign a counter for the right hand side of a logical or operator.
void VisitBinLOr(const BinaryOperator *E) {
(*CounterMap)[E] = NextCounter++;
Visit(E->getLHS());
Visit(E->getRHS());
}
};
}
void CodeGenPGO::assignRegionCounters(GlobalDecl &GD) {
bool InstrumentRegions = CGM.getCodeGenOpts().ProfileInstrGenerate;
PGOProfileData *PGOData = CGM.getPGOData();
if (!InstrumentRegions && !PGOData)
return;
const Decl *D = GD.getDecl();
if (!D)
return;
mapRegionCounters(D);
if (InstrumentRegions)
emitCounterVariables();
if (PGOData)
loadRegionCounts(GD, PGOData);
}
void CodeGenPGO::mapRegionCounters(const Decl *D) {
RegionCounterMap = new llvm::DenseMap<const Stmt*, unsigned>();
MapRegionCounters Walker(RegionCounterMap);
if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
Walker.VisitFunctionDecl(FD);
NumRegionCounters = Walker.NextCounter;
}
void CodeGenPGO::emitCounterVariables() {
llvm::LLVMContext &Ctx = CGM.getLLVMContext();
llvm::ArrayType *CounterTy = llvm::ArrayType::get(llvm::Type::getInt64Ty(Ctx),
NumRegionCounters);
RegionCounters =
new llvm::GlobalVariable(CGM.getModule(), CounterTy, false,
llvm::GlobalVariable::PrivateLinkage,
llvm::Constant::getNullValue(CounterTy),
"__llvm_pgo_ctr");
}
void CodeGenPGO::emitCounterIncrement(CGBuilderTy &Builder, unsigned Counter) {
if (!CGM.getCodeGenOpts().ProfileInstrGenerate)
return;
llvm::Value *Addr =
Builder.CreateConstInBoundsGEP2_64(RegionCounters, 0, Counter);
llvm::Value *Count = Builder.CreateLoad(Addr, "pgocount");
Count = Builder.CreateAdd(Count, Builder.getInt64(1));
Builder.CreateStore(Count, Addr);
}
void CodeGenPGO::loadRegionCounts(GlobalDecl &GD, PGOProfileData *PGOData) {
// For now, ignore the counts from the PGO data file only if the number of
// counters does not match. This could be tightened down in the future to
// ignore counts when the input changes in various ways, e.g., by comparing a
// hash value based on some characteristics of the input.
RegionCounts = new std::vector<uint64_t>();
if (PGOData->getFunctionCounts(CGM.getMangledName(GD), *RegionCounts) ||
RegionCounts->size() != NumRegionCounters) {
delete RegionCounts;
RegionCounts = 0;
}
}
void CodeGenPGO::destroyRegionCounters() {
if (RegionCounterMap != 0)
delete RegionCounterMap;
if (RegionCounts != 0)
delete RegionCounts;
}
llvm::MDNode *CodeGenPGO::createBranchWeights(uint64_t TrueCount,
uint64_t FalseCount) {
if (!TrueCount && !FalseCount)
return 0;
llvm::MDBuilder MDHelper(CGM.getLLVMContext());
// TODO: need to scale down to 32-bits
// According to Laplace's Rule of Succession, it is better to compute the
// weight based on the count plus 1.
return MDHelper.createBranchWeights(TrueCount + 1, FalseCount + 1);
}
llvm::MDNode *CodeGenPGO::createBranchWeights(ArrayRef<uint64_t> Weights) {
llvm::MDBuilder MDHelper(CGM.getLLVMContext());
// TODO: need to scale down to 32-bits, instead of just truncating.
// According to Laplace's Rule of Succession, it is better to compute the
// weight based on the count plus 1.
SmallVector<uint32_t, 16> ScaledWeights;
ScaledWeights.reserve(Weights.size());
for (ArrayRef<uint64_t>::iterator WI = Weights.begin(), WE = Weights.end();
WI != WE; ++WI) {
ScaledWeights.push_back(*WI + 1);
}
return MDHelper.createBranchWeights(ScaledWeights);
}