llvm-project/llvm/test/CodeGen/X86/avx-vbroadcast.ll

936 lines
33 KiB
LLVM
Raw Normal View History

; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
; RUN: llc < %s -mtriple=i686-apple-darwin -mattr=+avx | FileCheck %s --check-prefix=X32
; RUN: llc < %s -mtriple=x86_64-apple-darwin -mattr=+avx | FileCheck %s --check-prefix=X64
define <4 x i64> @A(i64* %ptr) nounwind uwtable readnone ssp {
; X32-LABEL: A:
; X32: ## BB#0: ## %entry
; X32-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-NEXT: movl (%eax), %ecx
; X32-NEXT: movl 4(%eax), %eax
; X32-NEXT: vmovd %ecx, %xmm0
; X32-NEXT: vpinsrd $1, %eax, %xmm0, %xmm0
; X32-NEXT: vpinsrd $2, %ecx, %xmm0, %xmm0
; X32-NEXT: vpinsrd $3, %eax, %xmm0, %xmm0
; X32-NEXT: vinsertf128 $1, %xmm0, %ymm0, %ymm0
; X32-NEXT: retl
;
; X64-LABEL: A:
; X64: ## BB#0: ## %entry
; X64-NEXT: vbroadcastsd (%rdi), %ymm0
; X64-NEXT: retq
entry:
%q = load i64, i64* %ptr, align 8
%vecinit.i = insertelement <4 x i64> undef, i64 %q, i32 0
%vecinit2.i = insertelement <4 x i64> %vecinit.i, i64 %q, i32 1
%vecinit4.i = insertelement <4 x i64> %vecinit2.i, i64 %q, i32 2
%vecinit6.i = insertelement <4 x i64> %vecinit4.i, i64 %q, i32 3
ret <4 x i64> %vecinit6.i
}
define <4 x i64> @A2(i64* %ptr, i64* %ptr2) nounwind uwtable readnone ssp {
; X32-LABEL: A2:
; X32: ## BB#0: ## %entry
; X32-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-NEXT: movl {{[0-9]+}}(%esp), %ecx
; X32-NEXT: movl (%ecx), %edx
; X32-NEXT: movl 4(%ecx), %ecx
; X32-NEXT: movl %ecx, 4(%eax)
; X32-NEXT: movl %edx, (%eax)
; X32-NEXT: vmovd %edx, %xmm0
; X32-NEXT: vpinsrd $1, %ecx, %xmm0, %xmm0
; X32-NEXT: vpinsrd $2, %edx, %xmm0, %xmm0
; X32-NEXT: vpinsrd $3, %ecx, %xmm0, %xmm0
; X32-NEXT: vinsertf128 $1, %xmm0, %ymm0, %ymm0
; X32-NEXT: retl
;
; X64-LABEL: A2:
; X64: ## BB#0: ## %entry
; X64-NEXT: movq (%rdi), %rax
; X64-NEXT: vmovq %rax, %xmm0
; X64-NEXT: movq %rax, (%rsi)
; X64-NEXT: vmovddup {{.*#+}} xmm0 = xmm0[0,0]
; X64-NEXT: vinsertf128 $1, %xmm0, %ymm0, %ymm0
; X64-NEXT: retq
entry:
%q = load i64, i64* %ptr, align 8
store i64 %q, i64* %ptr2, align 8 ; to create a chain to prevent broadcast
%vecinit.i = insertelement <4 x i64> undef, i64 %q, i32 0
%vecinit2.i = insertelement <4 x i64> %vecinit.i, i64 %q, i32 1
%vecinit4.i = insertelement <4 x i64> %vecinit2.i, i64 %q, i32 2
%vecinit6.i = insertelement <4 x i64> %vecinit4.i, i64 %q, i32 3
ret <4 x i64> %vecinit6.i
}
define <8 x i32> @B(i32* %ptr) nounwind uwtable readnone ssp {
; X32-LABEL: B:
; X32: ## BB#0: ## %entry
; X32-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-NEXT: vbroadcastss (%eax), %ymm0
; X32-NEXT: retl
;
; X64-LABEL: B:
; X64: ## BB#0: ## %entry
; X64-NEXT: vbroadcastss (%rdi), %ymm0
; X64-NEXT: retq
entry:
%q = load i32, i32* %ptr, align 4
%vecinit.i = insertelement <8 x i32> undef, i32 %q, i32 0
%vecinit2.i = insertelement <8 x i32> %vecinit.i, i32 %q, i32 1
%vecinit4.i = insertelement <8 x i32> %vecinit2.i, i32 %q, i32 2
%vecinit6.i = insertelement <8 x i32> %vecinit4.i, i32 %q, i32 3
ret <8 x i32> %vecinit6.i
}
define <8 x i32> @B2(i32* %ptr) nounwind uwtable readnone ssp {
; X32-LABEL: B2:
; X32: ## BB#0: ## %entry
; X32-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-NEXT: vbroadcastss (%eax), %ymm0
; X32-NEXT: retl
;
; X64-LABEL: B2:
; X64: ## BB#0: ## %entry
; X64-NEXT: vbroadcastss (%rdi), %ymm0
; X64-NEXT: retq
entry:
%q = load i32, i32* %ptr, align 4
%vecinit.i = insertelement <8 x i32> undef, i32 %q, i32 0
%vecinit2.i = insertelement <8 x i32> %vecinit.i, i32 %q, i32 1
%vecinit4.i = insertelement <8 x i32> %vecinit2.i, i32 %q, i32 2
%vecinit6.i = insertelement <8 x i32> %vecinit4.i, i32 %q, i32 3
%vecinit8.i = insertelement <8 x i32> %vecinit6.i, i32 %q, i32 4
%vecinit10.i = insertelement <8 x i32> %vecinit8.i, i32 %q, i32 5
%vecinit12.i = insertelement <8 x i32> %vecinit10.i, i32 %q, i32 6
%vecinit14.i = insertelement <8 x i32> %vecinit12.i, i32 %q, i32 7
ret <8 x i32> %vecinit14.i
}
define <8 x i32> @B3(i32* %ptr, i32* %ptr2) nounwind uwtable readnone ssp {
; X32-LABEL: B3:
; X32: ## BB#0: ## %entry
; X32-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-NEXT: movl {{[0-9]+}}(%esp), %ecx
; X32-NEXT: movl (%ecx), %ecx
; X32-NEXT: vmovd %ecx, %xmm0
; X32-NEXT: movl %ecx, (%eax)
; X32-NEXT: vpshufd {{.*#+}} xmm0 = xmm0[0,0,0,0]
; X32-NEXT: vinsertf128 $1, %xmm0, %ymm0, %ymm0
; X32-NEXT: retl
;
; X64-LABEL: B3:
; X64: ## BB#0: ## %entry
; X64-NEXT: movl (%rdi), %eax
; X64-NEXT: vmovd %eax, %xmm0
; X64-NEXT: movl %eax, (%rsi)
; X64-NEXT: vpshufd {{.*#+}} xmm0 = xmm0[0,0,0,0]
; X64-NEXT: vinsertf128 $1, %xmm0, %ymm0, %ymm0
; X64-NEXT: retq
entry:
%q = load i32, i32* %ptr, align 4
store i32 %q, i32* %ptr2, align 4 ; to create a chain to prevent broadcast
%vecinit.i = insertelement <8 x i32> undef, i32 %q, i32 0
%vecinit2.i = insertelement <8 x i32> %vecinit.i, i32 %q, i32 1
%vecinit4.i = insertelement <8 x i32> %vecinit2.i, i32 %q, i32 2
%vecinit6.i = insertelement <8 x i32> %vecinit4.i, i32 %q, i32 3
%vecinit8.i = insertelement <8 x i32> %vecinit6.i, i32 %q, i32 4
%vecinit10.i = insertelement <8 x i32> %vecinit8.i, i32 %q, i32 5
%vecinit12.i = insertelement <8 x i32> %vecinit10.i, i32 %q, i32 6
%vecinit14.i = insertelement <8 x i32> %vecinit12.i, i32 %q, i32 7
ret <8 x i32> %vecinit14.i
}
define <4 x double> @C(double* %ptr) nounwind uwtable readnone ssp {
; X32-LABEL: C:
; X32: ## BB#0: ## %entry
; X32-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-NEXT: vbroadcastsd (%eax), %ymm0
; X32-NEXT: retl
;
; X64-LABEL: C:
; X64: ## BB#0: ## %entry
; X64-NEXT: vbroadcastsd (%rdi), %ymm0
; X64-NEXT: retq
entry:
%q = load double, double* %ptr, align 8
%vecinit.i = insertelement <4 x double> undef, double %q, i32 0
%vecinit2.i = insertelement <4 x double> %vecinit.i, double %q, i32 1
%vecinit4.i = insertelement <4 x double> %vecinit2.i, double %q, i32 2
%vecinit6.i = insertelement <4 x double> %vecinit4.i, double %q, i32 3
ret <4 x double> %vecinit6.i
}
define <4 x double> @C2(double* %ptr, double* %ptr2) nounwind uwtable readnone ssp {
; X32-LABEL: C2:
; X32: ## BB#0: ## %entry
; X32-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-NEXT: movl {{[0-9]+}}(%esp), %ecx
; X32-NEXT: vmovsd {{.*#+}} xmm0 = mem[0],zero
; X32-NEXT: vmovsd %xmm0, (%eax)
; X32-NEXT: vmovddup {{.*#+}} xmm0 = xmm0[0,0]
; X32-NEXT: vinsertf128 $1, %xmm0, %ymm0, %ymm0
; X32-NEXT: retl
;
; X64-LABEL: C2:
; X64: ## BB#0: ## %entry
; X64-NEXT: vmovsd {{.*#+}} xmm0 = mem[0],zero
; X64-NEXT: vmovsd %xmm0, (%rsi)
; X64-NEXT: vmovddup {{.*#+}} xmm0 = xmm0[0,0]
; X64-NEXT: vinsertf128 $1, %xmm0, %ymm0, %ymm0
; X64-NEXT: retq
entry:
%q = load double, double* %ptr, align 8
store double %q, double* %ptr2, align 8 ; to create a chain to prevent broadcast
%vecinit.i = insertelement <4 x double> undef, double %q, i32 0
%vecinit2.i = insertelement <4 x double> %vecinit.i, double %q, i32 1
%vecinit4.i = insertelement <4 x double> %vecinit2.i, double %q, i32 2
%vecinit6.i = insertelement <4 x double> %vecinit4.i, double %q, i32 3
ret <4 x double> %vecinit6.i
}
define <8 x float> @D(float* %ptr) nounwind uwtable readnone ssp {
; X32-LABEL: D:
; X32: ## BB#0: ## %entry
; X32-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-NEXT: vbroadcastss (%eax), %ymm0
; X32-NEXT: retl
;
; X64-LABEL: D:
; X64: ## BB#0: ## %entry
; X64-NEXT: vbroadcastss (%rdi), %ymm0
; X64-NEXT: retq
entry:
%q = load float, float* %ptr, align 4
%vecinit.i = insertelement <8 x float> undef, float %q, i32 0
%vecinit2.i = insertelement <8 x float> %vecinit.i, float %q, i32 1
%vecinit4.i = insertelement <8 x float> %vecinit2.i, float %q, i32 2
%vecinit6.i = insertelement <8 x float> %vecinit4.i, float %q, i32 3
ret <8 x float> %vecinit6.i
}
define <8 x float> @D2(float* %ptr) nounwind uwtable readnone ssp {
; X32-LABEL: D2:
; X32: ## BB#0: ## %entry
; X32-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-NEXT: vbroadcastss (%eax), %ymm0
; X32-NEXT: retl
;
; X64-LABEL: D2:
; X64: ## BB#0: ## %entry
; X64-NEXT: vbroadcastss (%rdi), %ymm0
; X64-NEXT: retq
entry:
%q = load float, float* %ptr, align 4
%vecinit.i = insertelement <8 x float> undef, float %q, i32 0
%vecinit2.i = insertelement <8 x float> %vecinit.i, float %q, i32 1
%vecinit4.i = insertelement <8 x float> %vecinit2.i, float %q, i32 2
%vecinit6.i = insertelement <8 x float> %vecinit4.i, float %q, i32 3
%vecinit8.i = insertelement <8 x float> %vecinit6.i, float %q, i32 4
%vecinit10.i = insertelement <8 x float> %vecinit8.i, float %q, i32 5
%vecinit12.i = insertelement <8 x float> %vecinit10.i, float %q, i32 6
%vecinit14.i = insertelement <8 x float> %vecinit12.i, float %q, i32 7
ret <8 x float> %vecinit14.i
}
define <8 x float> @D3(float* %ptr, float* %ptr2) nounwind uwtable readnone ssp {
; X32-LABEL: D3:
; X32: ## BB#0: ## %entry
; X32-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-NEXT: movl {{[0-9]+}}(%esp), %ecx
; X32-NEXT: vmovss {{.*#+}} xmm0 = mem[0],zero,zero,zero
; X32-NEXT: vmovss %xmm0, (%eax)
; X32-NEXT: vpermilps {{.*#+}} xmm0 = xmm0[0,0,0,0]
; X32-NEXT: vinsertf128 $1, %xmm0, %ymm0, %ymm0
; X32-NEXT: retl
;
; X64-LABEL: D3:
; X64: ## BB#0: ## %entry
; X64-NEXT: vmovss {{.*#+}} xmm0 = mem[0],zero,zero,zero
; X64-NEXT: vmovss %xmm0, (%rsi)
; X64-NEXT: vpermilps {{.*#+}} xmm0 = xmm0[0,0,0,0]
; X64-NEXT: vinsertf128 $1, %xmm0, %ymm0, %ymm0
; X64-NEXT: retq
entry:
%q = load float, float* %ptr, align 4
store float %q, float* %ptr2, align 4 ; to create a chain to prevent broadcast
%vecinit.i = insertelement <8 x float> undef, float %q, i32 0
%vecinit2.i = insertelement <8 x float> %vecinit.i, float %q, i32 1
%vecinit4.i = insertelement <8 x float> %vecinit2.i, float %q, i32 2
%vecinit6.i = insertelement <8 x float> %vecinit4.i, float %q, i32 3
%vecinit8.i = insertelement <8 x float> %vecinit6.i, float %q, i32 4
%vecinit10.i = insertelement <8 x float> %vecinit8.i, float %q, i32 5
%vecinit12.i = insertelement <8 x float> %vecinit10.i, float %q, i32 6
%vecinit14.i = insertelement <8 x float> %vecinit12.i, float %q, i32 7
ret <8 x float> %vecinit14.i
}
;;;; 128-bit versions
define <4 x float> @e(float* %ptr) nounwind uwtable readnone ssp {
; X32-LABEL: e:
; X32: ## BB#0: ## %entry
; X32-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-NEXT: vbroadcastss (%eax), %xmm0
; X32-NEXT: retl
;
; X64-LABEL: e:
; X64: ## BB#0: ## %entry
; X64-NEXT: vbroadcastss (%rdi), %xmm0
; X64-NEXT: retq
entry:
%q = load float, float* %ptr, align 4
%vecinit.i = insertelement <4 x float> undef, float %q, i32 0
%vecinit2.i = insertelement <4 x float> %vecinit.i, float %q, i32 1
%vecinit4.i = insertelement <4 x float> %vecinit2.i, float %q, i32 2
%vecinit6.i = insertelement <4 x float> %vecinit4.i, float %q, i32 3
ret <4 x float> %vecinit6.i
}
define <4 x float> @e2(float* %ptr, float* %ptr2) nounwind uwtable readnone ssp {
; X32-LABEL: e2:
; X32: ## BB#0: ## %entry
; X32-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-NEXT: movl {{[0-9]+}}(%esp), %ecx
; X32-NEXT: vmovss {{.*#+}} xmm0 = mem[0],zero,zero,zero
; X32-NEXT: vmovss %xmm0, (%eax)
; X32-NEXT: vpermilps {{.*#+}} xmm0 = xmm0[0,0,0,0]
; X32-NEXT: retl
;
; X64-LABEL: e2:
; X64: ## BB#0: ## %entry
; X64-NEXT: vmovss {{.*#+}} xmm0 = mem[0],zero,zero,zero
; X64-NEXT: vmovss %xmm0, (%rsi)
; X64-NEXT: vpermilps {{.*#+}} xmm0 = xmm0[0,0,0,0]
; X64-NEXT: retq
entry:
%q = load float, float* %ptr, align 4
store float %q, float* %ptr2, align 4 ; to create a chain to prevent broadcast
%vecinit.i = insertelement <4 x float> undef, float %q, i32 0
%vecinit2.i = insertelement <4 x float> %vecinit.i, float %q, i32 1
%vecinit4.i = insertelement <4 x float> %vecinit2.i, float %q, i32 2
%vecinit6.i = insertelement <4 x float> %vecinit4.i, float %q, i32 3
ret <4 x float> %vecinit6.i
}
; Don't broadcast constants on pre-AVX2 hardware.
define <4 x float> @_e2(float* %ptr) nounwind uwtable readnone ssp {
; X32-LABEL: _e2:
; X32: ## BB#0: ## %entry
; X32-NEXT: vmovaps {{.*#+}} xmm0 = [-7.812500e-03,-7.812500e-03,-7.812500e-03,-7.812500e-03]
; X32-NEXT: retl
;
; X64-LABEL: _e2:
; X64: ## BB#0: ## %entry
; X64-NEXT: vmovaps {{.*#+}} xmm0 = [-7.812500e-03,-7.812500e-03,-7.812500e-03,-7.812500e-03]
; X64-NEXT: retq
entry:
%vecinit.i = insertelement <4 x float> undef, float 0xbf80000000000000, i32 0
%vecinit2.i = insertelement <4 x float> %vecinit.i, float 0xbf80000000000000, i32 1
%vecinit4.i = insertelement <4 x float> %vecinit2.i, float 0xbf80000000000000, i32 2
%vecinit6.i = insertelement <4 x float> %vecinit4.i, float 0xbf80000000000000, i32 3
ret <4 x float> %vecinit6.i
}
define <4 x i32> @F(i32* %ptr) nounwind uwtable readnone ssp {
; X32-LABEL: F:
; X32: ## BB#0: ## %entry
; X32-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-NEXT: vbroadcastss (%eax), %xmm0
; X32-NEXT: retl
;
; X64-LABEL: F:
; X64: ## BB#0: ## %entry
; X64-NEXT: vbroadcastss (%rdi), %xmm0
; X64-NEXT: retq
entry:
%q = load i32, i32* %ptr, align 4
%vecinit.i = insertelement <4 x i32> undef, i32 %q, i32 0
%vecinit2.i = insertelement <4 x i32> %vecinit.i, i32 %q, i32 1
%vecinit4.i = insertelement <4 x i32> %vecinit2.i, i32 %q, i32 2
%vecinit6.i = insertelement <4 x i32> %vecinit4.i, i32 %q, i32 3
ret <4 x i32> %vecinit6.i
}
define <4 x i32> @F2(i32* %ptr, i32* %ptr2) nounwind uwtable readnone ssp {
; X32-LABEL: F2:
; X32: ## BB#0: ## %entry
; X32-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-NEXT: movl {{[0-9]+}}(%esp), %ecx
; X32-NEXT: movl (%ecx), %ecx
; X32-NEXT: movl %ecx, (%eax)
; X32-NEXT: vmovd %ecx, %xmm0
; X32-NEXT: vpshufd {{.*#+}} xmm0 = xmm0[0,0,0,0]
; X32-NEXT: retl
;
; X64-LABEL: F2:
; X64: ## BB#0: ## %entry
; X64-NEXT: movl (%rdi), %eax
; X64-NEXT: movl %eax, (%rsi)
; X64-NEXT: vmovd %eax, %xmm0
; X64-NEXT: vpshufd {{.*#+}} xmm0 = xmm0[0,0,0,0]
; X64-NEXT: retq
entry:
%q = load i32, i32* %ptr, align 4
store i32 %q, i32* %ptr2, align 4 ; to create a chain to prevent broadcast
%vecinit.i = insertelement <4 x i32> undef, i32 %q, i32 0
%vecinit2.i = insertelement <4 x i32> %vecinit.i, i32 %q, i32 1
%vecinit4.i = insertelement <4 x i32> %vecinit2.i, i32 %q, i32 2
%vecinit6.i = insertelement <4 x i32> %vecinit4.i, i32 %q, i32 3
ret <4 x i32> %vecinit6.i
}
; FIXME: Pointer adjusted broadcasts
define <4 x i32> @load_splat_4i32_4i32_1111(<4 x i32>* %ptr) nounwind uwtable readnone ssp {
; X32-LABEL: load_splat_4i32_4i32_1111:
; X32: ## BB#0: ## %entry
; X32-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-NEXT: vpermilps {{.*#+}} xmm0 = mem[1,1,1,1]
; X32-NEXT: retl
;
; X64-LABEL: load_splat_4i32_4i32_1111:
; X64: ## BB#0: ## %entry
; X64-NEXT: vpermilps {{.*#+}} xmm0 = mem[1,1,1,1]
; X64-NEXT: retq
entry:
%ld = load <4 x i32>, <4 x i32>* %ptr
%ret = shufflevector <4 x i32> %ld, <4 x i32> undef, <4 x i32> <i32 1, i32 1, i32 1, i32 1>
ret <4 x i32> %ret
}
define <8 x i32> @load_splat_8i32_4i32_33333333(<4 x i32>* %ptr) nounwind uwtable readnone ssp {
; X32-LABEL: load_splat_8i32_4i32_33333333:
; X32: ## BB#0: ## %entry
; X32-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-NEXT: vbroadcastss 12(%eax), %ymm0
; X32-NEXT: retl
;
; X64-LABEL: load_splat_8i32_4i32_33333333:
; X64: ## BB#0: ## %entry
; X64-NEXT: vbroadcastss 12(%rdi), %ymm0
; X64-NEXT: retq
entry:
%ld = load <4 x i32>, <4 x i32>* %ptr
%ret = shufflevector <4 x i32> %ld, <4 x i32> undef, <8 x i32> <i32 3, i32 3, i32 3, i32 3, i32 3, i32 3, i32 3, i32 3>
ret <8 x i32> %ret
}
define <8 x i32> @load_splat_8i32_8i32_55555555(<8 x i32>* %ptr) nounwind uwtable readnone ssp {
; X32-LABEL: load_splat_8i32_8i32_55555555:
; X32: ## BB#0: ## %entry
; X32-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-NEXT: vbroadcastss 20(%eax), %ymm0
; X32-NEXT: retl
;
; X64-LABEL: load_splat_8i32_8i32_55555555:
; X64: ## BB#0: ## %entry
; X64-NEXT: vbroadcastss 20(%rdi), %ymm0
; X64-NEXT: retq
entry:
%ld = load <8 x i32>, <8 x i32>* %ptr
%ret = shufflevector <8 x i32> %ld, <8 x i32> undef, <8 x i32> <i32 5, i32 5, i32 5, i32 5, i32 5, i32 5, i32 5, i32 5>
ret <8 x i32> %ret
}
define <4 x float> @load_splat_4f32_4f32_1111(<4 x float>* %ptr) nounwind uwtable readnone ssp {
; X32-LABEL: load_splat_4f32_4f32_1111:
; X32: ## BB#0: ## %entry
; X32-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-NEXT: vbroadcastss 4(%eax), %xmm0
; X32-NEXT: retl
;
; X64-LABEL: load_splat_4f32_4f32_1111:
; X64: ## BB#0: ## %entry
; X64-NEXT: vbroadcastss 4(%rdi), %xmm0
; X64-NEXT: retq
entry:
%ld = load <4 x float>, <4 x float>* %ptr
%ret = shufflevector <4 x float> %ld, <4 x float> undef, <4 x i32> <i32 1, i32 1, i32 1, i32 1>
ret <4 x float> %ret
}
define <8 x float> @load_splat_8f32_4f32_33333333(<4 x float>* %ptr) nounwind uwtable readnone ssp {
; X32-LABEL: load_splat_8f32_4f32_33333333:
; X32: ## BB#0: ## %entry
; X32-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-NEXT: vbroadcastss 12(%eax), %ymm0
; X32-NEXT: retl
;
; X64-LABEL: load_splat_8f32_4f32_33333333:
; X64: ## BB#0: ## %entry
; X64-NEXT: vbroadcastss 12(%rdi), %ymm0
; X64-NEXT: retq
entry:
%ld = load <4 x float>, <4 x float>* %ptr
%ret = shufflevector <4 x float> %ld, <4 x float> undef, <8 x i32> <i32 3, i32 3, i32 3, i32 3, i32 3, i32 3, i32 3, i32 3>
ret <8 x float> %ret
}
define <8 x float> @load_splat_8f32_8f32_55555555(<8 x float>* %ptr) nounwind uwtable readnone ssp {
; X32-LABEL: load_splat_8f32_8f32_55555555:
; X32: ## BB#0: ## %entry
; X32-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-NEXT: vbroadcastss 20(%eax), %ymm0
; X32-NEXT: retl
;
; X64-LABEL: load_splat_8f32_8f32_55555555:
; X64: ## BB#0: ## %entry
; X64-NEXT: vbroadcastss 20(%rdi), %ymm0
; X64-NEXT: retq
entry:
%ld = load <8 x float>, <8 x float>* %ptr
%ret = shufflevector <8 x float> %ld, <8 x float> undef, <8 x i32> <i32 5, i32 5, i32 5, i32 5, i32 5, i32 5, i32 5, i32 5>
ret <8 x float> %ret
}
define <2 x i64> @load_splat_2i64_2i64_1111(<2 x i64>* %ptr) nounwind uwtable readnone ssp {
; X32-LABEL: load_splat_2i64_2i64_1111:
; X32: ## BB#0: ## %entry
; X32-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-NEXT: vpermilps {{.*#+}} xmm0 = mem[2,3,2,3]
; X32-NEXT: retl
;
; X64-LABEL: load_splat_2i64_2i64_1111:
; X64: ## BB#0: ## %entry
; X64-NEXT: vpermilps {{.*#+}} xmm0 = mem[2,3,2,3]
; X64-NEXT: retq
entry:
%ld = load <2 x i64>, <2 x i64>* %ptr
%ret = shufflevector <2 x i64> %ld, <2 x i64> undef, <2 x i32> <i32 1, i32 1>
ret <2 x i64> %ret
}
define <4 x i64> @load_splat_4i64_2i64_1111(<2 x i64>* %ptr) nounwind uwtable readnone ssp {
; X32-LABEL: load_splat_4i64_2i64_1111:
; X32: ## BB#0: ## %entry
; X32-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-NEXT: vbroadcastsd 8(%eax), %ymm0
; X32-NEXT: retl
;
; X64-LABEL: load_splat_4i64_2i64_1111:
; X64: ## BB#0: ## %entry
; X64-NEXT: vbroadcastsd 8(%rdi), %ymm0
; X64-NEXT: retq
entry:
%ld = load <2 x i64>, <2 x i64>* %ptr
%ret = shufflevector <2 x i64> %ld, <2 x i64> undef, <4 x i32> <i32 1, i32 1, i32 1, i32 1>
ret <4 x i64> %ret
}
define <4 x i64> @load_splat_4i64_4i64_2222(<4 x i64>* %ptr) nounwind uwtable readnone ssp {
; X32-LABEL: load_splat_4i64_4i64_2222:
; X32: ## BB#0: ## %entry
; X32-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-NEXT: vbroadcastsd 16(%eax), %ymm0
; X32-NEXT: retl
;
; X64-LABEL: load_splat_4i64_4i64_2222:
; X64: ## BB#0: ## %entry
; X64-NEXT: vbroadcastsd 16(%rdi), %ymm0
; X64-NEXT: retq
entry:
%ld = load <4 x i64>, <4 x i64>* %ptr
%ret = shufflevector <4 x i64> %ld, <4 x i64> undef, <4 x i32> <i32 2, i32 2, i32 2, i32 2>
ret <4 x i64> %ret
}
define <2 x double> @load_splat_2f64_2f64_1111(<2 x double>* %ptr) nounwind uwtable readnone ssp {
; X32-LABEL: load_splat_2f64_2f64_1111:
; X32: ## BB#0: ## %entry
; X32-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-NEXT: vmovddup {{.*#+}} xmm0 = mem[0,0]
; X32-NEXT: retl
;
; X64-LABEL: load_splat_2f64_2f64_1111:
; X64: ## BB#0: ## %entry
; X64-NEXT: vmovddup {{.*#+}} xmm0 = mem[0,0]
; X64-NEXT: retq
entry:
%ld = load <2 x double>, <2 x double>* %ptr
%ret = shufflevector <2 x double> %ld, <2 x double> undef, <2 x i32> <i32 1, i32 1>
ret <2 x double> %ret
}
define <4 x double> @load_splat_4f64_2f64_1111(<2 x double>* %ptr) nounwind uwtable readnone ssp {
; X32-LABEL: load_splat_4f64_2f64_1111:
; X32: ## BB#0: ## %entry
; X32-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-NEXT: vbroadcastsd 8(%eax), %ymm0
; X32-NEXT: retl
;
; X64-LABEL: load_splat_4f64_2f64_1111:
; X64: ## BB#0: ## %entry
; X64-NEXT: vbroadcastsd 8(%rdi), %ymm0
; X64-NEXT: retq
entry:
%ld = load <2 x double>, <2 x double>* %ptr
%ret = shufflevector <2 x double> %ld, <2 x double> undef, <4 x i32> <i32 1, i32 1, i32 1, i32 1>
ret <4 x double> %ret
}
define <4 x double> @load_splat_4f64_4f64_2222(<4 x double>* %ptr) nounwind uwtable readnone ssp {
; X32-LABEL: load_splat_4f64_4f64_2222:
; X32: ## BB#0: ## %entry
; X32-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-NEXT: vbroadcastsd 16(%eax), %ymm0
; X32-NEXT: retl
;
; X64-LABEL: load_splat_4f64_4f64_2222:
; X64: ## BB#0: ## %entry
; X64-NEXT: vbroadcastsd 16(%rdi), %ymm0
; X64-NEXT: retq
entry:
%ld = load <4 x double>, <4 x double>* %ptr
%ret = shufflevector <4 x double> %ld, <4 x double> undef, <4 x i32> <i32 2, i32 2, i32 2, i32 2>
ret <4 x double> %ret
}
; Unsupported vbroadcasts
define <2 x i64> @G(i64* %ptr) nounwind uwtable readnone ssp {
; X32-LABEL: G:
; X32: ## BB#0: ## %entry
; X32-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-NEXT: movl (%eax), %ecx
; X32-NEXT: movl 4(%eax), %eax
; X32-NEXT: vmovd %ecx, %xmm0
; X32-NEXT: vpinsrd $1, %eax, %xmm0, %xmm0
; X32-NEXT: vpinsrd $2, %ecx, %xmm0, %xmm0
; X32-NEXT: vpinsrd $3, %eax, %xmm0, %xmm0
; X32-NEXT: retl
;
; X64-LABEL: G:
; X64: ## BB#0: ## %entry
; X64-NEXT: vmovsd {{.*#+}} xmm0 = mem[0],zero
; X64-NEXT: vpermilps {{.*#+}} xmm0 = xmm0[0,1,0,1]
; X64-NEXT: retq
entry:
%q = load i64, i64* %ptr, align 8
%vecinit.i = insertelement <2 x i64> undef, i64 %q, i32 0
%vecinit2.i = insertelement <2 x i64> %vecinit.i, i64 %q, i32 1
ret <2 x i64> %vecinit2.i
}
define <2 x i64> @G2(i64* %ptr, i64* %ptr2) nounwind uwtable readnone ssp {
; X32-LABEL: G2:
; X32: ## BB#0: ## %entry
; X32-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-NEXT: movl {{[0-9]+}}(%esp), %ecx
; X32-NEXT: movl (%ecx), %edx
; X32-NEXT: movl 4(%ecx), %ecx
; X32-NEXT: movl %ecx, 4(%eax)
; X32-NEXT: movl %edx, (%eax)
; X32-NEXT: vmovd %edx, %xmm0
; X32-NEXT: vpinsrd $1, %ecx, %xmm0, %xmm0
; X32-NEXT: vpinsrd $2, %edx, %xmm0, %xmm0
; X32-NEXT: vpinsrd $3, %ecx, %xmm0, %xmm0
; X32-NEXT: retl
;
; X64-LABEL: G2:
; X64: ## BB#0: ## %entry
; X64-NEXT: movq (%rdi), %rax
; X64-NEXT: movq %rax, (%rsi)
; X64-NEXT: vmovq %rax, %xmm0
; X64-NEXT: vpshufd {{.*#+}} xmm0 = xmm0[0,1,0,1]
; X64-NEXT: retq
entry:
%q = load i64, i64* %ptr, align 8
store i64 %q, i64* %ptr2, align 8 ; to create a chain to prevent broadcast
%vecinit.i = insertelement <2 x i64> undef, i64 %q, i32 0
%vecinit2.i = insertelement <2 x i64> %vecinit.i, i64 %q, i32 1
ret <2 x i64> %vecinit2.i
}
define <4 x i32> @H(<4 x i32> %a) {
; X32-LABEL: H:
; X32: ## BB#0: ## %entry
; X32-NEXT: vpermilps {{.*#+}} xmm0 = xmm0[1,1,2,3]
; X32-NEXT: retl
;
; X64-LABEL: H:
; X64: ## BB#0: ## %entry
; X64-NEXT: vpermilps {{.*#+}} xmm0 = xmm0[1,1,2,3]
; X64-NEXT: retq
entry:
%x = shufflevector <4 x i32> %a, <4 x i32> undef, <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
ret <4 x i32> %x
}
define <2 x double> @I(double* %ptr) nounwind uwtable readnone ssp {
; X32-LABEL: I:
; X32: ## BB#0: ## %entry
; X32-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-NEXT: vmovddup {{.*#+}} xmm0 = mem[0,0]
; X32-NEXT: retl
;
; X64-LABEL: I:
; X64: ## BB#0: ## %entry
; X64-NEXT: vmovddup {{.*#+}} xmm0 = mem[0,0]
; X64-NEXT: retq
entry:
%q = load double, double* %ptr, align 4
%vecinit.i = insertelement <2 x double> undef, double %q, i32 0
%vecinit2.i = insertelement <2 x double> %vecinit.i, double %q, i32 1
ret <2 x double> %vecinit2.i
}
define <2 x double> @I2(double* %ptr, double* %ptr2) nounwind uwtable readnone ssp {
; X32-LABEL: I2:
; X32: ## BB#0: ## %entry
; X32-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-NEXT: movl {{[0-9]+}}(%esp), %ecx
; X32-NEXT: vmovsd {{.*#+}} xmm0 = mem[0],zero
; X32-NEXT: vmovsd %xmm0, (%eax)
; X32-NEXT: vmovddup {{.*#+}} xmm0 = xmm0[0,0]
; X32-NEXT: retl
;
; X64-LABEL: I2:
; X64: ## BB#0: ## %entry
; X64-NEXT: vmovsd {{.*#+}} xmm0 = mem[0],zero
; X64-NEXT: vmovsd %xmm0, (%rsi)
; X64-NEXT: vmovddup {{.*#+}} xmm0 = xmm0[0,0]
; X64-NEXT: retq
entry:
%q = load double, double* %ptr, align 4
store double %q, double* %ptr2, align 4 ; to create a chain to prevent broadcast
%vecinit.i = insertelement <2 x double> undef, double %q, i32 0
%vecinit2.i = insertelement <2 x double> %vecinit.i, double %q, i32 1
ret <2 x double> %vecinit2.i
}
define <4 x float> @_RR(float* %ptr, i32* %k) nounwind uwtable readnone ssp {
; X32-LABEL: _RR:
; X32: ## BB#0: ## %entry
; X32-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-NEXT: movl {{[0-9]+}}(%esp), %ecx
; X32-NEXT: vbroadcastss (%ecx), %xmm0
; X32-NEXT: movl (%eax), %eax
; X32-NEXT: movl %eax, (%eax)
; X32-NEXT: retl
;
; X64-LABEL: _RR:
; X64: ## BB#0: ## %entry
; X64-NEXT: vbroadcastss (%rdi), %xmm0
; X64-NEXT: movl (%rsi), %eax
; X64-NEXT: movl %eax, (%rax)
; X64-NEXT: retq
entry:
%q = load float, float* %ptr, align 4
%vecinit.i = insertelement <4 x float> undef, float %q, i32 0
%vecinit2.i = insertelement <4 x float> %vecinit.i, float %q, i32 1
%vecinit4.i = insertelement <4 x float> %vecinit2.i, float %q, i32 2
%vecinit6.i = insertelement <4 x float> %vecinit4.i, float %q, i32 3
; force a chain
%j = load i32, i32* %k, align 4
store i32 %j, i32* undef
ret <4 x float> %vecinit6.i
}
define <4 x float> @_RR2(float* %ptr, i32* %k) nounwind uwtable readnone ssp {
; X32-LABEL: _RR2:
; X32: ## BB#0: ## %entry
; X32-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-NEXT: vbroadcastss (%eax), %xmm0
; X32-NEXT: retl
;
; X64-LABEL: _RR2:
; X64: ## BB#0: ## %entry
; X64-NEXT: vbroadcastss (%rdi), %xmm0
; X64-NEXT: retq
entry:
%q = load float, float* %ptr, align 4
%v = insertelement <4 x float> undef, float %q, i32 0
%t = shufflevector <4 x float> %v, <4 x float> undef, <4 x i32> zeroinitializer
ret <4 x float> %t
}
; These tests check that a vbroadcast instruction is used when we have a splat
; formed from a concat_vectors (via the shufflevector) of two BUILD_VECTORs
; (via the insertelements).
define <8 x float> @splat_concat1(float* %p) {
; X32-LABEL: splat_concat1:
; X32: ## BB#0:
; X32-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-NEXT: vbroadcastss (%eax), %ymm0
; X32-NEXT: retl
;
; X64-LABEL: splat_concat1:
; X64: ## BB#0:
; X64-NEXT: vbroadcastss (%rdi), %ymm0
; X64-NEXT: retq
%1 = load float, float* %p, align 4
%2 = insertelement <4 x float> undef, float %1, i32 0
%3 = insertelement <4 x float> %2, float %1, i32 1
%4 = insertelement <4 x float> %3, float %1, i32 2
%5 = insertelement <4 x float> %4, float %1, i32 3
%6 = shufflevector <4 x float> %5, <4 x float> undef, <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 0, i32 1, i32 2, i32 3>
ret <8 x float> %6
}
define <8 x float> @splat_concat2(float* %p) {
; X32-LABEL: splat_concat2:
; X32: ## BB#0:
; X32-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-NEXT: vbroadcastss (%eax), %ymm0
; X32-NEXT: retl
;
; X64-LABEL: splat_concat2:
; X64: ## BB#0:
; X64-NEXT: vbroadcastss (%rdi), %ymm0
; X64-NEXT: retq
%1 = load float, float* %p, align 4
%2 = insertelement <4 x float> undef, float %1, i32 0
%3 = insertelement <4 x float> %2, float %1, i32 1
%4 = insertelement <4 x float> %3, float %1, i32 2
%5 = insertelement <4 x float> %4, float %1, i32 3
%6 = insertelement <4 x float> undef, float %1, i32 0
%7 = insertelement <4 x float> %6, float %1, i32 1
%8 = insertelement <4 x float> %7, float %1, i32 2
%9 = insertelement <4 x float> %8, float %1, i32 3
%10 = shufflevector <4 x float> %5, <4 x float> %9, <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
ret <8 x float> %10
}
define <4 x double> @splat_concat3(double* %p) {
; X32-LABEL: splat_concat3:
; X32: ## BB#0:
; X32-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-NEXT: vbroadcastsd (%eax), %ymm0
; X32-NEXT: retl
;
; X64-LABEL: splat_concat3:
; X64: ## BB#0:
; X64-NEXT: vbroadcastsd (%rdi), %ymm0
; X64-NEXT: retq
%1 = load double, double* %p, align 8
%2 = insertelement <2 x double> undef, double %1, i32 0
%3 = insertelement <2 x double> %2, double %1, i32 1
%4 = shufflevector <2 x double> %3, <2 x double> undef, <4 x i32> <i32 0, i32 1, i32 0, i32 1>
ret <4 x double> %4
}
define <4 x double> @splat_concat4(double* %p) {
; X32-LABEL: splat_concat4:
; X32: ## BB#0:
; X32-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-NEXT: vbroadcastsd (%eax), %ymm0
; X32-NEXT: retl
;
; X64-LABEL: splat_concat4:
; X64: ## BB#0:
; X64-NEXT: vbroadcastsd (%rdi), %ymm0
; X64-NEXT: retq
%1 = load double, double* %p, align 8
%2 = insertelement <2 x double> undef, double %1, i32 0
%3 = insertelement <2 x double> %2, double %1, i32 1
%4 = insertelement <2 x double> undef, double %1, i32 0
%5 = insertelement <2 x double> %2, double %1, i32 1
%6 = shufflevector <2 x double> %3, <2 x double> %5, <4 x i32> <i32 0, i32 1, i32 2, i32 3>
ret <4 x double> %6
}
; PR34041
define <4 x double> @broadcast_shuffle_1000(double* %p) {
; X32-LABEL: broadcast_shuffle_1000:
; X32: ## BB#0:
; X32-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-NEXT: vbroadcastsd (%eax), %ymm0
; X32-NEXT: retl
;
; X64-LABEL: broadcast_shuffle_1000:
; X64: ## BB#0:
; X64-NEXT: vbroadcastsd (%rdi), %ymm0
; X64-NEXT: retq
%1 = load double, double* %p
%2 = insertelement <2 x double> undef, double %1, i32 0
%3 = shufflevector <2 x double> %2, <2 x double> undef, <4 x i32> <i32 1, i32 0, i32 0, i32 0>
ret <4 x double> %3
}
define <4 x double> @broadcast_shuffle1032(double* %p) {
; X32-LABEL: broadcast_shuffle1032:
; X32: ## BB#0:
; X32-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-NEXT: vbroadcastsd (%eax), %ymm0
; X32-NEXT: retl
;
; X64-LABEL: broadcast_shuffle1032:
; X64: ## BB#0:
; X64-NEXT: vbroadcastsd (%rdi), %ymm0
; X64-NEXT: retq
%1 = load double, double* %p
%2 = insertelement <2 x double> undef, double %1, i32 1
%3 = insertelement <2 x double> undef, double %1, i32 0
%4 = shufflevector <2 x double> %2, <2 x double> %3, <4 x i32> <i32 1, i32 0, i32 3, i32 2>
ret <4 x double> %4
}
;
; When VBROADCAST replaces an existing load, ensure it still respects lifetime dependencies.
;
define float @broadcast_lifetime() nounwind {
; X32-LABEL: broadcast_lifetime:
; X32: ## BB#0:
; X32-NEXT: pushl %esi
; X32-NEXT: subl $56, %esp
; X32-NEXT: leal {{[0-9]+}}(%esp), %esi
; X32-NEXT: movl %esi, (%esp)
; X32-NEXT: calll _gfunc
In visitSTORE, always use FindBetterChain, rather than only when UseAA is enabled. Recommiting with compiler time improvements Recommitting after fixup of 32-bit aliasing sign offset bug in DAGCombiner. * Simplify Consecutive Merge Store Candidate Search Now that address aliasing is much less conservative, push through simplified store merging search and chain alias analysis which only checks for parallel stores through the chain subgraph. This is cleaner as the separation of non-interfering loads/stores from the store-merging logic. When merging stores search up the chain through a single load, and finds all possible stores by looking down from through a load and a TokenFactor to all stores visited. This improves the quality of the output SelectionDAG and the output Codegen (save perhaps for some ARM cases where we correctly constructs wider loads, but then promotes them to float operations which appear but requires more expensive constant generation). Some minor peephole optimizations to deal with improved SubDAG shapes (listed below) Additional Minor Changes: 1. Finishes removing unused AliasLoad code 2. Unifies the chain aggregation in the merged stores across code paths 3. Re-add the Store node to the worklist after calling SimplifyDemandedBits. 4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is arbitrary, but seems sufficient to not cause regressions in tests. 5. Remove Chain dependencies of Memory operations on CopyfromReg nodes as these are captured by data dependence 6. Forward loads-store values through tokenfactors containing {CopyToReg,CopyFromReg} Values. 7. Peephole to convert buildvector of extract_vector_elt to extract_subvector if possible (see CodeGen/AArch64/store-merge.ll) 8. Store merging for the ARM target is restricted to 32-bit as some in some contexts invalid 64-bit operations are being generated. This can be removed once appropriate checks are added. This finishes the change Matt Arsenault started in r246307 and jyknight's original patch. Many tests required some changes as memory operations are now reorderable, improving load-store forwarding. One test in particular is worth noting: CodeGen/PowerPC/ppc64-align-long-double.ll - Improved load-store forwarding converts a load-store pair into a parallel store and a memory-realized bitcast of the same value. However, because we lose the sharing of the explicit and implicit store values we must create another local store. A similar transformation happens before SelectionDAG as well. Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle llvm-svn: 297695
2017-03-14 08:34:14 +08:00
; X32-NEXT: vmovss {{.*#+}} xmm0 = mem[0],zero,zero,zero
; X32-NEXT: vmovaps %xmm0, {{[0-9]+}}(%esp) ## 16-byte Spill
; X32-NEXT: movl %esi, (%esp)
; X32-NEXT: calll _gfunc
In visitSTORE, always use FindBetterChain, rather than only when UseAA is enabled. Recommiting with compiler time improvements Recommitting after fixup of 32-bit aliasing sign offset bug in DAGCombiner. * Simplify Consecutive Merge Store Candidate Search Now that address aliasing is much less conservative, push through simplified store merging search and chain alias analysis which only checks for parallel stores through the chain subgraph. This is cleaner as the separation of non-interfering loads/stores from the store-merging logic. When merging stores search up the chain through a single load, and finds all possible stores by looking down from through a load and a TokenFactor to all stores visited. This improves the quality of the output SelectionDAG and the output Codegen (save perhaps for some ARM cases where we correctly constructs wider loads, but then promotes them to float operations which appear but requires more expensive constant generation). Some minor peephole optimizations to deal with improved SubDAG shapes (listed below) Additional Minor Changes: 1. Finishes removing unused AliasLoad code 2. Unifies the chain aggregation in the merged stores across code paths 3. Re-add the Store node to the worklist after calling SimplifyDemandedBits. 4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is arbitrary, but seems sufficient to not cause regressions in tests. 5. Remove Chain dependencies of Memory operations on CopyfromReg nodes as these are captured by data dependence 6. Forward loads-store values through tokenfactors containing {CopyToReg,CopyFromReg} Values. 7. Peephole to convert buildvector of extract_vector_elt to extract_subvector if possible (see CodeGen/AArch64/store-merge.ll) 8. Store merging for the ARM target is restricted to 32-bit as some in some contexts invalid 64-bit operations are being generated. This can be removed once appropriate checks are added. This finishes the change Matt Arsenault started in r246307 and jyknight's original patch. Many tests required some changes as memory operations are now reorderable, improving load-store forwarding. One test in particular is worth noting: CodeGen/PowerPC/ppc64-align-long-double.ll - Improved load-store forwarding converts a load-store pair into a parallel store and a memory-realized bitcast of the same value. However, because we lose the sharing of the explicit and implicit store values we must create another local store. A similar transformation happens before SelectionDAG as well. Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle llvm-svn: 297695
2017-03-14 08:34:14 +08:00
; X32-NEXT: vmovss {{.*#+}} xmm0 = mem[0],zero,zero,zero
; X32-NEXT: vpermilps $0, {{[0-9]+}}(%esp), %xmm1 ## 16-byte Folded Reload
; X32-NEXT: ## xmm1 = mem[0,0,0,0]
; X32-NEXT: vpermilps {{.*#+}} xmm0 = xmm0[0,0,0,0]
; X32-NEXT: vsubss %xmm1, %xmm0, %xmm0
; X32-NEXT: vmovss %xmm0, {{[0-9]+}}(%esp)
; X32-NEXT: flds {{[0-9]+}}(%esp)
; X32-NEXT: addl $56, %esp
; X32-NEXT: popl %esi
; X32-NEXT: retl
;
; X64-LABEL: broadcast_lifetime:
; X64: ## BB#0:
; X64-NEXT: subq $40, %rsp
; X64-NEXT: movq %rsp, %rdi
; X64-NEXT: callq _gfunc
In visitSTORE, always use FindBetterChain, rather than only when UseAA is enabled. Recommiting with compiler time improvements Recommitting after fixup of 32-bit aliasing sign offset bug in DAGCombiner. * Simplify Consecutive Merge Store Candidate Search Now that address aliasing is much less conservative, push through simplified store merging search and chain alias analysis which only checks for parallel stores through the chain subgraph. This is cleaner as the separation of non-interfering loads/stores from the store-merging logic. When merging stores search up the chain through a single load, and finds all possible stores by looking down from through a load and a TokenFactor to all stores visited. This improves the quality of the output SelectionDAG and the output Codegen (save perhaps for some ARM cases where we correctly constructs wider loads, but then promotes them to float operations which appear but requires more expensive constant generation). Some minor peephole optimizations to deal with improved SubDAG shapes (listed below) Additional Minor Changes: 1. Finishes removing unused AliasLoad code 2. Unifies the chain aggregation in the merged stores across code paths 3. Re-add the Store node to the worklist after calling SimplifyDemandedBits. 4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is arbitrary, but seems sufficient to not cause regressions in tests. 5. Remove Chain dependencies of Memory operations on CopyfromReg nodes as these are captured by data dependence 6. Forward loads-store values through tokenfactors containing {CopyToReg,CopyFromReg} Values. 7. Peephole to convert buildvector of extract_vector_elt to extract_subvector if possible (see CodeGen/AArch64/store-merge.ll) 8. Store merging for the ARM target is restricted to 32-bit as some in some contexts invalid 64-bit operations are being generated. This can be removed once appropriate checks are added. This finishes the change Matt Arsenault started in r246307 and jyknight's original patch. Many tests required some changes as memory operations are now reorderable, improving load-store forwarding. One test in particular is worth noting: CodeGen/PowerPC/ppc64-align-long-double.ll - Improved load-store forwarding converts a load-store pair into a parallel store and a memory-realized bitcast of the same value. However, because we lose the sharing of the explicit and implicit store values we must create another local store. A similar transformation happens before SelectionDAG as well. Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle llvm-svn: 297695
2017-03-14 08:34:14 +08:00
; X64-NEXT: vmovss {{.*#+}} xmm0 = mem[0],zero,zero,zero
; X64-NEXT: vmovaps %xmm0, {{[0-9]+}}(%rsp) ## 16-byte Spill
; X64-NEXT: movq %rsp, %rdi
; X64-NEXT: callq _gfunc
In visitSTORE, always use FindBetterChain, rather than only when UseAA is enabled. Recommiting with compiler time improvements Recommitting after fixup of 32-bit aliasing sign offset bug in DAGCombiner. * Simplify Consecutive Merge Store Candidate Search Now that address aliasing is much less conservative, push through simplified store merging search and chain alias analysis which only checks for parallel stores through the chain subgraph. This is cleaner as the separation of non-interfering loads/stores from the store-merging logic. When merging stores search up the chain through a single load, and finds all possible stores by looking down from through a load and a TokenFactor to all stores visited. This improves the quality of the output SelectionDAG and the output Codegen (save perhaps for some ARM cases where we correctly constructs wider loads, but then promotes them to float operations which appear but requires more expensive constant generation). Some minor peephole optimizations to deal with improved SubDAG shapes (listed below) Additional Minor Changes: 1. Finishes removing unused AliasLoad code 2. Unifies the chain aggregation in the merged stores across code paths 3. Re-add the Store node to the worklist after calling SimplifyDemandedBits. 4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is arbitrary, but seems sufficient to not cause regressions in tests. 5. Remove Chain dependencies of Memory operations on CopyfromReg nodes as these are captured by data dependence 6. Forward loads-store values through tokenfactors containing {CopyToReg,CopyFromReg} Values. 7. Peephole to convert buildvector of extract_vector_elt to extract_subvector if possible (see CodeGen/AArch64/store-merge.ll) 8. Store merging for the ARM target is restricted to 32-bit as some in some contexts invalid 64-bit operations are being generated. This can be removed once appropriate checks are added. This finishes the change Matt Arsenault started in r246307 and jyknight's original patch. Many tests required some changes as memory operations are now reorderable, improving load-store forwarding. One test in particular is worth noting: CodeGen/PowerPC/ppc64-align-long-double.ll - Improved load-store forwarding converts a load-store pair into a parallel store and a memory-realized bitcast of the same value. However, because we lose the sharing of the explicit and implicit store values we must create another local store. A similar transformation happens before SelectionDAG as well. Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle llvm-svn: 297695
2017-03-14 08:34:14 +08:00
; X64-NEXT: vmovss {{.*#+}} xmm0 = mem[0],zero,zero,zero
; X64-NEXT: vpermilps $0, {{[0-9]+}}(%rsp), %xmm1 ## 16-byte Folded Reload
; X64-NEXT: ## xmm1 = mem[0,0,0,0]
; X64-NEXT: vpermilps {{.*#+}} xmm0 = xmm0[0,0,0,0]
; X64-NEXT: vsubss %xmm1, %xmm0, %xmm0
; X64-NEXT: addq $40, %rsp
; X64-NEXT: retq
%1 = alloca <4 x float>, align 16
%2 = alloca <4 x float>, align 16
%3 = bitcast <4 x float>* %1 to i8*
%4 = bitcast <4 x float>* %2 to i8*
call void @llvm.lifetime.start.p0i8(i64 16, i8* %3)
call void @gfunc(<4 x float>* %1)
%5 = load <4 x float>, <4 x float>* %1, align 16
call void @llvm.lifetime.end.p0i8(i64 16, i8* %3)
call void @llvm.lifetime.start.p0i8(i64 16, i8* %4)
call void @gfunc(<4 x float>* %2)
%6 = load <4 x float>, <4 x float>* %2, align 16
call void @llvm.lifetime.end.p0i8(i64 16, i8* %4)
%7 = extractelement <4 x float> %5, i32 1
%8 = extractelement <4 x float> %6, i32 1
%9 = fsub float %8, %7
ret float %9
}
declare void @gfunc(<4 x float>*)
declare void @llvm.lifetime.start.p0i8(i64, i8*)
declare void @llvm.lifetime.end.p0i8(i64, i8*)