2015-05-20 12:24:19 +08:00
|
|
|
// RUN: %clang_cc1 -verify -fopenmp -x c++ -triple x86_64-apple-darwin10 -emit-llvm %s -o - | FileCheck %s
|
|
|
|
// RUN: %clang_cc1 -fopenmp -x c++ -std=c++11 -triple x86_64-apple-darwin10 -emit-pch -o %t %s
|
|
|
|
// RUN: %clang_cc1 -fopenmp -x c++ -triple x86_64-apple-darwin10 -std=c++11 -include-pch %t -verify %s -emit-llvm -o - | FileCheck %s
|
|
|
|
// RUN: %clang_cc1 -verify -fopenmp -x c++ -std=c++11 -DLAMBDA -triple x86_64-apple-darwin10 -emit-llvm %s -o - | FileCheck -check-prefix=LAMBDA %s
|
|
|
|
// RUN: %clang_cc1 -verify -fopenmp -x c++ -fblocks -DBLOCKS -triple x86_64-apple-darwin10 -emit-llvm %s -o - | FileCheck -check-prefix=BLOCKS %s
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// expected-no-diagnostics
|
|
|
|
#ifndef HEADER
|
|
|
|
#define HEADER
|
|
|
|
|
2015-09-04 19:26:21 +08:00
|
|
|
volatile double g, g_orig;
|
|
|
|
volatile double &g1 = g_orig;
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
|
|
|
|
template <class T>
|
|
|
|
struct S {
|
|
|
|
T f;
|
|
|
|
S(T a) : f(a + g) {}
|
|
|
|
S() : f(g) {}
|
|
|
|
operator T() { return T(); }
|
|
|
|
S &operator&(const S &) { return *this; }
|
|
|
|
~S() {}
|
|
|
|
};
|
|
|
|
|
|
|
|
// CHECK-DAG: [[S_FLOAT_TY:%.+]] = type { float }
|
|
|
|
// CHECK-DAG: [[S_INT_TY:%.+]] = type { i{{[0-9]+}} }
|
|
|
|
// CHECK-DAG: [[ATOMIC_REDUCE_BARRIER_LOC:@.+]] = private unnamed_addr constant %{{.+}} { i32 0, i32 18, i32 0, i32 0, i8*
|
|
|
|
// CHECK-DAG: [[IMPLICIT_BARRIER_LOC:@.+]] = private unnamed_addr constant %{{.+}} { i32 0, i32 66, i32 0, i32 0, i8*
|
|
|
|
// CHECK-DAG: [[REDUCTION_LOC:@.+]] = private unnamed_addr constant %{{.+}} { i32 0, i32 18, i32 0, i32 0, i8*
|
|
|
|
// CHECK-DAG: [[REDUCTION_LOCK:@.+]] = common global [8 x i32] zeroinitializer
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
T tmain() {
|
|
|
|
T t;
|
|
|
|
S<T> test;
|
|
|
|
T t_var = T(), t_var1;
|
|
|
|
T vec[] = {1, 2};
|
|
|
|
S<T> s_arr[] = {1, 2};
|
2015-09-04 19:26:21 +08:00
|
|
|
S<T> &var = test;
|
|
|
|
S<T> var1;
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
#pragma omp parallel
|
|
|
|
#pragma omp for reduction(+:t_var) reduction(&:var) reduction(&& : var1) reduction(min: t_var1) nowait
|
|
|
|
for (int i = 0; i < 2; ++i) {
|
|
|
|
vec[i] = t_var;
|
|
|
|
s_arr[i] = var;
|
|
|
|
}
|
2015-04-29 13:21:03 +08:00
|
|
|
#pragma omp parallel
|
|
|
|
#pragma omp for reduction(&& : t_var)
|
|
|
|
for (int i = 0; i < 2; ++i) {
|
|
|
|
vec[i] = t_var;
|
|
|
|
s_arr[i] = var;
|
|
|
|
}
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
return T();
|
|
|
|
}
|
|
|
|
|
2016-02-04 19:27:03 +08:00
|
|
|
extern S<float> **foo();
|
|
|
|
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
int main() {
|
|
|
|
#ifdef LAMBDA
|
|
|
|
// LAMBDA: [[G:@.+]] = global double
|
|
|
|
// LAMBDA-LABEL: @main
|
|
|
|
// LAMBDA: call void [[OUTER_LAMBDA:@.+]](
|
|
|
|
[&]() {
|
|
|
|
// LAMBDA: define{{.*}} internal{{.*}} void [[OUTER_LAMBDA]](
|
2015-09-10 16:12:02 +08:00
|
|
|
// LAMBDA: call void {{.+}} @__kmpc_fork_call({{.+}}, i32 0, {{.+}}* [[OMP_REGION:@.+]] to {{.+}})
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
#pragma omp parallel
|
2015-09-04 19:26:21 +08:00
|
|
|
#pragma omp for reduction(+:g, g1)
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
for (int i = 0; i < 2; ++i) {
|
2015-09-10 16:12:02 +08:00
|
|
|
// LAMBDA: define{{.*}} internal{{.*}} void [[OMP_REGION]](i32* noalias %{{.+}}, i32* noalias %{{.+}})
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// LAMBDA: [[G_PRIVATE_ADDR:%.+]] = alloca double,
|
|
|
|
|
|
|
|
// Reduction list for runtime.
|
2015-09-04 19:26:21 +08:00
|
|
|
// LAMBDA: [[RED_LIST:%.+]] = alloca [2 x i8*],
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
|
|
|
|
// LAMBDA: store double 0.0{{.+}}, double* [[G_PRIVATE_ADDR]]
|
|
|
|
// LAMBDA: call void @__kmpc_for_static_init_4(
|
|
|
|
g = 1;
|
2015-09-04 19:26:21 +08:00
|
|
|
g1 = 1;
|
2015-07-14 18:32:29 +08:00
|
|
|
// LAMBDA: store double 1.0{{.+}}, double* [[G_PRIVATE_ADDR]],
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// LAMBDA: [[G_PRIVATE_ADDR_REF:%.+]] = getelementptr inbounds %{{.+}}, %{{.+}}* [[ARG:%.+]], i{{[0-9]+}} 0, i{{[0-9]+}} 0
|
|
|
|
// LAMBDA: store double* [[G_PRIVATE_ADDR]], double** [[G_PRIVATE_ADDR_REF]]
|
|
|
|
// LAMBDA: call void [[INNER_LAMBDA:@.+]](%{{.+}}* [[ARG]])
|
|
|
|
// LAMBDA: call void @__kmpc_for_static_fini(
|
|
|
|
|
Compute and preserve alignment more faithfully in IR-generation.
Introduce an Address type to bundle a pointer value with an
alignment. Introduce APIs on CGBuilderTy to work with Address
values. Change core APIs on CGF/CGM to traffic in Address where
appropriate. Require alignments to be non-zero. Update a ton
of code to compute and propagate alignment information.
As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment
helper function to CGF and made use of it in a number of places in
the expression emitter.
The end result is that we should now be significantly more correct
when performing operations on objects that are locally known to
be under-aligned. Since alignment is not reliably tracked in the
type system, there are inherent limits to this, but at least we
are no longer confused by standard operations like derived-to-base
conversions and array-to-pointer decay. I've also fixed a large
number of bugs where we were applying the complete-object alignment
to a pointer instead of the non-virtual alignment, although most of
these were hidden by the very conservative approach we took with
member alignment.
Also, because IRGen now reliably asserts on zero alignments, we
should no longer be subject to an absurd but frustrating recurring
bug where an incomplete type would report a zero alignment and then
we'd naively do a alignmentAtOffset on it and emit code using an
alignment equal to the largest power-of-two factor of the offset.
We should also now be emitting much more aggressive alignment
attributes in the presence of over-alignment. In particular,
field access now uses alignmentAtOffset instead of min.
Several times in this patch, I had to change the existing
code-generation pattern in order to more effectively use
the Address APIs. For the most part, this seems to be a strict
improvement, like doing pointer arithmetic with GEPs instead of
ptrtoint. That said, I've tried very hard to not change semantics,
but it is likely that I've failed in a few places, for which I
apologize.
ABIArgInfo now always carries the assumed alignment of indirect and
indirect byval arguments. In order to cut down on what was already
a dauntingly large patch, I changed the code to never set align
attributes in the IR on non-byval indirect arguments. That is,
we still generate code which assumes that indirect arguments have
the given alignment, but we don't express this information to the
backend except where it's semantically required (i.e. on byvals).
This is likely a minor regression for those targets that did provide
this information, but it'll be trivial to add it back in a later
patch.
I partially punted on applying this work to CGBuiltin. Please
do not add more uses of the CreateDefaultAligned{Load,Store}
APIs; they will be going away eventually.
llvm-svn: 246985
2015-09-08 16:05:57 +08:00
|
|
|
// LAMBDA: [[G_PRIV_REF:%.+]] = getelementptr inbounds [2 x i8*], [2 x i8*]* [[RED_LIST]], i64 0, i64 0
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// LAMBDA: [[BITCAST:%.+]] = bitcast double* [[G_PRIVATE_ADDR]] to i8*
|
|
|
|
// LAMBDA: store i8* [[BITCAST]], i8** [[G_PRIV_REF]],
|
|
|
|
// LAMBDA: call i32 @__kmpc_reduce(
|
|
|
|
// LAMBDA: switch i32 %{{.+}}, label %[[REDUCTION_DONE:.+]] [
|
|
|
|
// LAMBDA: i32 1, label %[[CASE1:.+]]
|
|
|
|
// LAMBDA: i32 2, label %[[CASE2:.+]]
|
|
|
|
// LAMBDA: [[CASE1]]
|
|
|
|
// LAMBDA: [[G_VAL:%.+]] = load double, double* [[G]]
|
|
|
|
// LAMBDA: [[G_PRIV_VAL:%.+]] = load double, double* [[G_PRIVATE_ADDR]]
|
|
|
|
// LAMBDA: [[ADD:%.+]] = fadd double [[G_VAL]], [[G_PRIV_VAL]]
|
|
|
|
// LAMBDA: store double [[ADD]], double* [[G]]
|
|
|
|
// LAMBDA: call void @__kmpc_end_reduce(
|
|
|
|
// LAMBDA: br label %[[REDUCTION_DONE]]
|
|
|
|
// LAMBDA: [[CASE2]]
|
|
|
|
// LAMBDA: [[G_PRIV_VAL:%.+]] = load double, double* [[G_PRIVATE_ADDR]]
|
|
|
|
// LAMBDA: fadd double
|
|
|
|
// LAMBDA: cmpxchg i64*
|
2015-05-07 11:54:03 +08:00
|
|
|
// LAMBDA: call void @__kmpc_end_reduce(
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// LAMBDA: br label %[[REDUCTION_DONE]]
|
|
|
|
// LAMBDA: [[REDUCTION_DONE]]
|
|
|
|
// LAMBDA: ret void
|
|
|
|
[&]() {
|
|
|
|
// LAMBDA: define {{.+}} void [[INNER_LAMBDA]](%{{.+}}* [[ARG_PTR:%.+]])
|
|
|
|
// LAMBDA: store %{{.+}}* [[ARG_PTR]], %{{.+}}** [[ARG_PTR_REF:%.+]],
|
|
|
|
g = 2;
|
2015-09-04 19:26:21 +08:00
|
|
|
g1 = 2;
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// LAMBDA: [[ARG_PTR:%.+]] = load %{{.+}}*, %{{.+}}** [[ARG_PTR_REF]]
|
|
|
|
// LAMBDA: [[G_PTR_REF:%.+]] = getelementptr inbounds %{{.+}}, %{{.+}}* [[ARG_PTR]], i{{[0-9]+}} 0, i{{[0-9]+}} 0
|
|
|
|
// LAMBDA: [[G_REF:%.+]] = load double*, double** [[G_PTR_REF]]
|
2015-07-14 18:32:29 +08:00
|
|
|
// LAMBDA: store double 2.0{{.+}}, double* [[G_REF]]
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
}();
|
|
|
|
}
|
|
|
|
}();
|
|
|
|
return 0;
|
|
|
|
#elif defined(BLOCKS)
|
|
|
|
// BLOCKS: [[G:@.+]] = global double
|
|
|
|
// BLOCKS-LABEL: @main
|
|
|
|
// BLOCKS: call void {{%.+}}(i8
|
|
|
|
^{
|
|
|
|
// BLOCKS: define{{.*}} internal{{.*}} void {{.+}}(i8*
|
2015-09-10 16:12:02 +08:00
|
|
|
// BLOCKS: call void {{.+}} @__kmpc_fork_call({{.+}}, i32 0, {{.+}}* [[OMP_REGION:@.+]] to {{.+}})
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
#pragma omp parallel
|
2015-09-04 19:26:21 +08:00
|
|
|
#pragma omp for reduction(-:g, g1)
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
for (int i = 0; i < 2; ++i) {
|
2015-09-10 16:12:02 +08:00
|
|
|
// BLOCKS: define{{.*}} internal{{.*}} void [[OMP_REGION]](i32* noalias %{{.+}}, i32* noalias %{{.+}})
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// BLOCKS: [[G_PRIVATE_ADDR:%.+]] = alloca double,
|
|
|
|
|
|
|
|
// Reduction list for runtime.
|
2015-09-04 19:26:21 +08:00
|
|
|
// BLOCKS: [[RED_LIST:%.+]] = alloca [2 x i8*],
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
|
|
|
|
// BLOCKS: store double 0.0{{.+}}, double* [[G_PRIVATE_ADDR]]
|
|
|
|
g = 1;
|
2015-09-04 19:26:21 +08:00
|
|
|
g1 = 1;
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// BLOCKS: call void @__kmpc_for_static_init_4(
|
2015-07-14 18:32:29 +08:00
|
|
|
// BLOCKS: store double 1.0{{.+}}, double* [[G_PRIVATE_ADDR]],
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// BLOCKS-NOT: [[G]]{{[[^:word:]]}}
|
|
|
|
// BLOCKS: double* [[G_PRIVATE_ADDR]]
|
|
|
|
// BLOCKS-NOT: [[G]]{{[[^:word:]]}}
|
|
|
|
// BLOCKS: call void {{%.+}}(i8
|
|
|
|
// BLOCKS: call void @__kmpc_for_static_fini(
|
|
|
|
|
Compute and preserve alignment more faithfully in IR-generation.
Introduce an Address type to bundle a pointer value with an
alignment. Introduce APIs on CGBuilderTy to work with Address
values. Change core APIs on CGF/CGM to traffic in Address where
appropriate. Require alignments to be non-zero. Update a ton
of code to compute and propagate alignment information.
As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment
helper function to CGF and made use of it in a number of places in
the expression emitter.
The end result is that we should now be significantly more correct
when performing operations on objects that are locally known to
be under-aligned. Since alignment is not reliably tracked in the
type system, there are inherent limits to this, but at least we
are no longer confused by standard operations like derived-to-base
conversions and array-to-pointer decay. I've also fixed a large
number of bugs where we were applying the complete-object alignment
to a pointer instead of the non-virtual alignment, although most of
these were hidden by the very conservative approach we took with
member alignment.
Also, because IRGen now reliably asserts on zero alignments, we
should no longer be subject to an absurd but frustrating recurring
bug where an incomplete type would report a zero alignment and then
we'd naively do a alignmentAtOffset on it and emit code using an
alignment equal to the largest power-of-two factor of the offset.
We should also now be emitting much more aggressive alignment
attributes in the presence of over-alignment. In particular,
field access now uses alignmentAtOffset instead of min.
Several times in this patch, I had to change the existing
code-generation pattern in order to more effectively use
the Address APIs. For the most part, this seems to be a strict
improvement, like doing pointer arithmetic with GEPs instead of
ptrtoint. That said, I've tried very hard to not change semantics,
but it is likely that I've failed in a few places, for which I
apologize.
ABIArgInfo now always carries the assumed alignment of indirect and
indirect byval arguments. In order to cut down on what was already
a dauntingly large patch, I changed the code to never set align
attributes in the IR on non-byval indirect arguments. That is,
we still generate code which assumes that indirect arguments have
the given alignment, but we don't express this information to the
backend except where it's semantically required (i.e. on byvals).
This is likely a minor regression for those targets that did provide
this information, but it'll be trivial to add it back in a later
patch.
I partially punted on applying this work to CGBuiltin. Please
do not add more uses of the CreateDefaultAligned{Load,Store}
APIs; they will be going away eventually.
llvm-svn: 246985
2015-09-08 16:05:57 +08:00
|
|
|
// BLOCKS: [[G_PRIV_REF:%.+]] = getelementptr inbounds [2 x i8*], [2 x i8*]* [[RED_LIST]], i64 0, i64 0
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// BLOCKS: [[BITCAST:%.+]] = bitcast double* [[G_PRIVATE_ADDR]] to i8*
|
|
|
|
// BLOCKS: store i8* [[BITCAST]], i8** [[G_PRIV_REF]],
|
|
|
|
// BLOCKS: call i32 @__kmpc_reduce(
|
|
|
|
// BLOCKS: switch i32 %{{.+}}, label %[[REDUCTION_DONE:.+]] [
|
|
|
|
// BLOCKS: i32 1, label %[[CASE1:.+]]
|
|
|
|
// BLOCKS: i32 2, label %[[CASE2:.+]]
|
|
|
|
// BLOCKS: [[CASE1]]
|
|
|
|
// BLOCKS: [[G_VAL:%.+]] = load double, double* [[G]]
|
|
|
|
// BLOCKS: [[G_PRIV_VAL:%.+]] = load double, double* [[G_PRIVATE_ADDR]]
|
|
|
|
// BLOCKS: [[ADD:%.+]] = fadd double [[G_VAL]], [[G_PRIV_VAL]]
|
|
|
|
// BLOCKS: store double [[ADD]], double* [[G]]
|
|
|
|
// BLOCKS: call void @__kmpc_end_reduce(
|
|
|
|
// BLOCKS: br label %[[REDUCTION_DONE]]
|
|
|
|
// BLOCKS: [[CASE2]]
|
|
|
|
// BLOCKS: [[G_PRIV_VAL:%.+]] = load double, double* [[G_PRIVATE_ADDR]]
|
|
|
|
// BLOCKS: fadd double
|
|
|
|
// BLOCKS: cmpxchg i64*
|
2015-05-07 11:54:03 +08:00
|
|
|
// BLOCKS: call void @__kmpc_end_reduce(
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// BLOCKS: br label %[[REDUCTION_DONE]]
|
|
|
|
// BLOCKS: [[REDUCTION_DONE]]
|
|
|
|
// BLOCKS: ret void
|
|
|
|
^{
|
|
|
|
// BLOCKS: define {{.+}} void {{@.+}}(i8*
|
|
|
|
g = 2;
|
2015-09-04 19:26:21 +08:00
|
|
|
g1 = 2;
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// BLOCKS-NOT: [[G]]{{[[^:word:]]}}
|
2015-07-14 18:32:29 +08:00
|
|
|
// BLOCKS: store double 2.0{{.+}}, double*
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// BLOCKS-NOT: [[G]]{{[[^:word:]]}}
|
|
|
|
// BLOCKS: ret
|
|
|
|
}();
|
|
|
|
}
|
|
|
|
}();
|
|
|
|
return 0;
|
|
|
|
#else
|
|
|
|
S<float> test;
|
|
|
|
float t_var = 0, t_var1;
|
|
|
|
int vec[] = {1, 2};
|
|
|
|
S<float> s_arr[] = {1, 2};
|
2015-09-04 19:26:21 +08:00
|
|
|
S<float> &var = test;
|
2015-10-08 17:10:53 +08:00
|
|
|
S<float> var1, arrs[10][4];
|
2016-02-04 19:27:03 +08:00
|
|
|
S<float> **var2 = foo();
|
|
|
|
S<float> vvar2[2];
|
|
|
|
S<float> (&var3)[2] = s_arr;
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
#pragma omp parallel
|
|
|
|
#pragma omp for reduction(+:t_var) reduction(&:var) reduction(&& : var1) reduction(min: t_var1)
|
|
|
|
for (int i = 0; i < 2; ++i) {
|
|
|
|
vec[i] = t_var;
|
|
|
|
s_arr[i] = var;
|
|
|
|
}
|
2015-10-08 17:10:53 +08:00
|
|
|
int arr[10][vec[1]];
|
|
|
|
#pragma omp parallel for reduction(+:arr[1][:vec[1]]) reduction(&:arrs[1:vec[1]][1:2])
|
|
|
|
for (int i = 0; i < 10; ++i)
|
|
|
|
++arr[1][i];
|
2016-01-26 20:20:39 +08:00
|
|
|
#pragma omp parallel
|
|
|
|
#pragma omp for reduction(+:arr) reduction(&:arrs)
|
|
|
|
for (int i = 0; i < 10; ++i)
|
|
|
|
++arr[1][i];
|
2016-02-04 19:27:03 +08:00
|
|
|
#pragma omp parallel
|
|
|
|
#pragma omp for reduction(& : var2[0 : 5][1 : 6])
|
|
|
|
for (int i = 0; i < 10; ++i)
|
|
|
|
;
|
|
|
|
#pragma omp parallel
|
|
|
|
#pragma omp for reduction(& : vvar2[0 : 5])
|
|
|
|
for (int i = 0; i < 10; ++i)
|
|
|
|
;
|
|
|
|
#pragma omp parallel
|
|
|
|
#pragma omp for reduction(& : var3[1 : 2])
|
|
|
|
for (int i = 0; i < 10; ++i)
|
|
|
|
;
|
|
|
|
#pragma omp parallel
|
|
|
|
#pragma omp for reduction(& : var3)
|
|
|
|
for (int i = 0; i < 10; ++i)
|
|
|
|
;
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
return tmain<int>();
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
// CHECK: define {{.*}}i{{[0-9]+}} @main()
|
|
|
|
// CHECK: [[TEST:%.+]] = alloca [[S_FLOAT_TY]],
|
|
|
|
// CHECK: call {{.*}} [[S_FLOAT_TY_CONSTR:@.+]]([[S_FLOAT_TY]]* [[TEST]])
|
2015-09-10 16:12:02 +08:00
|
|
|
// CHECK: call void (%{{.+}}*, i{{[0-9]+}}, void (i{{[0-9]+}}*, i{{[0-9]+}}*, ...)*, ...) @__kmpc_fork_call(%{{.+}}* @{{.+}}, i{{[0-9]+}} 6, void (i{{[0-9]+}}*, i{{[0-9]+}}*, ...)* bitcast (void (i{{[0-9]+}}*, i{{[0-9]+}}*, float*, [[S_FLOAT_TY]]*, [[S_FLOAT_TY]]*, float*, [2 x i32]*, [2 x [[S_FLOAT_TY]]]*)* [[MAIN_MICROTASK:@.+]] to void
|
2015-10-08 17:10:53 +08:00
|
|
|
// CHECK: call void (%{{.+}}*, i{{[0-9]+}}, void (i{{[0-9]+}}*, i{{[0-9]+}}*, ...)*, ...) @__kmpc_fork_call(%{{.+}}* @{{.+}}, i{{[0-9]+}} 5, void (i{{[0-9]+}}*, i{{[0-9]+}}*, ...)* bitcast (void (i{{[0-9]+}}*, i{{[0-9]+}}*, i64, i64, i32*, [2 x i32]*, [10 x [4 x [[S_FLOAT_TY]]]]*)* [[MAIN_MICROTASK1:@.+]] to void
|
2016-01-26 20:20:39 +08:00
|
|
|
// CHECK: call void (%{{.+}}*, i{{[0-9]+}}, void (i{{[0-9]+}}*, i{{[0-9]+}}*, ...)*, ...) @__kmpc_fork_call(%{{.+}}* @{{.+}}, i{{[0-9]+}} 4, void (i{{[0-9]+}}*, i{{[0-9]+}}*, ...)* bitcast (void (i{{[0-9]+}}*, i{{[0-9]+}}*, i64, i64, i32*, [10 x [4 x [[S_FLOAT_TY]]]]*)* [[MAIN_MICROTASK2:@.+]] to void
|
2016-02-04 19:27:03 +08:00
|
|
|
// CHECK: call void (%{{.+}}*, i{{[0-9]+}}, void (i{{[0-9]+}}*, i{{[0-9]+}}*, ...)*, ...) @__kmpc_fork_call(%{{.+}}* @{{.+}}, i{{[0-9]+}} 1, void (i{{[0-9]+}}*, i{{[0-9]+}}*, ...)* bitcast (void (i{{[0-9]+}}*, i{{[0-9]+}}*, [[S_FLOAT_TY]]***)* [[MAIN_MICROTASK3:@.+]] to void
|
|
|
|
// CHECK: call void (%{{.+}}*, i{{[0-9]+}}, void (i{{[0-9]+}}*, i{{[0-9]+}}*, ...)*, ...) @__kmpc_fork_call(%{{.+}}* @{{.+}}, i{{[0-9]+}} 1, void (i{{[0-9]+}}*, i{{[0-9]+}}*, ...)* bitcast (void (i{{[0-9]+}}*, i{{[0-9]+}}*, [2 x [[S_FLOAT_TY]]]*)* [[MAIN_MICROTASK4:@.+]] to void
|
|
|
|
// CHECK: call void (%{{.+}}*, i{{[0-9]+}}, void (i{{[0-9]+}}*, i{{[0-9]+}}*, ...)*, ...) @__kmpc_fork_call(%{{.+}}* @{{.+}}, i{{[0-9]+}} 1, void (i{{[0-9]+}}*, i{{[0-9]+}}*, ...)* bitcast (void (i{{[0-9]+}}*, i{{[0-9]+}}*, [2 x [[S_FLOAT_TY]]]*)* [[MAIN_MICROTASK5:@.+]] to void
|
|
|
|
// CHECK: call void (%{{.+}}*, i{{[0-9]+}}, void (i{{[0-9]+}}*, i{{[0-9]+}}*, ...)*, ...) @__kmpc_fork_call(%{{.+}}* @{{.+}}, i{{[0-9]+}} 1, void (i{{[0-9]+}}*, i{{[0-9]+}}*, ...)* bitcast (void (i{{[0-9]+}}*, i{{[0-9]+}}*, [2 x [[S_FLOAT_TY]]]*)* [[MAIN_MICROTASK6:@.+]] to void
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: = call {{.*}}i{{.+}} [[TMAIN_INT:@.+]]()
|
|
|
|
// CHECK: call {{.*}} [[S_FLOAT_TY_DESTR:@.+]]([[S_FLOAT_TY]]*
|
|
|
|
// CHECK: ret
|
|
|
|
//
|
2015-09-10 16:12:02 +08:00
|
|
|
// CHECK: define internal void [[MAIN_MICROTASK]](i{{[0-9]+}}* noalias [[GTID_ADDR:%.+]], i{{[0-9]+}}* noalias %{{.+}}, float* dereferenceable(4) %{{.+}}, [[S_FLOAT_TY]]* dereferenceable(4) %{{.+}}, [[S_FLOAT_TY]]* dereferenceable(4) %{{.+}}, float* dereferenceable(4) %{{.+}}, [2 x i32]* dereferenceable(8) %vec, [2 x [[S_FLOAT_TY]]]* dereferenceable(8) %{{.+}})
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: [[T_VAR_PRIV:%.+]] = alloca float,
|
|
|
|
// CHECK: [[VAR_PRIV:%.+]] = alloca [[S_FLOAT_TY]],
|
|
|
|
// CHECK: [[VAR1_PRIV:%.+]] = alloca [[S_FLOAT_TY]],
|
|
|
|
// CHECK: [[T_VAR1_PRIV:%.+]] = alloca float,
|
|
|
|
|
|
|
|
// Reduction list for runtime.
|
|
|
|
// CHECK: [[RED_LIST:%.+]] = alloca [4 x i8*],
|
|
|
|
|
|
|
|
// CHECK: store i{{[0-9]+}}* [[GTID_ADDR]], i{{[0-9]+}}** [[GTID_ADDR_ADDR:%.+]],
|
|
|
|
|
2015-09-10 16:12:02 +08:00
|
|
|
// CHECK: [[T_VAR_REF:%.+]] = load float*, float** %
|
|
|
|
// CHECK: [[VAR1_REF:%.+]] = load [[S_FLOAT_TY]]*, [[S_FLOAT_TY]]** %
|
|
|
|
// CHECK: [[T_VAR1_REF:%.+]] = load float*, float** %
|
|
|
|
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// For + reduction operation initial value of private variable is 0.
|
|
|
|
// CHECK: store float 0.0{{.+}}, float* [[T_VAR_PRIV]],
|
|
|
|
|
|
|
|
// For & reduction operation initial value of private variable is ones in all bits.
|
2015-09-10 16:12:02 +08:00
|
|
|
// CHECK: [[VAR_REF:%.+]] = load [[S_FLOAT_TY]]*, [[S_FLOAT_TY]]** %
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: call {{.*}} [[S_FLOAT_TY_CONSTR:@.+]]([[S_FLOAT_TY]]* [[VAR_PRIV]])
|
|
|
|
|
|
|
|
// For && reduction operation initial value of private variable is 1.0.
|
|
|
|
// CHECK: call {{.*}} [[S_FLOAT_TY_CONSTR:@.+]]([[S_FLOAT_TY]]* [[VAR1_PRIV]])
|
|
|
|
|
|
|
|
// For min reduction operation initial value of private variable is largest repesentable value.
|
|
|
|
// CHECK: store float 0x47EFFFFFE0000000, float* [[T_VAR1_PRIV]],
|
|
|
|
|
|
|
|
|
|
|
|
// CHECK: [[GTID_REF:%.+]] = load i{{[0-9]+}}*, i{{[0-9]+}}** [[GTID_ADDR_ADDR]]
|
|
|
|
// CHECK: [[GTID:%.+]] = load i{{[0-9]+}}, i{{[0-9]+}}* [[GTID_REF]]
|
|
|
|
// CHECK: call void @__kmpc_for_static_init_4(
|
|
|
|
// Skip checks for internal operations.
|
|
|
|
// CHECK: call void @__kmpc_for_static_fini(
|
|
|
|
|
|
|
|
// void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
|
|
|
|
|
Compute and preserve alignment more faithfully in IR-generation.
Introduce an Address type to bundle a pointer value with an
alignment. Introduce APIs on CGBuilderTy to work with Address
values. Change core APIs on CGF/CGM to traffic in Address where
appropriate. Require alignments to be non-zero. Update a ton
of code to compute and propagate alignment information.
As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment
helper function to CGF and made use of it in a number of places in
the expression emitter.
The end result is that we should now be significantly more correct
when performing operations on objects that are locally known to
be under-aligned. Since alignment is not reliably tracked in the
type system, there are inherent limits to this, but at least we
are no longer confused by standard operations like derived-to-base
conversions and array-to-pointer decay. I've also fixed a large
number of bugs where we were applying the complete-object alignment
to a pointer instead of the non-virtual alignment, although most of
these were hidden by the very conservative approach we took with
member alignment.
Also, because IRGen now reliably asserts on zero alignments, we
should no longer be subject to an absurd but frustrating recurring
bug where an incomplete type would report a zero alignment and then
we'd naively do a alignmentAtOffset on it and emit code using an
alignment equal to the largest power-of-two factor of the offset.
We should also now be emitting much more aggressive alignment
attributes in the presence of over-alignment. In particular,
field access now uses alignmentAtOffset instead of min.
Several times in this patch, I had to change the existing
code-generation pattern in order to more effectively use
the Address APIs. For the most part, this seems to be a strict
improvement, like doing pointer arithmetic with GEPs instead of
ptrtoint. That said, I've tried very hard to not change semantics,
but it is likely that I've failed in a few places, for which I
apologize.
ABIArgInfo now always carries the assumed alignment of indirect and
indirect byval arguments. In order to cut down on what was already
a dauntingly large patch, I changed the code to never set align
attributes in the IR on non-byval indirect arguments. That is,
we still generate code which assumes that indirect arguments have
the given alignment, but we don't express this information to the
backend except where it's semantically required (i.e. on byvals).
This is likely a minor regression for those targets that did provide
this information, but it'll be trivial to add it back in a later
patch.
I partially punted on applying this work to CGBuiltin. Please
do not add more uses of the CreateDefaultAligned{Load,Store}
APIs; they will be going away eventually.
llvm-svn: 246985
2015-09-08 16:05:57 +08:00
|
|
|
// CHECK: [[T_VAR_PRIV_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST]], i64 0, i64 0
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: [[BITCAST:%.+]] = bitcast float* [[T_VAR_PRIV]] to i8*
|
|
|
|
// CHECK: store i8* [[BITCAST]], i8** [[T_VAR_PRIV_REF]],
|
Compute and preserve alignment more faithfully in IR-generation.
Introduce an Address type to bundle a pointer value with an
alignment. Introduce APIs on CGBuilderTy to work with Address
values. Change core APIs on CGF/CGM to traffic in Address where
appropriate. Require alignments to be non-zero. Update a ton
of code to compute and propagate alignment information.
As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment
helper function to CGF and made use of it in a number of places in
the expression emitter.
The end result is that we should now be significantly more correct
when performing operations on objects that are locally known to
be under-aligned. Since alignment is not reliably tracked in the
type system, there are inherent limits to this, but at least we
are no longer confused by standard operations like derived-to-base
conversions and array-to-pointer decay. I've also fixed a large
number of bugs where we were applying the complete-object alignment
to a pointer instead of the non-virtual alignment, although most of
these were hidden by the very conservative approach we took with
member alignment.
Also, because IRGen now reliably asserts on zero alignments, we
should no longer be subject to an absurd but frustrating recurring
bug where an incomplete type would report a zero alignment and then
we'd naively do a alignmentAtOffset on it and emit code using an
alignment equal to the largest power-of-two factor of the offset.
We should also now be emitting much more aggressive alignment
attributes in the presence of over-alignment. In particular,
field access now uses alignmentAtOffset instead of min.
Several times in this patch, I had to change the existing
code-generation pattern in order to more effectively use
the Address APIs. For the most part, this seems to be a strict
improvement, like doing pointer arithmetic with GEPs instead of
ptrtoint. That said, I've tried very hard to not change semantics,
but it is likely that I've failed in a few places, for which I
apologize.
ABIArgInfo now always carries the assumed alignment of indirect and
indirect byval arguments. In order to cut down on what was already
a dauntingly large patch, I changed the code to never set align
attributes in the IR on non-byval indirect arguments. That is,
we still generate code which assumes that indirect arguments have
the given alignment, but we don't express this information to the
backend except where it's semantically required (i.e. on byvals).
This is likely a minor regression for those targets that did provide
this information, but it'll be trivial to add it back in a later
patch.
I partially punted on applying this work to CGBuiltin. Please
do not add more uses of the CreateDefaultAligned{Load,Store}
APIs; they will be going away eventually.
llvm-svn: 246985
2015-09-08 16:05:57 +08:00
|
|
|
// CHECK: [[VAR_PRIV_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST]], i64 0, i64 1
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: [[BITCAST:%.+]] = bitcast [[S_FLOAT_TY]]* [[VAR_PRIV]] to i8*
|
|
|
|
// CHECK: store i8* [[BITCAST]], i8** [[VAR_PRIV_REF]],
|
Compute and preserve alignment more faithfully in IR-generation.
Introduce an Address type to bundle a pointer value with an
alignment. Introduce APIs on CGBuilderTy to work with Address
values. Change core APIs on CGF/CGM to traffic in Address where
appropriate. Require alignments to be non-zero. Update a ton
of code to compute and propagate alignment information.
As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment
helper function to CGF and made use of it in a number of places in
the expression emitter.
The end result is that we should now be significantly more correct
when performing operations on objects that are locally known to
be under-aligned. Since alignment is not reliably tracked in the
type system, there are inherent limits to this, but at least we
are no longer confused by standard operations like derived-to-base
conversions and array-to-pointer decay. I've also fixed a large
number of bugs where we were applying the complete-object alignment
to a pointer instead of the non-virtual alignment, although most of
these were hidden by the very conservative approach we took with
member alignment.
Also, because IRGen now reliably asserts on zero alignments, we
should no longer be subject to an absurd but frustrating recurring
bug where an incomplete type would report a zero alignment and then
we'd naively do a alignmentAtOffset on it and emit code using an
alignment equal to the largest power-of-two factor of the offset.
We should also now be emitting much more aggressive alignment
attributes in the presence of over-alignment. In particular,
field access now uses alignmentAtOffset instead of min.
Several times in this patch, I had to change the existing
code-generation pattern in order to more effectively use
the Address APIs. For the most part, this seems to be a strict
improvement, like doing pointer arithmetic with GEPs instead of
ptrtoint. That said, I've tried very hard to not change semantics,
but it is likely that I've failed in a few places, for which I
apologize.
ABIArgInfo now always carries the assumed alignment of indirect and
indirect byval arguments. In order to cut down on what was already
a dauntingly large patch, I changed the code to never set align
attributes in the IR on non-byval indirect arguments. That is,
we still generate code which assumes that indirect arguments have
the given alignment, but we don't express this information to the
backend except where it's semantically required (i.e. on byvals).
This is likely a minor regression for those targets that did provide
this information, but it'll be trivial to add it back in a later
patch.
I partially punted on applying this work to CGBuiltin. Please
do not add more uses of the CreateDefaultAligned{Load,Store}
APIs; they will be going away eventually.
llvm-svn: 246985
2015-09-08 16:05:57 +08:00
|
|
|
// CHECK: [[VAR1_PRIV_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST]], i64 0, i64 2
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: [[BITCAST:%.+]] = bitcast [[S_FLOAT_TY]]* [[VAR1_PRIV]] to i8*
|
|
|
|
// CHECK: store i8* [[BITCAST]], i8** [[VAR1_PRIV_REF]],
|
Compute and preserve alignment more faithfully in IR-generation.
Introduce an Address type to bundle a pointer value with an
alignment. Introduce APIs on CGBuilderTy to work with Address
values. Change core APIs on CGF/CGM to traffic in Address where
appropriate. Require alignments to be non-zero. Update a ton
of code to compute and propagate alignment information.
As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment
helper function to CGF and made use of it in a number of places in
the expression emitter.
The end result is that we should now be significantly more correct
when performing operations on objects that are locally known to
be under-aligned. Since alignment is not reliably tracked in the
type system, there are inherent limits to this, but at least we
are no longer confused by standard operations like derived-to-base
conversions and array-to-pointer decay. I've also fixed a large
number of bugs where we were applying the complete-object alignment
to a pointer instead of the non-virtual alignment, although most of
these were hidden by the very conservative approach we took with
member alignment.
Also, because IRGen now reliably asserts on zero alignments, we
should no longer be subject to an absurd but frustrating recurring
bug where an incomplete type would report a zero alignment and then
we'd naively do a alignmentAtOffset on it and emit code using an
alignment equal to the largest power-of-two factor of the offset.
We should also now be emitting much more aggressive alignment
attributes in the presence of over-alignment. In particular,
field access now uses alignmentAtOffset instead of min.
Several times in this patch, I had to change the existing
code-generation pattern in order to more effectively use
the Address APIs. For the most part, this seems to be a strict
improvement, like doing pointer arithmetic with GEPs instead of
ptrtoint. That said, I've tried very hard to not change semantics,
but it is likely that I've failed in a few places, for which I
apologize.
ABIArgInfo now always carries the assumed alignment of indirect and
indirect byval arguments. In order to cut down on what was already
a dauntingly large patch, I changed the code to never set align
attributes in the IR on non-byval indirect arguments. That is,
we still generate code which assumes that indirect arguments have
the given alignment, but we don't express this information to the
backend except where it's semantically required (i.e. on byvals).
This is likely a minor regression for those targets that did provide
this information, but it'll be trivial to add it back in a later
patch.
I partially punted on applying this work to CGBuiltin. Please
do not add more uses of the CreateDefaultAligned{Load,Store}
APIs; they will be going away eventually.
llvm-svn: 246985
2015-09-08 16:05:57 +08:00
|
|
|
// CHECK: [[T_VAR1_PRIV_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST]], i64 0, i64 3
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: [[BITCAST:%.+]] = bitcast float* [[T_VAR1_PRIV]] to i8*
|
|
|
|
// CHECK: store i8* [[BITCAST]], i8** [[T_VAR1_PRIV_REF]],
|
|
|
|
|
|
|
|
// res = __kmpc_reduce(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>);
|
|
|
|
|
|
|
|
// CHECK: [[BITCAST:%.+]] = bitcast [4 x i8*]* [[RED_LIST]] to i8*
|
|
|
|
// CHECK: [[RES:%.+]] = call i32 @__kmpc_reduce(%{{.+}}* [[REDUCTION_LOC]], i32 [[GTID]], i32 4, i64 32, i8* [[BITCAST]], void (i8*, i8*)* [[REDUCTION_FUNC:@.+]], [8 x i32]* [[REDUCTION_LOCK]])
|
|
|
|
|
|
|
|
// switch(res)
|
|
|
|
// CHECK: switch i32 [[RES]], label %[[RED_DONE:.+]] [
|
|
|
|
// CHECK: i32 1, label %[[CASE1:.+]]
|
|
|
|
// CHECK: i32 2, label %[[CASE2:.+]]
|
|
|
|
// CHECK: ]
|
|
|
|
|
|
|
|
// case 1:
|
|
|
|
// t_var += t_var_reduction;
|
|
|
|
// CHECK: [[T_VAR_VAL:%.+]] = load float, float* [[T_VAR_REF]],
|
|
|
|
// CHECK: [[T_VAR_PRIV_VAL:%.+]] = load float, float* [[T_VAR_PRIV]],
|
|
|
|
// CHECK: [[UP:%.+]] = fadd float [[T_VAR_VAL]], [[T_VAR_PRIV_VAL]]
|
|
|
|
// CHECK: store float [[UP]], float* [[T_VAR_REF]],
|
|
|
|
|
|
|
|
// var = var.operator &(var_reduction);
|
|
|
|
// CHECK: [[UP:%.+]] = call dereferenceable(4) [[S_FLOAT_TY]]* @{{.+}}([[S_FLOAT_TY]]* [[VAR_REF]], [[S_FLOAT_TY]]* dereferenceable(4) [[VAR_PRIV]])
|
|
|
|
// CHECK: [[BC1:%.+]] = bitcast [[S_FLOAT_TY]]* [[VAR_REF]] to i8*
|
|
|
|
// CHECK: [[BC2:%.+]] = bitcast [[S_FLOAT_TY]]* [[UP]] to i8*
|
2015-11-19 13:55:59 +08:00
|
|
|
// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* [[BC1]], i8* [[BC2]], i64 4, i32 4, i1 false)
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
|
|
|
|
// var1 = var1.operator &&(var1_reduction);
|
|
|
|
// CHECK: [[TO_FLOAT:%.+]] = call float @{{.+}}([[S_FLOAT_TY]]* [[VAR1_REF]])
|
|
|
|
// CHECK: [[VAR1_BOOL:%.+]] = fcmp une float [[TO_FLOAT]], 0.0
|
2015-05-07 11:54:03 +08:00
|
|
|
// CHECK: br i1 [[VAR1_BOOL]], label %[[TRUE:.+]], label %[[END2:.+]]
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: [[TRUE]]
|
|
|
|
// CHECK: [[TO_FLOAT:%.+]] = call float @{{.+}}([[S_FLOAT_TY]]* [[VAR1_PRIV]])
|
|
|
|
// CHECK: [[VAR1_REDUCTION_BOOL:%.+]] = fcmp une float [[TO_FLOAT]], 0.0
|
|
|
|
// CHECK: br label %[[END2]]
|
|
|
|
// CHECK: [[END2]]
|
2015-05-07 11:54:03 +08:00
|
|
|
// CHECK: [[COND_LVALUE:%.+]] = phi i1 [ false, %{{.+}} ], [ [[VAR1_REDUCTION_BOOL]], %[[TRUE]] ]
|
|
|
|
// CHECK: [[CONV:%.+]] = uitofp i1 [[COND_LVALUE]] to float
|
|
|
|
// CHECK: call void @{{.+}}([[S_FLOAT_TY]]* [[COND_LVALUE:%.+]], float [[CONV]])
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: [[BC1:%.+]] = bitcast [[S_FLOAT_TY]]* [[VAR1_REF]] to i8*
|
|
|
|
// CHECK: [[BC2:%.+]] = bitcast [[S_FLOAT_TY]]* [[COND_LVALUE]] to i8*
|
2015-11-19 13:55:59 +08:00
|
|
|
// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* [[BC1]], i8* [[BC2]], i64 4, i32 4, i1 false)
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
|
|
|
|
// t_var1 = min(t_var1, t_var1_reduction);
|
|
|
|
// CHECK: [[T_VAR1_VAL:%.+]] = load float, float* [[T_VAR1_REF]],
|
|
|
|
// CHECK: [[T_VAR1_PRIV_VAL:%.+]] = load float, float* [[T_VAR1_PRIV]],
|
|
|
|
// CHECK: [[CMP:%.+]] = fcmp olt float [[T_VAR1_VAL]], [[T_VAR1_PRIV_VAL]]
|
2015-05-07 11:54:03 +08:00
|
|
|
// CHECK: br i1 [[CMP]]
|
|
|
|
// CHECK: [[UP:%.+]] = phi float
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: store float [[UP]], float* [[T_VAR1_REF]],
|
|
|
|
|
|
|
|
// __kmpc_end_reduce(<loc>, <gtid>, &<lock>);
|
|
|
|
// CHECK: call void @__kmpc_end_reduce(%{{.+}}* [[REDUCTION_LOC]], i32 [[GTID]], [8 x i32]* [[REDUCTION_LOCK]])
|
|
|
|
|
|
|
|
// break;
|
|
|
|
// CHECK: br label %[[RED_DONE]]
|
|
|
|
|
|
|
|
// case 2:
|
|
|
|
// t_var += t_var_reduction;
|
|
|
|
// CHECK: load float, float* [[T_VAR_PRIV]]
|
|
|
|
// CHECK: [[T_VAR_REF_INT:%.+]] = bitcast float* [[T_VAR_REF]] to i32*
|
2015-05-15 16:36:34 +08:00
|
|
|
// CHECK: [[OLD1:%.+]] = load atomic i32, i32* [[T_VAR_REF_INT]] monotonic,
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: br label %[[CONT:.+]]
|
|
|
|
// CHECK: [[CONT]]
|
2015-05-15 16:36:34 +08:00
|
|
|
// CHECK: [[ORIG_OLD_INT:%.+]] = phi i32 [ [[OLD1]], %{{.+}} ], [ [[OLD2:%.+]], %[[CONT]] ]
|
|
|
|
// CHECK: fadd float
|
|
|
|
// CHECK: [[UP_INT:%.+]] = load i32, i32*
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: [[T_VAR_REF_INT:%.+]] = bitcast float* [[T_VAR_REF]] to i32*
|
|
|
|
// CHECK: [[RES:%.+]] = cmpxchg i32* [[T_VAR_REF_INT]], i32 [[ORIG_OLD_INT]], i32 [[UP_INT]] monotonic monotonic
|
2015-05-15 16:36:34 +08:00
|
|
|
// CHECK: [[OLD2:%.+]] = extractvalue { i32, i1 } [[RES]], 0
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: [[SUCCESS_FAIL:%.+]] = extractvalue { i32, i1 } [[RES]], 1
|
|
|
|
// CHECK: br i1 [[SUCCESS_FAIL]], label %[[ATOMIC_DONE:.+]], label %[[CONT]]
|
|
|
|
// CHECK: [[ATOMIC_DONE]]
|
|
|
|
|
|
|
|
// var = var.operator &(var_reduction);
|
|
|
|
// CHECK: call void @__kmpc_critical(
|
|
|
|
// CHECK: [[UP:%.+]] = call dereferenceable(4) [[S_FLOAT_TY]]* @{{.+}}([[S_FLOAT_TY]]* [[VAR_REF]], [[S_FLOAT_TY]]* dereferenceable(4) [[VAR_PRIV]])
|
|
|
|
// CHECK: [[BC1:%.+]] = bitcast [[S_FLOAT_TY]]* [[VAR_REF]] to i8*
|
|
|
|
// CHECK: [[BC2:%.+]] = bitcast [[S_FLOAT_TY]]* [[UP]] to i8*
|
2015-11-19 13:55:59 +08:00
|
|
|
// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* [[BC1]], i8* [[BC2]], i64 4, i32 4, i1 false)
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: call void @__kmpc_end_critical(
|
|
|
|
|
|
|
|
// var1 = var1.operator &&(var1_reduction);
|
|
|
|
// CHECK: call void @__kmpc_critical(
|
|
|
|
// CHECK: [[TO_FLOAT:%.+]] = call float @{{.+}}([[S_FLOAT_TY]]* [[VAR1_REF]])
|
|
|
|
// CHECK: [[VAR1_BOOL:%.+]] = fcmp une float [[TO_FLOAT]], 0.0
|
2015-05-07 11:54:03 +08:00
|
|
|
// CHECK: br i1 [[VAR1_BOOL]], label %[[TRUE:.+]], label %[[END2:.+]]
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: [[TRUE]]
|
|
|
|
// CHECK: [[TO_FLOAT:%.+]] = call float @{{.+}}([[S_FLOAT_TY]]* [[VAR1_PRIV]])
|
|
|
|
// CHECK: [[VAR1_REDUCTION_BOOL:%.+]] = fcmp une float [[TO_FLOAT]], 0.0
|
|
|
|
// CHECK: br label %[[END2]]
|
|
|
|
// CHECK: [[END2]]
|
2015-05-07 11:54:03 +08:00
|
|
|
// CHECK: [[COND_LVALUE:%.+]] = phi i1 [ false, %{{.+}} ], [ [[VAR1_REDUCTION_BOOL]], %[[TRUE]] ]
|
|
|
|
// CHECK: [[CONV:%.+]] = uitofp i1 [[COND_LVALUE]] to float
|
|
|
|
// CHECK: call void @{{.+}}([[S_FLOAT_TY]]* [[COND_LVALUE:%.+]], float [[CONV]])
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: [[BC1:%.+]] = bitcast [[S_FLOAT_TY]]* [[VAR1_REF]] to i8*
|
|
|
|
// CHECK: [[BC2:%.+]] = bitcast [[S_FLOAT_TY]]* [[COND_LVALUE]] to i8*
|
2015-11-19 13:55:59 +08:00
|
|
|
// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* [[BC1]], i8* [[BC2]], i64 4, i32 4, i1 false)
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: call void @__kmpc_end_critical(
|
|
|
|
|
|
|
|
// t_var1 = min(t_var1, t_var1_reduction);
|
|
|
|
// CHECK: load float, float* [[T_VAR1_PRIV]]
|
|
|
|
// CHECK: [[T_VAR1_REF_INT:%.+]] = bitcast float* [[T_VAR1_REF]] to i32*
|
2015-05-15 16:36:34 +08:00
|
|
|
// CHECK: [[OLD1:%.+]] = load atomic i32, i32* [[T_VAR1_REF_INT]] monotonic,
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: br label %[[CONT:.+]]
|
|
|
|
// CHECK: [[CONT]]
|
2015-05-15 16:36:34 +08:00
|
|
|
// CHECK: [[ORIG_OLD_INT:%.+]] = phi i32 [ [[OLD1]], %{{.+}} ], [ [[OLD2:%.+]], %{{.+}} ]
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: [[CMP:%.+]] = fcmp olt float
|
2015-05-07 11:54:03 +08:00
|
|
|
// CHECK: br i1 [[CMP]]
|
2015-05-15 16:36:34 +08:00
|
|
|
// CHECK: phi float
|
|
|
|
// CHECK: [[UP_INT:%.+]] = load i32
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: [[T_VAR1_REF_INT:%.+]] = bitcast float* [[T_VAR1_REF]] to i32*
|
|
|
|
// CHECK: [[RES:%.+]] = cmpxchg i32* [[T_VAR1_REF_INT]], i32 [[ORIG_OLD_INT]], i32 [[UP_INT]] monotonic monotonic
|
2015-05-15 16:36:34 +08:00
|
|
|
// CHECK: [[OLD2:%.+]] = extractvalue { i32, i1 } [[RES]], 0
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: [[SUCCESS_FAIL:%.+]] = extractvalue { i32, i1 } [[RES]], 1
|
|
|
|
// CHECK: br i1 [[SUCCESS_FAIL]], label %[[ATOMIC_DONE:.+]], label %[[CONT]]
|
|
|
|
// CHECK: [[ATOMIC_DONE]]
|
|
|
|
|
2015-05-07 11:54:03 +08:00
|
|
|
// __kmpc_end_reduce(<loc>, <gtid>, &<lock>);
|
|
|
|
// CHECK: call void @__kmpc_end_reduce(%{{.+}}* [[REDUCTION_LOC]], i32 [[GTID]], [8 x i32]* [[REDUCTION_LOCK]])
|
|
|
|
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// break;
|
|
|
|
// CHECK: br label %[[RED_DONE]]
|
|
|
|
// CHECK: [[RED_DONE]]
|
|
|
|
// CHECK-DAG: call {{.*}} [[S_FLOAT_TY_DESTR]]([[S_FLOAT_TY]]* [[VAR_PRIV]])
|
|
|
|
// CHECK-DAG: call {{.*}} [[S_FLOAT_TY_DESTR]]([[S_FLOAT_TY]]*
|
2015-09-15 20:52:43 +08:00
|
|
|
// CHECK: call void @__kmpc_barrier(%{{.+}}* [[IMPLICIT_BARRIER_LOC]], i{{[0-9]+}} [[GTID]])
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
|
|
|
|
// CHECK: ret void
|
|
|
|
|
|
|
|
// void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
|
|
|
|
// *(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
|
|
|
|
// ...
|
|
|
|
// *(Type<n>-1*)lhs[<n>-1] = ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
|
|
|
|
// *(Type<n>-1*)rhs[<n>-1]);
|
|
|
|
// }
|
|
|
|
// CHECK: define internal void [[REDUCTION_FUNC]](i8*, i8*)
|
|
|
|
// t_var_lhs = (float*)lhs[0];
|
Compute and preserve alignment more faithfully in IR-generation.
Introduce an Address type to bundle a pointer value with an
alignment. Introduce APIs on CGBuilderTy to work with Address
values. Change core APIs on CGF/CGM to traffic in Address where
appropriate. Require alignments to be non-zero. Update a ton
of code to compute and propagate alignment information.
As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment
helper function to CGF and made use of it in a number of places in
the expression emitter.
The end result is that we should now be significantly more correct
when performing operations on objects that are locally known to
be under-aligned. Since alignment is not reliably tracked in the
type system, there are inherent limits to this, but at least we
are no longer confused by standard operations like derived-to-base
conversions and array-to-pointer decay. I've also fixed a large
number of bugs where we were applying the complete-object alignment
to a pointer instead of the non-virtual alignment, although most of
these were hidden by the very conservative approach we took with
member alignment.
Also, because IRGen now reliably asserts on zero alignments, we
should no longer be subject to an absurd but frustrating recurring
bug where an incomplete type would report a zero alignment and then
we'd naively do a alignmentAtOffset on it and emit code using an
alignment equal to the largest power-of-two factor of the offset.
We should also now be emitting much more aggressive alignment
attributes in the presence of over-alignment. In particular,
field access now uses alignmentAtOffset instead of min.
Several times in this patch, I had to change the existing
code-generation pattern in order to more effectively use
the Address APIs. For the most part, this seems to be a strict
improvement, like doing pointer arithmetic with GEPs instead of
ptrtoint. That said, I've tried very hard to not change semantics,
but it is likely that I've failed in a few places, for which I
apologize.
ABIArgInfo now always carries the assumed alignment of indirect and
indirect byval arguments. In order to cut down on what was already
a dauntingly large patch, I changed the code to never set align
attributes in the IR on non-byval indirect arguments. That is,
we still generate code which assumes that indirect arguments have
the given alignment, but we don't express this information to the
backend except where it's semantically required (i.e. on byvals).
This is likely a minor regression for those targets that did provide
this information, but it'll be trivial to add it back in a later
patch.
I partially punted on applying this work to CGBuiltin. Please
do not add more uses of the CreateDefaultAligned{Load,Store}
APIs; they will be going away eventually.
llvm-svn: 246985
2015-09-08 16:05:57 +08:00
|
|
|
// CHECK: [[T_VAR_RHS_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST_RHS:%.+]], i64 0, i64 0
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: [[T_VAR_RHS_VOID:%.+]] = load i8*, i8** [[T_VAR_RHS_REF]],
|
|
|
|
// CHECK: [[T_VAR_RHS:%.+]] = bitcast i8* [[T_VAR_RHS_VOID]] to float*
|
|
|
|
// t_var_rhs = (float*)rhs[0];
|
Compute and preserve alignment more faithfully in IR-generation.
Introduce an Address type to bundle a pointer value with an
alignment. Introduce APIs on CGBuilderTy to work with Address
values. Change core APIs on CGF/CGM to traffic in Address where
appropriate. Require alignments to be non-zero. Update a ton
of code to compute and propagate alignment information.
As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment
helper function to CGF and made use of it in a number of places in
the expression emitter.
The end result is that we should now be significantly more correct
when performing operations on objects that are locally known to
be under-aligned. Since alignment is not reliably tracked in the
type system, there are inherent limits to this, but at least we
are no longer confused by standard operations like derived-to-base
conversions and array-to-pointer decay. I've also fixed a large
number of bugs where we were applying the complete-object alignment
to a pointer instead of the non-virtual alignment, although most of
these were hidden by the very conservative approach we took with
member alignment.
Also, because IRGen now reliably asserts on zero alignments, we
should no longer be subject to an absurd but frustrating recurring
bug where an incomplete type would report a zero alignment and then
we'd naively do a alignmentAtOffset on it and emit code using an
alignment equal to the largest power-of-two factor of the offset.
We should also now be emitting much more aggressive alignment
attributes in the presence of over-alignment. In particular,
field access now uses alignmentAtOffset instead of min.
Several times in this patch, I had to change the existing
code-generation pattern in order to more effectively use
the Address APIs. For the most part, this seems to be a strict
improvement, like doing pointer arithmetic with GEPs instead of
ptrtoint. That said, I've tried very hard to not change semantics,
but it is likely that I've failed in a few places, for which I
apologize.
ABIArgInfo now always carries the assumed alignment of indirect and
indirect byval arguments. In order to cut down on what was already
a dauntingly large patch, I changed the code to never set align
attributes in the IR on non-byval indirect arguments. That is,
we still generate code which assumes that indirect arguments have
the given alignment, but we don't express this information to the
backend except where it's semantically required (i.e. on byvals).
This is likely a minor regression for those targets that did provide
this information, but it'll be trivial to add it back in a later
patch.
I partially punted on applying this work to CGBuiltin. Please
do not add more uses of the CreateDefaultAligned{Load,Store}
APIs; they will be going away eventually.
llvm-svn: 246985
2015-09-08 16:05:57 +08:00
|
|
|
// CHECK: [[T_VAR_LHS_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST_LHS:%.+]], i64 0, i64 0
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: [[T_VAR_LHS_VOID:%.+]] = load i8*, i8** [[T_VAR_LHS_REF]],
|
|
|
|
// CHECK: [[T_VAR_LHS:%.+]] = bitcast i8* [[T_VAR_LHS_VOID]] to float*
|
|
|
|
|
|
|
|
// var_lhs = (S<float>*)lhs[1];
|
Compute and preserve alignment more faithfully in IR-generation.
Introduce an Address type to bundle a pointer value with an
alignment. Introduce APIs on CGBuilderTy to work with Address
values. Change core APIs on CGF/CGM to traffic in Address where
appropriate. Require alignments to be non-zero. Update a ton
of code to compute and propagate alignment information.
As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment
helper function to CGF and made use of it in a number of places in
the expression emitter.
The end result is that we should now be significantly more correct
when performing operations on objects that are locally known to
be under-aligned. Since alignment is not reliably tracked in the
type system, there are inherent limits to this, but at least we
are no longer confused by standard operations like derived-to-base
conversions and array-to-pointer decay. I've also fixed a large
number of bugs where we were applying the complete-object alignment
to a pointer instead of the non-virtual alignment, although most of
these were hidden by the very conservative approach we took with
member alignment.
Also, because IRGen now reliably asserts on zero alignments, we
should no longer be subject to an absurd but frustrating recurring
bug where an incomplete type would report a zero alignment and then
we'd naively do a alignmentAtOffset on it and emit code using an
alignment equal to the largest power-of-two factor of the offset.
We should also now be emitting much more aggressive alignment
attributes in the presence of over-alignment. In particular,
field access now uses alignmentAtOffset instead of min.
Several times in this patch, I had to change the existing
code-generation pattern in order to more effectively use
the Address APIs. For the most part, this seems to be a strict
improvement, like doing pointer arithmetic with GEPs instead of
ptrtoint. That said, I've tried very hard to not change semantics,
but it is likely that I've failed in a few places, for which I
apologize.
ABIArgInfo now always carries the assumed alignment of indirect and
indirect byval arguments. In order to cut down on what was already
a dauntingly large patch, I changed the code to never set align
attributes in the IR on non-byval indirect arguments. That is,
we still generate code which assumes that indirect arguments have
the given alignment, but we don't express this information to the
backend except where it's semantically required (i.e. on byvals).
This is likely a minor regression for those targets that did provide
this information, but it'll be trivial to add it back in a later
patch.
I partially punted on applying this work to CGBuiltin. Please
do not add more uses of the CreateDefaultAligned{Load,Store}
APIs; they will be going away eventually.
llvm-svn: 246985
2015-09-08 16:05:57 +08:00
|
|
|
// CHECK: [[VAR_RHS_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST_RHS]], i64 0, i64 1
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: [[VAR_RHS_VOID:%.+]] = load i8*, i8** [[VAR_RHS_REF]],
|
|
|
|
// CHECK: [[VAR_RHS:%.+]] = bitcast i8* [[VAR_RHS_VOID]] to [[S_FLOAT_TY]]*
|
|
|
|
// var_rhs = (S<float>*)rhs[1];
|
Compute and preserve alignment more faithfully in IR-generation.
Introduce an Address type to bundle a pointer value with an
alignment. Introduce APIs on CGBuilderTy to work with Address
values. Change core APIs on CGF/CGM to traffic in Address where
appropriate. Require alignments to be non-zero. Update a ton
of code to compute and propagate alignment information.
As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment
helper function to CGF and made use of it in a number of places in
the expression emitter.
The end result is that we should now be significantly more correct
when performing operations on objects that are locally known to
be under-aligned. Since alignment is not reliably tracked in the
type system, there are inherent limits to this, but at least we
are no longer confused by standard operations like derived-to-base
conversions and array-to-pointer decay. I've also fixed a large
number of bugs where we were applying the complete-object alignment
to a pointer instead of the non-virtual alignment, although most of
these were hidden by the very conservative approach we took with
member alignment.
Also, because IRGen now reliably asserts on zero alignments, we
should no longer be subject to an absurd but frustrating recurring
bug where an incomplete type would report a zero alignment and then
we'd naively do a alignmentAtOffset on it and emit code using an
alignment equal to the largest power-of-two factor of the offset.
We should also now be emitting much more aggressive alignment
attributes in the presence of over-alignment. In particular,
field access now uses alignmentAtOffset instead of min.
Several times in this patch, I had to change the existing
code-generation pattern in order to more effectively use
the Address APIs. For the most part, this seems to be a strict
improvement, like doing pointer arithmetic with GEPs instead of
ptrtoint. That said, I've tried very hard to not change semantics,
but it is likely that I've failed in a few places, for which I
apologize.
ABIArgInfo now always carries the assumed alignment of indirect and
indirect byval arguments. In order to cut down on what was already
a dauntingly large patch, I changed the code to never set align
attributes in the IR on non-byval indirect arguments. That is,
we still generate code which assumes that indirect arguments have
the given alignment, but we don't express this information to the
backend except where it's semantically required (i.e. on byvals).
This is likely a minor regression for those targets that did provide
this information, but it'll be trivial to add it back in a later
patch.
I partially punted on applying this work to CGBuiltin. Please
do not add more uses of the CreateDefaultAligned{Load,Store}
APIs; they will be going away eventually.
llvm-svn: 246985
2015-09-08 16:05:57 +08:00
|
|
|
// CHECK: [[VAR_LHS_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST_LHS]], i64 0, i64 1
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: [[VAR_LHS_VOID:%.+]] = load i8*, i8** [[VAR_LHS_REF]],
|
|
|
|
// CHECK: [[VAR_LHS:%.+]] = bitcast i8* [[VAR_LHS_VOID]] to [[S_FLOAT_TY]]*
|
|
|
|
|
|
|
|
// var1_lhs = (S<float>*)lhs[2];
|
Compute and preserve alignment more faithfully in IR-generation.
Introduce an Address type to bundle a pointer value with an
alignment. Introduce APIs on CGBuilderTy to work with Address
values. Change core APIs on CGF/CGM to traffic in Address where
appropriate. Require alignments to be non-zero. Update a ton
of code to compute and propagate alignment information.
As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment
helper function to CGF and made use of it in a number of places in
the expression emitter.
The end result is that we should now be significantly more correct
when performing operations on objects that are locally known to
be under-aligned. Since alignment is not reliably tracked in the
type system, there are inherent limits to this, but at least we
are no longer confused by standard operations like derived-to-base
conversions and array-to-pointer decay. I've also fixed a large
number of bugs where we were applying the complete-object alignment
to a pointer instead of the non-virtual alignment, although most of
these were hidden by the very conservative approach we took with
member alignment.
Also, because IRGen now reliably asserts on zero alignments, we
should no longer be subject to an absurd but frustrating recurring
bug where an incomplete type would report a zero alignment and then
we'd naively do a alignmentAtOffset on it and emit code using an
alignment equal to the largest power-of-two factor of the offset.
We should also now be emitting much more aggressive alignment
attributes in the presence of over-alignment. In particular,
field access now uses alignmentAtOffset instead of min.
Several times in this patch, I had to change the existing
code-generation pattern in order to more effectively use
the Address APIs. For the most part, this seems to be a strict
improvement, like doing pointer arithmetic with GEPs instead of
ptrtoint. That said, I've tried very hard to not change semantics,
but it is likely that I've failed in a few places, for which I
apologize.
ABIArgInfo now always carries the assumed alignment of indirect and
indirect byval arguments. In order to cut down on what was already
a dauntingly large patch, I changed the code to never set align
attributes in the IR on non-byval indirect arguments. That is,
we still generate code which assumes that indirect arguments have
the given alignment, but we don't express this information to the
backend except where it's semantically required (i.e. on byvals).
This is likely a minor regression for those targets that did provide
this information, but it'll be trivial to add it back in a later
patch.
I partially punted on applying this work to CGBuiltin. Please
do not add more uses of the CreateDefaultAligned{Load,Store}
APIs; they will be going away eventually.
llvm-svn: 246985
2015-09-08 16:05:57 +08:00
|
|
|
// CHECK: [[VAR1_RHS_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST_RHS]], i64 0, i64 2
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: [[VAR1_RHS_VOID:%.+]] = load i8*, i8** [[VAR1_RHS_REF]],
|
|
|
|
// CHECK: [[VAR1_RHS:%.+]] = bitcast i8* [[VAR1_RHS_VOID]] to [[S_FLOAT_TY]]*
|
|
|
|
// var1_rhs = (S<float>*)rhs[2];
|
Compute and preserve alignment more faithfully in IR-generation.
Introduce an Address type to bundle a pointer value with an
alignment. Introduce APIs on CGBuilderTy to work with Address
values. Change core APIs on CGF/CGM to traffic in Address where
appropriate. Require alignments to be non-zero. Update a ton
of code to compute and propagate alignment information.
As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment
helper function to CGF and made use of it in a number of places in
the expression emitter.
The end result is that we should now be significantly more correct
when performing operations on objects that are locally known to
be under-aligned. Since alignment is not reliably tracked in the
type system, there are inherent limits to this, but at least we
are no longer confused by standard operations like derived-to-base
conversions and array-to-pointer decay. I've also fixed a large
number of bugs where we were applying the complete-object alignment
to a pointer instead of the non-virtual alignment, although most of
these were hidden by the very conservative approach we took with
member alignment.
Also, because IRGen now reliably asserts on zero alignments, we
should no longer be subject to an absurd but frustrating recurring
bug where an incomplete type would report a zero alignment and then
we'd naively do a alignmentAtOffset on it and emit code using an
alignment equal to the largest power-of-two factor of the offset.
We should also now be emitting much more aggressive alignment
attributes in the presence of over-alignment. In particular,
field access now uses alignmentAtOffset instead of min.
Several times in this patch, I had to change the existing
code-generation pattern in order to more effectively use
the Address APIs. For the most part, this seems to be a strict
improvement, like doing pointer arithmetic with GEPs instead of
ptrtoint. That said, I've tried very hard to not change semantics,
but it is likely that I've failed in a few places, for which I
apologize.
ABIArgInfo now always carries the assumed alignment of indirect and
indirect byval arguments. In order to cut down on what was already
a dauntingly large patch, I changed the code to never set align
attributes in the IR on non-byval indirect arguments. That is,
we still generate code which assumes that indirect arguments have
the given alignment, but we don't express this information to the
backend except where it's semantically required (i.e. on byvals).
This is likely a minor regression for those targets that did provide
this information, but it'll be trivial to add it back in a later
patch.
I partially punted on applying this work to CGBuiltin. Please
do not add more uses of the CreateDefaultAligned{Load,Store}
APIs; they will be going away eventually.
llvm-svn: 246985
2015-09-08 16:05:57 +08:00
|
|
|
// CHECK: [[VAR1_LHS_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST_LHS]], i64 0, i64 2
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: [[VAR1_LHS_VOID:%.+]] = load i8*, i8** [[VAR1_LHS_REF]],
|
|
|
|
// CHECK: [[VAR1_LHS:%.+]] = bitcast i8* [[VAR1_LHS_VOID]] to [[S_FLOAT_TY]]*
|
|
|
|
|
|
|
|
// t_var1_lhs = (float*)lhs[3];
|
Compute and preserve alignment more faithfully in IR-generation.
Introduce an Address type to bundle a pointer value with an
alignment. Introduce APIs on CGBuilderTy to work with Address
values. Change core APIs on CGF/CGM to traffic in Address where
appropriate. Require alignments to be non-zero. Update a ton
of code to compute and propagate alignment information.
As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment
helper function to CGF and made use of it in a number of places in
the expression emitter.
The end result is that we should now be significantly more correct
when performing operations on objects that are locally known to
be under-aligned. Since alignment is not reliably tracked in the
type system, there are inherent limits to this, but at least we
are no longer confused by standard operations like derived-to-base
conversions and array-to-pointer decay. I've also fixed a large
number of bugs where we were applying the complete-object alignment
to a pointer instead of the non-virtual alignment, although most of
these were hidden by the very conservative approach we took with
member alignment.
Also, because IRGen now reliably asserts on zero alignments, we
should no longer be subject to an absurd but frustrating recurring
bug where an incomplete type would report a zero alignment and then
we'd naively do a alignmentAtOffset on it and emit code using an
alignment equal to the largest power-of-two factor of the offset.
We should also now be emitting much more aggressive alignment
attributes in the presence of over-alignment. In particular,
field access now uses alignmentAtOffset instead of min.
Several times in this patch, I had to change the existing
code-generation pattern in order to more effectively use
the Address APIs. For the most part, this seems to be a strict
improvement, like doing pointer arithmetic with GEPs instead of
ptrtoint. That said, I've tried very hard to not change semantics,
but it is likely that I've failed in a few places, for which I
apologize.
ABIArgInfo now always carries the assumed alignment of indirect and
indirect byval arguments. In order to cut down on what was already
a dauntingly large patch, I changed the code to never set align
attributes in the IR on non-byval indirect arguments. That is,
we still generate code which assumes that indirect arguments have
the given alignment, but we don't express this information to the
backend except where it's semantically required (i.e. on byvals).
This is likely a minor regression for those targets that did provide
this information, but it'll be trivial to add it back in a later
patch.
I partially punted on applying this work to CGBuiltin. Please
do not add more uses of the CreateDefaultAligned{Load,Store}
APIs; they will be going away eventually.
llvm-svn: 246985
2015-09-08 16:05:57 +08:00
|
|
|
// CHECK: [[T_VAR1_RHS_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST_RHS]], i64 0, i64 3
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: [[T_VAR1_RHS_VOID:%.+]] = load i8*, i8** [[T_VAR1_RHS_REF]],
|
|
|
|
// CHECK: [[T_VAR1_RHS:%.+]] = bitcast i8* [[T_VAR1_RHS_VOID]] to float*
|
|
|
|
// t_var1_rhs = (float*)rhs[3];
|
Compute and preserve alignment more faithfully in IR-generation.
Introduce an Address type to bundle a pointer value with an
alignment. Introduce APIs on CGBuilderTy to work with Address
values. Change core APIs on CGF/CGM to traffic in Address where
appropriate. Require alignments to be non-zero. Update a ton
of code to compute and propagate alignment information.
As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment
helper function to CGF and made use of it in a number of places in
the expression emitter.
The end result is that we should now be significantly more correct
when performing operations on objects that are locally known to
be under-aligned. Since alignment is not reliably tracked in the
type system, there are inherent limits to this, but at least we
are no longer confused by standard operations like derived-to-base
conversions and array-to-pointer decay. I've also fixed a large
number of bugs where we were applying the complete-object alignment
to a pointer instead of the non-virtual alignment, although most of
these were hidden by the very conservative approach we took with
member alignment.
Also, because IRGen now reliably asserts on zero alignments, we
should no longer be subject to an absurd but frustrating recurring
bug where an incomplete type would report a zero alignment and then
we'd naively do a alignmentAtOffset on it and emit code using an
alignment equal to the largest power-of-two factor of the offset.
We should also now be emitting much more aggressive alignment
attributes in the presence of over-alignment. In particular,
field access now uses alignmentAtOffset instead of min.
Several times in this patch, I had to change the existing
code-generation pattern in order to more effectively use
the Address APIs. For the most part, this seems to be a strict
improvement, like doing pointer arithmetic with GEPs instead of
ptrtoint. That said, I've tried very hard to not change semantics,
but it is likely that I've failed in a few places, for which I
apologize.
ABIArgInfo now always carries the assumed alignment of indirect and
indirect byval arguments. In order to cut down on what was already
a dauntingly large patch, I changed the code to never set align
attributes in the IR on non-byval indirect arguments. That is,
we still generate code which assumes that indirect arguments have
the given alignment, but we don't express this information to the
backend except where it's semantically required (i.e. on byvals).
This is likely a minor regression for those targets that did provide
this information, but it'll be trivial to add it back in a later
patch.
I partially punted on applying this work to CGBuiltin. Please
do not add more uses of the CreateDefaultAligned{Load,Store}
APIs; they will be going away eventually.
llvm-svn: 246985
2015-09-08 16:05:57 +08:00
|
|
|
// CHECK: [[T_VAR1_LHS_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST_LHS]], i64 0, i64 3
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: [[T_VAR1_LHS_VOID:%.+]] = load i8*, i8** [[T_VAR1_LHS_REF]],
|
|
|
|
// CHECK: [[T_VAR1_LHS:%.+]] = bitcast i8* [[T_VAR1_LHS_VOID]] to float*
|
|
|
|
|
|
|
|
// t_var_lhs += t_var_rhs;
|
|
|
|
// CHECK: [[T_VAR_LHS_VAL:%.+]] = load float, float* [[T_VAR_LHS]],
|
|
|
|
// CHECK: [[T_VAR_RHS_VAL:%.+]] = load float, float* [[T_VAR_RHS]],
|
|
|
|
// CHECK: [[UP:%.+]] = fadd float [[T_VAR_LHS_VAL]], [[T_VAR_RHS_VAL]]
|
|
|
|
// CHECK: store float [[UP]], float* [[T_VAR_LHS]],
|
|
|
|
|
|
|
|
// var_lhs = var_lhs.operator &(var_rhs);
|
|
|
|
// CHECK: [[UP:%.+]] = call dereferenceable(4) [[S_FLOAT_TY]]* @{{.+}}([[S_FLOAT_TY]]* [[VAR_LHS]], [[S_FLOAT_TY]]* dereferenceable(4) [[VAR_RHS]])
|
|
|
|
// CHECK: [[BC1:%.+]] = bitcast [[S_FLOAT_TY]]* [[VAR_LHS]] to i8*
|
|
|
|
// CHECK: [[BC2:%.+]] = bitcast [[S_FLOAT_TY]]* [[UP]] to i8*
|
2015-11-19 13:55:59 +08:00
|
|
|
// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* [[BC1]], i8* [[BC2]], i64 4, i32 4, i1 false)
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
|
|
|
|
// var1_lhs = var1_lhs.operator &&(var1_rhs);
|
|
|
|
// CHECK: [[TO_FLOAT:%.+]] = call float @{{.+}}([[S_FLOAT_TY]]* [[VAR1_LHS]])
|
|
|
|
// CHECK: [[VAR1_BOOL:%.+]] = fcmp une float [[TO_FLOAT]], 0.0
|
2015-05-07 11:54:03 +08:00
|
|
|
// CHECK: br i1 [[VAR1_BOOL]], label %[[TRUE:.+]], label %[[END2:.+]]
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: [[TRUE]]
|
|
|
|
// CHECK: [[TO_FLOAT:%.+]] = call float @{{.+}}([[S_FLOAT_TY]]* [[VAR1_RHS]])
|
|
|
|
// CHECK: [[VAR1_REDUCTION_BOOL:%.+]] = fcmp une float [[TO_FLOAT]], 0.0
|
|
|
|
// CHECK: br label %[[END2]]
|
|
|
|
// CHECK: [[END2]]
|
2015-05-07 11:54:03 +08:00
|
|
|
// CHECK: [[COND_LVALUE:%.+]] = phi i1 [ false, %{{.+}} ], [ [[VAR1_REDUCTION_BOOL]], %[[TRUE]] ]
|
|
|
|
// CHECK: [[CONV:%.+]] = uitofp i1 [[COND_LVALUE]] to float
|
|
|
|
// CHECK: call void @{{.+}}([[S_FLOAT_TY]]* [[COND_LVALUE:%.+]], float [[CONV]])
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: [[BC1:%.+]] = bitcast [[S_FLOAT_TY]]* [[VAR1_LHS]] to i8*
|
|
|
|
// CHECK: [[BC2:%.+]] = bitcast [[S_FLOAT_TY]]* [[COND_LVALUE]] to i8*
|
2015-11-19 13:55:59 +08:00
|
|
|
// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* [[BC1]], i8* [[BC2]], i64 4, i32 4, i1 false)
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
|
|
|
|
// t_var1_lhs = min(t_var1_lhs, t_var1_rhs);
|
|
|
|
// CHECK: [[T_VAR1_LHS_VAL:%.+]] = load float, float* [[T_VAR1_LHS]],
|
|
|
|
// CHECK: [[T_VAR1_RHS_VAL:%.+]] = load float, float* [[T_VAR1_RHS]],
|
|
|
|
// CHECK: [[CMP:%.+]] = fcmp olt float [[T_VAR1_LHS_VAL]], [[T_VAR1_RHS_VAL]]
|
2015-05-07 11:54:03 +08:00
|
|
|
// CHECK: br i1 [[CMP]]
|
|
|
|
// CHECK: [[UP:%.+]] = phi float
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: store float [[UP]], float* [[T_VAR1_LHS]],
|
|
|
|
// CHECK: ret void
|
|
|
|
|
2016-10-13 17:52:46 +08:00
|
|
|
// CHECK: define internal void [[MAIN_MICROTASK1]](i{{[0-9]+}}* noalias [[GTID_ADDR:%.+]], i{{[0-9]+}}* noalias %{{.+}}, i64 %{{.+}}, i64 %{{.+}}, i32* %{{.+}}, [2 x i32]* dereferenceable(8) %{{.+}}, [10 x [4 x [[S_FLOAT_TY]]]]* dereferenceable(160) %{{.+}})
|
2015-10-08 17:10:53 +08:00
|
|
|
|
|
|
|
// Reduction list for runtime.
|
|
|
|
// CHECK: [[RED_LIST:%.+]] = alloca [4 x i8*],
|
|
|
|
|
|
|
|
// CHECK: store i{{[0-9]+}}* [[GTID_ADDR]], i{{[0-9]+}}** [[GTID_ADDR_ADDR:%.+]],
|
2017-07-13 22:29:19 +08:00
|
|
|
// CHECK: store i{{[0-9]+}}* %{{.+}}, i{{[0-9]+}}**
|
|
|
|
// CHECK: store i{{[0-9]+}}* %{{.+}}, i{{[0-9]+}}** [[ARR_ADDR:%.+]],
|
|
|
|
// CHECK: [[ARR:%.+]] = load i{{[0-9]+}}*, i{{[0-9]+}}** [[ARR_ADDR]],
|
2015-10-08 17:10:53 +08:00
|
|
|
|
2017-07-13 22:54:42 +08:00
|
|
|
// CHECK: [[UB_CAST:%.+]] = ptrtoint i32* [[UB1_UP:%.+]] to i64
|
|
|
|
// CHECK: [[LB_CAST:%.+]] = ptrtoint i32* [[LB1_0:%.+]] to i64
|
2015-10-08 17:10:53 +08:00
|
|
|
// CHECK: [[DIFF:%.+]] = sub i64 [[UB_CAST]], [[LB_CAST]]
|
|
|
|
// CHECK: [[SIZE_1:%.+]] = sdiv exact i64 [[DIFF]], ptrtoint (i32* getelementptr (i32, i32* null, i32 1) to i64)
|
|
|
|
// CHECK: [[ARR_SIZE:%.+]] = add nuw i64 [[SIZE_1]], 1
|
|
|
|
// CHECK: call i8* @llvm.stacksave()
|
|
|
|
// CHECK: [[ARR_PRIV:%.+]] = alloca i32, i64 [[ARR_SIZE]],
|
|
|
|
|
|
|
|
// Check initialization of private copy.
|
|
|
|
// CHECK: [[END:%.+]] = getelementptr i32, i32* [[ARR_PRIV]], i64 [[ARR_SIZE]]
|
|
|
|
// CHECK: [[ISEMPTY:%.+]] = icmp eq i32* [[ARR_PRIV]], [[END]]
|
|
|
|
// CHECK: br i1 [[ISEMPTY]],
|
|
|
|
// CHECK: phi i32*
|
|
|
|
// CHECK: store i32 0, i32* %
|
|
|
|
// CHECK: [[DONE:%.+]] = icmp eq i32* %{{.+}}, [[END]]
|
|
|
|
// CHECK: br i1 [[DONE]],
|
|
|
|
|
|
|
|
// CHECK: [[ARRS_PRIV:%.+]] = alloca [[S_FLOAT_TY]], i64 [[ARRS_SIZE:%.+]],
|
|
|
|
|
|
|
|
// Check initialization of private copy.
|
|
|
|
// CHECK: [[END:%.+]] = getelementptr [[S_FLOAT_TY]], [[S_FLOAT_TY]]* [[ARRS_PRIV]], i64 [[ARRS_SIZE]]
|
|
|
|
// CHECK: [[ISEMPTY:%.+]] = icmp eq [[S_FLOAT_TY]]* [[ARRS_PRIV]], [[END]]
|
|
|
|
// CHECK: br i1 [[ISEMPTY]],
|
|
|
|
// CHECK: phi [[S_FLOAT_TY]]*
|
|
|
|
// CHECK: call void @_ZN1SIfEC1Ev([[S_FLOAT_TY]]* %
|
|
|
|
// CHECK: [[DONE:%.+]] = icmp eq [[S_FLOAT_TY]]* %{{.+}}, [[END]]
|
|
|
|
// CHECK: br i1 [[DONE]],
|
|
|
|
|
|
|
|
// CHECK: [[GTID_REF:%.+]] = load i{{[0-9]+}}*, i{{[0-9]+}}** [[GTID_ADDR_ADDR]]
|
|
|
|
// CHECK: [[GTID:%.+]] = load i{{[0-9]+}}, i{{[0-9]+}}* [[GTID_REF]]
|
|
|
|
// CHECK: call void @__kmpc_for_static_init_4(
|
|
|
|
// Skip checks for internal operations.
|
|
|
|
// CHECK: call void @__kmpc_for_static_fini(
|
|
|
|
|
|
|
|
// void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
|
|
|
|
|
|
|
|
// CHECK: [[ARR_PRIV_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST]], i64 0, i64 0
|
|
|
|
// CHECK: [[BITCAST:%.+]] = bitcast i32* [[ARR_PRIV]] to i8*
|
|
|
|
// CHECK: store i8* [[BITCAST]], i8** [[ARR_PRIV_REF]],
|
|
|
|
// CHECK: [[ARR_SIZE_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST]], i64 0, i64 1
|
|
|
|
// CHECK: [[BITCAST:%.+]] = inttoptr i64 [[ARR_SIZE]] to i8*
|
|
|
|
// CHECK: store i8* [[BITCAST]], i8** [[ARR_SIZE_REF]],
|
|
|
|
// CHECK: [[ARRS_PRIV_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST]], i64 0, i64 2
|
|
|
|
// CHECK: [[BITCAST:%.+]] = bitcast [[S_FLOAT_TY]]* [[ARRS_PRIV]] to i8*
|
|
|
|
// CHECK: store i8* [[BITCAST]], i8** [[ARRS_PRIV_REF]],
|
|
|
|
// CHECK: [[ARRS_SIZE_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST]], i64 0, i64 3
|
|
|
|
// CHECK: [[BITCAST:%.+]] = inttoptr i64 [[ARRS_SIZE]] to i8*
|
|
|
|
// CHECK: store i8* [[BITCAST]], i8** [[ARRS_SIZE_REF]],
|
|
|
|
|
|
|
|
// res = __kmpc_reduce(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>);
|
|
|
|
|
|
|
|
// CHECK: [[GTID_REF:%.+]] = load i{{[0-9]+}}*, i{{[0-9]+}}** [[GTID_ADDR_ADDR]]
|
|
|
|
// CHECK: [[GTID:%.+]] = load i{{[0-9]+}}, i{{[0-9]+}}* [[GTID_REF]]
|
|
|
|
// CHECK: [[BITCAST:%.+]] = bitcast [4 x i8*]* [[RED_LIST]] to i8*
|
|
|
|
// CHECK: [[RES:%.+]] = call i32 @__kmpc_reduce_nowait(%{{.+}}* [[REDUCTION_LOC]], i32 [[GTID]], i32 2, i64 32, i8* [[BITCAST]], void (i8*, i8*)* [[REDUCTION_FUNC:@.+]], [8 x i32]* [[REDUCTION_LOCK]])
|
|
|
|
|
|
|
|
// switch(res)
|
|
|
|
// CHECK: switch i32 [[RES]], label %[[RED_DONE:.+]] [
|
|
|
|
// CHECK: i32 1, label %[[CASE1:.+]]
|
|
|
|
// CHECK: i32 2, label %[[CASE2:.+]]
|
|
|
|
// CHECK: ]
|
|
|
|
|
|
|
|
// case 1:
|
|
|
|
// CHECK: [[CASE1]]
|
|
|
|
|
|
|
|
// arr[:] += arr_reduction[:];
|
|
|
|
// CHECK: [[END:%.+]] = getelementptr i32, i32* [[LB1_0]], i64 [[ARR_SIZE]]
|
|
|
|
// CHECK: [[ISEMPTY:%.+]] = icmp eq i32* [[LB1_0]], [[END]]
|
|
|
|
// CHECK: br i1 [[ISEMPTY]],
|
|
|
|
// CHECK: phi i32*
|
|
|
|
// CHECK: [[ADD:%.+]] = add nsw i32 %
|
|
|
|
// CHECK: store i32 [[ADD]], i32* %
|
|
|
|
// CHECK: [[DONE:%.+]] = icmp eq i32* %{{.+}}, [[END]]
|
|
|
|
// CHECK: br i1 [[DONE]],
|
|
|
|
|
|
|
|
// arrs[:] = var.operator &(arrs_reduction[:]);
|
|
|
|
// CHECK: [[END:%.+]] = getelementptr [[S_FLOAT_TY]], [[S_FLOAT_TY]]* [[ARRS_LB:%.+]], i64 [[ARRS_SIZE]]
|
|
|
|
// CHECK: [[ISEMPTY:%.+]] = icmp eq [[S_FLOAT_TY]]* [[ARRS_LB]], [[END]]
|
|
|
|
// CHECK: br i1 [[ISEMPTY]],
|
|
|
|
// CHECK: phi [[S_FLOAT_TY]]*
|
|
|
|
// CHECK: [[AND:%.+]] = call dereferenceable(4) [[S_FLOAT_TY]]* @_ZN1SIfEanERKS0_([[S_FLOAT_TY]]* %{{.+}}, [[S_FLOAT_TY]]* dereferenceable(4) %{{.+}})
|
|
|
|
// CHECK: [[BITCAST:%.+]] = bitcast [[S_FLOAT_TY]]* [[AND]] to i8*
|
2015-11-19 13:55:59 +08:00
|
|
|
// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* %{{.+}}, i8* [[BITCAST]], i64 4, i32 4, i1 false)
|
2015-10-08 17:10:53 +08:00
|
|
|
// CHECK: [[DONE:%.+]] = icmp eq [[S_FLOAT_TY]]* %{{.+}}, [[END]]
|
|
|
|
// CHECK: br i1 [[DONE]],
|
|
|
|
|
|
|
|
// __kmpc_end_reduce(<loc>, <gtid>, &<lock>);
|
|
|
|
// CHECK: call void @__kmpc_end_reduce_nowait(%{{.+}}* [[REDUCTION_LOC]], i32 [[GTID]], [8 x i32]* [[REDUCTION_LOCK]])
|
|
|
|
|
|
|
|
// break;
|
|
|
|
// CHECK: br label %[[RED_DONE]]
|
|
|
|
|
|
|
|
// case 2:
|
|
|
|
// CHECK: [[CASE2]]
|
|
|
|
|
|
|
|
// arr[:] += arr_reduction[:];
|
|
|
|
// CHECK: [[END:%.+]] = getelementptr i32, i32* [[LB1_0]], i64 [[ARR_SIZE]]
|
|
|
|
// CHECK: [[ISEMPTY:%.+]] = icmp eq i32* [[LB1_0]], [[END]]
|
|
|
|
// CHECK: br i1 [[ISEMPTY]],
|
|
|
|
// CHECK: phi i32*
|
|
|
|
// CHECK: atomicrmw add i32* %{{.+}}, i32 %{{.+}} monotonic
|
|
|
|
// CHECK: [[DONE:%.+]] = icmp eq i32* %{{.+}}, [[END]]
|
|
|
|
// CHECK: br i1 [[DONE]],
|
|
|
|
|
|
|
|
// arrs[:] = var.operator &(arrs_reduction[:]);
|
|
|
|
// CHECK: [[END:%.+]] = getelementptr [[S_FLOAT_TY]], [[S_FLOAT_TY]]* [[ARRS_LB:%.+]], i64 [[ARRS_SIZE]]
|
|
|
|
// CHECK: [[ISEMPTY:%.+]] = icmp eq [[S_FLOAT_TY]]* [[ARRS_LB]], [[END]]
|
|
|
|
// CHECK: br i1 [[ISEMPTY]],
|
|
|
|
// CHECK: phi [[S_FLOAT_TY]]*
|
|
|
|
// CHECK: call void @__kmpc_critical(
|
|
|
|
// CHECK: [[AND:%.+]] = call dereferenceable(4) [[S_FLOAT_TY]]* @_ZN1SIfEanERKS0_([[S_FLOAT_TY]]* %{{.+}}, [[S_FLOAT_TY]]* dereferenceable(4) %{{.+}})
|
|
|
|
// CHECK: [[BITCAST:%.+]] = bitcast [[S_FLOAT_TY]]* [[AND]] to i8*
|
2015-11-19 13:55:59 +08:00
|
|
|
// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* %{{.+}}, i8* [[BITCAST]], i64 4, i32 4, i1 false)
|
2015-10-08 17:10:53 +08:00
|
|
|
// CHECK: call void @__kmpc_end_critical(
|
|
|
|
// CHECK: [[DONE:%.+]] = icmp eq [[S_FLOAT_TY]]* %{{.+}}, [[END]]
|
|
|
|
// CHECK: br i1 [[DONE]],
|
|
|
|
|
|
|
|
// break;
|
|
|
|
// CHECK: br label %[[RED_DONE]]
|
|
|
|
// CHECK: [[RED_DONE]]
|
|
|
|
|
|
|
|
// Check destruction of private copy.
|
|
|
|
// CHECK: [[END:%.+]] = getelementptr inbounds [[S_FLOAT_TY]], [[S_FLOAT_TY]]* [[ARRS_PRIV]], i64 [[ARRS_SIZE]]
|
|
|
|
// CHECK: [[ISEMPTY:%.+]] = icmp eq [[S_FLOAT_TY]]* [[ARRS_PRIV]], [[END]]
|
|
|
|
// CHECK: br i1 [[ISEMPTY]],
|
|
|
|
// CHECK: phi [[S_FLOAT_TY]]*
|
|
|
|
// CHECK: call void @_ZN1SIfED1Ev([[S_FLOAT_TY]]* %
|
|
|
|
// CHECK: [[DONE:%.+]] = icmp eq [[S_FLOAT_TY]]* %{{.+}}, [[ARRS_PRIV]]
|
|
|
|
// CHECK: br i1 [[DONE]],
|
|
|
|
// CHECK: call void @llvm.stackrestore(i8*
|
|
|
|
|
|
|
|
// CHECK: ret void
|
|
|
|
|
|
|
|
// void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
|
|
|
|
// *(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
|
|
|
|
// ...
|
|
|
|
// *(Type<n>-1*)lhs[<n>-1] = ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
|
|
|
|
// *(Type<n>-1*)rhs[<n>-1]);
|
|
|
|
// }
|
|
|
|
// CHECK: define internal void [[REDUCTION_FUNC]](i8*, i8*)
|
|
|
|
// arr_rhs = (int*)rhs[0];
|
|
|
|
// CHECK: [[ARR_RHS_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST_RHS:%.+]], i64 0, i64 0
|
|
|
|
// CHECK: [[ARR_RHS_VOID:%.+]] = load i8*, i8** [[ARR_RHS_REF]],
|
|
|
|
// CHECK: [[ARR_RHS:%.+]] = bitcast i8* [[ARR_RHS_VOID]] to i32*
|
|
|
|
// arr_lhs = (int*)lhs[0];
|
|
|
|
// CHECK: [[ARR_LHS_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST_LHS:%.+]], i64 0, i64 0
|
|
|
|
// CHECK: [[ARR_LHS_VOID:%.+]] = load i8*, i8** [[ARR_LHS_REF]],
|
|
|
|
// CHECK: [[ARR_LHS:%.+]] = bitcast i8* [[ARR_LHS_VOID]] to i32*
|
|
|
|
|
|
|
|
// arr_size = (size_t)lhs[1];
|
|
|
|
// CHECK: [[ARR_SIZE_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST_LHS]], i64 0, i64 1
|
|
|
|
// CHECK: [[ARR_SIZE_VOID:%.+]] = load i8*, i8** [[ARR_SIZE_REF]],
|
|
|
|
// CHECK: [[ARR_SIZE:%.+]] = ptrtoint i8* [[ARR_SIZE_VOID]] to i64
|
|
|
|
|
|
|
|
// arrs_rhs = (S<float>*)rhs[2];
|
|
|
|
// CHECK: [[ARRS_RHS_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST_RHS]], i64 0, i64 2
|
|
|
|
// CHECK: [[ARRS_RHS_VOID:%.+]] = load i8*, i8** [[ARRS_RHS_REF]],
|
|
|
|
// CHECK: [[ARRS_RHS:%.+]] = bitcast i8* [[ARRS_RHS_VOID]] to [[S_FLOAT_TY]]*
|
|
|
|
// arrs_lhs = (S<float>*)lhs[2];
|
|
|
|
// CHECK: [[ARRS_LHS_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST_LHS]], i64 0, i64 2
|
|
|
|
// CHECK: [[ARRS_LHS_VOID:%.+]] = load i8*, i8** [[ARRS_LHS_REF]],
|
|
|
|
// CHECK: [[ARRS_LHS:%.+]] = bitcast i8* [[ARRS_LHS_VOID]] to [[S_FLOAT_TY]]*
|
|
|
|
|
|
|
|
// arrs_size = (size_t)lhs[3];
|
|
|
|
// CHECK: [[ARRS_SIZE_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST_LHS]], i64 0, i64 3
|
|
|
|
// CHECK: [[ARRS_SIZE_VOID:%.+]] = load i8*, i8** [[ARRS_SIZE_REF]],
|
|
|
|
// CHECK: [[ARRS_SIZE:%.+]] = ptrtoint i8* [[ARRS_SIZE_VOID]] to i64
|
|
|
|
|
|
|
|
// arr_lhs[:] += arr_rhs[:];
|
|
|
|
// CHECK: [[END:%.+]] = getelementptr i32, i32* [[ARR_LHS]], i64 [[ARR_SIZE]]
|
|
|
|
// CHECK: [[ISEMPTY:%.+]] = icmp eq i32* [[ARR_LHS]], [[END]]
|
|
|
|
// CHECK: br i1 [[ISEMPTY]],
|
|
|
|
// CHECK: phi i32*
|
|
|
|
// CHECK: [[ADD:%.+]] = add nsw i32 %
|
|
|
|
// CHECK: store i32 [[ADD]], i32* %
|
|
|
|
// CHECK: [[DONE:%.+]] = icmp eq i32* %{{.+}}, [[END]]
|
|
|
|
// CHECK: br i1 [[DONE]],
|
|
|
|
|
|
|
|
// arrs_lhs = arrs_lhs.operator &(arrs_rhs);
|
|
|
|
// CHECK: [[END:%.+]] = getelementptr [[S_FLOAT_TY]], [[S_FLOAT_TY]]* [[ARRS_LB:%.+]], i64 [[ARRS_SIZE]]
|
|
|
|
// CHECK: [[ISEMPTY:%.+]] = icmp eq [[S_FLOAT_TY]]* [[ARRS_LB]], [[END]]
|
|
|
|
// CHECK: br i1 [[ISEMPTY]],
|
|
|
|
// CHECK: phi [[S_FLOAT_TY]]*
|
|
|
|
// CHECK: [[AND:%.+]] = call dereferenceable(4) [[S_FLOAT_TY]]* @_ZN1SIfEanERKS0_([[S_FLOAT_TY]]* %{{.+}}, [[S_FLOAT_TY]]* dereferenceable(4) %{{.+}})
|
|
|
|
// CHECK: [[BITCAST:%.+]] = bitcast [[S_FLOAT_TY]]* [[AND]] to i8*
|
2015-11-19 13:55:59 +08:00
|
|
|
// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* %{{.+}}, i8* [[BITCAST]], i64 4, i32 4, i1 false)
|
2015-10-08 17:10:53 +08:00
|
|
|
// CHECK: [[DONE:%.+]] = icmp eq [[S_FLOAT_TY]]* %{{.+}}, [[END]]
|
|
|
|
// CHECK: br i1 [[DONE]],
|
|
|
|
|
|
|
|
// CHECK: ret void
|
|
|
|
|
2016-10-13 17:52:46 +08:00
|
|
|
// CHECK: define internal void [[MAIN_MICROTASK2]](i{{[0-9]+}}* noalias [[GTID_ADDR:%.+]], i{{[0-9]+}}* noalias %{{.+}}, i64 %{{.+}}, i64 %{{.+}}, i32* %{{.+}}, [10 x [4 x [[S_FLOAT_TY]]]]* dereferenceable(160) %{{.+}})
|
2016-01-26 20:20:39 +08:00
|
|
|
|
|
|
|
// CHECK: [[ARRS_PRIV:%.+]] = alloca [10 x [4 x [[S_FLOAT_TY]]]],
|
|
|
|
|
|
|
|
// Reduction list for runtime.
|
|
|
|
// CHECK: [[RED_LIST:%.+]] = alloca [3 x i8*],
|
|
|
|
|
|
|
|
// CHECK: store i{{[0-9]+}}* [[GTID_ADDR]], i{{[0-9]+}}** [[GTID_ADDR_ADDR:%.+]],
|
|
|
|
|
2017-07-17 21:30:36 +08:00
|
|
|
// CHECK: [[ARR_SIZE:%.+]] = udiv exact i64
|
2016-01-26 20:20:39 +08:00
|
|
|
// CHECK: call i8* @llvm.stacksave()
|
|
|
|
// CHECK: [[ARR_PRIV:%.+]] = alloca i32, i64 [[ARR_SIZE]],
|
|
|
|
|
|
|
|
// Check initialization of private copy.
|
|
|
|
// CHECK: [[END:%.+]] = getelementptr i32, i32* [[ARR_PRIV]], i64 [[ARR_SIZE]]
|
|
|
|
// CHECK: [[ISEMPTY:%.+]] = icmp eq i32* [[ARR_PRIV]], [[END]]
|
|
|
|
// CHECK: br i1 [[ISEMPTY]],
|
|
|
|
// CHECK: phi i32*
|
|
|
|
// CHECK: store i32 0, i32* %
|
|
|
|
// CHECK: [[DONE:%.+]] = icmp eq i32* %{{.+}}, [[END]]
|
|
|
|
// CHECK: br i1 [[DONE]],
|
|
|
|
|
|
|
|
// Check initialization of private copy.
|
|
|
|
// CHECK: [[BEGIN:%.+]] = getelementptr inbounds [10 x [4 x [[S_FLOAT_TY]]]], [10 x [4 x [[S_FLOAT_TY]]]]* [[ARRS_PRIV]], i32 0, i32 0, i32 0
|
|
|
|
// CHECK: [[END:%.+]] = getelementptr [[S_FLOAT_TY]], [[S_FLOAT_TY]]* [[BEGIN]], i64 40
|
|
|
|
// CHECK: [[ISEMPTY:%.+]] = icmp eq [[S_FLOAT_TY]]* [[BEGIN]], [[END]]
|
|
|
|
// CHECK: br i1 [[ISEMPTY]],
|
|
|
|
// CHECK: phi [[S_FLOAT_TY]]*
|
|
|
|
// CHECK: call void @_ZN1SIfEC1Ev([[S_FLOAT_TY]]* %
|
|
|
|
// CHECK: [[DONE:%.+]] = icmp eq [[S_FLOAT_TY]]* %{{.+}}, [[END]]
|
|
|
|
// CHECK: br i1 [[DONE]],
|
2017-07-13 21:36:14 +08:00
|
|
|
// CHECK: [[LHS_BEGIN:%.+]] = bitcast [10 x [4 x [[S_FLOAT_TY]]]]* %{{.+}} to [[S_FLOAT_TY]]*
|
2016-01-26 20:20:39 +08:00
|
|
|
// CHECK: [[ARRS_PRIV_BEGIN:%.+]] = bitcast [10 x [4 x [[S_FLOAT_TY]]]]* [[ARRS_PRIV]] to [[S_FLOAT_TY]]*
|
|
|
|
|
|
|
|
// CHECK: [[GTID_REF:%.+]] = load i{{[0-9]+}}*, i{{[0-9]+}}** [[GTID_ADDR_ADDR]]
|
|
|
|
// CHECK: [[GTID:%.+]] = load i{{[0-9]+}}, i{{[0-9]+}}* [[GTID_REF]]
|
|
|
|
// CHECK: call void @__kmpc_for_static_init_4(
|
|
|
|
// Skip checks for internal operations.
|
|
|
|
// CHECK: call void @__kmpc_for_static_fini(
|
|
|
|
|
|
|
|
// void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
|
|
|
|
|
|
|
|
// CHECK: [[ARR_PRIV_REF:%.+]] = getelementptr inbounds [3 x i8*], [3 x i8*]* [[RED_LIST]], i64 0, i64 0
|
|
|
|
// CHECK: [[BITCAST:%.+]] = bitcast i32* [[ARR_PRIV]] to i8*
|
|
|
|
// CHECK: store i8* [[BITCAST]], i8** [[ARR_PRIV_REF]],
|
|
|
|
// CHECK: [[ARR_SIZE_REF:%.+]] = getelementptr inbounds [3 x i8*], [3 x i8*]* [[RED_LIST]], i64 0, i64 1
|
|
|
|
// CHECK: [[BITCAST:%.+]] = inttoptr i64 [[ARR_SIZE]] to i8*
|
|
|
|
// CHECK: store i8* [[BITCAST]], i8** [[ARR_SIZE_REF]],
|
|
|
|
// CHECK: [[ARRS_PRIV_REF:%.+]] = getelementptr inbounds [3 x i8*], [3 x i8*]* [[RED_LIST]], i64 0, i64 2
|
|
|
|
// CHECK: [[BITCAST:%.+]] = bitcast [[S_FLOAT_TY]]* [[ARRS_PRIV_BEGIN]] to i8*
|
|
|
|
// CHECK: store i8* [[BITCAST]], i8** [[ARRS_PRIV_REF]],
|
|
|
|
|
|
|
|
// res = __kmpc_reduce(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>);
|
|
|
|
|
|
|
|
// CHECK: [[GTID_REF:%.+]] = load i{{[0-9]+}}*, i{{[0-9]+}}** [[GTID_ADDR_ADDR]]
|
|
|
|
// CHECK: [[GTID:%.+]] = load i{{[0-9]+}}, i{{[0-9]+}}* [[GTID_REF]]
|
|
|
|
// CHECK: [[BITCAST:%.+]] = bitcast [3 x i8*]* [[RED_LIST]] to i8*
|
|
|
|
// CHECK: [[RES:%.+]] = call i32 @__kmpc_reduce(%{{.+}}* [[REDUCTION_LOC]], i32 [[GTID]], i32 2, i64 24, i8* [[BITCAST]], void (i8*, i8*)* [[REDUCTION_FUNC:@.+]], [8 x i32]* [[REDUCTION_LOCK]])
|
|
|
|
|
|
|
|
// switch(res)
|
|
|
|
// CHECK: switch i32 [[RES]], label %[[RED_DONE:.+]] [
|
|
|
|
// CHECK: i32 1, label %[[CASE1:.+]]
|
|
|
|
// CHECK: i32 2, label %[[CASE2:.+]]
|
|
|
|
// CHECK: ]
|
|
|
|
|
|
|
|
// case 1:
|
|
|
|
// CHECK: [[CASE1]]
|
|
|
|
|
|
|
|
// arr[:] += arr_reduction[:];
|
|
|
|
// CHECK: [[END:%.+]] = getelementptr i32, i32* [[LB1_0:%.+]], i64 [[ARR_SIZE]]
|
|
|
|
// CHECK: [[ISEMPTY:%.+]] = icmp eq i32* [[LB1_0]], [[END]]
|
|
|
|
// CHECK: br i1 [[ISEMPTY]],
|
|
|
|
// CHECK: phi i32*
|
|
|
|
// CHECK: [[ADD:%.+]] = add nsw i32 %
|
|
|
|
// CHECK: store i32 [[ADD]], i32* %
|
|
|
|
// CHECK: [[DONE:%.+]] = icmp eq i32* %{{.+}}, [[END]]
|
|
|
|
// CHECK: br i1 [[DONE]],
|
|
|
|
|
|
|
|
// arrs[:] = var.operator &(arrs_reduction[:]);
|
|
|
|
// CHECK: [[END:%.+]] = getelementptr [[S_FLOAT_TY]], [[S_FLOAT_TY]]* [[LHS_BEGIN]], i64 40
|
|
|
|
// CHECK: [[ISEMPTY:%.+]] = icmp eq [[S_FLOAT_TY]]* [[LHS_BEGIN]], [[END]]
|
|
|
|
// CHECK: br i1 [[ISEMPTY]],
|
|
|
|
// CHECK: phi [[S_FLOAT_TY]]*
|
|
|
|
// CHECK: [[AND:%.+]] = call dereferenceable(4) [[S_FLOAT_TY]]* @_ZN1SIfEanERKS0_([[S_FLOAT_TY]]* %{{.+}}, [[S_FLOAT_TY]]* dereferenceable(4) %{{.+}})
|
|
|
|
// CHECK: [[BITCAST:%.+]] = bitcast [[S_FLOAT_TY]]* [[AND]] to i8*
|
|
|
|
// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* %{{.+}}, i8* [[BITCAST]], i64 4, i32 4, i1 false)
|
|
|
|
// CHECK: [[DONE:%.+]] = icmp eq [[S_FLOAT_TY]]* %{{.+}}, [[END]]
|
|
|
|
// CHECK: br i1 [[DONE]],
|
|
|
|
|
|
|
|
// __kmpc_end_reduce(<loc>, <gtid>, &<lock>);
|
|
|
|
// CHECK: call void @__kmpc_end_reduce(%{{.+}}* [[REDUCTION_LOC]], i32 [[GTID]], [8 x i32]* [[REDUCTION_LOCK]])
|
|
|
|
|
|
|
|
// break;
|
|
|
|
// CHECK: br label %[[RED_DONE]]
|
|
|
|
|
|
|
|
// case 2:
|
|
|
|
// CHECK: [[CASE2]]
|
|
|
|
|
|
|
|
// arr[:] += arr_reduction[:];
|
|
|
|
// CHECK: [[END:%.+]] = getelementptr i32, i32* [[LB1_0]], i64 [[ARR_SIZE]]
|
|
|
|
// CHECK: [[ISEMPTY:%.+]] = icmp eq i32* [[LB1_0]], [[END]]
|
|
|
|
// CHECK: br i1 [[ISEMPTY]],
|
|
|
|
// CHECK: phi i32*
|
|
|
|
// CHECK: atomicrmw add i32* %{{.+}}, i32 %{{.+}} monotonic
|
|
|
|
// CHECK: [[DONE:%.+]] = icmp eq i32* %{{.+}}, [[END]]
|
|
|
|
// CHECK: br i1 [[DONE]],
|
|
|
|
|
|
|
|
// arrs[:] = var.operator &(arrs_reduction[:]);
|
|
|
|
// CHECK: [[END:%.+]] = getelementptr [[S_FLOAT_TY]], [[S_FLOAT_TY]]* [[LHS_BEGIN]], i64 40
|
|
|
|
// CHECK: [[ISEMPTY:%.+]] = icmp eq [[S_FLOAT_TY]]* [[LHS_BEGIN]], [[END]]
|
|
|
|
// CHECK: br i1 [[ISEMPTY]],
|
|
|
|
// CHECK: phi [[S_FLOAT_TY]]*
|
|
|
|
// CHECK: call void @__kmpc_critical(
|
|
|
|
// CHECK: [[AND:%.+]] = call dereferenceable(4) [[S_FLOAT_TY]]* @_ZN1SIfEanERKS0_([[S_FLOAT_TY]]* %{{.+}}, [[S_FLOAT_TY]]* dereferenceable(4) %{{.+}})
|
|
|
|
// CHECK: [[BITCAST:%.+]] = bitcast [[S_FLOAT_TY]]* [[AND]] to i8*
|
|
|
|
// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* %{{.+}}, i8* [[BITCAST]], i64 4, i32 4, i1 false)
|
|
|
|
// CHECK: call void @__kmpc_end_critical(
|
|
|
|
// CHECK: [[DONE:%.+]] = icmp eq [[S_FLOAT_TY]]* %{{.+}}, [[END]]
|
|
|
|
// CHECK: br i1 [[DONE]],
|
|
|
|
|
|
|
|
// break;
|
|
|
|
// CHECK: br label %[[RED_DONE]]
|
|
|
|
// CHECK: [[RED_DONE]]
|
|
|
|
|
|
|
|
// Check destruction of private copy.
|
|
|
|
// CHECK: [[BEGIN:%.+]] = getelementptr inbounds [10 x [4 x [[S_FLOAT_TY]]]], [10 x [4 x [[S_FLOAT_TY]]]]* [[ARRS_PRIV]], i32 0, i32 0, i32 0
|
|
|
|
// CHECK: [[END:%.+]] = getelementptr inbounds [[S_FLOAT_TY]], [[S_FLOAT_TY]]* [[BEGIN]], i64 40
|
|
|
|
// CHECK: br
|
|
|
|
// CHECK: phi [[S_FLOAT_TY]]*
|
|
|
|
// CHECK: call void @_ZN1SIfED1Ev([[S_FLOAT_TY]]* %
|
|
|
|
// CHECK: [[DONE:%.+]] = icmp eq [[S_FLOAT_TY]]* %{{.+}}, [[BEGIN]]
|
|
|
|
// CHECK: br i1 [[DONE]],
|
|
|
|
// CHECK: call void @llvm.stackrestore(i8*
|
|
|
|
// CHECK: call void @__kmpc_barrier(
|
|
|
|
|
|
|
|
// CHECK: ret void
|
|
|
|
|
|
|
|
// void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
|
|
|
|
// *(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
|
|
|
|
// ...
|
|
|
|
// *(Type<n>-1*)lhs[<n>-1] = ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
|
|
|
|
// *(Type<n>-1*)rhs[<n>-1]);
|
|
|
|
// }
|
|
|
|
// CHECK: define internal void [[REDUCTION_FUNC]](i8*, i8*)
|
|
|
|
// arr_rhs = (int*)rhs[0];
|
|
|
|
// CHECK: [[ARR_RHS_REF:%.+]] = getelementptr inbounds [3 x i8*], [3 x i8*]* [[RED_LIST_RHS:%.+]], i64 0, i64 0
|
|
|
|
// CHECK: [[ARR_RHS_VOID:%.+]] = load i8*, i8** [[ARR_RHS_REF]],
|
|
|
|
// CHECK: [[ARR_RHS:%.+]] = bitcast i8* [[ARR_RHS_VOID]] to i32*
|
|
|
|
// arr_lhs = (int*)lhs[0];
|
|
|
|
// CHECK: [[ARR_LHS_REF:%.+]] = getelementptr inbounds [3 x i8*], [3 x i8*]* [[RED_LIST_LHS:%.+]], i64 0, i64 0
|
|
|
|
// CHECK: [[ARR_LHS_VOID:%.+]] = load i8*, i8** [[ARR_LHS_REF]],
|
|
|
|
// CHECK: [[ARR_LHS:%.+]] = bitcast i8* [[ARR_LHS_VOID]] to i32*
|
|
|
|
|
|
|
|
// arr_size = (size_t)lhs[1];
|
|
|
|
// CHECK: [[ARR_SIZE_REF:%.+]] = getelementptr inbounds [3 x i8*], [3 x i8*]* [[RED_LIST_LHS]], i64 0, i64 1
|
|
|
|
// CHECK: [[ARR_SIZE_VOID:%.+]] = load i8*, i8** [[ARR_SIZE_REF]],
|
|
|
|
// CHECK: [[ARR_SIZE:%.+]] = ptrtoint i8* [[ARR_SIZE_VOID]] to i64
|
|
|
|
|
|
|
|
// arrs_rhs = (S<float>*)rhs[2];
|
|
|
|
// CHECK: [[ARRS_RHS_REF:%.+]] = getelementptr inbounds [3 x i8*], [3 x i8*]* [[RED_LIST_RHS]], i64 0, i64 2
|
|
|
|
// CHECK: [[ARRS_RHS_VOID:%.+]] = load i8*, i8** [[ARRS_RHS_REF]],
|
|
|
|
// CHECK: [[ARRS_RHS:%.+]] = bitcast i8* [[ARRS_RHS_VOID]] to [[S_FLOAT_TY]]*
|
|
|
|
// arrs_lhs = (S<float>*)lhs[2];
|
|
|
|
// CHECK: [[ARRS_LHS_REF:%.+]] = getelementptr inbounds [3 x i8*], [3 x i8*]* [[RED_LIST_LHS]], i64 0, i64 2
|
|
|
|
// CHECK: [[ARRS_LHS_VOID:%.+]] = load i8*, i8** [[ARRS_LHS_REF]],
|
|
|
|
// CHECK: [[ARRS_LHS:%.+]] = bitcast i8* [[ARRS_LHS_VOID]] to [[S_FLOAT_TY]]*
|
|
|
|
|
|
|
|
// arr_lhs[:] += arr_rhs[:];
|
|
|
|
// CHECK: [[END:%.+]] = getelementptr i32, i32* [[ARR_LHS]], i64 [[ARR_SIZE]]
|
|
|
|
// CHECK: [[ISEMPTY:%.+]] = icmp eq i32* [[ARR_LHS]], [[END]]
|
|
|
|
// CHECK: br i1 [[ISEMPTY]],
|
|
|
|
// CHECK: phi i32*
|
|
|
|
// CHECK: [[ADD:%.+]] = add nsw i32 %
|
|
|
|
// CHECK: store i32 [[ADD]], i32* %
|
|
|
|
// CHECK: [[DONE:%.+]] = icmp eq i32* %{{.+}}, [[END]]
|
|
|
|
// CHECK: br i1 [[DONE]],
|
|
|
|
|
|
|
|
// arrs_lhs = arrs_lhs.operator &(arrs_rhs);
|
|
|
|
// CHECK: [[END:%.+]] = getelementptr [[S_FLOAT_TY]], [[S_FLOAT_TY]]* [[ARRS_LB:%.+]], i64 40
|
|
|
|
// CHECK: [[ISEMPTY:%.+]] = icmp eq [[S_FLOAT_TY]]* [[ARRS_LB]], [[END]]
|
|
|
|
// CHECK: br i1 [[ISEMPTY]],
|
|
|
|
// CHECK: phi [[S_FLOAT_TY]]*
|
|
|
|
// CHECK: [[AND:%.+]] = call dereferenceable(4) [[S_FLOAT_TY]]* @_ZN1SIfEanERKS0_([[S_FLOAT_TY]]* %{{.+}}, [[S_FLOAT_TY]]* dereferenceable(4) %{{.+}})
|
|
|
|
// CHECK: [[BITCAST:%.+]] = bitcast [[S_FLOAT_TY]]* [[AND]] to i8*
|
|
|
|
// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* %{{.+}}, i8* [[BITCAST]], i64 4, i32 4, i1 false)
|
|
|
|
// CHECK: [[DONE:%.+]] = icmp eq [[S_FLOAT_TY]]* %{{.+}}, [[END]]
|
|
|
|
// CHECK: br i1 [[DONE]],
|
|
|
|
|
|
|
|
// CHECK: ret void
|
|
|
|
|
2016-02-04 19:27:03 +08:00
|
|
|
// CHECK: define internal void [[MAIN_MICROTASK3]](i{{[0-9]+}}* noalias [[GTID_ADDR:%.+]], i{{[0-9]+}}* noalias %{{.+}}, [[S_FLOAT_TY]]*** dereferenceable(8) %{{.+}})
|
|
|
|
|
|
|
|
// CHECK: [[VAR2_ORIG_ADDR:%.+]] = alloca [[S_FLOAT_TY]]***,
|
|
|
|
|
|
|
|
// Reduction list for runtime.
|
|
|
|
// CHECK: [[RED_LIST:%.+]] = alloca [2 x i8*],
|
|
|
|
|
|
|
|
// CHECK: store i{{[0-9]+}}* [[GTID_ADDR]], i{{[0-9]+}}** [[GTID_ADDR_ADDR:%.+]],
|
|
|
|
// CHECK: [[VAR2_ORIG:%.+]] = load [[S_FLOAT_TY]]***, [[S_FLOAT_TY]]**** [[VAR2_ORIG_ADDR]],
|
|
|
|
|
|
|
|
// CHECK: [[LAST:%.+]] = ptrtoint [[S_FLOAT_TY]]* %{{.+}} to i64
|
2017-07-13 23:02:27 +08:00
|
|
|
// CHECK: [[FIRST:%.+]] = ptrtoint [[S_FLOAT_TY]]* [[LOW:%.+]] to i64
|
2016-02-04 19:27:03 +08:00
|
|
|
// CHECK: [[BYTE_DIF:%.+]] = sub i64 [[LAST]], [[FIRST]]
|
|
|
|
// CHECK: [[DIF:%.+]] = sdiv exact i64 [[BYTE_DIF]], ptrtoint (float* getelementptr (float, float* null, i32 1) to i64)
|
|
|
|
// CHECK: [[SIZE:%.+]] = add nuw i64 [[DIF]], 1
|
|
|
|
// CHECK: call i8* @llvm.stacksave()
|
|
|
|
// CHECK: [[VAR2_PRIV:%.+]] = alloca [[S_FLOAT_TY]], i64 [[SIZE]],
|
2017-07-13 21:36:14 +08:00
|
|
|
// CHECK: [[LD:%.+]] = load [[S_FLOAT_TY]]**, [[S_FLOAT_TY]]*** [[VAR2_ORIG]],
|
|
|
|
// CHECK: [[ORIG_START:%.+]] = load [[S_FLOAT_TY]]*, [[S_FLOAT_TY]]** [[LD]],
|
2016-02-04 19:27:03 +08:00
|
|
|
// CHECK: [[START:%.+]] = ptrtoint [[S_FLOAT_TY]]* [[ORIG_START]] to i64
|
|
|
|
// CHECK: [[LOW_BOUND:%.+]] = ptrtoint [[S_FLOAT_TY]]* [[LOW]] to i64
|
|
|
|
// CHECK: [[OFFSET_BYTES:%.+]] = sub i64 [[START]], [[LOW_BOUND]]
|
|
|
|
// CHECK: [[OFFSET:%.+]] = sdiv exact i64 [[OFFSET_BYTES]], ptrtoint (float* getelementptr (float, float* null, i32 1) to i64)
|
|
|
|
// CHECK: [[PSEUDO_VAR2_PRIV:%.+]] = getelementptr [[S_FLOAT_TY]], [[S_FLOAT_TY]]* [[VAR2_PRIV]], i64 [[OFFSET]]
|
|
|
|
// CHECK: store [[S_FLOAT_TY]]** [[REF:.+]], [[S_FLOAT_TY]]*** %
|
|
|
|
// CHECK: store [[S_FLOAT_TY]]* [[PSEUDO_VAR2_PRIV]], [[S_FLOAT_TY]]** [[REF]]
|
|
|
|
// CHECK: ret void
|
|
|
|
|
|
|
|
// CHECK: define internal void [[MAIN_MICROTASK4]](i{{[0-9]+}}* noalias [[GTID_ADDR:%.+]], i{{[0-9]+}}* noalias %{{.+}}, [2 x [[S_FLOAT_TY]]]* dereferenceable(8) %{{.+}})
|
|
|
|
|
|
|
|
// CHECK: [[VVAR2_ORIG_ADDR:%.+]] = alloca [2 x [[S_FLOAT_TY]]]*,
|
|
|
|
|
|
|
|
// Reduction list for runtime.
|
|
|
|
// CHECK: [[RED_LIST:%.+]] = alloca [2 x i8*],
|
|
|
|
|
|
|
|
// CHECK: store i{{[0-9]+}}* [[GTID_ADDR]], i{{[0-9]+}}** [[GTID_ADDR_ADDR:%.+]],
|
|
|
|
// CHECK: [[VVAR2_ORIG:%.+]] = load [2 x [[S_FLOAT_TY]]]*, [2 x [[S_FLOAT_TY]]]** [[VVAR2_ORIG_ADDR]],
|
|
|
|
|
|
|
|
// CHECK: [[LOW:%.+]] = getelementptr inbounds [2 x [[S_FLOAT_TY]]], [2 x [[S_FLOAT_TY]]]* [[VVAR2_ORIG]], i64 0, i64 0
|
|
|
|
// CHECK: [[LAST:%.+]] = ptrtoint [[S_FLOAT_TY]]* %{{.+}} to i64
|
|
|
|
// CHECK: [[FIRST:%.+]] = ptrtoint [[S_FLOAT_TY]]* [[LOW]] to i64
|
|
|
|
// CHECK: [[BYTE_DIF:%.+]] = sub i64 [[LAST]], [[FIRST]]
|
|
|
|
// CHECK: [[DIF:%.+]] = sdiv exact i64 [[BYTE_DIF]], ptrtoint (float* getelementptr (float, float* null, i32 1) to i64)
|
|
|
|
// CHECK: [[SIZE:%.+]] = add nuw i64 [[DIF]], 1
|
|
|
|
// CHECK: call i8* @llvm.stacksave()
|
|
|
|
// CHECK: [[VVAR2_PRIV:%.+]] = alloca [[S_FLOAT_TY]], i64 [[SIZE]],
|
2017-07-13 21:36:14 +08:00
|
|
|
// CHECK: [[ORIG_START:%.+]] = bitcast [2 x [[S_FLOAT_TY]]]* [[VVAR2_ORIG]] to [[S_FLOAT_TY]]*
|
2016-02-04 19:27:03 +08:00
|
|
|
// CHECK: [[START:%.+]] = ptrtoint [[S_FLOAT_TY]]* [[ORIG_START]] to i64
|
|
|
|
// CHECK: [[LOW_BOUND:%.+]] = ptrtoint [[S_FLOAT_TY]]* [[LOW]] to i64
|
|
|
|
// CHECK: [[OFFSET_BYTES:%.+]] = sub i64 [[START]], [[LOW_BOUND]]
|
|
|
|
// CHECK: [[OFFSET:%.+]] = sdiv exact i64 [[OFFSET_BYTES]], ptrtoint (float* getelementptr (float, float* null, i32 1) to i64)
|
|
|
|
// CHECK: [[PSEUDO_VVAR2_PRIV:%.+]] = getelementptr [[S_FLOAT_TY]], [[S_FLOAT_TY]]* [[VVAR2_PRIV]], i64 [[OFFSET]]
|
|
|
|
// CHECK: [[VVAR2_PRIV:%.+]] = bitcast [[S_FLOAT_TY]]* [[PSEUDO_VVAR2_PRIV]] to [2 x [[S_FLOAT_TY]]]*
|
|
|
|
// CHECK: ret void
|
|
|
|
|
|
|
|
// CHECK: define internal void [[MAIN_MICROTASK5]](i{{[0-9]+}}* noalias [[GTID_ADDR:%.+]], i{{[0-9]+}}* noalias %{{.+}}, [2 x [[S_FLOAT_TY]]]* dereferenceable(8) %{{.+}})
|
|
|
|
|
|
|
|
// CHECK: [[VAR3_ORIG_ADDR:%.+]] = alloca [2 x [[S_FLOAT_TY]]]*,
|
|
|
|
|
|
|
|
// Reduction list for runtime.
|
|
|
|
// CHECK: [[RED_LIST:%.+]] = alloca [2 x i8*],
|
|
|
|
|
|
|
|
// CHECK: store i{{[0-9]+}}* [[GTID_ADDR]], i{{[0-9]+}}** [[GTID_ADDR_ADDR:%.+]],
|
|
|
|
|
2016-04-27 15:56:03 +08:00
|
|
|
// CHECK: [[VAR3_ORIG:%.+]] = load [2 x [[S_FLOAT_TY]]]*, [2 x [[S_FLOAT_TY]]]** [[VAR3_ORIG_ADDR]],
|
|
|
|
// CHECK: store [2 x [[S_FLOAT_TY]]]* [[VAR3_ORIG]], [2 x [[S_FLOAT_TY]]]** [[VAR3_ORIG_ADDR:%.+]],
|
2016-02-04 19:27:03 +08:00
|
|
|
// CHECK: [[LAST:%.+]] = ptrtoint [[S_FLOAT_TY]]* %{{.+}} to i64
|
2017-07-13 23:15:25 +08:00
|
|
|
// CHECK: [[FIRST:%.+]] = ptrtoint [[S_FLOAT_TY]]* [[LOW:%.+]] to i64
|
2016-02-04 19:27:03 +08:00
|
|
|
// CHECK: [[BYTE_DIF:%.+]] = sub i64 [[LAST]], [[FIRST]]
|
|
|
|
// CHECK: [[DIF:%.+]] = sdiv exact i64 [[BYTE_DIF]], ptrtoint (float* getelementptr (float, float* null, i32 1) to i64)
|
|
|
|
// CHECK: [[SIZE:%.+]] = add nuw i64 [[DIF]], 1
|
|
|
|
// CHECK: call i8* @llvm.stacksave()
|
|
|
|
// CHECK: [[VAR3_PRIV:%.+]] = alloca [[S_FLOAT_TY]], i64 [[SIZE]],
|
2017-07-13 21:36:14 +08:00
|
|
|
// CHECK: [[VAR3_ORIG:%.+]] = load [2 x [[S_FLOAT_TY]]]*, [2 x [[S_FLOAT_TY]]]** [[VAR3_ORIG_ADDR]],
|
|
|
|
// CHECK: [[ORIG_START:%.+]] = bitcast [2 x [[S_FLOAT_TY]]]* [[VAR3_ORIG]] to [[S_FLOAT_TY]]*
|
2016-02-04 19:27:03 +08:00
|
|
|
// CHECK: [[START:%.+]] = ptrtoint [[S_FLOAT_TY]]* [[ORIG_START]] to i64
|
|
|
|
// CHECK: [[LOW_BOUND:%.+]] = ptrtoint [[S_FLOAT_TY]]* [[LOW]] to i64
|
|
|
|
// CHECK: [[OFFSET_BYTES:%.+]] = sub i64 [[START]], [[LOW_BOUND]]
|
|
|
|
// CHECK: [[OFFSET:%.+]] = sdiv exact i64 [[OFFSET_BYTES]], ptrtoint (float* getelementptr (float, float* null, i32 1) to i64)
|
|
|
|
// CHECK: [[PSEUDO_VAR3_PRIV:%.+]] = getelementptr [[S_FLOAT_TY]], [[S_FLOAT_TY]]* [[VAR3_PRIV]], i64 [[OFFSET]]
|
|
|
|
// CHECK: [[VAR3_PRIV:%.+]] = bitcast [[S_FLOAT_TY]]* [[PSEUDO_VAR3_PRIV]] to [2 x [[S_FLOAT_TY]]]*
|
|
|
|
|
|
|
|
// CHECK: store [2 x [[S_FLOAT_TY]]]* [[VAR3_PRIV]], [2 x [[S_FLOAT_TY]]]** %
|
|
|
|
|
|
|
|
// CHECK: ret void
|
|
|
|
|
|
|
|
// CHECK: define internal void [[MAIN_MICROTASK6]](i{{[0-9]+}}* noalias [[GTID_ADDR:%.+]], i{{[0-9]+}}* noalias %{{.+}}, [2 x [[S_FLOAT_TY]]]* dereferenceable(8) %{{.+}})
|
|
|
|
|
|
|
|
// CHECK: [[VAR3_ORIG_ADDR:%.+]] = alloca [2 x [[S_FLOAT_TY]]]*,
|
|
|
|
// CHECK: [[VAR3_PRIV:%.+]] = alloca [2 x [[S_FLOAT_TY]]],
|
|
|
|
|
|
|
|
// Reduction list for runtime.
|
|
|
|
// CHECK: [[RED_LIST:%.+]] = alloca [1 x i8*],
|
|
|
|
|
|
|
|
// CHECK: store i{{[0-9]+}}* [[GTID_ADDR]], i{{[0-9]+}}** [[GTID_ADDR_ADDR:%.+]],
|
|
|
|
|
2016-04-27 15:56:03 +08:00
|
|
|
// CHECK: [[VAR3_ORIG:%.+]] = load [2 x [[S_FLOAT_TY]]]*, [2 x [[S_FLOAT_TY]]]** [[VAR3_ORIG_ADDR]],
|
|
|
|
// CHECK: store [2 x [[S_FLOAT_TY]]]* [[VAR3_ORIG]], [2 x [[S_FLOAT_TY]]]** [[VAR3_ORIG_ADDR:%.+]],
|
2016-02-04 19:27:03 +08:00
|
|
|
// CHECK: [[VAR3_ORIG:%.+]] = load [2 x [[S_FLOAT_TY]]]*, [2 x [[S_FLOAT_TY]]]** [[VAR3_ORIG_ADDR]],
|
|
|
|
// CHECK: getelementptr inbounds [2 x [[S_FLOAT_TY]]], [2 x [[S_FLOAT_TY]]]* [[VAR3_PRIV]], i32 0, i32 0
|
|
|
|
// CHECK: getelementptr [[S_FLOAT_TY]], [[S_FLOAT_TY]]* %{{.+}}, i64 2
|
|
|
|
|
|
|
|
// CHECK: store [2 x [[S_FLOAT_TY]]]* [[VAR3_PRIV]], [2 x [[S_FLOAT_TY]]]** %
|
2017-07-13 21:36:14 +08:00
|
|
|
// CHECK: bitcast [2 x [[S_FLOAT_TY]]]* [[VAR3_ORIG]] to [[S_FLOAT_TY]]*
|
2016-02-04 19:27:03 +08:00
|
|
|
|
|
|
|
// CHECK: ret void
|
|
|
|
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: define {{.*}} i{{[0-9]+}} [[TMAIN_INT]]()
|
|
|
|
// CHECK: [[TEST:%.+]] = alloca [[S_INT_TY]],
|
|
|
|
// CHECK: call {{.*}} [[S_INT_TY_CONSTR:@.+]]([[S_INT_TY]]* [[TEST]])
|
2015-09-10 16:12:02 +08:00
|
|
|
// CHECK: call void (%{{.+}}*, i{{[0-9]+}}, void (i{{[0-9]+}}*, i{{[0-9]+}}*, ...)*, ...) @__kmpc_fork_call(%{{.+}}* @{{.+}}, i{{[0-9]+}} 6, void (i{{[0-9]+}}*, i{{[0-9]+}}*, ...)* bitcast (void (i{{[0-9]+}}*, i{{[0-9]+}}*, i32*, [[S_INT_TY]]*, [[S_INT_TY]]*, i32*, [2 x i32]*, [2 x [[S_INT_TY]]]*)* [[TMAIN_MICROTASK:@.+]] to void
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: call {{.*}} [[S_INT_TY_DESTR:@.+]]([[S_INT_TY]]*
|
|
|
|
// CHECK: ret
|
|
|
|
//
|
2015-09-10 16:12:02 +08:00
|
|
|
// CHECK: define internal void [[TMAIN_MICROTASK]](i{{[0-9]+}}* noalias [[GTID_ADDR:%.+]], i{{[0-9]+}}* noalias %{{.+}}, i32* dereferenceable(4) %{{.+}}, [[S_INT_TY]]* dereferenceable(4) %{{.+}}, [[S_INT_TY]]* dereferenceable(4) %{{.+}}, i32* dereferenceable(4) %{{.+}}, [2 x i32]* dereferenceable(8) %{{.+}}, [2 x [[S_INT_TY]]]* dereferenceable(8) %{{.+}})
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: alloca i{{[0-9]+}},
|
|
|
|
// CHECK: alloca i{{[0-9]+}},
|
|
|
|
// CHECK: alloca i{{[0-9]+}},
|
|
|
|
// CHECK: alloca i{{[0-9]+}},
|
|
|
|
// CHECK: alloca i{{[0-9]+}},
|
|
|
|
// CHECK: [[T_VAR_PRIV:%.+]] = alloca i{{[0-9]+}},
|
|
|
|
// CHECK: [[VAR_PRIV:%.+]] = alloca [[S_INT_TY]],
|
|
|
|
// CHECK: [[VAR1_PRIV:%.+]] = alloca [[S_INT_TY]],
|
|
|
|
// CHECK: [[T_VAR1_PRIV:%.+]] = alloca i{{[0-9]+}},
|
|
|
|
|
|
|
|
// Reduction list for runtime.
|
|
|
|
// CHECK: [[RED_LIST:%.+]] = alloca [4 x i8*],
|
|
|
|
|
|
|
|
// CHECK: store i{{[0-9]+}}* [[GTID_ADDR]], i{{[0-9]+}}** [[GTID_ADDR_ADDR:%.+]],
|
|
|
|
|
2015-09-10 16:12:02 +08:00
|
|
|
// CHECK: [[T_VAR_REF:%.+]] = load i{{[0-9]+}}*, i{{[0-9]+}}** %
|
|
|
|
// CHECK: [[VAR1_REF:%.+]] = load [[S_INT_TY]]*, [[S_INT_TY]]** %
|
|
|
|
// CHECK: [[T_VAR1_REF:%.+]] = load i{{[0-9]+}}*, i{{[0-9]+}}** %
|
|
|
|
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// For + reduction operation initial value of private variable is 0.
|
|
|
|
// CHECK: store i{{[0-9]+}} 0, i{{[0-9]+}}* [[T_VAR_PRIV]],
|
|
|
|
|
|
|
|
// For & reduction operation initial value of private variable is ones in all bits.
|
2015-09-10 16:12:02 +08:00
|
|
|
// CHECK: [[VAR_REF:%.+]] = load [[S_INT_TY]]*, [[S_INT_TY]]** %
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: call {{.*}} [[S_INT_TY_CONSTR:@.+]]([[S_INT_TY]]* [[VAR_PRIV]])
|
|
|
|
|
|
|
|
// For && reduction operation initial value of private variable is 1.0.
|
|
|
|
// CHECK: call {{.*}} [[S_INT_TY_CONSTR:@.+]]([[S_INT_TY]]* [[VAR1_PRIV]])
|
|
|
|
|
|
|
|
// For min reduction operation initial value of private variable is largest repesentable value.
|
|
|
|
// CHECK: store i{{[0-9]+}} 2147483647, i{{[0-9]+}}* [[T_VAR1_PRIV]],
|
|
|
|
|
|
|
|
// CHECK: [[GTID_REF:%.+]] = load i{{[0-9]+}}*, i{{[0-9]+}}** [[GTID_ADDR_ADDR]]
|
|
|
|
// CHECK: [[GTID:%.+]] = load i{{[0-9]+}}, i{{[0-9]+}}* [[GTID_REF]]
|
|
|
|
// CHECK: call void @__kmpc_for_static_init_4(
|
|
|
|
// Skip checks for internal operations.
|
|
|
|
// CHECK: call void @__kmpc_for_static_fini(
|
|
|
|
|
|
|
|
// void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
|
|
|
|
|
Compute and preserve alignment more faithfully in IR-generation.
Introduce an Address type to bundle a pointer value with an
alignment. Introduce APIs on CGBuilderTy to work with Address
values. Change core APIs on CGF/CGM to traffic in Address where
appropriate. Require alignments to be non-zero. Update a ton
of code to compute and propagate alignment information.
As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment
helper function to CGF and made use of it in a number of places in
the expression emitter.
The end result is that we should now be significantly more correct
when performing operations on objects that are locally known to
be under-aligned. Since alignment is not reliably tracked in the
type system, there are inherent limits to this, but at least we
are no longer confused by standard operations like derived-to-base
conversions and array-to-pointer decay. I've also fixed a large
number of bugs where we were applying the complete-object alignment
to a pointer instead of the non-virtual alignment, although most of
these were hidden by the very conservative approach we took with
member alignment.
Also, because IRGen now reliably asserts on zero alignments, we
should no longer be subject to an absurd but frustrating recurring
bug where an incomplete type would report a zero alignment and then
we'd naively do a alignmentAtOffset on it and emit code using an
alignment equal to the largest power-of-two factor of the offset.
We should also now be emitting much more aggressive alignment
attributes in the presence of over-alignment. In particular,
field access now uses alignmentAtOffset instead of min.
Several times in this patch, I had to change the existing
code-generation pattern in order to more effectively use
the Address APIs. For the most part, this seems to be a strict
improvement, like doing pointer arithmetic with GEPs instead of
ptrtoint. That said, I've tried very hard to not change semantics,
but it is likely that I've failed in a few places, for which I
apologize.
ABIArgInfo now always carries the assumed alignment of indirect and
indirect byval arguments. In order to cut down on what was already
a dauntingly large patch, I changed the code to never set align
attributes in the IR on non-byval indirect arguments. That is,
we still generate code which assumes that indirect arguments have
the given alignment, but we don't express this information to the
backend except where it's semantically required (i.e. on byvals).
This is likely a minor regression for those targets that did provide
this information, but it'll be trivial to add it back in a later
patch.
I partially punted on applying this work to CGBuiltin. Please
do not add more uses of the CreateDefaultAligned{Load,Store}
APIs; they will be going away eventually.
llvm-svn: 246985
2015-09-08 16:05:57 +08:00
|
|
|
// CHECK: [[T_VAR_PRIV_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST]], i64 0, i64 0
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: [[BITCAST:%.+]] = bitcast i{{[0-9]+}}* [[T_VAR_PRIV]] to i8*
|
|
|
|
// CHECK: store i8* [[BITCAST]], i8** [[T_VAR_PRIV_REF]],
|
Compute and preserve alignment more faithfully in IR-generation.
Introduce an Address type to bundle a pointer value with an
alignment. Introduce APIs on CGBuilderTy to work with Address
values. Change core APIs on CGF/CGM to traffic in Address where
appropriate. Require alignments to be non-zero. Update a ton
of code to compute and propagate alignment information.
As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment
helper function to CGF and made use of it in a number of places in
the expression emitter.
The end result is that we should now be significantly more correct
when performing operations on objects that are locally known to
be under-aligned. Since alignment is not reliably tracked in the
type system, there are inherent limits to this, but at least we
are no longer confused by standard operations like derived-to-base
conversions and array-to-pointer decay. I've also fixed a large
number of bugs where we were applying the complete-object alignment
to a pointer instead of the non-virtual alignment, although most of
these were hidden by the very conservative approach we took with
member alignment.
Also, because IRGen now reliably asserts on zero alignments, we
should no longer be subject to an absurd but frustrating recurring
bug where an incomplete type would report a zero alignment and then
we'd naively do a alignmentAtOffset on it and emit code using an
alignment equal to the largest power-of-two factor of the offset.
We should also now be emitting much more aggressive alignment
attributes in the presence of over-alignment. In particular,
field access now uses alignmentAtOffset instead of min.
Several times in this patch, I had to change the existing
code-generation pattern in order to more effectively use
the Address APIs. For the most part, this seems to be a strict
improvement, like doing pointer arithmetic with GEPs instead of
ptrtoint. That said, I've tried very hard to not change semantics,
but it is likely that I've failed in a few places, for which I
apologize.
ABIArgInfo now always carries the assumed alignment of indirect and
indirect byval arguments. In order to cut down on what was already
a dauntingly large patch, I changed the code to never set align
attributes in the IR on non-byval indirect arguments. That is,
we still generate code which assumes that indirect arguments have
the given alignment, but we don't express this information to the
backend except where it's semantically required (i.e. on byvals).
This is likely a minor regression for those targets that did provide
this information, but it'll be trivial to add it back in a later
patch.
I partially punted on applying this work to CGBuiltin. Please
do not add more uses of the CreateDefaultAligned{Load,Store}
APIs; they will be going away eventually.
llvm-svn: 246985
2015-09-08 16:05:57 +08:00
|
|
|
// CHECK: [[VAR_PRIV_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST]], i64 0, i64 1
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: [[BITCAST:%.+]] = bitcast [[S_INT_TY]]* [[VAR_PRIV]] to i8*
|
|
|
|
// CHECK: store i8* [[BITCAST]], i8** [[VAR_PRIV_REF]],
|
Compute and preserve alignment more faithfully in IR-generation.
Introduce an Address type to bundle a pointer value with an
alignment. Introduce APIs on CGBuilderTy to work with Address
values. Change core APIs on CGF/CGM to traffic in Address where
appropriate. Require alignments to be non-zero. Update a ton
of code to compute and propagate alignment information.
As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment
helper function to CGF and made use of it in a number of places in
the expression emitter.
The end result is that we should now be significantly more correct
when performing operations on objects that are locally known to
be under-aligned. Since alignment is not reliably tracked in the
type system, there are inherent limits to this, but at least we
are no longer confused by standard operations like derived-to-base
conversions and array-to-pointer decay. I've also fixed a large
number of bugs where we were applying the complete-object alignment
to a pointer instead of the non-virtual alignment, although most of
these were hidden by the very conservative approach we took with
member alignment.
Also, because IRGen now reliably asserts on zero alignments, we
should no longer be subject to an absurd but frustrating recurring
bug where an incomplete type would report a zero alignment and then
we'd naively do a alignmentAtOffset on it and emit code using an
alignment equal to the largest power-of-two factor of the offset.
We should also now be emitting much more aggressive alignment
attributes in the presence of over-alignment. In particular,
field access now uses alignmentAtOffset instead of min.
Several times in this patch, I had to change the existing
code-generation pattern in order to more effectively use
the Address APIs. For the most part, this seems to be a strict
improvement, like doing pointer arithmetic with GEPs instead of
ptrtoint. That said, I've tried very hard to not change semantics,
but it is likely that I've failed in a few places, for which I
apologize.
ABIArgInfo now always carries the assumed alignment of indirect and
indirect byval arguments. In order to cut down on what was already
a dauntingly large patch, I changed the code to never set align
attributes in the IR on non-byval indirect arguments. That is,
we still generate code which assumes that indirect arguments have
the given alignment, but we don't express this information to the
backend except where it's semantically required (i.e. on byvals).
This is likely a minor regression for those targets that did provide
this information, but it'll be trivial to add it back in a later
patch.
I partially punted on applying this work to CGBuiltin. Please
do not add more uses of the CreateDefaultAligned{Load,Store}
APIs; they will be going away eventually.
llvm-svn: 246985
2015-09-08 16:05:57 +08:00
|
|
|
// CHECK: [[VAR1_PRIV_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST]], i64 0, i64 2
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: [[BITCAST:%.+]] = bitcast [[S_INT_TY]]* [[VAR1_PRIV]] to i8*
|
|
|
|
// CHECK: store i8* [[BITCAST]], i8** [[VAR1_PRIV_REF]],
|
Compute and preserve alignment more faithfully in IR-generation.
Introduce an Address type to bundle a pointer value with an
alignment. Introduce APIs on CGBuilderTy to work with Address
values. Change core APIs on CGF/CGM to traffic in Address where
appropriate. Require alignments to be non-zero. Update a ton
of code to compute and propagate alignment information.
As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment
helper function to CGF and made use of it in a number of places in
the expression emitter.
The end result is that we should now be significantly more correct
when performing operations on objects that are locally known to
be under-aligned. Since alignment is not reliably tracked in the
type system, there are inherent limits to this, but at least we
are no longer confused by standard operations like derived-to-base
conversions and array-to-pointer decay. I've also fixed a large
number of bugs where we were applying the complete-object alignment
to a pointer instead of the non-virtual alignment, although most of
these were hidden by the very conservative approach we took with
member alignment.
Also, because IRGen now reliably asserts on zero alignments, we
should no longer be subject to an absurd but frustrating recurring
bug where an incomplete type would report a zero alignment and then
we'd naively do a alignmentAtOffset on it and emit code using an
alignment equal to the largest power-of-two factor of the offset.
We should also now be emitting much more aggressive alignment
attributes in the presence of over-alignment. In particular,
field access now uses alignmentAtOffset instead of min.
Several times in this patch, I had to change the existing
code-generation pattern in order to more effectively use
the Address APIs. For the most part, this seems to be a strict
improvement, like doing pointer arithmetic with GEPs instead of
ptrtoint. That said, I've tried very hard to not change semantics,
but it is likely that I've failed in a few places, for which I
apologize.
ABIArgInfo now always carries the assumed alignment of indirect and
indirect byval arguments. In order to cut down on what was already
a dauntingly large patch, I changed the code to never set align
attributes in the IR on non-byval indirect arguments. That is,
we still generate code which assumes that indirect arguments have
the given alignment, but we don't express this information to the
backend except where it's semantically required (i.e. on byvals).
This is likely a minor regression for those targets that did provide
this information, but it'll be trivial to add it back in a later
patch.
I partially punted on applying this work to CGBuiltin. Please
do not add more uses of the CreateDefaultAligned{Load,Store}
APIs; they will be going away eventually.
llvm-svn: 246985
2015-09-08 16:05:57 +08:00
|
|
|
// CHECK: [[T_VAR1_PRIV_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST]], i64 0, i64 3
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: [[BITCAST:%.+]] = bitcast i{{[0-9]+}}* [[T_VAR1_PRIV]] to i8*
|
|
|
|
// CHECK: store i8* [[BITCAST]], i8** [[T_VAR1_PRIV_REF]],
|
|
|
|
|
|
|
|
// res = __kmpc_reduce_nowait(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>);
|
|
|
|
|
|
|
|
// CHECK: [[BITCAST:%.+]] = bitcast [4 x i8*]* [[RED_LIST]] to i8*
|
|
|
|
// CHECK: [[RES:%.+]] = call i32 @__kmpc_reduce_nowait(%{{.+}}* [[REDUCTION_LOC]], i32 [[GTID]], i32 4, i64 32, i8* [[BITCAST]], void (i8*, i8*)* [[REDUCTION_FUNC:@.+]], [8 x i32]* [[REDUCTION_LOCK]])
|
|
|
|
|
|
|
|
// switch(res)
|
|
|
|
// CHECK: switch i32 [[RES]], label %[[RED_DONE:.+]] [
|
|
|
|
// CHECK: i32 1, label %[[CASE1:.+]]
|
|
|
|
// CHECK: i32 2, label %[[CASE2:.+]]
|
|
|
|
// CHECK: ]
|
|
|
|
|
|
|
|
// case 1:
|
|
|
|
// t_var += t_var_reduction;
|
|
|
|
// CHECK: [[T_VAR_VAL:%.+]] = load i{{[0-9]+}}, i{{[0-9]+}}* [[T_VAR_REF]],
|
|
|
|
// CHECK: [[T_VAR_PRIV_VAL:%.+]] = load i{{[0-9]+}}, i{{[0-9]+}}* [[T_VAR_PRIV]],
|
|
|
|
// CHECK: [[UP:%.+]] = add nsw i{{[0-9]+}} [[T_VAR_VAL]], [[T_VAR_PRIV_VAL]]
|
|
|
|
// CHECK: store i{{[0-9]+}} [[UP]], i{{[0-9]+}}* [[T_VAR_REF]],
|
|
|
|
|
|
|
|
// var = var.operator &(var_reduction);
|
|
|
|
// CHECK: [[UP:%.+]] = call dereferenceable(4) [[S_INT_TY]]* @{{.+}}([[S_INT_TY]]* [[VAR_REF]], [[S_INT_TY]]* dereferenceable(4) [[VAR_PRIV]])
|
|
|
|
// CHECK: [[BC1:%.+]] = bitcast [[S_INT_TY]]* [[VAR_REF]] to i8*
|
|
|
|
// CHECK: [[BC2:%.+]] = bitcast [[S_INT_TY]]* [[UP]] to i8*
|
2015-11-19 13:55:59 +08:00
|
|
|
// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* [[BC1]], i8* [[BC2]], i64 4, i32 4, i1 false)
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
|
|
|
|
// var1 = var1.operator &&(var1_reduction);
|
|
|
|
// CHECK: [[TO_INT:%.+]] = call i{{[0-9]+}} @{{.+}}([[S_INT_TY]]* [[VAR1_REF]])
|
|
|
|
// CHECK: [[VAR1_BOOL:%.+]] = icmp ne i{{[0-9]+}} [[TO_INT]], 0
|
2015-05-07 11:54:03 +08:00
|
|
|
// CHECK: br i1 [[VAR1_BOOL]], label %[[TRUE:.+]], label %[[END2:.+]]
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: [[TRUE]]
|
|
|
|
// CHECK: [[TO_INT:%.+]] = call i{{[0-9]+}} @{{.+}}([[S_INT_TY]]* [[VAR1_PRIV]])
|
|
|
|
// CHECK: [[VAR1_REDUCTION_BOOL:%.+]] = icmp ne i{{[0-9]+}} [[TO_INT]], 0
|
|
|
|
// CHECK: br label %[[END2]]
|
|
|
|
// CHECK: [[END2]]
|
2015-05-07 11:54:03 +08:00
|
|
|
// CHECK: [[COND_LVALUE:%.+]] = phi i1 [ false, %{{.+}} ], [ [[VAR1_REDUCTION_BOOL]], %[[TRUE]] ]
|
|
|
|
// CHECK: [[CONV:%.+]] = zext i1 [[COND_LVALUE]] to i32
|
|
|
|
// CHECK: call void @{{.+}}([[S_INT_TY]]* [[COND_LVALUE:%.+]], i32 [[CONV]])
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: [[BC1:%.+]] = bitcast [[S_INT_TY]]* [[VAR1_REF]] to i8*
|
|
|
|
// CHECK: [[BC2:%.+]] = bitcast [[S_INT_TY]]* [[COND_LVALUE]] to i8*
|
2015-11-19 13:55:59 +08:00
|
|
|
// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* [[BC1]], i8* [[BC2]], i64 4, i32 4, i1 false)
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
|
|
|
|
// t_var1 = min(t_var1, t_var1_reduction);
|
|
|
|
// CHECK: [[T_VAR1_VAL:%.+]] = load i{{[0-9]+}}, i{{[0-9]+}}* [[T_VAR1_REF]],
|
|
|
|
// CHECK: [[T_VAR1_PRIV_VAL:%.+]] = load i{{[0-9]+}}, i{{[0-9]+}}* [[T_VAR1_PRIV]],
|
|
|
|
// CHECK: [[CMP:%.+]] = icmp slt i{{[0-9]+}} [[T_VAR1_VAL]], [[T_VAR1_PRIV_VAL]]
|
2015-05-07 11:54:03 +08:00
|
|
|
// CHECK: br i1 [[CMP]]
|
|
|
|
// CHECK: [[UP:%.+]] = phi i32
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: store i{{[0-9]+}} [[UP]], i{{[0-9]+}}* [[T_VAR1_REF]],
|
|
|
|
|
|
|
|
// __kmpc_end_reduce_nowait(<loc>, <gtid>, &<lock>);
|
|
|
|
// CHECK: call void @__kmpc_end_reduce_nowait(%{{.+}}* [[REDUCTION_LOC]], i32 [[GTID]], [8 x i32]* [[REDUCTION_LOCK]])
|
|
|
|
|
|
|
|
// break;
|
|
|
|
// CHECK: br label %[[RED_DONE]]
|
|
|
|
|
|
|
|
// case 2:
|
|
|
|
// t_var += t_var_reduction;
|
|
|
|
// CHECK: [[T_VAR_PRIV_VAL:%.+]] = load i{{[0-9]+}}, i{{[0-9]+}}* [[T_VAR_PRIV]]
|
|
|
|
// CHECK: atomicrmw add i32* [[T_VAR_REF]], i32 [[T_VAR_PRIV_VAL]] monotonic
|
|
|
|
|
|
|
|
// var = var.operator &(var_reduction);
|
|
|
|
// CHECK: call void @__kmpc_critical(
|
|
|
|
// CHECK: [[UP:%.+]] = call dereferenceable(4) [[S_INT_TY]]* @{{.+}}([[S_INT_TY]]* [[VAR_REF]], [[S_INT_TY]]* dereferenceable(4) [[VAR_PRIV]])
|
|
|
|
// CHECK: [[BC1:%.+]] = bitcast [[S_INT_TY]]* [[VAR_REF]] to i8*
|
|
|
|
// CHECK: [[BC2:%.+]] = bitcast [[S_INT_TY]]* [[UP]] to i8*
|
2015-11-19 13:55:59 +08:00
|
|
|
// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* [[BC1]], i8* [[BC2]], i64 4, i32 4, i1 false)
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: call void @__kmpc_end_critical(
|
|
|
|
|
|
|
|
// var1 = var1.operator &&(var1_reduction);
|
|
|
|
// CHECK: call void @__kmpc_critical(
|
|
|
|
// CHECK: [[TO_INT:%.+]] = call i{{[0-9]+}} @{{.+}}([[S_INT_TY]]* [[VAR1_REF]])
|
|
|
|
// CHECK: [[VAR1_BOOL:%.+]] = icmp ne i{{[0-9]+}} [[TO_INT]], 0
|
2015-05-07 11:54:03 +08:00
|
|
|
// CHECK: br i1 [[VAR1_BOOL]], label %[[TRUE:.+]], label %[[END2:.+]]
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: [[TRUE]]
|
|
|
|
// CHECK: [[TO_INT:%.+]] = call i{{[0-9]+}} @{{.+}}([[S_INT_TY]]* [[VAR1_PRIV]])
|
|
|
|
// CHECK: [[VAR1_REDUCTION_BOOL:%.+]] = icmp ne i{{[0-9]+}} [[TO_INT]], 0
|
|
|
|
// CHECK: br label %[[END2]]
|
|
|
|
// CHECK: [[END2]]
|
2015-05-07 11:54:03 +08:00
|
|
|
// CHECK: [[COND_LVALUE:%.+]] = phi i1 [ false, %{{.+}} ], [ [[VAR1_REDUCTION_BOOL]], %[[TRUE]] ]
|
|
|
|
// CHECK: [[CONV:%.+]] = zext i1 [[COND_LVALUE]] to i32
|
|
|
|
// CHECK: call void @{{.+}}([[S_INT_TY]]* [[COND_LVALUE:%.+]], i32 [[CONV]])
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: [[BC1:%.+]] = bitcast [[S_INT_TY]]* [[VAR1_REF]] to i8*
|
|
|
|
// CHECK: [[BC2:%.+]] = bitcast [[S_INT_TY]]* [[COND_LVALUE]] to i8*
|
2015-11-19 13:55:59 +08:00
|
|
|
// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* [[BC1]], i8* [[BC2]], i64 4, i32 4, i1 false)
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: call void @__kmpc_end_critical(
|
|
|
|
|
|
|
|
// t_var1 = min(t_var1, t_var1_reduction);
|
|
|
|
// CHECK: [[T_VAR1_PRIV_VAL:%.+]] = load i{{[0-9]+}}, i{{[0-9]+}}* [[T_VAR1_PRIV]]
|
|
|
|
// CHECK: atomicrmw min i32* [[T_VAR1_REF]], i32 [[T_VAR1_PRIV_VAL]] monotonic
|
|
|
|
|
|
|
|
// break;
|
|
|
|
// CHECK: br label %[[RED_DONE]]
|
|
|
|
// CHECK: [[RED_DONE]]
|
|
|
|
// CHECK-DAG: call {{.*}} [[S_INT_TY_DESTR]]([[S_INT_TY]]* [[VAR_PRIV]])
|
|
|
|
// CHECK-DAG: call {{.*}} [[S_INT_TY_DESTR]]([[S_INT_TY]]*
|
|
|
|
// CHECK: ret void
|
|
|
|
|
|
|
|
// void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
|
|
|
|
// *(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
|
|
|
|
// ...
|
|
|
|
// *(Type<n>-1*)lhs[<n>-1] = ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
|
|
|
|
// *(Type<n>-1*)rhs[<n>-1]);
|
|
|
|
// }
|
|
|
|
// CHECK: define internal void [[REDUCTION_FUNC]](i8*, i8*)
|
|
|
|
// t_var_lhs = (i{{[0-9]+}}*)lhs[0];
|
Compute and preserve alignment more faithfully in IR-generation.
Introduce an Address type to bundle a pointer value with an
alignment. Introduce APIs on CGBuilderTy to work with Address
values. Change core APIs on CGF/CGM to traffic in Address where
appropriate. Require alignments to be non-zero. Update a ton
of code to compute and propagate alignment information.
As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment
helper function to CGF and made use of it in a number of places in
the expression emitter.
The end result is that we should now be significantly more correct
when performing operations on objects that are locally known to
be under-aligned. Since alignment is not reliably tracked in the
type system, there are inherent limits to this, but at least we
are no longer confused by standard operations like derived-to-base
conversions and array-to-pointer decay. I've also fixed a large
number of bugs where we were applying the complete-object alignment
to a pointer instead of the non-virtual alignment, although most of
these were hidden by the very conservative approach we took with
member alignment.
Also, because IRGen now reliably asserts on zero alignments, we
should no longer be subject to an absurd but frustrating recurring
bug where an incomplete type would report a zero alignment and then
we'd naively do a alignmentAtOffset on it and emit code using an
alignment equal to the largest power-of-two factor of the offset.
We should also now be emitting much more aggressive alignment
attributes in the presence of over-alignment. In particular,
field access now uses alignmentAtOffset instead of min.
Several times in this patch, I had to change the existing
code-generation pattern in order to more effectively use
the Address APIs. For the most part, this seems to be a strict
improvement, like doing pointer arithmetic with GEPs instead of
ptrtoint. That said, I've tried very hard to not change semantics,
but it is likely that I've failed in a few places, for which I
apologize.
ABIArgInfo now always carries the assumed alignment of indirect and
indirect byval arguments. In order to cut down on what was already
a dauntingly large patch, I changed the code to never set align
attributes in the IR on non-byval indirect arguments. That is,
we still generate code which assumes that indirect arguments have
the given alignment, but we don't express this information to the
backend except where it's semantically required (i.e. on byvals).
This is likely a minor regression for those targets that did provide
this information, but it'll be trivial to add it back in a later
patch.
I partially punted on applying this work to CGBuiltin. Please
do not add more uses of the CreateDefaultAligned{Load,Store}
APIs; they will be going away eventually.
llvm-svn: 246985
2015-09-08 16:05:57 +08:00
|
|
|
// CHECK: [[T_VAR_RHS_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST_RHS:%.+]], i64 0, i64 0
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: [[T_VAR_RHS_VOID:%.+]] = load i8*, i8** [[T_VAR_RHS_REF]],
|
|
|
|
// CHECK: [[T_VAR_RHS:%.+]] = bitcast i8* [[T_VAR_RHS_VOID]] to i{{[0-9]+}}*
|
|
|
|
// t_var_rhs = (i{{[0-9]+}}*)rhs[0];
|
Compute and preserve alignment more faithfully in IR-generation.
Introduce an Address type to bundle a pointer value with an
alignment. Introduce APIs on CGBuilderTy to work with Address
values. Change core APIs on CGF/CGM to traffic in Address where
appropriate. Require alignments to be non-zero. Update a ton
of code to compute and propagate alignment information.
As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment
helper function to CGF and made use of it in a number of places in
the expression emitter.
The end result is that we should now be significantly more correct
when performing operations on objects that are locally known to
be under-aligned. Since alignment is not reliably tracked in the
type system, there are inherent limits to this, but at least we
are no longer confused by standard operations like derived-to-base
conversions and array-to-pointer decay. I've also fixed a large
number of bugs where we were applying the complete-object alignment
to a pointer instead of the non-virtual alignment, although most of
these were hidden by the very conservative approach we took with
member alignment.
Also, because IRGen now reliably asserts on zero alignments, we
should no longer be subject to an absurd but frustrating recurring
bug where an incomplete type would report a zero alignment and then
we'd naively do a alignmentAtOffset on it and emit code using an
alignment equal to the largest power-of-two factor of the offset.
We should also now be emitting much more aggressive alignment
attributes in the presence of over-alignment. In particular,
field access now uses alignmentAtOffset instead of min.
Several times in this patch, I had to change the existing
code-generation pattern in order to more effectively use
the Address APIs. For the most part, this seems to be a strict
improvement, like doing pointer arithmetic with GEPs instead of
ptrtoint. That said, I've tried very hard to not change semantics,
but it is likely that I've failed in a few places, for which I
apologize.
ABIArgInfo now always carries the assumed alignment of indirect and
indirect byval arguments. In order to cut down on what was already
a dauntingly large patch, I changed the code to never set align
attributes in the IR on non-byval indirect arguments. That is,
we still generate code which assumes that indirect arguments have
the given alignment, but we don't express this information to the
backend except where it's semantically required (i.e. on byvals).
This is likely a minor regression for those targets that did provide
this information, but it'll be trivial to add it back in a later
patch.
I partially punted on applying this work to CGBuiltin. Please
do not add more uses of the CreateDefaultAligned{Load,Store}
APIs; they will be going away eventually.
llvm-svn: 246985
2015-09-08 16:05:57 +08:00
|
|
|
// CHECK: [[T_VAR_LHS_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST_LHS:%.+]], i64 0, i64 0
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: [[T_VAR_LHS_VOID:%.+]] = load i8*, i8** [[T_VAR_LHS_REF]],
|
|
|
|
// CHECK: [[T_VAR_LHS:%.+]] = bitcast i8* [[T_VAR_LHS_VOID]] to i{{[0-9]+}}*
|
|
|
|
|
|
|
|
// var_lhs = (S<i{{[0-9]+}}>*)lhs[1];
|
Compute and preserve alignment more faithfully in IR-generation.
Introduce an Address type to bundle a pointer value with an
alignment. Introduce APIs on CGBuilderTy to work with Address
values. Change core APIs on CGF/CGM to traffic in Address where
appropriate. Require alignments to be non-zero. Update a ton
of code to compute and propagate alignment information.
As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment
helper function to CGF and made use of it in a number of places in
the expression emitter.
The end result is that we should now be significantly more correct
when performing operations on objects that are locally known to
be under-aligned. Since alignment is not reliably tracked in the
type system, there are inherent limits to this, but at least we
are no longer confused by standard operations like derived-to-base
conversions and array-to-pointer decay. I've also fixed a large
number of bugs where we were applying the complete-object alignment
to a pointer instead of the non-virtual alignment, although most of
these were hidden by the very conservative approach we took with
member alignment.
Also, because IRGen now reliably asserts on zero alignments, we
should no longer be subject to an absurd but frustrating recurring
bug where an incomplete type would report a zero alignment and then
we'd naively do a alignmentAtOffset on it and emit code using an
alignment equal to the largest power-of-two factor of the offset.
We should also now be emitting much more aggressive alignment
attributes in the presence of over-alignment. In particular,
field access now uses alignmentAtOffset instead of min.
Several times in this patch, I had to change the existing
code-generation pattern in order to more effectively use
the Address APIs. For the most part, this seems to be a strict
improvement, like doing pointer arithmetic with GEPs instead of
ptrtoint. That said, I've tried very hard to not change semantics,
but it is likely that I've failed in a few places, for which I
apologize.
ABIArgInfo now always carries the assumed alignment of indirect and
indirect byval arguments. In order to cut down on what was already
a dauntingly large patch, I changed the code to never set align
attributes in the IR on non-byval indirect arguments. That is,
we still generate code which assumes that indirect arguments have
the given alignment, but we don't express this information to the
backend except where it's semantically required (i.e. on byvals).
This is likely a minor regression for those targets that did provide
this information, but it'll be trivial to add it back in a later
patch.
I partially punted on applying this work to CGBuiltin. Please
do not add more uses of the CreateDefaultAligned{Load,Store}
APIs; they will be going away eventually.
llvm-svn: 246985
2015-09-08 16:05:57 +08:00
|
|
|
// CHECK: [[VAR_RHS_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST_RHS]], i64 0, i64 1
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: [[VAR_RHS_VOID:%.+]] = load i8*, i8** [[VAR_RHS_REF]],
|
|
|
|
// CHECK: [[VAR_RHS:%.+]] = bitcast i8* [[VAR_RHS_VOID]] to [[S_INT_TY]]*
|
|
|
|
// var_rhs = (S<i{{[0-9]+}}>*)rhs[1];
|
Compute and preserve alignment more faithfully in IR-generation.
Introduce an Address type to bundle a pointer value with an
alignment. Introduce APIs on CGBuilderTy to work with Address
values. Change core APIs on CGF/CGM to traffic in Address where
appropriate. Require alignments to be non-zero. Update a ton
of code to compute and propagate alignment information.
As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment
helper function to CGF and made use of it in a number of places in
the expression emitter.
The end result is that we should now be significantly more correct
when performing operations on objects that are locally known to
be under-aligned. Since alignment is not reliably tracked in the
type system, there are inherent limits to this, but at least we
are no longer confused by standard operations like derived-to-base
conversions and array-to-pointer decay. I've also fixed a large
number of bugs where we were applying the complete-object alignment
to a pointer instead of the non-virtual alignment, although most of
these were hidden by the very conservative approach we took with
member alignment.
Also, because IRGen now reliably asserts on zero alignments, we
should no longer be subject to an absurd but frustrating recurring
bug where an incomplete type would report a zero alignment and then
we'd naively do a alignmentAtOffset on it and emit code using an
alignment equal to the largest power-of-two factor of the offset.
We should also now be emitting much more aggressive alignment
attributes in the presence of over-alignment. In particular,
field access now uses alignmentAtOffset instead of min.
Several times in this patch, I had to change the existing
code-generation pattern in order to more effectively use
the Address APIs. For the most part, this seems to be a strict
improvement, like doing pointer arithmetic with GEPs instead of
ptrtoint. That said, I've tried very hard to not change semantics,
but it is likely that I've failed in a few places, for which I
apologize.
ABIArgInfo now always carries the assumed alignment of indirect and
indirect byval arguments. In order to cut down on what was already
a dauntingly large patch, I changed the code to never set align
attributes in the IR on non-byval indirect arguments. That is,
we still generate code which assumes that indirect arguments have
the given alignment, but we don't express this information to the
backend except where it's semantically required (i.e. on byvals).
This is likely a minor regression for those targets that did provide
this information, but it'll be trivial to add it back in a later
patch.
I partially punted on applying this work to CGBuiltin. Please
do not add more uses of the CreateDefaultAligned{Load,Store}
APIs; they will be going away eventually.
llvm-svn: 246985
2015-09-08 16:05:57 +08:00
|
|
|
// CHECK: [[VAR_LHS_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST_LHS]], i64 0, i64 1
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: [[VAR_LHS_VOID:%.+]] = load i8*, i8** [[VAR_LHS_REF]],
|
|
|
|
// CHECK: [[VAR_LHS:%.+]] = bitcast i8* [[VAR_LHS_VOID]] to [[S_INT_TY]]*
|
|
|
|
|
|
|
|
// var1_lhs = (S<i{{[0-9]+}}>*)lhs[2];
|
Compute and preserve alignment more faithfully in IR-generation.
Introduce an Address type to bundle a pointer value with an
alignment. Introduce APIs on CGBuilderTy to work with Address
values. Change core APIs on CGF/CGM to traffic in Address where
appropriate. Require alignments to be non-zero. Update a ton
of code to compute and propagate alignment information.
As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment
helper function to CGF and made use of it in a number of places in
the expression emitter.
The end result is that we should now be significantly more correct
when performing operations on objects that are locally known to
be under-aligned. Since alignment is not reliably tracked in the
type system, there are inherent limits to this, but at least we
are no longer confused by standard operations like derived-to-base
conversions and array-to-pointer decay. I've also fixed a large
number of bugs where we were applying the complete-object alignment
to a pointer instead of the non-virtual alignment, although most of
these were hidden by the very conservative approach we took with
member alignment.
Also, because IRGen now reliably asserts on zero alignments, we
should no longer be subject to an absurd but frustrating recurring
bug where an incomplete type would report a zero alignment and then
we'd naively do a alignmentAtOffset on it and emit code using an
alignment equal to the largest power-of-two factor of the offset.
We should also now be emitting much more aggressive alignment
attributes in the presence of over-alignment. In particular,
field access now uses alignmentAtOffset instead of min.
Several times in this patch, I had to change the existing
code-generation pattern in order to more effectively use
the Address APIs. For the most part, this seems to be a strict
improvement, like doing pointer arithmetic with GEPs instead of
ptrtoint. That said, I've tried very hard to not change semantics,
but it is likely that I've failed in a few places, for which I
apologize.
ABIArgInfo now always carries the assumed alignment of indirect and
indirect byval arguments. In order to cut down on what was already
a dauntingly large patch, I changed the code to never set align
attributes in the IR on non-byval indirect arguments. That is,
we still generate code which assumes that indirect arguments have
the given alignment, but we don't express this information to the
backend except where it's semantically required (i.e. on byvals).
This is likely a minor regression for those targets that did provide
this information, but it'll be trivial to add it back in a later
patch.
I partially punted on applying this work to CGBuiltin. Please
do not add more uses of the CreateDefaultAligned{Load,Store}
APIs; they will be going away eventually.
llvm-svn: 246985
2015-09-08 16:05:57 +08:00
|
|
|
// CHECK: [[VAR1_RHS_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST_RHS]], i64 0, i64 2
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: [[VAR1_RHS_VOID:%.+]] = load i8*, i8** [[VAR1_RHS_REF]],
|
|
|
|
// CHECK: [[VAR1_RHS:%.+]] = bitcast i8* [[VAR1_RHS_VOID]] to [[S_INT_TY]]*
|
|
|
|
// var1_rhs = (S<i{{[0-9]+}}>*)rhs[2];
|
Compute and preserve alignment more faithfully in IR-generation.
Introduce an Address type to bundle a pointer value with an
alignment. Introduce APIs on CGBuilderTy to work with Address
values. Change core APIs on CGF/CGM to traffic in Address where
appropriate. Require alignments to be non-zero. Update a ton
of code to compute and propagate alignment information.
As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment
helper function to CGF and made use of it in a number of places in
the expression emitter.
The end result is that we should now be significantly more correct
when performing operations on objects that are locally known to
be under-aligned. Since alignment is not reliably tracked in the
type system, there are inherent limits to this, but at least we
are no longer confused by standard operations like derived-to-base
conversions and array-to-pointer decay. I've also fixed a large
number of bugs where we were applying the complete-object alignment
to a pointer instead of the non-virtual alignment, although most of
these were hidden by the very conservative approach we took with
member alignment.
Also, because IRGen now reliably asserts on zero alignments, we
should no longer be subject to an absurd but frustrating recurring
bug where an incomplete type would report a zero alignment and then
we'd naively do a alignmentAtOffset on it and emit code using an
alignment equal to the largest power-of-two factor of the offset.
We should also now be emitting much more aggressive alignment
attributes in the presence of over-alignment. In particular,
field access now uses alignmentAtOffset instead of min.
Several times in this patch, I had to change the existing
code-generation pattern in order to more effectively use
the Address APIs. For the most part, this seems to be a strict
improvement, like doing pointer arithmetic with GEPs instead of
ptrtoint. That said, I've tried very hard to not change semantics,
but it is likely that I've failed in a few places, for which I
apologize.
ABIArgInfo now always carries the assumed alignment of indirect and
indirect byval arguments. In order to cut down on what was already
a dauntingly large patch, I changed the code to never set align
attributes in the IR on non-byval indirect arguments. That is,
we still generate code which assumes that indirect arguments have
the given alignment, but we don't express this information to the
backend except where it's semantically required (i.e. on byvals).
This is likely a minor regression for those targets that did provide
this information, but it'll be trivial to add it back in a later
patch.
I partially punted on applying this work to CGBuiltin. Please
do not add more uses of the CreateDefaultAligned{Load,Store}
APIs; they will be going away eventually.
llvm-svn: 246985
2015-09-08 16:05:57 +08:00
|
|
|
// CHECK: [[VAR1_LHS_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST_LHS]], i64 0, i64 2
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: [[VAR1_LHS_VOID:%.+]] = load i8*, i8** [[VAR1_LHS_REF]],
|
|
|
|
// CHECK: [[VAR1_LHS:%.+]] = bitcast i8* [[VAR1_LHS_VOID]] to [[S_INT_TY]]*
|
|
|
|
|
|
|
|
// t_var1_lhs = (i{{[0-9]+}}*)lhs[3];
|
Compute and preserve alignment more faithfully in IR-generation.
Introduce an Address type to bundle a pointer value with an
alignment. Introduce APIs on CGBuilderTy to work with Address
values. Change core APIs on CGF/CGM to traffic in Address where
appropriate. Require alignments to be non-zero. Update a ton
of code to compute and propagate alignment information.
As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment
helper function to CGF and made use of it in a number of places in
the expression emitter.
The end result is that we should now be significantly more correct
when performing operations on objects that are locally known to
be under-aligned. Since alignment is not reliably tracked in the
type system, there are inherent limits to this, but at least we
are no longer confused by standard operations like derived-to-base
conversions and array-to-pointer decay. I've also fixed a large
number of bugs where we were applying the complete-object alignment
to a pointer instead of the non-virtual alignment, although most of
these were hidden by the very conservative approach we took with
member alignment.
Also, because IRGen now reliably asserts on zero alignments, we
should no longer be subject to an absurd but frustrating recurring
bug where an incomplete type would report a zero alignment and then
we'd naively do a alignmentAtOffset on it and emit code using an
alignment equal to the largest power-of-two factor of the offset.
We should also now be emitting much more aggressive alignment
attributes in the presence of over-alignment. In particular,
field access now uses alignmentAtOffset instead of min.
Several times in this patch, I had to change the existing
code-generation pattern in order to more effectively use
the Address APIs. For the most part, this seems to be a strict
improvement, like doing pointer arithmetic with GEPs instead of
ptrtoint. That said, I've tried very hard to not change semantics,
but it is likely that I've failed in a few places, for which I
apologize.
ABIArgInfo now always carries the assumed alignment of indirect and
indirect byval arguments. In order to cut down on what was already
a dauntingly large patch, I changed the code to never set align
attributes in the IR on non-byval indirect arguments. That is,
we still generate code which assumes that indirect arguments have
the given alignment, but we don't express this information to the
backend except where it's semantically required (i.e. on byvals).
This is likely a minor regression for those targets that did provide
this information, but it'll be trivial to add it back in a later
patch.
I partially punted on applying this work to CGBuiltin. Please
do not add more uses of the CreateDefaultAligned{Load,Store}
APIs; they will be going away eventually.
llvm-svn: 246985
2015-09-08 16:05:57 +08:00
|
|
|
// CHECK: [[T_VAR1_RHS_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST_RHS]], i64 0, i64 3
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: [[T_VAR1_RHS_VOID:%.+]] = load i8*, i8** [[T_VAR1_RHS_REF]],
|
|
|
|
// CHECK: [[T_VAR1_RHS:%.+]] = bitcast i8* [[T_VAR1_RHS_VOID]] to i{{[0-9]+}}*
|
|
|
|
// t_var1_rhs = (i{{[0-9]+}}*)rhs[3];
|
Compute and preserve alignment more faithfully in IR-generation.
Introduce an Address type to bundle a pointer value with an
alignment. Introduce APIs on CGBuilderTy to work with Address
values. Change core APIs on CGF/CGM to traffic in Address where
appropriate. Require alignments to be non-zero. Update a ton
of code to compute and propagate alignment information.
As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment
helper function to CGF and made use of it in a number of places in
the expression emitter.
The end result is that we should now be significantly more correct
when performing operations on objects that are locally known to
be under-aligned. Since alignment is not reliably tracked in the
type system, there are inherent limits to this, but at least we
are no longer confused by standard operations like derived-to-base
conversions and array-to-pointer decay. I've also fixed a large
number of bugs where we were applying the complete-object alignment
to a pointer instead of the non-virtual alignment, although most of
these were hidden by the very conservative approach we took with
member alignment.
Also, because IRGen now reliably asserts on zero alignments, we
should no longer be subject to an absurd but frustrating recurring
bug where an incomplete type would report a zero alignment and then
we'd naively do a alignmentAtOffset on it and emit code using an
alignment equal to the largest power-of-two factor of the offset.
We should also now be emitting much more aggressive alignment
attributes in the presence of over-alignment. In particular,
field access now uses alignmentAtOffset instead of min.
Several times in this patch, I had to change the existing
code-generation pattern in order to more effectively use
the Address APIs. For the most part, this seems to be a strict
improvement, like doing pointer arithmetic with GEPs instead of
ptrtoint. That said, I've tried very hard to not change semantics,
but it is likely that I've failed in a few places, for which I
apologize.
ABIArgInfo now always carries the assumed alignment of indirect and
indirect byval arguments. In order to cut down on what was already
a dauntingly large patch, I changed the code to never set align
attributes in the IR on non-byval indirect arguments. That is,
we still generate code which assumes that indirect arguments have
the given alignment, but we don't express this information to the
backend except where it's semantically required (i.e. on byvals).
This is likely a minor regression for those targets that did provide
this information, but it'll be trivial to add it back in a later
patch.
I partially punted on applying this work to CGBuiltin. Please
do not add more uses of the CreateDefaultAligned{Load,Store}
APIs; they will be going away eventually.
llvm-svn: 246985
2015-09-08 16:05:57 +08:00
|
|
|
// CHECK: [[T_VAR1_LHS_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST_LHS]], i64 0, i64 3
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: [[T_VAR1_LHS_VOID:%.+]] = load i8*, i8** [[T_VAR1_LHS_REF]],
|
|
|
|
// CHECK: [[T_VAR1_LHS:%.+]] = bitcast i8* [[T_VAR1_LHS_VOID]] to i{{[0-9]+}}*
|
|
|
|
|
|
|
|
// t_var_lhs += t_var_rhs;
|
|
|
|
// CHECK: [[T_VAR_LHS_VAL:%.+]] = load i{{[0-9]+}}, i{{[0-9]+}}* [[T_VAR_LHS]],
|
|
|
|
// CHECK: [[T_VAR_RHS_VAL:%.+]] = load i{{[0-9]+}}, i{{[0-9]+}}* [[T_VAR_RHS]],
|
|
|
|
// CHECK: [[UP:%.+]] = add nsw i{{[0-9]+}} [[T_VAR_LHS_VAL]], [[T_VAR_RHS_VAL]]
|
|
|
|
// CHECK: store i{{[0-9]+}} [[UP]], i{{[0-9]+}}* [[T_VAR_LHS]],
|
|
|
|
|
|
|
|
// var_lhs = var_lhs.operator &(var_rhs);
|
|
|
|
// CHECK: [[UP:%.+]] = call dereferenceable(4) [[S_INT_TY]]* @{{.+}}([[S_INT_TY]]* [[VAR_LHS]], [[S_INT_TY]]* dereferenceable(4) [[VAR_RHS]])
|
|
|
|
// CHECK: [[BC1:%.+]] = bitcast [[S_INT_TY]]* [[VAR_LHS]] to i8*
|
|
|
|
// CHECK: [[BC2:%.+]] = bitcast [[S_INT_TY]]* [[UP]] to i8*
|
2015-11-19 13:55:59 +08:00
|
|
|
// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* [[BC1]], i8* [[BC2]], i64 4, i32 4, i1 false)
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
|
|
|
|
// var1_lhs = var1_lhs.operator &&(var1_rhs);
|
|
|
|
// CHECK: [[TO_INT:%.+]] = call i{{[0-9]+}} @{{.+}}([[S_INT_TY]]* [[VAR1_LHS]])
|
|
|
|
// CHECK: [[VAR1_BOOL:%.+]] = icmp ne i{{[0-9]+}} [[TO_INT]], 0
|
2015-05-07 11:54:03 +08:00
|
|
|
// CHECK: br i1 [[VAR1_BOOL]], label %[[TRUE:.+]], label %[[END2:.+]]
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: [[TRUE]]
|
|
|
|
// CHECK: [[TO_INT:%.+]] = call i{{[0-9]+}} @{{.+}}([[S_INT_TY]]* [[VAR1_RHS]])
|
|
|
|
// CHECK: [[VAR1_REDUCTION_BOOL:%.+]] = icmp ne i{{[0-9]+}} [[TO_INT]], 0
|
|
|
|
// CHECK: br label %[[END2]]
|
|
|
|
// CHECK: [[END2]]
|
2015-05-07 11:54:03 +08:00
|
|
|
// CHECK: [[COND_LVALUE:%.+]] = phi i1 [ false, %{{.+}} ], [ [[VAR1_REDUCTION_BOOL]], %[[TRUE]] ]
|
|
|
|
// CHECK: [[CONV:%.+]] = zext i1 [[COND_LVALUE]] to i32
|
|
|
|
// CHECK: call void @{{.+}}([[S_INT_TY]]* [[COND_LVALUE:%.+]], i32 [[CONV]])
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: [[BC1:%.+]] = bitcast [[S_INT_TY]]* [[VAR1_LHS]] to i8*
|
|
|
|
// CHECK: [[BC2:%.+]] = bitcast [[S_INT_TY]]* [[COND_LVALUE]] to i8*
|
2015-11-19 13:55:59 +08:00
|
|
|
// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* [[BC1]], i8* [[BC2]], i64 4, i32 4, i1 false)
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
|
|
|
|
// t_var1_lhs = min(t_var1_lhs, t_var1_rhs);
|
|
|
|
// CHECK: [[T_VAR1_LHS_VAL:%.+]] = load i{{[0-9]+}}, i{{[0-9]+}}* [[T_VAR1_LHS]],
|
|
|
|
// CHECK: [[T_VAR1_RHS_VAL:%.+]] = load i{{[0-9]+}}, i{{[0-9]+}}* [[T_VAR1_RHS]],
|
|
|
|
// CHECK: [[CMP:%.+]] = icmp slt i{{[0-9]+}} [[T_VAR1_LHS_VAL]], [[T_VAR1_RHS_VAL]]
|
2015-05-07 11:54:03 +08:00
|
|
|
// CHECK: br i1 [[CMP]]
|
|
|
|
// CHECK: [[UP:%.+]] = phi i32
|
[OPENMP] Codegen for 'reduction' clause in 'for' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
Differential Revision: http://reviews.llvm.org/D9139
llvm-svn: 235506
2015-04-22 21:43:03 +08:00
|
|
|
// CHECK: store i{{[0-9]+}} [[UP]], i{{[0-9]+}}* [[T_VAR1_LHS]],
|
|
|
|
// CHECK: ret void
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|