2016-08-01 13:56:57 +08:00
|
|
|
; RUN: llc < %s -mcpu=cyclone -verify-machineinstrs -aarch64-enable-ccmp -aarch64-stress-ccmp | FileCheck %s
|
2014-03-29 18:18:08 +08:00
|
|
|
target triple = "arm64-apple-ios"
|
|
|
|
|
|
|
|
; CHECK: single_same
|
|
|
|
; CHECK: cmp w0, #5
|
|
|
|
; CHECK-NEXT: ccmp w1, #17, #4, ne
|
|
|
|
; CHECK-NEXT: b.ne
|
|
|
|
; CHECK: %if.then
|
|
|
|
; CHECK: bl _foo
|
|
|
|
; CHECK: %if.end
|
|
|
|
define i32 @single_same(i32 %a, i32 %b) nounwind ssp {
|
|
|
|
entry:
|
|
|
|
%cmp = icmp eq i32 %a, 5
|
|
|
|
%cmp1 = icmp eq i32 %b, 17
|
|
|
|
%or.cond = or i1 %cmp, %cmp1
|
|
|
|
br i1 %or.cond, label %if.then, label %if.end
|
|
|
|
|
|
|
|
if.then:
|
|
|
|
%call = tail call i32 @foo() nounwind
|
|
|
|
br label %if.end
|
|
|
|
|
|
|
|
if.end:
|
|
|
|
ret i32 7
|
|
|
|
}
|
|
|
|
|
|
|
|
; Different condition codes for the two compares.
|
|
|
|
; CHECK: single_different
|
|
|
|
; CHECK: cmp w0, #6
|
|
|
|
; CHECK-NEXT: ccmp w1, #17, #0, ge
|
|
|
|
; CHECK-NEXT: b.eq
|
|
|
|
; CHECK: %if.then
|
|
|
|
; CHECK: bl _foo
|
|
|
|
; CHECK: %if.end
|
|
|
|
define i32 @single_different(i32 %a, i32 %b) nounwind ssp {
|
|
|
|
entry:
|
|
|
|
%cmp = icmp sle i32 %a, 5
|
|
|
|
%cmp1 = icmp ne i32 %b, 17
|
|
|
|
%or.cond = or i1 %cmp, %cmp1
|
|
|
|
br i1 %or.cond, label %if.then, label %if.end
|
|
|
|
|
|
|
|
if.then:
|
|
|
|
%call = tail call i32 @foo() nounwind
|
|
|
|
br label %if.end
|
|
|
|
|
|
|
|
if.end:
|
|
|
|
ret i32 7
|
|
|
|
}
|
|
|
|
|
|
|
|
; Second block clobbers the flags, can't convert (easily).
|
|
|
|
; CHECK: single_flagclobber
|
|
|
|
; CHECK: cmp
|
|
|
|
; CHECK: b.eq
|
|
|
|
; CHECK: cmp
|
|
|
|
; CHECK: b.gt
|
|
|
|
define i32 @single_flagclobber(i32 %a, i32 %b) nounwind ssp {
|
|
|
|
entry:
|
|
|
|
%cmp = icmp eq i32 %a, 5
|
|
|
|
br i1 %cmp, label %if.then, label %lor.lhs.false
|
|
|
|
|
|
|
|
lor.lhs.false: ; preds = %entry
|
|
|
|
%cmp1 = icmp slt i32 %b, 7
|
|
|
|
%mul = shl nsw i32 %b, 1
|
|
|
|
%add = add nsw i32 %b, 1
|
|
|
|
%cond = select i1 %cmp1, i32 %mul, i32 %add
|
|
|
|
%cmp2 = icmp slt i32 %cond, 17
|
|
|
|
br i1 %cmp2, label %if.then, label %if.end
|
|
|
|
|
|
|
|
if.then: ; preds = %lor.lhs.false, %entry
|
|
|
|
%call = tail call i32 @foo() nounwind
|
|
|
|
br label %if.end
|
|
|
|
|
|
|
|
if.end: ; preds = %if.then, %lor.lhs.false
|
|
|
|
ret i32 7
|
|
|
|
}
|
|
|
|
|
|
|
|
; Second block clobbers the flags and ends with a tbz terminator.
|
|
|
|
; CHECK: single_flagclobber_tbz
|
|
|
|
; CHECK: cmp
|
|
|
|
; CHECK: b.eq
|
|
|
|
; CHECK: cmp
|
|
|
|
; CHECK: tbz
|
|
|
|
define i32 @single_flagclobber_tbz(i32 %a, i32 %b) nounwind ssp {
|
|
|
|
entry:
|
|
|
|
%cmp = icmp eq i32 %a, 5
|
|
|
|
br i1 %cmp, label %if.then, label %lor.lhs.false
|
|
|
|
|
|
|
|
lor.lhs.false: ; preds = %entry
|
|
|
|
%cmp1 = icmp slt i32 %b, 7
|
|
|
|
%mul = shl nsw i32 %b, 1
|
|
|
|
%add = add nsw i32 %b, 1
|
|
|
|
%cond = select i1 %cmp1, i32 %mul, i32 %add
|
|
|
|
%and = and i32 %cond, 8
|
|
|
|
%cmp2 = icmp ne i32 %and, 0
|
|
|
|
br i1 %cmp2, label %if.then, label %if.end
|
|
|
|
|
|
|
|
if.then: ; preds = %lor.lhs.false, %entry
|
|
|
|
%call = tail call i32 @foo() nounwind
|
|
|
|
br label %if.end
|
|
|
|
|
|
|
|
if.end: ; preds = %if.then, %lor.lhs.false
|
|
|
|
ret i32 7
|
|
|
|
}
|
|
|
|
|
|
|
|
; Speculatively execute division by zero.
|
|
|
|
; The sdiv/udiv instructions do not trap when the divisor is zero, so they are
|
|
|
|
; safe to speculate.
|
2015-07-21 06:34:44 +08:00
|
|
|
; CHECK-LABEL: speculate_division:
|
|
|
|
; CHECK: cmp w0, #1
|
|
|
|
; CHECK: sdiv [[DIVRES:w[0-9]+]], w1, w0
|
|
|
|
; CHECK: ccmp [[DIVRES]], #16, #0, ge
|
2017-06-27 23:00:22 +08:00
|
|
|
; CHECK: b.le [[BLOCK:LBB[0-9_]+]]
|
2017-01-12 03:55:19 +08:00
|
|
|
; CHECK: [[BLOCK]]:
|
2017-06-27 23:00:22 +08:00
|
|
|
; CHECK: bl _foo
|
2019-03-26 05:25:28 +08:00
|
|
|
; CHECK: mov w0, #7
|
2014-03-29 18:18:08 +08:00
|
|
|
define i32 @speculate_division(i32 %a, i32 %b) nounwind ssp {
|
|
|
|
entry:
|
|
|
|
%cmp = icmp sgt i32 %a, 0
|
|
|
|
br i1 %cmp, label %land.lhs.true, label %if.end
|
|
|
|
|
|
|
|
land.lhs.true:
|
|
|
|
%div = sdiv i32 %b, %a
|
|
|
|
%cmp1 = icmp slt i32 %div, 17
|
|
|
|
br i1 %cmp1, label %if.then, label %if.end
|
|
|
|
|
|
|
|
if.then:
|
|
|
|
%call = tail call i32 @foo() nounwind
|
|
|
|
br label %if.end
|
|
|
|
|
|
|
|
if.end:
|
|
|
|
ret i32 7
|
|
|
|
}
|
|
|
|
|
|
|
|
; Floating point compare.
|
|
|
|
; CHECK: single_fcmp
|
2017-12-05 01:18:51 +08:00
|
|
|
; CHECK: ; %bb.
|
2014-03-29 18:18:08 +08:00
|
|
|
; CHECK: cmp
|
|
|
|
; CHECK-NOT: b.
|
|
|
|
; CHECK: fccmp {{.*}}, #8, ge
|
2017-06-27 23:00:22 +08:00
|
|
|
; CHECK: b.ge
|
2014-03-29 18:18:08 +08:00
|
|
|
define i32 @single_fcmp(i32 %a, float %b) nounwind ssp {
|
|
|
|
entry:
|
|
|
|
%cmp = icmp sgt i32 %a, 0
|
|
|
|
br i1 %cmp, label %land.lhs.true, label %if.end
|
|
|
|
|
|
|
|
land.lhs.true:
|
|
|
|
%conv = sitofp i32 %a to float
|
|
|
|
%div = fdiv float %b, %conv
|
|
|
|
%cmp1 = fcmp oge float %div, 1.700000e+01
|
|
|
|
br i1 %cmp1, label %if.then, label %if.end
|
|
|
|
|
|
|
|
if.then:
|
|
|
|
%call = tail call i32 @foo() nounwind
|
|
|
|
br label %if.end
|
|
|
|
|
|
|
|
if.end:
|
|
|
|
ret i32 7
|
|
|
|
}
|
|
|
|
|
|
|
|
; Chain multiple compares.
|
|
|
|
; CHECK: multi_different
|
|
|
|
; CHECK: cmp
|
|
|
|
; CHECK: ccmp
|
|
|
|
; CHECK: ccmp
|
|
|
|
; CHECK: b.
|
|
|
|
define void @multi_different(i32 %a, i32 %b, i32 %c) nounwind ssp {
|
|
|
|
entry:
|
|
|
|
%cmp = icmp sgt i32 %a, %b
|
|
|
|
br i1 %cmp, label %land.lhs.true, label %if.end
|
|
|
|
|
|
|
|
land.lhs.true:
|
|
|
|
%div = sdiv i32 %b, %a
|
|
|
|
%cmp1 = icmp eq i32 %div, 5
|
|
|
|
%cmp4 = icmp sgt i32 %div, %c
|
|
|
|
%or.cond = and i1 %cmp1, %cmp4
|
|
|
|
br i1 %or.cond, label %if.then, label %if.end
|
|
|
|
|
|
|
|
if.then:
|
|
|
|
%call = tail call i32 @foo() nounwind
|
|
|
|
br label %if.end
|
|
|
|
|
|
|
|
if.end:
|
|
|
|
ret void
|
|
|
|
}
|
|
|
|
|
|
|
|
; Convert a cbz in the head block.
|
|
|
|
; CHECK: cbz_head
|
|
|
|
; CHECK: cmp w0, #0
|
|
|
|
; CHECK: ccmp
|
|
|
|
define i32 @cbz_head(i32 %a, i32 %b) nounwind ssp {
|
|
|
|
entry:
|
|
|
|
%cmp = icmp eq i32 %a, 0
|
|
|
|
%cmp1 = icmp ne i32 %b, 17
|
|
|
|
%or.cond = or i1 %cmp, %cmp1
|
|
|
|
br i1 %or.cond, label %if.then, label %if.end
|
|
|
|
|
|
|
|
if.then:
|
|
|
|
%call = tail call i32 @foo() nounwind
|
|
|
|
br label %if.end
|
|
|
|
|
|
|
|
if.end:
|
|
|
|
ret i32 7
|
|
|
|
}
|
|
|
|
|
|
|
|
; Check that the immediate operand is in range. The ccmp instruction encodes a
|
|
|
|
; smaller range of immediates than subs/adds.
|
|
|
|
; The ccmp immediates must be in the range 0-31.
|
|
|
|
; CHECK: immediate_range
|
|
|
|
; CHECK-NOT: ccmp
|
|
|
|
define i32 @immediate_range(i32 %a, i32 %b) nounwind ssp {
|
|
|
|
entry:
|
|
|
|
%cmp = icmp eq i32 %a, 5
|
|
|
|
%cmp1 = icmp eq i32 %b, 32
|
|
|
|
%or.cond = or i1 %cmp, %cmp1
|
|
|
|
br i1 %or.cond, label %if.then, label %if.end
|
|
|
|
|
|
|
|
if.then:
|
|
|
|
%call = tail call i32 @foo() nounwind
|
|
|
|
br label %if.end
|
|
|
|
|
|
|
|
if.end:
|
|
|
|
ret i32 7
|
|
|
|
}
|
|
|
|
|
|
|
|
; Convert a cbz in the second block.
|
|
|
|
; CHECK: cbz_second
|
|
|
|
; CHECK: cmp w0, #0
|
|
|
|
; CHECK: ccmp w1, #0, #0, ne
|
|
|
|
; CHECK: b.eq
|
|
|
|
define i32 @cbz_second(i32 %a, i32 %b) nounwind ssp {
|
|
|
|
entry:
|
|
|
|
%cmp = icmp eq i32 %a, 0
|
|
|
|
%cmp1 = icmp ne i32 %b, 0
|
|
|
|
%or.cond = or i1 %cmp, %cmp1
|
|
|
|
br i1 %or.cond, label %if.then, label %if.end
|
|
|
|
|
|
|
|
if.then:
|
|
|
|
%call = tail call i32 @foo() nounwind
|
|
|
|
br label %if.end
|
|
|
|
|
|
|
|
if.end:
|
|
|
|
ret i32 7
|
|
|
|
}
|
|
|
|
|
|
|
|
; Convert a cbnz in the second block.
|
|
|
|
; CHECK: cbnz_second
|
|
|
|
; CHECK: cmp w0, #0
|
|
|
|
; CHECK: ccmp w1, #0, #4, ne
|
|
|
|
; CHECK: b.ne
|
|
|
|
define i32 @cbnz_second(i32 %a, i32 %b) nounwind ssp {
|
|
|
|
entry:
|
|
|
|
%cmp = icmp eq i32 %a, 0
|
|
|
|
%cmp1 = icmp eq i32 %b, 0
|
|
|
|
%or.cond = or i1 %cmp, %cmp1
|
|
|
|
br i1 %or.cond, label %if.then, label %if.end
|
|
|
|
|
|
|
|
if.then:
|
|
|
|
%call = tail call i32 @foo() nounwind
|
|
|
|
br label %if.end
|
|
|
|
|
|
|
|
if.end:
|
|
|
|
ret i32 7
|
|
|
|
}
|
|
|
|
declare i32 @foo()
|
|
|
|
|
|
|
|
%str1 = type { %str2 }
|
|
|
|
%str2 = type { [24 x i8], i8*, i32, %str1*, i32, [4 x i8], %str1*, %str1*, %str1*, %str1*, %str1*, %str1*, %str1*, %str1*, %str1*, i8*, i8, i8*, %str1*, i8* }
|
|
|
|
|
|
|
|
; Test case distilled from 126.gcc.
|
|
|
|
; The phi in sw.bb.i.i gets multiple operands for the %entry predecessor.
|
|
|
|
; CHECK: build_modify_expr
|
|
|
|
define void @build_modify_expr() nounwind ssp {
|
|
|
|
entry:
|
|
|
|
switch i32 undef, label %sw.bb.i.i [
|
|
|
|
i32 69, label %if.end85
|
|
|
|
i32 70, label %if.end85
|
|
|
|
i32 71, label %if.end85
|
|
|
|
i32 72, label %if.end85
|
|
|
|
i32 73, label %if.end85
|
|
|
|
i32 105, label %if.end85
|
|
|
|
i32 106, label %if.end85
|
|
|
|
]
|
|
|
|
|
|
|
|
if.end85:
|
|
|
|
ret void
|
|
|
|
|
|
|
|
sw.bb.i.i:
|
|
|
|
%ref.tr.i.i = phi %str1* [ %0, %sw.bb.i.i ], [ undef, %entry ]
|
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.
This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.
* This doesn't modify gep operators, only instructions (operators will be
handled separately)
* Textual IR changes only. Bitcode (including upgrade) and changing the
in-memory representation will be in separate changes.
* geps of vectors are transformed as:
getelementptr <4 x float*> %x, ...
->getelementptr float, <4 x float*> %x, ...
Then, once the opaque pointer type is introduced, this will ultimately look
like:
getelementptr float, <4 x ptr> %x
with the unambiguous interpretation that it is a vector of pointers to float.
* address spaces remain on the pointer, not the type:
getelementptr float addrspace(1)* %x
->getelementptr float, float addrspace(1)* %x
Then, eventually:
getelementptr float, ptr addrspace(1) %x
Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.
update.py:
import fileinput
import sys
import re
ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
def conv(match, line):
if not match:
return line
line = match.groups()[0]
if len(match.groups()[5]) == 0:
line += match.groups()[2]
line += match.groups()[3]
line += ", "
line += match.groups()[1]
line += "\n"
return line
for line in sys.stdin:
if line.find("getelementptr ") == line.find("getelementptr inbounds"):
if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
line = conv(re.match(ibrep, line), line)
elif line.find("getelementptr ") != line.find("getelementptr ("):
line = conv(re.match(normrep, line), line)
sys.stdout.write(line)
apply.sh:
for name in "$@"
do
python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
rm -f "$name.tmp"
done
The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh
After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).
The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7636
llvm-svn: 230786
2015-02-28 03:29:02 +08:00
|
|
|
%operands.i.i = getelementptr inbounds %str1, %str1* %ref.tr.i.i, i64 0, i32 0, i32 2
|
2014-03-29 18:18:08 +08:00
|
|
|
%arrayidx.i.i = bitcast i32* %operands.i.i to %str1**
|
2015-02-28 05:17:42 +08:00
|
|
|
%0 = load %str1*, %str1** %arrayidx.i.i, align 8
|
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.
This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.
* This doesn't modify gep operators, only instructions (operators will be
handled separately)
* Textual IR changes only. Bitcode (including upgrade) and changing the
in-memory representation will be in separate changes.
* geps of vectors are transformed as:
getelementptr <4 x float*> %x, ...
->getelementptr float, <4 x float*> %x, ...
Then, once the opaque pointer type is introduced, this will ultimately look
like:
getelementptr float, <4 x ptr> %x
with the unambiguous interpretation that it is a vector of pointers to float.
* address spaces remain on the pointer, not the type:
getelementptr float addrspace(1)* %x
->getelementptr float, float addrspace(1)* %x
Then, eventually:
getelementptr float, ptr addrspace(1) %x
Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.
update.py:
import fileinput
import sys
import re
ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
def conv(match, line):
if not match:
return line
line = match.groups()[0]
if len(match.groups()[5]) == 0:
line += match.groups()[2]
line += match.groups()[3]
line += ", "
line += match.groups()[1]
line += "\n"
return line
for line in sys.stdin:
if line.find("getelementptr ") == line.find("getelementptr inbounds"):
if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
line = conv(re.match(ibrep, line), line)
elif line.find("getelementptr ") != line.find("getelementptr ("):
line = conv(re.match(normrep, line), line)
sys.stdout.write(line)
apply.sh:
for name in "$@"
do
python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
rm -f "$name.tmp"
done
The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh
After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).
The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7636
llvm-svn: 230786
2015-02-28 03:29:02 +08:00
|
|
|
%code1.i.i.phi.trans.insert = getelementptr inbounds %str1, %str1* %0, i64 0, i32 0, i32 0, i64 16
|
2014-03-29 18:18:08 +08:00
|
|
|
br label %sw.bb.i.i
|
|
|
|
}
|
2015-07-17 04:02:37 +08:00
|
|
|
|
|
|
|
; CHECK-LABEL: select_and
|
|
|
|
define i64 @select_and(i32 %w0, i32 %w1, i64 %x2, i64 %x3) {
|
|
|
|
; CHECK: cmp w1, #5
|
|
|
|
; CHECK-NEXT: ccmp w0, w1, #0, ne
|
|
|
|
; CHECK-NEXT: csel x0, x2, x3, lt
|
|
|
|
; CHECK-NEXT: ret
|
|
|
|
%1 = icmp slt i32 %w0, %w1
|
|
|
|
%2 = icmp ne i32 5, %w1
|
|
|
|
%3 = and i1 %1, %2
|
|
|
|
%sel = select i1 %3, i64 %x2, i64 %x3
|
|
|
|
ret i64 %sel
|
|
|
|
}
|
|
|
|
|
|
|
|
; CHECK-LABEL: select_or
|
|
|
|
define i64 @select_or(i32 %w0, i32 %w1, i64 %x2, i64 %x3) {
|
|
|
|
; CHECK: cmp w1, #5
|
|
|
|
; CHECK-NEXT: ccmp w0, w1, #8, eq
|
|
|
|
; CHECK-NEXT: csel x0, x2, x3, lt
|
|
|
|
; CHECK-NEXT: ret
|
|
|
|
%1 = icmp slt i32 %w0, %w1
|
|
|
|
%2 = icmp ne i32 5, %w1
|
|
|
|
%3 = or i1 %1, %2
|
|
|
|
%sel = select i1 %3, i64 %x2, i64 %x3
|
|
|
|
ret i64 %sel
|
|
|
|
}
|
|
|
|
|
|
|
|
; CHECK-LABEL: gccbug
|
|
|
|
define i64 @gccbug(i64 %x0, i64 %x1) {
|
2015-08-21 07:33:34 +08:00
|
|
|
; CHECK: cmp x0, #2
|
2015-07-17 04:02:37 +08:00
|
|
|
; CHECK-NEXT: ccmp x0, #4, #4, ne
|
2015-08-21 07:33:34 +08:00
|
|
|
; CHECK-NEXT: ccmp x1, #0, #0, eq
|
2019-03-26 05:25:28 +08:00
|
|
|
; CHECK-NEXT: mov w[[REGNUM:[0-9]+]], #1
|
2015-07-17 04:02:37 +08:00
|
|
|
; CHECK-NEXT: cinc x0, x[[REGNUM]], eq
|
|
|
|
; CHECK-NEXT: ret
|
|
|
|
%cmp0 = icmp eq i64 %x1, 0
|
|
|
|
%cmp1 = icmp eq i64 %x0, 2
|
|
|
|
%cmp2 = icmp eq i64 %x0, 4
|
|
|
|
|
|
|
|
%or = or i1 %cmp2, %cmp1
|
|
|
|
%and = and i1 %or, %cmp0
|
|
|
|
|
|
|
|
%sel = select i1 %and, i64 2, i64 1
|
|
|
|
ret i64 %sel
|
|
|
|
}
|
|
|
|
|
|
|
|
; CHECK-LABEL: select_ororand
|
|
|
|
define i32 @select_ororand(i32 %w0, i32 %w1, i32 %w2, i32 %w3) {
|
|
|
|
; CHECK: cmp w3, #4
|
|
|
|
; CHECK-NEXT: ccmp w2, #2, #0, gt
|
|
|
|
; CHECK-NEXT: ccmp w1, #13, #2, ge
|
|
|
|
; CHECK-NEXT: ccmp w0, #0, #4, ls
|
|
|
|
; CHECK-NEXT: csel w0, w3, wzr, eq
|
|
|
|
; CHECK-NEXT: ret
|
|
|
|
%c0 = icmp eq i32 %w0, 0
|
|
|
|
%c1 = icmp ugt i32 %w1, 13
|
|
|
|
%c2 = icmp slt i32 %w2, 2
|
|
|
|
%c4 = icmp sgt i32 %w3, 4
|
|
|
|
%or = or i1 %c0, %c1
|
|
|
|
%and = and i1 %c2, %c4
|
|
|
|
%or1 = or i1 %or, %and
|
|
|
|
%sel = select i1 %or1, i32 %w3, i32 0
|
|
|
|
ret i32 %sel
|
|
|
|
}
|
|
|
|
|
2015-08-21 07:33:34 +08:00
|
|
|
; CHECK-LABEL: select_andor
|
|
|
|
define i32 @select_andor(i32 %v1, i32 %v2, i32 %v3) {
|
|
|
|
; CHECK: cmp w1, w2
|
|
|
|
; CHECK-NEXT: ccmp w0, #0, #4, lt
|
|
|
|
; CHECK-NEXT: ccmp w0, w1, #0, eq
|
|
|
|
; CHECK-NEXT: csel w0, w0, w1, eq
|
|
|
|
; CHECK-NEXT: ret
|
|
|
|
%c0 = icmp eq i32 %v1, %v2
|
|
|
|
%c1 = icmp sge i32 %v2, %v3
|
|
|
|
%c2 = icmp eq i32 %v1, 0
|
|
|
|
%or = or i1 %c2, %c1
|
|
|
|
%and = and i1 %or, %c0
|
|
|
|
%sel = select i1 %and, i32 %v1, i32 %v2
|
|
|
|
ret i32 %sel
|
|
|
|
}
|
|
|
|
|
2016-02-02 03:13:07 +08:00
|
|
|
; CHECK-LABEL: select_noccmp1
|
|
|
|
define i64 @select_noccmp1(i64 %v1, i64 %v2, i64 %v3, i64 %r) {
|
2016-07-06 04:24:05 +08:00
|
|
|
; CHECK: cmp x0, #0
|
|
|
|
; CHECK-NEXT: cset [[REG0:w[0-9]+]], lt
|
|
|
|
; CHECK-NEXT: cmp x0, #13
|
|
|
|
; CHECK-NOT: ccmp
|
|
|
|
; CHECK-NEXT: cset [[REG1:w[0-9]+]], gt
|
|
|
|
; CHECK-NEXT: cmp x2, #2
|
2016-02-02 03:13:07 +08:00
|
|
|
; CHECK-NEXT: cset [[REG2:w[0-9]+]], lt
|
2016-07-06 04:24:05 +08:00
|
|
|
; CHECK-NEXT: cmp x2, #4
|
|
|
|
; CHECK-NEXT: cset [[REG3:w[0-9]+]], gt
|
2017-05-18 04:18:13 +08:00
|
|
|
; CHECK-NEXT: and [[REG4:w[0-9]+]], [[REG0]], [[REG1]]
|
2016-07-06 04:24:05 +08:00
|
|
|
; CHECK-NEXT: and [[REG5:w[0-9]+]], [[REG2]], [[REG3]]
|
|
|
|
; CHECK-NEXT: orr [[REG6:w[0-9]+]], [[REG4]], [[REG5]]
|
|
|
|
; CHECK-NEXT: cmp [[REG6]], #0
|
2015-08-21 08:23:19 +08:00
|
|
|
; CHECK-NEXT: csel x0, xzr, x3, ne
|
|
|
|
; CHECK-NEXT: ret
|
2015-07-17 04:02:37 +08:00
|
|
|
%c0 = icmp slt i64 %v1, 0
|
|
|
|
%c1 = icmp sgt i64 %v1, 13
|
|
|
|
%c2 = icmp slt i64 %v3, 2
|
|
|
|
%c4 = icmp sgt i64 %v3, 4
|
|
|
|
%and0 = and i1 %c0, %c1
|
|
|
|
%and1 = and i1 %c2, %c4
|
|
|
|
%or = or i1 %and0, %and1
|
|
|
|
%sel = select i1 %or, i64 0, i64 %r
|
|
|
|
ret i64 %sel
|
|
|
|
}
|
2015-08-21 07:33:31 +08:00
|
|
|
|
|
|
|
@g = global i32 0
|
|
|
|
|
|
|
|
; Should not use ccmp if we have to compute the or expression in an integer
|
|
|
|
; register anyway because of other users.
|
|
|
|
; CHECK-LABEL: select_noccmp2
|
|
|
|
define i64 @select_noccmp2(i64 %v1, i64 %v2, i64 %v3, i64 %r) {
|
2015-08-21 08:23:19 +08:00
|
|
|
; CHECK: cmp x0, #0
|
|
|
|
; CHECK-NEXT: cset [[REG0:w[0-9]+]], lt
|
|
|
|
; CHECK-NOT: ccmp
|
|
|
|
; CHECK-NEXT: cmp x0, #13
|
|
|
|
; CHECK-NEXT: cset [[REG1:w[0-9]+]], gt
|
|
|
|
; CHECK-NEXT: orr [[REG2:w[0-9]+]], [[REG0]], [[REG1]]
|
|
|
|
; CHECK-NEXT: cmp [[REG2]], #0
|
|
|
|
; CHECK-NEXT: csel x0, xzr, x3, ne
|
|
|
|
; CHECK-NEXT: sbfx [[REG3:w[0-9]+]], [[REG2]], #0, #1
|
|
|
|
; CHECK-NEXT: adrp x[[REGN4:[0-9]+]], _g@PAGE
|
|
|
|
; CHECK-NEXT: str [[REG3]], [x[[REGN4]], _g@PAGEOFF]
|
|
|
|
; CHECK-NEXT: ret
|
2015-08-21 07:33:31 +08:00
|
|
|
%c0 = icmp slt i64 %v1, 0
|
|
|
|
%c1 = icmp sgt i64 %v1, 13
|
|
|
|
%or = or i1 %c0, %c1
|
|
|
|
%sel = select i1 %or, i64 0, i64 %r
|
|
|
|
%ext = sext i1 %or to i32
|
|
|
|
store volatile i32 %ext, i32* @g
|
|
|
|
ret i64 %sel
|
|
|
|
}
|
[AArch64] Lower 2-CC FCCMPs (one/ueq) using AND'ed CCs.
The current behavior is incorrect, as the two CCs returned by
changeFPCCToAArch64CC, intended to be OR'ed, are instead used
in an AND ccmp chain.
Consider:
define i32 @t(float %a, float %b, float %c, float %d, i32 %e, i32 %f) {
%cc1 = fcmp one float %a, %b
%cc2 = fcmp olt float %c, %d
%and = and i1 %cc1, %cc2
%r = select i1 %and, i32 %e, i32 %f
ret i32 %r
}
Assuming (%a < %b) and (%c < %d); we used to do:
fcmp s0, s1 # nzcv <- 1000
orr w8, wzr, #0x1 # w8 <- 1
csel w9, w8, wzr, mi # w9 <- 1
csel w8, w8, w9, gt # w8 <- 1
fcmp s2, s3 # nzcv <- 1000
cset w9, mi # w9 <- 1
tst w8, w9 # (w8 & w9) == 1, so: nzcv <- 0000
csel w0, w0, w1, ne # w0 <- w0
We now do:
fcmp s2, s3 # nzcv <- 1000
fccmp s0, s1, #0, mi # mi, so: nzcv <- 1000
fccmp s0, s1, #8, le # !le, so: nzcv <- 1000
csel w0, w0, w1, pl # !pl, so: w0 <- w1
In other words, we transformed:
(c < d) && ((a < b) || (a > b))
into:
(c < d) && (a u>= b) && (a u<= b)
whereas, per De Morgan's, we wanted:
(c < d) && !((a u>= b) && (a u<= b))
Note that this problem doesn't occur in the test-suite.
changeFPCCToAArch64CC produces disjunct CCs; here, one -> mi/gt.
We can't represent that in the fccmp chain; it can't express
arbitrary OR sequences, as one comment explains:
In general we can create code for arbitrary "... (and (and A B) C)"
sequences. We can also implement some "or" expressions, because
"(or A B)" is equivalent to "not (and (not A) (not B))" and we can
implement some negation operations. [...] However there is no way
to negate the result of a partial sequence.
Instead, introduce changeFPCCToANDAArch64CC, which produces the
conjunct cond codes:
- (a one b)
== ((a olt b) || (a ogt b))
== ((a ord b) && (a une b))
- (a ueq b)
== ((a uno b) || (a oeq b))
== ((a ule b) && (a uge b))
Note that, at first, one might think that, when PushNegate is true,
we should use the disjunct CCs, in effect doing:
(a || b)
= !(!a && !(b))
= !(!a && !(b1 || b2)) <- changeFPCCToAArch64CC(b, b1, b2)
= !(!a && !b1 && !b2)
However, we can take advantage of the fact that the CC is already
negated, which lets us avoid special-casing PushNegate and doing
the simpler to reason about:
(a || b)
= !(!a && (!b))
= !(!a && (b1 && b2)) <- changeFPCCToANDAArch64CC(!b, b1, b2)
= !(!a && b1 && b2)
This makes both emitConditionalCompare cases behave identically,
and produces correct ccmp sequences for the 2-CC fcmps.
llvm-svn: 258533
2016-01-23 03:43:54 +08:00
|
|
|
|
2016-01-23 12:05:22 +08:00
|
|
|
; The following is not possible to implement with a single cmp;ccmp;csel
|
|
|
|
; sequence.
|
|
|
|
; CHECK-LABEL: select_noccmp3
|
|
|
|
define i32 @select_noccmp3(i32 %v0, i32 %v1, i32 %v2) {
|
|
|
|
%c0 = icmp slt i32 %v0, 0
|
|
|
|
%c1 = icmp sgt i32 %v0, 13
|
|
|
|
%c2 = icmp slt i32 %v0, 22
|
|
|
|
%c3 = icmp sgt i32 %v0, 44
|
|
|
|
%c4 = icmp eq i32 %v0, 99
|
|
|
|
%c5 = icmp eq i32 %v0, 77
|
|
|
|
%or0 = or i1 %c0, %c1
|
|
|
|
%or1 = or i1 %c2, %c3
|
|
|
|
%and0 = and i1 %or0, %or1
|
|
|
|
%or2 = or i1 %c4, %c5
|
|
|
|
%and1 = and i1 %and0, %or2
|
|
|
|
%sel = select i1 %and1, i32 %v1, i32 %v2
|
|
|
|
ret i32 %sel
|
|
|
|
}
|
|
|
|
|
[AArch64] Lower 2-CC FCCMPs (one/ueq) using AND'ed CCs.
The current behavior is incorrect, as the two CCs returned by
changeFPCCToAArch64CC, intended to be OR'ed, are instead used
in an AND ccmp chain.
Consider:
define i32 @t(float %a, float %b, float %c, float %d, i32 %e, i32 %f) {
%cc1 = fcmp one float %a, %b
%cc2 = fcmp olt float %c, %d
%and = and i1 %cc1, %cc2
%r = select i1 %and, i32 %e, i32 %f
ret i32 %r
}
Assuming (%a < %b) and (%c < %d); we used to do:
fcmp s0, s1 # nzcv <- 1000
orr w8, wzr, #0x1 # w8 <- 1
csel w9, w8, wzr, mi # w9 <- 1
csel w8, w8, w9, gt # w8 <- 1
fcmp s2, s3 # nzcv <- 1000
cset w9, mi # w9 <- 1
tst w8, w9 # (w8 & w9) == 1, so: nzcv <- 0000
csel w0, w0, w1, ne # w0 <- w0
We now do:
fcmp s2, s3 # nzcv <- 1000
fccmp s0, s1, #0, mi # mi, so: nzcv <- 1000
fccmp s0, s1, #8, le # !le, so: nzcv <- 1000
csel w0, w0, w1, pl # !pl, so: w0 <- w1
In other words, we transformed:
(c < d) && ((a < b) || (a > b))
into:
(c < d) && (a u>= b) && (a u<= b)
whereas, per De Morgan's, we wanted:
(c < d) && !((a u>= b) && (a u<= b))
Note that this problem doesn't occur in the test-suite.
changeFPCCToAArch64CC produces disjunct CCs; here, one -> mi/gt.
We can't represent that in the fccmp chain; it can't express
arbitrary OR sequences, as one comment explains:
In general we can create code for arbitrary "... (and (and A B) C)"
sequences. We can also implement some "or" expressions, because
"(or A B)" is equivalent to "not (and (not A) (not B))" and we can
implement some negation operations. [...] However there is no way
to negate the result of a partial sequence.
Instead, introduce changeFPCCToANDAArch64CC, which produces the
conjunct cond codes:
- (a one b)
== ((a olt b) || (a ogt b))
== ((a ord b) && (a une b))
- (a ueq b)
== ((a uno b) || (a oeq b))
== ((a ule b) && (a uge b))
Note that, at first, one might think that, when PushNegate is true,
we should use the disjunct CCs, in effect doing:
(a || b)
= !(!a && !(b))
= !(!a && !(b1 || b2)) <- changeFPCCToAArch64CC(b, b1, b2)
= !(!a && !b1 && !b2)
However, we can take advantage of the fact that the CC is already
negated, which lets us avoid special-casing PushNegate and doing
the simpler to reason about:
(a || b)
= !(!a && (!b))
= !(!a && (b1 && b2)) <- changeFPCCToANDAArch64CC(!b, b1, b2)
= !(!a && b1 && b2)
This makes both emitConditionalCompare cases behave identically,
and produces correct ccmp sequences for the 2-CC fcmps.
llvm-svn: 258533
2016-01-23 03:43:54 +08:00
|
|
|
; Test the IR CCs that expand to two cond codes.
|
|
|
|
|
2016-01-23 04:02:26 +08:00
|
|
|
; CHECK-LABEL: select_and_olt_one:
|
2017-12-05 01:18:51 +08:00
|
|
|
; CHECK-LABEL: ; %bb.0:
|
[AArch64] Lower 2-CC FCCMPs (one/ueq) using AND'ed CCs.
The current behavior is incorrect, as the two CCs returned by
changeFPCCToAArch64CC, intended to be OR'ed, are instead used
in an AND ccmp chain.
Consider:
define i32 @t(float %a, float %b, float %c, float %d, i32 %e, i32 %f) {
%cc1 = fcmp one float %a, %b
%cc2 = fcmp olt float %c, %d
%and = and i1 %cc1, %cc2
%r = select i1 %and, i32 %e, i32 %f
ret i32 %r
}
Assuming (%a < %b) and (%c < %d); we used to do:
fcmp s0, s1 # nzcv <- 1000
orr w8, wzr, #0x1 # w8 <- 1
csel w9, w8, wzr, mi # w9 <- 1
csel w8, w8, w9, gt # w8 <- 1
fcmp s2, s3 # nzcv <- 1000
cset w9, mi # w9 <- 1
tst w8, w9 # (w8 & w9) == 1, so: nzcv <- 0000
csel w0, w0, w1, ne # w0 <- w0
We now do:
fcmp s2, s3 # nzcv <- 1000
fccmp s0, s1, #0, mi # mi, so: nzcv <- 1000
fccmp s0, s1, #8, le # !le, so: nzcv <- 1000
csel w0, w0, w1, pl # !pl, so: w0 <- w1
In other words, we transformed:
(c < d) && ((a < b) || (a > b))
into:
(c < d) && (a u>= b) && (a u<= b)
whereas, per De Morgan's, we wanted:
(c < d) && !((a u>= b) && (a u<= b))
Note that this problem doesn't occur in the test-suite.
changeFPCCToAArch64CC produces disjunct CCs; here, one -> mi/gt.
We can't represent that in the fccmp chain; it can't express
arbitrary OR sequences, as one comment explains:
In general we can create code for arbitrary "... (and (and A B) C)"
sequences. We can also implement some "or" expressions, because
"(or A B)" is equivalent to "not (and (not A) (not B))" and we can
implement some negation operations. [...] However there is no way
to negate the result of a partial sequence.
Instead, introduce changeFPCCToANDAArch64CC, which produces the
conjunct cond codes:
- (a one b)
== ((a olt b) || (a ogt b))
== ((a ord b) && (a une b))
- (a ueq b)
== ((a uno b) || (a oeq b))
== ((a ule b) && (a uge b))
Note that, at first, one might think that, when PushNegate is true,
we should use the disjunct CCs, in effect doing:
(a || b)
= !(!a && !(b))
= !(!a && !(b1 || b2)) <- changeFPCCToAArch64CC(b, b1, b2)
= !(!a && !b1 && !b2)
However, we can take advantage of the fact that the CC is already
negated, which lets us avoid special-casing PushNegate and doing
the simpler to reason about:
(a || b)
= !(!a && (!b))
= !(!a && (b1 && b2)) <- changeFPCCToANDAArch64CC(!b, b1, b2)
= !(!a && b1 && b2)
This makes both emitConditionalCompare cases behave identically,
and produces correct ccmp sequences for the 2-CC fcmps.
llvm-svn: 258533
2016-01-23 03:43:54 +08:00
|
|
|
; CHECK-NEXT: fcmp d0, d1
|
|
|
|
; CHECK-NEXT: fccmp d2, d3, #4, mi
|
|
|
|
; CHECK-NEXT: fccmp d2, d3, #1, ne
|
|
|
|
; CHECK-NEXT: csel w0, w0, w1, vc
|
|
|
|
; CHECK-NEXT: ret
|
|
|
|
define i32 @select_and_olt_one(double %v0, double %v1, double %v2, double %v3, i32 %a, i32 %b) #0 {
|
|
|
|
%c0 = fcmp olt double %v0, %v1
|
|
|
|
%c1 = fcmp one double %v2, %v3
|
|
|
|
%cr = and i1 %c1, %c0
|
|
|
|
%sel = select i1 %cr, i32 %a, i32 %b
|
|
|
|
ret i32 %sel
|
|
|
|
}
|
|
|
|
|
2016-01-23 04:02:26 +08:00
|
|
|
; CHECK-LABEL: select_and_one_olt:
|
2017-12-05 01:18:51 +08:00
|
|
|
; CHECK-LABEL: ; %bb.0:
|
[AArch64] Lower 2-CC FCCMPs (one/ueq) using AND'ed CCs.
The current behavior is incorrect, as the two CCs returned by
changeFPCCToAArch64CC, intended to be OR'ed, are instead used
in an AND ccmp chain.
Consider:
define i32 @t(float %a, float %b, float %c, float %d, i32 %e, i32 %f) {
%cc1 = fcmp one float %a, %b
%cc2 = fcmp olt float %c, %d
%and = and i1 %cc1, %cc2
%r = select i1 %and, i32 %e, i32 %f
ret i32 %r
}
Assuming (%a < %b) and (%c < %d); we used to do:
fcmp s0, s1 # nzcv <- 1000
orr w8, wzr, #0x1 # w8 <- 1
csel w9, w8, wzr, mi # w9 <- 1
csel w8, w8, w9, gt # w8 <- 1
fcmp s2, s3 # nzcv <- 1000
cset w9, mi # w9 <- 1
tst w8, w9 # (w8 & w9) == 1, so: nzcv <- 0000
csel w0, w0, w1, ne # w0 <- w0
We now do:
fcmp s2, s3 # nzcv <- 1000
fccmp s0, s1, #0, mi # mi, so: nzcv <- 1000
fccmp s0, s1, #8, le # !le, so: nzcv <- 1000
csel w0, w0, w1, pl # !pl, so: w0 <- w1
In other words, we transformed:
(c < d) && ((a < b) || (a > b))
into:
(c < d) && (a u>= b) && (a u<= b)
whereas, per De Morgan's, we wanted:
(c < d) && !((a u>= b) && (a u<= b))
Note that this problem doesn't occur in the test-suite.
changeFPCCToAArch64CC produces disjunct CCs; here, one -> mi/gt.
We can't represent that in the fccmp chain; it can't express
arbitrary OR sequences, as one comment explains:
In general we can create code for arbitrary "... (and (and A B) C)"
sequences. We can also implement some "or" expressions, because
"(or A B)" is equivalent to "not (and (not A) (not B))" and we can
implement some negation operations. [...] However there is no way
to negate the result of a partial sequence.
Instead, introduce changeFPCCToANDAArch64CC, which produces the
conjunct cond codes:
- (a one b)
== ((a olt b) || (a ogt b))
== ((a ord b) && (a une b))
- (a ueq b)
== ((a uno b) || (a oeq b))
== ((a ule b) && (a uge b))
Note that, at first, one might think that, when PushNegate is true,
we should use the disjunct CCs, in effect doing:
(a || b)
= !(!a && !(b))
= !(!a && !(b1 || b2)) <- changeFPCCToAArch64CC(b, b1, b2)
= !(!a && !b1 && !b2)
However, we can take advantage of the fact that the CC is already
negated, which lets us avoid special-casing PushNegate and doing
the simpler to reason about:
(a || b)
= !(!a && (!b))
= !(!a && (b1 && b2)) <- changeFPCCToANDAArch64CC(!b, b1, b2)
= !(!a && b1 && b2)
This makes both emitConditionalCompare cases behave identically,
and produces correct ccmp sequences for the 2-CC fcmps.
llvm-svn: 258533
2016-01-23 03:43:54 +08:00
|
|
|
; CHECK-NEXT: fcmp d0, d1
|
|
|
|
; CHECK-NEXT: fccmp d0, d1, #1, ne
|
|
|
|
; CHECK-NEXT: fccmp d2, d3, #0, vc
|
|
|
|
; CHECK-NEXT: csel w0, w0, w1, mi
|
|
|
|
; CHECK-NEXT: ret
|
|
|
|
define i32 @select_and_one_olt(double %v0, double %v1, double %v2, double %v3, i32 %a, i32 %b) #0 {
|
|
|
|
%c0 = fcmp one double %v0, %v1
|
|
|
|
%c1 = fcmp olt double %v2, %v3
|
|
|
|
%cr = and i1 %c1, %c0
|
|
|
|
%sel = select i1 %cr, i32 %a, i32 %b
|
|
|
|
ret i32 %sel
|
|
|
|
}
|
|
|
|
|
2016-01-23 04:02:26 +08:00
|
|
|
; CHECK-LABEL: select_and_olt_ueq:
|
2017-12-05 01:18:51 +08:00
|
|
|
; CHECK-LABEL: ; %bb.0:
|
[AArch64] Lower 2-CC FCCMPs (one/ueq) using AND'ed CCs.
The current behavior is incorrect, as the two CCs returned by
changeFPCCToAArch64CC, intended to be OR'ed, are instead used
in an AND ccmp chain.
Consider:
define i32 @t(float %a, float %b, float %c, float %d, i32 %e, i32 %f) {
%cc1 = fcmp one float %a, %b
%cc2 = fcmp olt float %c, %d
%and = and i1 %cc1, %cc2
%r = select i1 %and, i32 %e, i32 %f
ret i32 %r
}
Assuming (%a < %b) and (%c < %d); we used to do:
fcmp s0, s1 # nzcv <- 1000
orr w8, wzr, #0x1 # w8 <- 1
csel w9, w8, wzr, mi # w9 <- 1
csel w8, w8, w9, gt # w8 <- 1
fcmp s2, s3 # nzcv <- 1000
cset w9, mi # w9 <- 1
tst w8, w9 # (w8 & w9) == 1, so: nzcv <- 0000
csel w0, w0, w1, ne # w0 <- w0
We now do:
fcmp s2, s3 # nzcv <- 1000
fccmp s0, s1, #0, mi # mi, so: nzcv <- 1000
fccmp s0, s1, #8, le # !le, so: nzcv <- 1000
csel w0, w0, w1, pl # !pl, so: w0 <- w1
In other words, we transformed:
(c < d) && ((a < b) || (a > b))
into:
(c < d) && (a u>= b) && (a u<= b)
whereas, per De Morgan's, we wanted:
(c < d) && !((a u>= b) && (a u<= b))
Note that this problem doesn't occur in the test-suite.
changeFPCCToAArch64CC produces disjunct CCs; here, one -> mi/gt.
We can't represent that in the fccmp chain; it can't express
arbitrary OR sequences, as one comment explains:
In general we can create code for arbitrary "... (and (and A B) C)"
sequences. We can also implement some "or" expressions, because
"(or A B)" is equivalent to "not (and (not A) (not B))" and we can
implement some negation operations. [...] However there is no way
to negate the result of a partial sequence.
Instead, introduce changeFPCCToANDAArch64CC, which produces the
conjunct cond codes:
- (a one b)
== ((a olt b) || (a ogt b))
== ((a ord b) && (a une b))
- (a ueq b)
== ((a uno b) || (a oeq b))
== ((a ule b) && (a uge b))
Note that, at first, one might think that, when PushNegate is true,
we should use the disjunct CCs, in effect doing:
(a || b)
= !(!a && !(b))
= !(!a && !(b1 || b2)) <- changeFPCCToAArch64CC(b, b1, b2)
= !(!a && !b1 && !b2)
However, we can take advantage of the fact that the CC is already
negated, which lets us avoid special-casing PushNegate and doing
the simpler to reason about:
(a || b)
= !(!a && (!b))
= !(!a && (b1 && b2)) <- changeFPCCToANDAArch64CC(!b, b1, b2)
= !(!a && b1 && b2)
This makes both emitConditionalCompare cases behave identically,
and produces correct ccmp sequences for the 2-CC fcmps.
llvm-svn: 258533
2016-01-23 03:43:54 +08:00
|
|
|
; CHECK-NEXT: fcmp d0, d1
|
|
|
|
; CHECK-NEXT: fccmp d2, d3, #0, mi
|
|
|
|
; CHECK-NEXT: fccmp d2, d3, #8, le
|
|
|
|
; CHECK-NEXT: csel w0, w0, w1, pl
|
|
|
|
; CHECK-NEXT: ret
|
|
|
|
define i32 @select_and_olt_ueq(double %v0, double %v1, double %v2, double %v3, i32 %a, i32 %b) #0 {
|
|
|
|
%c0 = fcmp olt double %v0, %v1
|
|
|
|
%c1 = fcmp ueq double %v2, %v3
|
|
|
|
%cr = and i1 %c1, %c0
|
|
|
|
%sel = select i1 %cr, i32 %a, i32 %b
|
|
|
|
ret i32 %sel
|
|
|
|
}
|
|
|
|
|
2016-01-23 04:02:26 +08:00
|
|
|
; CHECK-LABEL: select_and_ueq_olt:
|
2017-12-05 01:18:51 +08:00
|
|
|
; CHECK-LABEL: ; %bb.0:
|
[AArch64] Lower 2-CC FCCMPs (one/ueq) using AND'ed CCs.
The current behavior is incorrect, as the two CCs returned by
changeFPCCToAArch64CC, intended to be OR'ed, are instead used
in an AND ccmp chain.
Consider:
define i32 @t(float %a, float %b, float %c, float %d, i32 %e, i32 %f) {
%cc1 = fcmp one float %a, %b
%cc2 = fcmp olt float %c, %d
%and = and i1 %cc1, %cc2
%r = select i1 %and, i32 %e, i32 %f
ret i32 %r
}
Assuming (%a < %b) and (%c < %d); we used to do:
fcmp s0, s1 # nzcv <- 1000
orr w8, wzr, #0x1 # w8 <- 1
csel w9, w8, wzr, mi # w9 <- 1
csel w8, w8, w9, gt # w8 <- 1
fcmp s2, s3 # nzcv <- 1000
cset w9, mi # w9 <- 1
tst w8, w9 # (w8 & w9) == 1, so: nzcv <- 0000
csel w0, w0, w1, ne # w0 <- w0
We now do:
fcmp s2, s3 # nzcv <- 1000
fccmp s0, s1, #0, mi # mi, so: nzcv <- 1000
fccmp s0, s1, #8, le # !le, so: nzcv <- 1000
csel w0, w0, w1, pl # !pl, so: w0 <- w1
In other words, we transformed:
(c < d) && ((a < b) || (a > b))
into:
(c < d) && (a u>= b) && (a u<= b)
whereas, per De Morgan's, we wanted:
(c < d) && !((a u>= b) && (a u<= b))
Note that this problem doesn't occur in the test-suite.
changeFPCCToAArch64CC produces disjunct CCs; here, one -> mi/gt.
We can't represent that in the fccmp chain; it can't express
arbitrary OR sequences, as one comment explains:
In general we can create code for arbitrary "... (and (and A B) C)"
sequences. We can also implement some "or" expressions, because
"(or A B)" is equivalent to "not (and (not A) (not B))" and we can
implement some negation operations. [...] However there is no way
to negate the result of a partial sequence.
Instead, introduce changeFPCCToANDAArch64CC, which produces the
conjunct cond codes:
- (a one b)
== ((a olt b) || (a ogt b))
== ((a ord b) && (a une b))
- (a ueq b)
== ((a uno b) || (a oeq b))
== ((a ule b) && (a uge b))
Note that, at first, one might think that, when PushNegate is true,
we should use the disjunct CCs, in effect doing:
(a || b)
= !(!a && !(b))
= !(!a && !(b1 || b2)) <- changeFPCCToAArch64CC(b, b1, b2)
= !(!a && !b1 && !b2)
However, we can take advantage of the fact that the CC is already
negated, which lets us avoid special-casing PushNegate and doing
the simpler to reason about:
(a || b)
= !(!a && (!b))
= !(!a && (b1 && b2)) <- changeFPCCToANDAArch64CC(!b, b1, b2)
= !(!a && b1 && b2)
This makes both emitConditionalCompare cases behave identically,
and produces correct ccmp sequences for the 2-CC fcmps.
llvm-svn: 258533
2016-01-23 03:43:54 +08:00
|
|
|
; CHECK-NEXT: fcmp d0, d1
|
|
|
|
; CHECK-NEXT: fccmp d0, d1, #8, le
|
|
|
|
; CHECK-NEXT: fccmp d2, d3, #0, pl
|
|
|
|
; CHECK-NEXT: csel w0, w0, w1, mi
|
|
|
|
; CHECK-NEXT: ret
|
|
|
|
define i32 @select_and_ueq_olt(double %v0, double %v1, double %v2, double %v3, i32 %a, i32 %b) #0 {
|
|
|
|
%c0 = fcmp ueq double %v0, %v1
|
|
|
|
%c1 = fcmp olt double %v2, %v3
|
|
|
|
%cr = and i1 %c1, %c0
|
|
|
|
%sel = select i1 %cr, i32 %a, i32 %b
|
|
|
|
ret i32 %sel
|
|
|
|
}
|
|
|
|
|
2016-01-23 04:02:26 +08:00
|
|
|
; CHECK-LABEL: select_or_olt_one:
|
2017-12-05 01:18:51 +08:00
|
|
|
; CHECK-LABEL: ; %bb.0:
|
[AArch64] Lower 2-CC FCCMPs (one/ueq) using AND'ed CCs.
The current behavior is incorrect, as the two CCs returned by
changeFPCCToAArch64CC, intended to be OR'ed, are instead used
in an AND ccmp chain.
Consider:
define i32 @t(float %a, float %b, float %c, float %d, i32 %e, i32 %f) {
%cc1 = fcmp one float %a, %b
%cc2 = fcmp olt float %c, %d
%and = and i1 %cc1, %cc2
%r = select i1 %and, i32 %e, i32 %f
ret i32 %r
}
Assuming (%a < %b) and (%c < %d); we used to do:
fcmp s0, s1 # nzcv <- 1000
orr w8, wzr, #0x1 # w8 <- 1
csel w9, w8, wzr, mi # w9 <- 1
csel w8, w8, w9, gt # w8 <- 1
fcmp s2, s3 # nzcv <- 1000
cset w9, mi # w9 <- 1
tst w8, w9 # (w8 & w9) == 1, so: nzcv <- 0000
csel w0, w0, w1, ne # w0 <- w0
We now do:
fcmp s2, s3 # nzcv <- 1000
fccmp s0, s1, #0, mi # mi, so: nzcv <- 1000
fccmp s0, s1, #8, le # !le, so: nzcv <- 1000
csel w0, w0, w1, pl # !pl, so: w0 <- w1
In other words, we transformed:
(c < d) && ((a < b) || (a > b))
into:
(c < d) && (a u>= b) && (a u<= b)
whereas, per De Morgan's, we wanted:
(c < d) && !((a u>= b) && (a u<= b))
Note that this problem doesn't occur in the test-suite.
changeFPCCToAArch64CC produces disjunct CCs; here, one -> mi/gt.
We can't represent that in the fccmp chain; it can't express
arbitrary OR sequences, as one comment explains:
In general we can create code for arbitrary "... (and (and A B) C)"
sequences. We can also implement some "or" expressions, because
"(or A B)" is equivalent to "not (and (not A) (not B))" and we can
implement some negation operations. [...] However there is no way
to negate the result of a partial sequence.
Instead, introduce changeFPCCToANDAArch64CC, which produces the
conjunct cond codes:
- (a one b)
== ((a olt b) || (a ogt b))
== ((a ord b) && (a une b))
- (a ueq b)
== ((a uno b) || (a oeq b))
== ((a ule b) && (a uge b))
Note that, at first, one might think that, when PushNegate is true,
we should use the disjunct CCs, in effect doing:
(a || b)
= !(!a && !(b))
= !(!a && !(b1 || b2)) <- changeFPCCToAArch64CC(b, b1, b2)
= !(!a && !b1 && !b2)
However, we can take advantage of the fact that the CC is already
negated, which lets us avoid special-casing PushNegate and doing
the simpler to reason about:
(a || b)
= !(!a && (!b))
= !(!a && (b1 && b2)) <- changeFPCCToANDAArch64CC(!b, b1, b2)
= !(!a && b1 && b2)
This makes both emitConditionalCompare cases behave identically,
and produces correct ccmp sequences for the 2-CC fcmps.
llvm-svn: 258533
2016-01-23 03:43:54 +08:00
|
|
|
; CHECK-NEXT: fcmp d0, d1
|
|
|
|
; CHECK-NEXT: fccmp d2, d3, #0, pl
|
|
|
|
; CHECK-NEXT: fccmp d2, d3, #8, le
|
|
|
|
; CHECK-NEXT: csel w0, w0, w1, mi
|
|
|
|
; CHECK-NEXT: ret
|
|
|
|
define i32 @select_or_olt_one(double %v0, double %v1, double %v2, double %v3, i32 %a, i32 %b) #0 {
|
|
|
|
%c0 = fcmp olt double %v0, %v1
|
|
|
|
%c1 = fcmp one double %v2, %v3
|
|
|
|
%cr = or i1 %c1, %c0
|
|
|
|
%sel = select i1 %cr, i32 %a, i32 %b
|
|
|
|
ret i32 %sel
|
|
|
|
}
|
|
|
|
|
2016-01-23 04:02:26 +08:00
|
|
|
; CHECK-LABEL: select_or_one_olt:
|
2017-12-05 01:18:51 +08:00
|
|
|
; CHECK-LABEL: ; %bb.0:
|
[AArch64] Lower 2-CC FCCMPs (one/ueq) using AND'ed CCs.
The current behavior is incorrect, as the two CCs returned by
changeFPCCToAArch64CC, intended to be OR'ed, are instead used
in an AND ccmp chain.
Consider:
define i32 @t(float %a, float %b, float %c, float %d, i32 %e, i32 %f) {
%cc1 = fcmp one float %a, %b
%cc2 = fcmp olt float %c, %d
%and = and i1 %cc1, %cc2
%r = select i1 %and, i32 %e, i32 %f
ret i32 %r
}
Assuming (%a < %b) and (%c < %d); we used to do:
fcmp s0, s1 # nzcv <- 1000
orr w8, wzr, #0x1 # w8 <- 1
csel w9, w8, wzr, mi # w9 <- 1
csel w8, w8, w9, gt # w8 <- 1
fcmp s2, s3 # nzcv <- 1000
cset w9, mi # w9 <- 1
tst w8, w9 # (w8 & w9) == 1, so: nzcv <- 0000
csel w0, w0, w1, ne # w0 <- w0
We now do:
fcmp s2, s3 # nzcv <- 1000
fccmp s0, s1, #0, mi # mi, so: nzcv <- 1000
fccmp s0, s1, #8, le # !le, so: nzcv <- 1000
csel w0, w0, w1, pl # !pl, so: w0 <- w1
In other words, we transformed:
(c < d) && ((a < b) || (a > b))
into:
(c < d) && (a u>= b) && (a u<= b)
whereas, per De Morgan's, we wanted:
(c < d) && !((a u>= b) && (a u<= b))
Note that this problem doesn't occur in the test-suite.
changeFPCCToAArch64CC produces disjunct CCs; here, one -> mi/gt.
We can't represent that in the fccmp chain; it can't express
arbitrary OR sequences, as one comment explains:
In general we can create code for arbitrary "... (and (and A B) C)"
sequences. We can also implement some "or" expressions, because
"(or A B)" is equivalent to "not (and (not A) (not B))" and we can
implement some negation operations. [...] However there is no way
to negate the result of a partial sequence.
Instead, introduce changeFPCCToANDAArch64CC, which produces the
conjunct cond codes:
- (a one b)
== ((a olt b) || (a ogt b))
== ((a ord b) && (a une b))
- (a ueq b)
== ((a uno b) || (a oeq b))
== ((a ule b) && (a uge b))
Note that, at first, one might think that, when PushNegate is true,
we should use the disjunct CCs, in effect doing:
(a || b)
= !(!a && !(b))
= !(!a && !(b1 || b2)) <- changeFPCCToAArch64CC(b, b1, b2)
= !(!a && !b1 && !b2)
However, we can take advantage of the fact that the CC is already
negated, which lets us avoid special-casing PushNegate and doing
the simpler to reason about:
(a || b)
= !(!a && (!b))
= !(!a && (b1 && b2)) <- changeFPCCToANDAArch64CC(!b, b1, b2)
= !(!a && b1 && b2)
This makes both emitConditionalCompare cases behave identically,
and produces correct ccmp sequences for the 2-CC fcmps.
llvm-svn: 258533
2016-01-23 03:43:54 +08:00
|
|
|
; CHECK-NEXT: fcmp d0, d1
|
2018-12-06 09:40:23 +08:00
|
|
|
; CHECK-NEXT: fccmp d0, d1, #8, le
|
|
|
|
; CHECK-NEXT: fccmp d2, d3, #8, pl
|
[AArch64] Lower 2-CC FCCMPs (one/ueq) using AND'ed CCs.
The current behavior is incorrect, as the two CCs returned by
changeFPCCToAArch64CC, intended to be OR'ed, are instead used
in an AND ccmp chain.
Consider:
define i32 @t(float %a, float %b, float %c, float %d, i32 %e, i32 %f) {
%cc1 = fcmp one float %a, %b
%cc2 = fcmp olt float %c, %d
%and = and i1 %cc1, %cc2
%r = select i1 %and, i32 %e, i32 %f
ret i32 %r
}
Assuming (%a < %b) and (%c < %d); we used to do:
fcmp s0, s1 # nzcv <- 1000
orr w8, wzr, #0x1 # w8 <- 1
csel w9, w8, wzr, mi # w9 <- 1
csel w8, w8, w9, gt # w8 <- 1
fcmp s2, s3 # nzcv <- 1000
cset w9, mi # w9 <- 1
tst w8, w9 # (w8 & w9) == 1, so: nzcv <- 0000
csel w0, w0, w1, ne # w0 <- w0
We now do:
fcmp s2, s3 # nzcv <- 1000
fccmp s0, s1, #0, mi # mi, so: nzcv <- 1000
fccmp s0, s1, #8, le # !le, so: nzcv <- 1000
csel w0, w0, w1, pl # !pl, so: w0 <- w1
In other words, we transformed:
(c < d) && ((a < b) || (a > b))
into:
(c < d) && (a u>= b) && (a u<= b)
whereas, per De Morgan's, we wanted:
(c < d) && !((a u>= b) && (a u<= b))
Note that this problem doesn't occur in the test-suite.
changeFPCCToAArch64CC produces disjunct CCs; here, one -> mi/gt.
We can't represent that in the fccmp chain; it can't express
arbitrary OR sequences, as one comment explains:
In general we can create code for arbitrary "... (and (and A B) C)"
sequences. We can also implement some "or" expressions, because
"(or A B)" is equivalent to "not (and (not A) (not B))" and we can
implement some negation operations. [...] However there is no way
to negate the result of a partial sequence.
Instead, introduce changeFPCCToANDAArch64CC, which produces the
conjunct cond codes:
- (a one b)
== ((a olt b) || (a ogt b))
== ((a ord b) && (a une b))
- (a ueq b)
== ((a uno b) || (a oeq b))
== ((a ule b) && (a uge b))
Note that, at first, one might think that, when PushNegate is true,
we should use the disjunct CCs, in effect doing:
(a || b)
= !(!a && !(b))
= !(!a && !(b1 || b2)) <- changeFPCCToAArch64CC(b, b1, b2)
= !(!a && !b1 && !b2)
However, we can take advantage of the fact that the CC is already
negated, which lets us avoid special-casing PushNegate and doing
the simpler to reason about:
(a || b)
= !(!a && (!b))
= !(!a && (b1 && b2)) <- changeFPCCToANDAArch64CC(!b, b1, b2)
= !(!a && b1 && b2)
This makes both emitConditionalCompare cases behave identically,
and produces correct ccmp sequences for the 2-CC fcmps.
llvm-svn: 258533
2016-01-23 03:43:54 +08:00
|
|
|
; CHECK-NEXT: csel w0, w0, w1, mi
|
|
|
|
; CHECK-NEXT: ret
|
|
|
|
define i32 @select_or_one_olt(double %v0, double %v1, double %v2, double %v3, i32 %a, i32 %b) #0 {
|
|
|
|
%c0 = fcmp one double %v0, %v1
|
|
|
|
%c1 = fcmp olt double %v2, %v3
|
|
|
|
%cr = or i1 %c1, %c0
|
|
|
|
%sel = select i1 %cr, i32 %a, i32 %b
|
|
|
|
ret i32 %sel
|
|
|
|
}
|
|
|
|
|
2016-01-23 04:02:26 +08:00
|
|
|
; CHECK-LABEL: select_or_olt_ueq:
|
2017-12-05 01:18:51 +08:00
|
|
|
; CHECK-LABEL: ; %bb.0:
|
[AArch64] Lower 2-CC FCCMPs (one/ueq) using AND'ed CCs.
The current behavior is incorrect, as the two CCs returned by
changeFPCCToAArch64CC, intended to be OR'ed, are instead used
in an AND ccmp chain.
Consider:
define i32 @t(float %a, float %b, float %c, float %d, i32 %e, i32 %f) {
%cc1 = fcmp one float %a, %b
%cc2 = fcmp olt float %c, %d
%and = and i1 %cc1, %cc2
%r = select i1 %and, i32 %e, i32 %f
ret i32 %r
}
Assuming (%a < %b) and (%c < %d); we used to do:
fcmp s0, s1 # nzcv <- 1000
orr w8, wzr, #0x1 # w8 <- 1
csel w9, w8, wzr, mi # w9 <- 1
csel w8, w8, w9, gt # w8 <- 1
fcmp s2, s3 # nzcv <- 1000
cset w9, mi # w9 <- 1
tst w8, w9 # (w8 & w9) == 1, so: nzcv <- 0000
csel w0, w0, w1, ne # w0 <- w0
We now do:
fcmp s2, s3 # nzcv <- 1000
fccmp s0, s1, #0, mi # mi, so: nzcv <- 1000
fccmp s0, s1, #8, le # !le, so: nzcv <- 1000
csel w0, w0, w1, pl # !pl, so: w0 <- w1
In other words, we transformed:
(c < d) && ((a < b) || (a > b))
into:
(c < d) && (a u>= b) && (a u<= b)
whereas, per De Morgan's, we wanted:
(c < d) && !((a u>= b) && (a u<= b))
Note that this problem doesn't occur in the test-suite.
changeFPCCToAArch64CC produces disjunct CCs; here, one -> mi/gt.
We can't represent that in the fccmp chain; it can't express
arbitrary OR sequences, as one comment explains:
In general we can create code for arbitrary "... (and (and A B) C)"
sequences. We can also implement some "or" expressions, because
"(or A B)" is equivalent to "not (and (not A) (not B))" and we can
implement some negation operations. [...] However there is no way
to negate the result of a partial sequence.
Instead, introduce changeFPCCToANDAArch64CC, which produces the
conjunct cond codes:
- (a one b)
== ((a olt b) || (a ogt b))
== ((a ord b) && (a une b))
- (a ueq b)
== ((a uno b) || (a oeq b))
== ((a ule b) && (a uge b))
Note that, at first, one might think that, when PushNegate is true,
we should use the disjunct CCs, in effect doing:
(a || b)
= !(!a && !(b))
= !(!a && !(b1 || b2)) <- changeFPCCToAArch64CC(b, b1, b2)
= !(!a && !b1 && !b2)
However, we can take advantage of the fact that the CC is already
negated, which lets us avoid special-casing PushNegate and doing
the simpler to reason about:
(a || b)
= !(!a && (!b))
= !(!a && (b1 && b2)) <- changeFPCCToANDAArch64CC(!b, b1, b2)
= !(!a && b1 && b2)
This makes both emitConditionalCompare cases behave identically,
and produces correct ccmp sequences for the 2-CC fcmps.
llvm-svn: 258533
2016-01-23 03:43:54 +08:00
|
|
|
; CHECK-NEXT: fcmp d0, d1
|
|
|
|
; CHECK-NEXT: fccmp d2, d3, #4, pl
|
|
|
|
; CHECK-NEXT: fccmp d2, d3, #1, ne
|
|
|
|
; CHECK-NEXT: csel w0, w0, w1, vs
|
|
|
|
; CHECK-NEXT: ret
|
|
|
|
define i32 @select_or_olt_ueq(double %v0, double %v1, double %v2, double %v3, i32 %a, i32 %b) #0 {
|
|
|
|
%c0 = fcmp olt double %v0, %v1
|
|
|
|
%c1 = fcmp ueq double %v2, %v3
|
|
|
|
%cr = or i1 %c1, %c0
|
|
|
|
%sel = select i1 %cr, i32 %a, i32 %b
|
|
|
|
ret i32 %sel
|
|
|
|
}
|
|
|
|
|
2016-01-23 04:02:26 +08:00
|
|
|
; CHECK-LABEL: select_or_ueq_olt:
|
2017-12-05 01:18:51 +08:00
|
|
|
; CHECK-LABEL: ; %bb.0:
|
[AArch64] Lower 2-CC FCCMPs (one/ueq) using AND'ed CCs.
The current behavior is incorrect, as the two CCs returned by
changeFPCCToAArch64CC, intended to be OR'ed, are instead used
in an AND ccmp chain.
Consider:
define i32 @t(float %a, float %b, float %c, float %d, i32 %e, i32 %f) {
%cc1 = fcmp one float %a, %b
%cc2 = fcmp olt float %c, %d
%and = and i1 %cc1, %cc2
%r = select i1 %and, i32 %e, i32 %f
ret i32 %r
}
Assuming (%a < %b) and (%c < %d); we used to do:
fcmp s0, s1 # nzcv <- 1000
orr w8, wzr, #0x1 # w8 <- 1
csel w9, w8, wzr, mi # w9 <- 1
csel w8, w8, w9, gt # w8 <- 1
fcmp s2, s3 # nzcv <- 1000
cset w9, mi # w9 <- 1
tst w8, w9 # (w8 & w9) == 1, so: nzcv <- 0000
csel w0, w0, w1, ne # w0 <- w0
We now do:
fcmp s2, s3 # nzcv <- 1000
fccmp s0, s1, #0, mi # mi, so: nzcv <- 1000
fccmp s0, s1, #8, le # !le, so: nzcv <- 1000
csel w0, w0, w1, pl # !pl, so: w0 <- w1
In other words, we transformed:
(c < d) && ((a < b) || (a > b))
into:
(c < d) && (a u>= b) && (a u<= b)
whereas, per De Morgan's, we wanted:
(c < d) && !((a u>= b) && (a u<= b))
Note that this problem doesn't occur in the test-suite.
changeFPCCToAArch64CC produces disjunct CCs; here, one -> mi/gt.
We can't represent that in the fccmp chain; it can't express
arbitrary OR sequences, as one comment explains:
In general we can create code for arbitrary "... (and (and A B) C)"
sequences. We can also implement some "or" expressions, because
"(or A B)" is equivalent to "not (and (not A) (not B))" and we can
implement some negation operations. [...] However there is no way
to negate the result of a partial sequence.
Instead, introduce changeFPCCToANDAArch64CC, which produces the
conjunct cond codes:
- (a one b)
== ((a olt b) || (a ogt b))
== ((a ord b) && (a une b))
- (a ueq b)
== ((a uno b) || (a oeq b))
== ((a ule b) && (a uge b))
Note that, at first, one might think that, when PushNegate is true,
we should use the disjunct CCs, in effect doing:
(a || b)
= !(!a && !(b))
= !(!a && !(b1 || b2)) <- changeFPCCToAArch64CC(b, b1, b2)
= !(!a && !b1 && !b2)
However, we can take advantage of the fact that the CC is already
negated, which lets us avoid special-casing PushNegate and doing
the simpler to reason about:
(a || b)
= !(!a && (!b))
= !(!a && (b1 && b2)) <- changeFPCCToANDAArch64CC(!b, b1, b2)
= !(!a && b1 && b2)
This makes both emitConditionalCompare cases behave identically,
and produces correct ccmp sequences for the 2-CC fcmps.
llvm-svn: 258533
2016-01-23 03:43:54 +08:00
|
|
|
; CHECK-NEXT: fcmp d0, d1
|
2018-12-06 09:40:23 +08:00
|
|
|
; CHECK-NEXT: fccmp d0, d1, #1, ne
|
|
|
|
; CHECK-NEXT: fccmp d2, d3, #8, vc
|
[AArch64] Lower 2-CC FCCMPs (one/ueq) using AND'ed CCs.
The current behavior is incorrect, as the two CCs returned by
changeFPCCToAArch64CC, intended to be OR'ed, are instead used
in an AND ccmp chain.
Consider:
define i32 @t(float %a, float %b, float %c, float %d, i32 %e, i32 %f) {
%cc1 = fcmp one float %a, %b
%cc2 = fcmp olt float %c, %d
%and = and i1 %cc1, %cc2
%r = select i1 %and, i32 %e, i32 %f
ret i32 %r
}
Assuming (%a < %b) and (%c < %d); we used to do:
fcmp s0, s1 # nzcv <- 1000
orr w8, wzr, #0x1 # w8 <- 1
csel w9, w8, wzr, mi # w9 <- 1
csel w8, w8, w9, gt # w8 <- 1
fcmp s2, s3 # nzcv <- 1000
cset w9, mi # w9 <- 1
tst w8, w9 # (w8 & w9) == 1, so: nzcv <- 0000
csel w0, w0, w1, ne # w0 <- w0
We now do:
fcmp s2, s3 # nzcv <- 1000
fccmp s0, s1, #0, mi # mi, so: nzcv <- 1000
fccmp s0, s1, #8, le # !le, so: nzcv <- 1000
csel w0, w0, w1, pl # !pl, so: w0 <- w1
In other words, we transformed:
(c < d) && ((a < b) || (a > b))
into:
(c < d) && (a u>= b) && (a u<= b)
whereas, per De Morgan's, we wanted:
(c < d) && !((a u>= b) && (a u<= b))
Note that this problem doesn't occur in the test-suite.
changeFPCCToAArch64CC produces disjunct CCs; here, one -> mi/gt.
We can't represent that in the fccmp chain; it can't express
arbitrary OR sequences, as one comment explains:
In general we can create code for arbitrary "... (and (and A B) C)"
sequences. We can also implement some "or" expressions, because
"(or A B)" is equivalent to "not (and (not A) (not B))" and we can
implement some negation operations. [...] However there is no way
to negate the result of a partial sequence.
Instead, introduce changeFPCCToANDAArch64CC, which produces the
conjunct cond codes:
- (a one b)
== ((a olt b) || (a ogt b))
== ((a ord b) && (a une b))
- (a ueq b)
== ((a uno b) || (a oeq b))
== ((a ule b) && (a uge b))
Note that, at first, one might think that, when PushNegate is true,
we should use the disjunct CCs, in effect doing:
(a || b)
= !(!a && !(b))
= !(!a && !(b1 || b2)) <- changeFPCCToAArch64CC(b, b1, b2)
= !(!a && !b1 && !b2)
However, we can take advantage of the fact that the CC is already
negated, which lets us avoid special-casing PushNegate and doing
the simpler to reason about:
(a || b)
= !(!a && (!b))
= !(!a && (b1 && b2)) <- changeFPCCToANDAArch64CC(!b, b1, b2)
= !(!a && b1 && b2)
This makes both emitConditionalCompare cases behave identically,
and produces correct ccmp sequences for the 2-CC fcmps.
llvm-svn: 258533
2016-01-23 03:43:54 +08:00
|
|
|
; CHECK-NEXT: csel w0, w0, w1, mi
|
|
|
|
; CHECK-NEXT: ret
|
|
|
|
define i32 @select_or_ueq_olt(double %v0, double %v1, double %v2, double %v3, i32 %a, i32 %b) #0 {
|
|
|
|
%c0 = fcmp ueq double %v0, %v1
|
|
|
|
%c1 = fcmp olt double %v2, %v3
|
|
|
|
%cr = or i1 %c1, %c0
|
|
|
|
%sel = select i1 %cr, i32 %a, i32 %b
|
|
|
|
ret i32 %sel
|
|
|
|
}
|
|
|
|
|
2016-01-23 04:02:26 +08:00
|
|
|
; CHECK-LABEL: select_or_olt_ogt_ueq:
|
2017-12-05 01:18:51 +08:00
|
|
|
; CHECK-LABEL: ; %bb.0:
|
[AArch64] Lower 2-CC FCCMPs (one/ueq) using AND'ed CCs.
The current behavior is incorrect, as the two CCs returned by
changeFPCCToAArch64CC, intended to be OR'ed, are instead used
in an AND ccmp chain.
Consider:
define i32 @t(float %a, float %b, float %c, float %d, i32 %e, i32 %f) {
%cc1 = fcmp one float %a, %b
%cc2 = fcmp olt float %c, %d
%and = and i1 %cc1, %cc2
%r = select i1 %and, i32 %e, i32 %f
ret i32 %r
}
Assuming (%a < %b) and (%c < %d); we used to do:
fcmp s0, s1 # nzcv <- 1000
orr w8, wzr, #0x1 # w8 <- 1
csel w9, w8, wzr, mi # w9 <- 1
csel w8, w8, w9, gt # w8 <- 1
fcmp s2, s3 # nzcv <- 1000
cset w9, mi # w9 <- 1
tst w8, w9 # (w8 & w9) == 1, so: nzcv <- 0000
csel w0, w0, w1, ne # w0 <- w0
We now do:
fcmp s2, s3 # nzcv <- 1000
fccmp s0, s1, #0, mi # mi, so: nzcv <- 1000
fccmp s0, s1, #8, le # !le, so: nzcv <- 1000
csel w0, w0, w1, pl # !pl, so: w0 <- w1
In other words, we transformed:
(c < d) && ((a < b) || (a > b))
into:
(c < d) && (a u>= b) && (a u<= b)
whereas, per De Morgan's, we wanted:
(c < d) && !((a u>= b) && (a u<= b))
Note that this problem doesn't occur in the test-suite.
changeFPCCToAArch64CC produces disjunct CCs; here, one -> mi/gt.
We can't represent that in the fccmp chain; it can't express
arbitrary OR sequences, as one comment explains:
In general we can create code for arbitrary "... (and (and A B) C)"
sequences. We can also implement some "or" expressions, because
"(or A B)" is equivalent to "not (and (not A) (not B))" and we can
implement some negation operations. [...] However there is no way
to negate the result of a partial sequence.
Instead, introduce changeFPCCToANDAArch64CC, which produces the
conjunct cond codes:
- (a one b)
== ((a olt b) || (a ogt b))
== ((a ord b) && (a une b))
- (a ueq b)
== ((a uno b) || (a oeq b))
== ((a ule b) && (a uge b))
Note that, at first, one might think that, when PushNegate is true,
we should use the disjunct CCs, in effect doing:
(a || b)
= !(!a && !(b))
= !(!a && !(b1 || b2)) <- changeFPCCToAArch64CC(b, b1, b2)
= !(!a && !b1 && !b2)
However, we can take advantage of the fact that the CC is already
negated, which lets us avoid special-casing PushNegate and doing
the simpler to reason about:
(a || b)
= !(!a && (!b))
= !(!a && (b1 && b2)) <- changeFPCCToANDAArch64CC(!b, b1, b2)
= !(!a && b1 && b2)
This makes both emitConditionalCompare cases behave identically,
and produces correct ccmp sequences for the 2-CC fcmps.
llvm-svn: 258533
2016-01-23 03:43:54 +08:00
|
|
|
; CHECK-NEXT: fcmp d0, d1
|
|
|
|
; CHECK-NEXT: fccmp d2, d3, #0, pl
|
|
|
|
; CHECK-NEXT: fccmp d4, d5, #4, le
|
|
|
|
; CHECK-NEXT: fccmp d4, d5, #1, ne
|
|
|
|
; CHECK-NEXT: csel w0, w0, w1, vs
|
|
|
|
; CHECK-NEXT: ret
|
|
|
|
define i32 @select_or_olt_ogt_ueq(double %v0, double %v1, double %v2, double %v3, double %v4, double %v5, i32 %a, i32 %b) #0 {
|
|
|
|
%c0 = fcmp olt double %v0, %v1
|
|
|
|
%c1 = fcmp ogt double %v2, %v3
|
|
|
|
%c2 = fcmp ueq double %v4, %v5
|
|
|
|
%c3 = or i1 %c1, %c0
|
|
|
|
%cr = or i1 %c2, %c3
|
|
|
|
%sel = select i1 %cr, i32 %a, i32 %b
|
|
|
|
ret i32 %sel
|
|
|
|
}
|
|
|
|
|
2016-01-23 04:02:26 +08:00
|
|
|
; CHECK-LABEL: select_or_olt_ueq_ogt:
|
2017-12-05 01:18:51 +08:00
|
|
|
; CHECK-LABEL: ; %bb.0:
|
[AArch64] Lower 2-CC FCCMPs (one/ueq) using AND'ed CCs.
The current behavior is incorrect, as the two CCs returned by
changeFPCCToAArch64CC, intended to be OR'ed, are instead used
in an AND ccmp chain.
Consider:
define i32 @t(float %a, float %b, float %c, float %d, i32 %e, i32 %f) {
%cc1 = fcmp one float %a, %b
%cc2 = fcmp olt float %c, %d
%and = and i1 %cc1, %cc2
%r = select i1 %and, i32 %e, i32 %f
ret i32 %r
}
Assuming (%a < %b) and (%c < %d); we used to do:
fcmp s0, s1 # nzcv <- 1000
orr w8, wzr, #0x1 # w8 <- 1
csel w9, w8, wzr, mi # w9 <- 1
csel w8, w8, w9, gt # w8 <- 1
fcmp s2, s3 # nzcv <- 1000
cset w9, mi # w9 <- 1
tst w8, w9 # (w8 & w9) == 1, so: nzcv <- 0000
csel w0, w0, w1, ne # w0 <- w0
We now do:
fcmp s2, s3 # nzcv <- 1000
fccmp s0, s1, #0, mi # mi, so: nzcv <- 1000
fccmp s0, s1, #8, le # !le, so: nzcv <- 1000
csel w0, w0, w1, pl # !pl, so: w0 <- w1
In other words, we transformed:
(c < d) && ((a < b) || (a > b))
into:
(c < d) && (a u>= b) && (a u<= b)
whereas, per De Morgan's, we wanted:
(c < d) && !((a u>= b) && (a u<= b))
Note that this problem doesn't occur in the test-suite.
changeFPCCToAArch64CC produces disjunct CCs; here, one -> mi/gt.
We can't represent that in the fccmp chain; it can't express
arbitrary OR sequences, as one comment explains:
In general we can create code for arbitrary "... (and (and A B) C)"
sequences. We can also implement some "or" expressions, because
"(or A B)" is equivalent to "not (and (not A) (not B))" and we can
implement some negation operations. [...] However there is no way
to negate the result of a partial sequence.
Instead, introduce changeFPCCToANDAArch64CC, which produces the
conjunct cond codes:
- (a one b)
== ((a olt b) || (a ogt b))
== ((a ord b) && (a une b))
- (a ueq b)
== ((a uno b) || (a oeq b))
== ((a ule b) && (a uge b))
Note that, at first, one might think that, when PushNegate is true,
we should use the disjunct CCs, in effect doing:
(a || b)
= !(!a && !(b))
= !(!a && !(b1 || b2)) <- changeFPCCToAArch64CC(b, b1, b2)
= !(!a && !b1 && !b2)
However, we can take advantage of the fact that the CC is already
negated, which lets us avoid special-casing PushNegate and doing
the simpler to reason about:
(a || b)
= !(!a && (!b))
= !(!a && (b1 && b2)) <- changeFPCCToANDAArch64CC(!b, b1, b2)
= !(!a && b1 && b2)
This makes both emitConditionalCompare cases behave identically,
and produces correct ccmp sequences for the 2-CC fcmps.
llvm-svn: 258533
2016-01-23 03:43:54 +08:00
|
|
|
; CHECK-NEXT: fcmp d0, d1
|
|
|
|
; CHECK-NEXT: fccmp d2, d3, #4, pl
|
|
|
|
; CHECK-NEXT: fccmp d2, d3, #1, ne
|
|
|
|
; CHECK-NEXT: fccmp d4, d5, #0, vc
|
|
|
|
; CHECK-NEXT: csel w0, w0, w1, gt
|
|
|
|
; CHECK-NEXT: ret
|
|
|
|
define i32 @select_or_olt_ueq_ogt(double %v0, double %v1, double %v2, double %v3, double %v4, double %v5, i32 %a, i32 %b) #0 {
|
|
|
|
%c0 = fcmp olt double %v0, %v1
|
|
|
|
%c1 = fcmp ueq double %v2, %v3
|
|
|
|
%c2 = fcmp ogt double %v4, %v5
|
|
|
|
%c3 = or i1 %c1, %c0
|
|
|
|
%cr = or i1 %c2, %c3
|
|
|
|
%sel = select i1 %cr, i32 %a, i32 %b
|
|
|
|
ret i32 %sel
|
|
|
|
}
|
|
|
|
|
2016-03-12 06:02:58 +08:00
|
|
|
; Verify that we correctly promote f16.
|
|
|
|
|
|
|
|
; CHECK-LABEL: half_select_and_olt_oge:
|
2017-12-05 01:18:51 +08:00
|
|
|
; CHECK-LABEL: ; %bb.0:
|
2016-03-12 06:02:58 +08:00
|
|
|
; CHECK-DAG: fcvt [[S0:s[0-9]+]], h0
|
|
|
|
; CHECK-DAG: fcvt [[S1:s[0-9]+]], h1
|
|
|
|
; CHECK-NEXT: fcmp [[S0]], [[S1]]
|
|
|
|
; CHECK-DAG: fcvt [[S2:s[0-9]+]], h2
|
|
|
|
; CHECK-DAG: fcvt [[S3:s[0-9]+]], h3
|
|
|
|
; CHECK-NEXT: fccmp [[S2]], [[S3]], #8, mi
|
|
|
|
; CHECK-NEXT: csel w0, w0, w1, ge
|
|
|
|
; CHECK-NEXT: ret
|
|
|
|
define i32 @half_select_and_olt_oge(half %v0, half %v1, half %v2, half %v3, i32 %a, i32 %b) #0 {
|
|
|
|
%c0 = fcmp olt half %v0, %v1
|
|
|
|
%c1 = fcmp oge half %v2, %v3
|
|
|
|
%cr = and i1 %c1, %c0
|
|
|
|
%sel = select i1 %cr, i32 %a, i32 %b
|
|
|
|
ret i32 %sel
|
|
|
|
}
|
|
|
|
|
|
|
|
; CHECK-LABEL: half_select_and_olt_one:
|
2017-12-05 01:18:51 +08:00
|
|
|
; CHECK-LABEL: ; %bb.0:
|
2016-03-12 06:02:58 +08:00
|
|
|
; CHECK-DAG: fcvt [[S0:s[0-9]+]], h0
|
|
|
|
; CHECK-DAG: fcvt [[S1:s[0-9]+]], h1
|
|
|
|
; CHECK-NEXT: fcmp [[S0]], [[S1]]
|
|
|
|
; CHECK-DAG: fcvt [[S2:s[0-9]+]], h2
|
|
|
|
; CHECK-DAG: fcvt [[S3:s[0-9]+]], h3
|
|
|
|
; CHECK-NEXT: fccmp [[S2]], [[S3]], #4, mi
|
|
|
|
; CHECK-NEXT: fccmp [[S2]], [[S3]], #1, ne
|
|
|
|
; CHECK-NEXT: csel w0, w0, w1, vc
|
|
|
|
; CHECK-NEXT: ret
|
|
|
|
define i32 @half_select_and_olt_one(half %v0, half %v1, half %v2, half %v3, i32 %a, i32 %b) #0 {
|
|
|
|
%c0 = fcmp olt half %v0, %v1
|
|
|
|
%c1 = fcmp one half %v2, %v3
|
|
|
|
%cr = and i1 %c1, %c0
|
|
|
|
%sel = select i1 %cr, i32 %a, i32 %b
|
|
|
|
ret i32 %sel
|
|
|
|
}
|
|
|
|
|
|
|
|
; Also verify that we don't try to generate f128 FCCMPs, using RT calls instead.
|
|
|
|
|
|
|
|
; CHECK-LABEL: f128_select_and_olt_oge:
|
|
|
|
; CHECK: bl ___lttf2
|
|
|
|
; CHECK: bl ___getf2
|
|
|
|
define i32 @f128_select_and_olt_oge(fp128 %v0, fp128 %v1, fp128 %v2, fp128 %v3, i32 %a, i32 %b) #0 {
|
|
|
|
%c0 = fcmp olt fp128 %v0, %v1
|
|
|
|
%c1 = fcmp oge fp128 %v2, %v3
|
|
|
|
%cr = and i1 %c1, %c0
|
|
|
|
%sel = select i1 %cr, i32 %a, i32 %b
|
|
|
|
ret i32 %sel
|
|
|
|
}
|
|
|
|
|
2018-12-06 09:40:23 +08:00
|
|
|
; This testcase resembles the core problem of http://llvm.org/PR39550
|
|
|
|
; (an OR operation is 2 levels deep but needs to be implemented first)
|
|
|
|
; CHECK-LABEL: deep_or
|
|
|
|
; CHECK: cmp w2, #20
|
|
|
|
; CHECK-NEXT: ccmp w2, #15, #4, ne
|
|
|
|
; CHECK-NEXT: ccmp w1, #0, #4, eq
|
|
|
|
; CHECK-NEXT: ccmp w0, #0, #4, ne
|
|
|
|
; CHECK-NEXT: csel w0, w4, w5, ne
|
|
|
|
; CHECK-NEXT: ret
|
|
|
|
define i32 @deep_or(i32 %a0, i32 %a1, i32 %a2, i32 %a3, i32 %x, i32 %y) {
|
|
|
|
%c0 = icmp ne i32 %a0, 0
|
|
|
|
%c1 = icmp ne i32 %a1, 0
|
|
|
|
%c2 = icmp eq i32 %a2, 15
|
|
|
|
%c3 = icmp eq i32 %a2, 20
|
|
|
|
|
|
|
|
%or = or i1 %c2, %c3
|
|
|
|
%and0 = and i1 %or, %c1
|
|
|
|
%and1 = and i1 %and0, %c0
|
|
|
|
%sel = select i1 %and1, i32 %x, i32 %y
|
|
|
|
ret i32 %sel
|
|
|
|
}
|
|
|
|
|
|
|
|
; Variation of deep_or, we still need to implement the OR first though.
|
|
|
|
; CHECK-LABEL: deep_or1
|
|
|
|
; CHECK: cmp w2, #20
|
|
|
|
; CHECK-NEXT: ccmp w2, #15, #4, ne
|
|
|
|
; CHECK-NEXT: ccmp w0, #0, #4, eq
|
|
|
|
; CHECK-NEXT: ccmp w1, #0, #4, ne
|
|
|
|
; CHECK-NEXT: csel w0, w4, w5, ne
|
|
|
|
; CHECK-NEXT: ret
|
|
|
|
define i32 @deep_or1(i32 %a0, i32 %a1, i32 %a2, i32 %a3, i32 %x, i32 %y) {
|
|
|
|
%c0 = icmp ne i32 %a0, 0
|
|
|
|
%c1 = icmp ne i32 %a1, 0
|
|
|
|
%c2 = icmp eq i32 %a2, 15
|
|
|
|
%c3 = icmp eq i32 %a2, 20
|
|
|
|
|
|
|
|
%or = or i1 %c2, %c3
|
|
|
|
%and0 = and i1 %c0, %or
|
|
|
|
%and1 = and i1 %and0, %c1
|
|
|
|
%sel = select i1 %and1, i32 %x, i32 %y
|
|
|
|
ret i32 %sel
|
|
|
|
}
|
|
|
|
|
|
|
|
; Variation of deep_or, we still need to implement the OR first though.
|
|
|
|
; CHECK-LABEL: deep_or2
|
|
|
|
; CHECK: cmp w2, #20
|
|
|
|
; CHECK-NEXT: ccmp w2, #15, #4, ne
|
|
|
|
; CHECK-NEXT: ccmp w1, #0, #4, eq
|
|
|
|
; CHECK-NEXT: ccmp w0, #0, #4, ne
|
|
|
|
; CHECK-NEXT: csel w0, w4, w5, ne
|
|
|
|
; CHECK-NEXT: ret
|
|
|
|
define i32 @deep_or2(i32 %a0, i32 %a1, i32 %a2, i32 %a3, i32 %x, i32 %y) {
|
|
|
|
%c0 = icmp ne i32 %a0, 0
|
|
|
|
%c1 = icmp ne i32 %a1, 0
|
|
|
|
%c2 = icmp eq i32 %a2, 15
|
|
|
|
%c3 = icmp eq i32 %a2, 20
|
|
|
|
|
|
|
|
%or = or i1 %c2, %c3
|
|
|
|
%and0 = and i1 %c0, %c1
|
|
|
|
%and1 = and i1 %and0, %or
|
|
|
|
%sel = select i1 %and1, i32 %x, i32 %y
|
|
|
|
ret i32 %sel
|
|
|
|
}
|
|
|
|
|
[AArch64] Lower 2-CC FCCMPs (one/ueq) using AND'ed CCs.
The current behavior is incorrect, as the two CCs returned by
changeFPCCToAArch64CC, intended to be OR'ed, are instead used
in an AND ccmp chain.
Consider:
define i32 @t(float %a, float %b, float %c, float %d, i32 %e, i32 %f) {
%cc1 = fcmp one float %a, %b
%cc2 = fcmp olt float %c, %d
%and = and i1 %cc1, %cc2
%r = select i1 %and, i32 %e, i32 %f
ret i32 %r
}
Assuming (%a < %b) and (%c < %d); we used to do:
fcmp s0, s1 # nzcv <- 1000
orr w8, wzr, #0x1 # w8 <- 1
csel w9, w8, wzr, mi # w9 <- 1
csel w8, w8, w9, gt # w8 <- 1
fcmp s2, s3 # nzcv <- 1000
cset w9, mi # w9 <- 1
tst w8, w9 # (w8 & w9) == 1, so: nzcv <- 0000
csel w0, w0, w1, ne # w0 <- w0
We now do:
fcmp s2, s3 # nzcv <- 1000
fccmp s0, s1, #0, mi # mi, so: nzcv <- 1000
fccmp s0, s1, #8, le # !le, so: nzcv <- 1000
csel w0, w0, w1, pl # !pl, so: w0 <- w1
In other words, we transformed:
(c < d) && ((a < b) || (a > b))
into:
(c < d) && (a u>= b) && (a u<= b)
whereas, per De Morgan's, we wanted:
(c < d) && !((a u>= b) && (a u<= b))
Note that this problem doesn't occur in the test-suite.
changeFPCCToAArch64CC produces disjunct CCs; here, one -> mi/gt.
We can't represent that in the fccmp chain; it can't express
arbitrary OR sequences, as one comment explains:
In general we can create code for arbitrary "... (and (and A B) C)"
sequences. We can also implement some "or" expressions, because
"(or A B)" is equivalent to "not (and (not A) (not B))" and we can
implement some negation operations. [...] However there is no way
to negate the result of a partial sequence.
Instead, introduce changeFPCCToANDAArch64CC, which produces the
conjunct cond codes:
- (a one b)
== ((a olt b) || (a ogt b))
== ((a ord b) && (a une b))
- (a ueq b)
== ((a uno b) || (a oeq b))
== ((a ule b) && (a uge b))
Note that, at first, one might think that, when PushNegate is true,
we should use the disjunct CCs, in effect doing:
(a || b)
= !(!a && !(b))
= !(!a && !(b1 || b2)) <- changeFPCCToAArch64CC(b, b1, b2)
= !(!a && !b1 && !b2)
However, we can take advantage of the fact that the CC is already
negated, which lets us avoid special-casing PushNegate and doing
the simpler to reason about:
(a || b)
= !(!a && (!b))
= !(!a && (b1 && b2)) <- changeFPCCToANDAArch64CC(!b, b1, b2)
= !(!a && b1 && b2)
This makes both emitConditionalCompare cases behave identically,
and produces correct ccmp sequences for the 2-CC fcmps.
llvm-svn: 258533
2016-01-23 03:43:54 +08:00
|
|
|
attributes #0 = { nounwind }
|