llvm-project/clang/lib/AST/ASTContext.cpp

3396 lines
125 KiB
C++
Raw Normal View History

//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the ASTContext interface.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExternalASTSource.h"
#include "clang/AST/RecordLayout.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Bitcode/Serialize.h"
#include "llvm/Bitcode/Deserialize.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/MemoryBuffer.h"
using namespace clang;
enum FloatingRank {
FloatRank, DoubleRank, LongDoubleRank
};
ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
TargetInfo &t,
IdentifierTable &idents, SelectorTable &sels,
bool FreeMem, unsigned size_reserve) :
GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0),
ObjCFastEnumerationStateTypeDecl(0), SourceMgr(SM), LangOpts(LOpts),
FreeMemory(FreeMem), Target(t), Idents(idents), Selectors(sels),
ExternalSource(0) {
if (size_reserve > 0) Types.reserve(size_reserve);
InitBuiltinTypes();
BuiltinInfo.InitializeBuiltins(idents, Target, LangOpts.NoBuiltin);
TUDecl = TranslationUnitDecl::Create(*this);
}
ASTContext::~ASTContext() {
// Deallocate all the types.
while (!Types.empty()) {
Types.back()->Destroy(*this);
Types.pop_back();
}
{
llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end();
while (I != E) {
ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
delete R;
}
}
{
llvm::DenseMap<const ObjCInterfaceDecl*, const ASTRecordLayout*>::iterator
I = ASTObjCInterfaces.begin(), E = ASTObjCInterfaces.end();
while (I != E) {
ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
delete R;
}
}
{
llvm::DenseMap<const ObjCInterfaceDecl*, RecordDecl*>::iterator
I = ASTRecordForInterface.begin(), E = ASTRecordForInterface.end();
while (I != E) {
RecordDecl *R = (I++)->second;
R->Destroy(*this);
}
}
// Destroy nested-name-specifiers.
for (llvm::FoldingSet<NestedNameSpecifier>::iterator
NNS = NestedNameSpecifiers.begin(),
NNSEnd = NestedNameSpecifiers.end();
NNS != NNSEnd;
/* Increment in loop */)
(*NNS++).Destroy(*this);
if (GlobalNestedNameSpecifier)
GlobalNestedNameSpecifier->Destroy(*this);
TUDecl->Destroy(*this);
}
void
ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
ExternalSource.reset(Source.take());
}
void ASTContext::PrintStats() const {
fprintf(stderr, "*** AST Context Stats:\n");
fprintf(stderr, " %d types total.\n", (int)Types.size());
unsigned NumBuiltin = 0, NumPointer = 0, NumArray = 0, NumFunctionP = 0;
unsigned NumVector = 0, NumComplex = 0, NumBlockPointer = 0;
unsigned NumFunctionNP = 0, NumTypeName = 0, NumTagged = 0;
unsigned NumLValueReference = 0, NumRValueReference = 0, NumMemberPointer = 0;
unsigned NumTagStruct = 0, NumTagUnion = 0, NumTagEnum = 0, NumTagClass = 0;
unsigned NumObjCInterfaces = 0, NumObjCQualifiedInterfaces = 0;
unsigned NumObjCQualifiedIds = 0;
unsigned NumTypeOfTypes = 0, NumTypeOfExprTypes = 0;
unsigned NumExtQual = 0;
for (unsigned i = 0, e = Types.size(); i != e; ++i) {
Type *T = Types[i];
if (isa<BuiltinType>(T))
++NumBuiltin;
else if (isa<PointerType>(T))
++NumPointer;
else if (isa<BlockPointerType>(T))
++NumBlockPointer;
else if (isa<LValueReferenceType>(T))
++NumLValueReference;
else if (isa<RValueReferenceType>(T))
++NumRValueReference;
else if (isa<MemberPointerType>(T))
++NumMemberPointer;
else if (isa<ComplexType>(T))
++NumComplex;
else if (isa<ArrayType>(T))
++NumArray;
else if (isa<VectorType>(T))
++NumVector;
else if (isa<FunctionNoProtoType>(T))
++NumFunctionNP;
else if (isa<FunctionProtoType>(T))
++NumFunctionP;
else if (isa<TypedefType>(T))
++NumTypeName;
else if (TagType *TT = dyn_cast<TagType>(T)) {
++NumTagged;
switch (TT->getDecl()->getTagKind()) {
default: assert(0 && "Unknown tagged type!");
case TagDecl::TK_struct: ++NumTagStruct; break;
case TagDecl::TK_union: ++NumTagUnion; break;
case TagDecl::TK_class: ++NumTagClass; break;
case TagDecl::TK_enum: ++NumTagEnum; break;
}
} else if (isa<ObjCInterfaceType>(T))
++NumObjCInterfaces;
else if (isa<ObjCQualifiedInterfaceType>(T))
++NumObjCQualifiedInterfaces;
else if (isa<ObjCQualifiedIdType>(T))
++NumObjCQualifiedIds;
else if (isa<TypeOfType>(T))
++NumTypeOfTypes;
else if (isa<TypeOfExprType>(T))
++NumTypeOfExprTypes;
else if (isa<ExtQualType>(T))
++NumExtQual;
else {
QualType(T, 0).dump();
assert(0 && "Unknown type!");
}
}
fprintf(stderr, " %d builtin types\n", NumBuiltin);
fprintf(stderr, " %d pointer types\n", NumPointer);
fprintf(stderr, " %d block pointer types\n", NumBlockPointer);
fprintf(stderr, " %d lvalue reference types\n", NumLValueReference);
fprintf(stderr, " %d rvalue reference types\n", NumRValueReference);
fprintf(stderr, " %d member pointer types\n", NumMemberPointer);
fprintf(stderr, " %d complex types\n", NumComplex);
fprintf(stderr, " %d array types\n", NumArray);
fprintf(stderr, " %d vector types\n", NumVector);
fprintf(stderr, " %d function types with proto\n", NumFunctionP);
fprintf(stderr, " %d function types with no proto\n", NumFunctionNP);
fprintf(stderr, " %d typename (typedef) types\n", NumTypeName);
fprintf(stderr, " %d tagged types\n", NumTagged);
fprintf(stderr, " %d struct types\n", NumTagStruct);
fprintf(stderr, " %d union types\n", NumTagUnion);
fprintf(stderr, " %d class types\n", NumTagClass);
fprintf(stderr, " %d enum types\n", NumTagEnum);
fprintf(stderr, " %d interface types\n", NumObjCInterfaces);
fprintf(stderr, " %d protocol qualified interface types\n",
NumObjCQualifiedInterfaces);
fprintf(stderr, " %d protocol qualified id types\n",
NumObjCQualifiedIds);
fprintf(stderr, " %d typeof types\n", NumTypeOfTypes);
fprintf(stderr, " %d typeof exprs\n", NumTypeOfExprTypes);
fprintf(stderr, " %d attribute-qualified types\n", NumExtQual);
fprintf(stderr, "Total bytes = %d\n", int(NumBuiltin*sizeof(BuiltinType)+
NumPointer*sizeof(PointerType)+NumArray*sizeof(ArrayType)+
NumComplex*sizeof(ComplexType)+NumVector*sizeof(VectorType)+
NumLValueReference*sizeof(LValueReferenceType)+
NumRValueReference*sizeof(RValueReferenceType)+
NumMemberPointer*sizeof(MemberPointerType)+
NumFunctionP*sizeof(FunctionProtoType)+
NumFunctionNP*sizeof(FunctionNoProtoType)+
NumTypeName*sizeof(TypedefType)+NumTagged*sizeof(TagType)+
NumTypeOfTypes*sizeof(TypeOfType)+NumTypeOfExprTypes*sizeof(TypeOfExprType)+
NumExtQual*sizeof(ExtQualType)));
if (ExternalSource.get()) {
fprintf(stderr, "\n");
ExternalSource->PrintStats();
}
}
void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) {
Types.push_back((R = QualType(new (*this,8) BuiltinType(K),0)).getTypePtr());
}
void ASTContext::InitBuiltinTypes() {
assert(VoidTy.isNull() && "Context reinitialized?");
// C99 6.2.5p19.
InitBuiltinType(VoidTy, BuiltinType::Void);
// C99 6.2.5p2.
InitBuiltinType(BoolTy, BuiltinType::Bool);
// C99 6.2.5p3.
if (Target.isCharSigned())
InitBuiltinType(CharTy, BuiltinType::Char_S);
else
InitBuiltinType(CharTy, BuiltinType::Char_U);
// C99 6.2.5p4.
InitBuiltinType(SignedCharTy, BuiltinType::SChar);
InitBuiltinType(ShortTy, BuiltinType::Short);
InitBuiltinType(IntTy, BuiltinType::Int);
InitBuiltinType(LongTy, BuiltinType::Long);
InitBuiltinType(LongLongTy, BuiltinType::LongLong);
// C99 6.2.5p6.
InitBuiltinType(UnsignedCharTy, BuiltinType::UChar);
InitBuiltinType(UnsignedShortTy, BuiltinType::UShort);
InitBuiltinType(UnsignedIntTy, BuiltinType::UInt);
InitBuiltinType(UnsignedLongTy, BuiltinType::ULong);
InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong);
// C99 6.2.5p10.
InitBuiltinType(FloatTy, BuiltinType::Float);
InitBuiltinType(DoubleTy, BuiltinType::Double);
InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble);
if (LangOpts.CPlusPlus) // C++ 3.9.1p5
InitBuiltinType(WCharTy, BuiltinType::WChar);
else // C99
WCharTy = getFromTargetType(Target.getWCharType());
// Placeholder type for functions.
InitBuiltinType(OverloadTy, BuiltinType::Overload);
// Placeholder type for type-dependent expressions whose type is
// completely unknown. No code should ever check a type against
// DependentTy and users should never see it; however, it is here to
// help diagnose failures to properly check for type-dependent
// expressions.
InitBuiltinType(DependentTy, BuiltinType::Dependent);
// C99 6.2.5p11.
FloatComplexTy = getComplexType(FloatTy);
DoubleComplexTy = getComplexType(DoubleTy);
LongDoubleComplexTy = getComplexType(LongDoubleTy);
BuiltinVaListType = QualType();
ObjCIdType = QualType();
IdStructType = 0;
ObjCClassType = QualType();
ClassStructType = 0;
ObjCConstantStringType = QualType();
// void * type
VoidPtrTy = getPointerType(VoidTy);
}
//===----------------------------------------------------------------------===//
// Type Sizing and Analysis
//===----------------------------------------------------------------------===//
/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
/// scalar floating point type.
const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
const BuiltinType *BT = T->getAsBuiltinType();
assert(BT && "Not a floating point type!");
switch (BT->getKind()) {
default: assert(0 && "Not a floating point type!");
case BuiltinType::Float: return Target.getFloatFormat();
case BuiltinType::Double: return Target.getDoubleFormat();
case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
}
}
/// getDeclAlign - Return a conservative estimate of the alignment of the
/// specified decl. Note that bitfields do not have a valid alignment, so
/// this method will assert on them.
unsigned ASTContext::getDeclAlignInBytes(const Decl *D) {
unsigned Align = Target.getCharWidth();
if (const AlignedAttr* AA = D->getAttr<AlignedAttr>())
Align = std::max(Align, AA->getAlignment());
if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
QualType T = VD->getType();
if (const ReferenceType* RT = T->getAsReferenceType()) {
unsigned AS = RT->getPointeeType().getAddressSpace();
Align = Target.getPointerAlign(AS);
} else if (!T->isIncompleteType() && !T->isFunctionType()) {
// Incomplete or function types default to 1.
while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
T = cast<ArrayType>(T)->getElementType();
Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
}
}
return Align / Target.getCharWidth();
}
/// getTypeSize - Return the size of the specified type, in bits. This method
/// does not work on incomplete types.
std::pair<uint64_t, unsigned>
ASTContext::getTypeInfo(const Type *T) {
T = getCanonicalType(T);
2009-02-28 02:32:39 +08:00
uint64_t Width=0;
unsigned Align=8;
switch (T->getTypeClass()) {
#define TYPE(Class, Base)
#define ABSTRACT_TYPE(Class, Base)
#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
#define DEPENDENT_TYPE(Class, Base) case Type::Class:
#include "clang/AST/TypeNodes.def"
assert(false && "Should not see non-canonical or dependent types");
break;
case Type::FunctionNoProto:
case Type::FunctionProto:
case Type::IncompleteArray:
assert(0 && "Incomplete types have no size!");
case Type::VariableArray:
assert(0 && "VLAs not implemented yet!");
case Type::ConstantArray: {
const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
Width = EltInfo.first*CAT->getSize().getZExtValue();
Align = EltInfo.second;
break;
}
case Type::ExtVector:
case Type::Vector: {
std::pair<uint64_t, unsigned> EltInfo =
getTypeInfo(cast<VectorType>(T)->getElementType());
Width = EltInfo.first*cast<VectorType>(T)->getNumElements();
Align = Width;
// If the alignment is not a power of 2, round up to the next power of 2.
// This happens for non-power-of-2 length vectors.
// FIXME: this should probably be a target property.
Align = 1 << llvm::Log2_32_Ceil(Align);
break;
}
case Type::Builtin:
switch (cast<BuiltinType>(T)->getKind()) {
default: assert(0 && "Unknown builtin type!");
case BuiltinType::Void:
assert(0 && "Incomplete types have no size!");
case BuiltinType::Bool:
Width = Target.getBoolWidth();
Align = Target.getBoolAlign();
break;
case BuiltinType::Char_S:
case BuiltinType::Char_U:
case BuiltinType::UChar:
case BuiltinType::SChar:
Width = Target.getCharWidth();
Align = Target.getCharAlign();
break;
case BuiltinType::WChar:
Width = Target.getWCharWidth();
Align = Target.getWCharAlign();
break;
case BuiltinType::UShort:
case BuiltinType::Short:
Width = Target.getShortWidth();
Align = Target.getShortAlign();
break;
case BuiltinType::UInt:
case BuiltinType::Int:
Width = Target.getIntWidth();
Align = Target.getIntAlign();
break;
case BuiltinType::ULong:
case BuiltinType::Long:
Width = Target.getLongWidth();
Align = Target.getLongAlign();
break;
case BuiltinType::ULongLong:
case BuiltinType::LongLong:
Width = Target.getLongLongWidth();
Align = Target.getLongLongAlign();
break;
case BuiltinType::Float:
Width = Target.getFloatWidth();
Align = Target.getFloatAlign();
break;
case BuiltinType::Double:
Width = Target.getDoubleWidth();
Align = Target.getDoubleAlign();
break;
case BuiltinType::LongDouble:
Width = Target.getLongDoubleWidth();
Align = Target.getLongDoubleAlign();
break;
}
break;
case Type::FixedWidthInt:
// FIXME: This isn't precisely correct; the width/alignment should depend
// on the available types for the target
Width = cast<FixedWidthIntType>(T)->getWidth();
Width = std::max(llvm::NextPowerOf2(Width - 1), (uint64_t)8);
Align = Width;
break;
case Type::ExtQual:
// FIXME: Pointers into different addr spaces could have different sizes and
// alignment requirements: getPointerInfo should take an AddrSpace.
return getTypeInfo(QualType(cast<ExtQualType>(T)->getBaseType(), 0));
case Type::ObjCQualifiedId:
case Type::ObjCQualifiedClass:
case Type::ObjCQualifiedInterface:
Width = Target.getPointerWidth(0);
Align = Target.getPointerAlign(0);
break;
case Type::BlockPointer: {
unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
Width = Target.getPointerWidth(AS);
Align = Target.getPointerAlign(AS);
break;
}
case Type::Pointer: {
unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
Width = Target.getPointerWidth(AS);
Align = Target.getPointerAlign(AS);
break;
}
case Type::LValueReference:
case Type::RValueReference:
2007-07-14 06:16:13 +08:00
// "When applied to a reference or a reference type, the result is the size
// of the referenced type." C++98 5.3.3p2: expr.sizeof.
// FIXME: This is wrong for struct layout: a reference in a struct has
// pointer size.
return getTypeInfo(cast<ReferenceType>(T)->getPointeeType());
case Type::MemberPointer: {
// FIXME: This is not only platform- but also ABI-dependent. We follow
// the GCC ABI, where pointers to data are one pointer large, pointers to
// functions two pointers. But if we want to support ABI compatibility with
// other compilers too, we need to delegate this completely to TargetInfo
// or some ABI abstraction layer.
QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
unsigned AS = Pointee.getAddressSpace();
Width = Target.getPointerWidth(AS);
if (Pointee->isFunctionType())
Width *= 2;
Align = Target.getPointerAlign(AS);
// GCC aligns at single pointer width.
}
case Type::Complex: {
// Complex types have the same alignment as their elements, but twice the
// size.
std::pair<uint64_t, unsigned> EltInfo =
getTypeInfo(cast<ComplexType>(T)->getElementType());
Width = EltInfo.first*2;
Align = EltInfo.second;
break;
}
case Type::ObjCInterface: {
const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
Width = Layout.getSize();
Align = Layout.getAlignment();
break;
}
case Type::Record:
case Type::Enum: {
const TagType *TT = cast<TagType>(T);
if (TT->getDecl()->isInvalidDecl()) {
Width = 1;
Align = 1;
break;
}
if (const EnumType *ET = dyn_cast<EnumType>(TT))
return getTypeInfo(ET->getDecl()->getIntegerType());
const RecordType *RT = cast<RecordType>(TT);
const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
Width = Layout.getSize();
Align = Layout.getAlignment();
break;
}
case Type::TemplateSpecialization:
assert(false && "Dependent types have no size");
break;
}
assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
return std::make_pair(Width, Align);
}
/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
/// type for the current target in bits. This can be different than the ABI
/// alignment in cases where it is beneficial for performance to overalign
/// a data type.
unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
unsigned ABIAlign = getTypeAlign(T);
// Doubles should be naturally aligned if possible.
if (T->isSpecificBuiltinType(BuiltinType::Double))
return std::max(ABIAlign, 64U);
return ABIAlign;
}
/// LayoutField - Field layout.
void ASTRecordLayout::LayoutField(const FieldDecl *FD, unsigned FieldNo,
bool IsUnion, unsigned StructPacking,
ASTContext &Context) {
unsigned FieldPacking = StructPacking;
uint64_t FieldOffset = IsUnion ? 0 : Size;
uint64_t FieldSize;
unsigned FieldAlign;
// FIXME: Should this override struct packing? Probably we want to
// take the minimum?
if (const PackedAttr *PA = FD->getAttr<PackedAttr>())
FieldPacking = PA->getAlignment();
if (const Expr *BitWidthExpr = FD->getBitWidth()) {
// TODO: Need to check this algorithm on other targets!
// (tested on Linux-X86)
FieldSize =
BitWidthExpr->getIntegerConstantExprValue(Context).getZExtValue();
std::pair<uint64_t, unsigned> FieldInfo =
Context.getTypeInfo(FD->getType());
uint64_t TypeSize = FieldInfo.first;
// Determine the alignment of this bitfield. The packing
// attributes define a maximum and the alignment attribute defines
// a minimum.
// FIXME: What is the right behavior when the specified alignment
// is smaller than the specified packing?
FieldAlign = FieldInfo.second;
if (FieldPacking)
FieldAlign = std::min(FieldAlign, FieldPacking);
if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
FieldAlign = std::max(FieldAlign, AA->getAlignment());
// Check if we need to add padding to give the field the correct
// alignment.
if (FieldSize == 0 || (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)
FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
// Padding members don't affect overall alignment
if (!FD->getIdentifier())
FieldAlign = 1;
} else {
if (FD->getType()->isIncompleteArrayType()) {
// This is a flexible array member; we can't directly
// query getTypeInfo about these, so we figure it out here.
// Flexible array members don't have any size, but they
// have to be aligned appropriately for their element type.
FieldSize = 0;
const ArrayType* ATy = Context.getAsArrayType(FD->getType());
FieldAlign = Context.getTypeAlign(ATy->getElementType());
} else if (const ReferenceType *RT = FD->getType()->getAsReferenceType()) {
unsigned AS = RT->getPointeeType().getAddressSpace();
FieldSize = Context.Target.getPointerWidth(AS);
FieldAlign = Context.Target.getPointerAlign(AS);
} else {
std::pair<uint64_t, unsigned> FieldInfo =
Context.getTypeInfo(FD->getType());
FieldSize = FieldInfo.first;
FieldAlign = FieldInfo.second;
}
// Determine the alignment of this bitfield. The packing
// attributes define a maximum and the alignment attribute defines
// a minimum. Additionally, the packing alignment must be at least
// a byte for non-bitfields.
//
// FIXME: What is the right behavior when the specified alignment
// is smaller than the specified packing?
if (FieldPacking)
FieldAlign = std::min(FieldAlign, std::max(8U, FieldPacking));
if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
FieldAlign = std::max(FieldAlign, AA->getAlignment());
// Round up the current record size to the field's alignment boundary.
FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
}
// Place this field at the current location.
FieldOffsets[FieldNo] = FieldOffset;
// Reserve space for this field.
if (IsUnion) {
Size = std::max(Size, FieldSize);
} else {
Size = FieldOffset + FieldSize;
}
// Remember max struct/class alignment.
Alignment = std::max(Alignment, FieldAlign);
}
void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
llvm::SmallVectorImpl<FieldDecl*> &Fields) {
const ObjCInterfaceDecl *SuperClass = OI->getSuperClass();
if (SuperClass)
CollectObjCIvars(SuperClass, Fields);
for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
E = OI->ivar_end(); I != E; ++I) {
ObjCIvarDecl *IVDecl = *I;
if (!IVDecl->isInvalidDecl())
Fields.push_back(cast<FieldDecl>(IVDecl));
}
// look into properties.
for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(*this),
E = OI->prop_end(*this); I != E; ++I) {
if (ObjCIvarDecl *IV = (*I)->getPropertyIvarDecl())
Fields.push_back(cast<FieldDecl>(IV));
}
}
/// addRecordToClass - produces record info. for the class for its
/// ivars and all those inherited.
///
const RecordDecl *ASTContext::addRecordToClass(const ObjCInterfaceDecl *D) {
RecordDecl *&RD = ASTRecordForInterface[D];
if (RD) {
// If we have a record decl already and it is either a definition or if 'D'
// is still a forward declaration, return it.
if (RD->isDefinition() || D->isForwardDecl())
return RD;
}
// If D is a forward declaration, then just make a forward struct decl.
if (D->isForwardDecl())
return RD = RecordDecl::Create(*this, TagDecl::TK_struct, 0,
D->getLocation(),
D->getIdentifier());
llvm::SmallVector<FieldDecl*, 32> RecFields;
CollectObjCIvars(D, RecFields);
if (RD == 0)
RD = RecordDecl::Create(*this, TagDecl::TK_struct, 0, D->getLocation(),
D->getIdentifier());
/// FIXME! Can do collection of ivars and adding to the record while
/// doing it.
for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
RD->addDecl(*this,
FieldDecl::Create(*this, RD,
RecFields[i]->getLocation(),
RecFields[i]->getIdentifier(),
RecFields[i]->getType(),
RecFields[i]->getBitWidth(), false));
}
RD->completeDefinition(*this);
return RD;
}
/// setFieldDecl - maps a field for the given Ivar reference node.
//
void ASTContext::setFieldDecl(const ObjCInterfaceDecl *OI,
const ObjCIvarDecl *Ivar,
const ObjCIvarRefExpr *MRef) {
ASTFieldForIvarRef[MRef] = OI->lookupFieldDeclForIvar(*this, Ivar);
}
/// getASTObjcInterfaceLayout - Get or compute information about the layout of
/// the specified Objective C, which indicates its size and ivar
/// position information.
const ASTRecordLayout &
ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
// Look up this layout, if already laid out, return what we have.
const ASTRecordLayout *&Entry = ASTObjCInterfaces[D];
if (Entry) return *Entry;
// Allocate and assign into ASTRecordLayouts here. The "Entry" reference can
// be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into.
ASTRecordLayout *NewEntry = NULL;
2009-04-09 05:54:52 +08:00
// FIXME. Add actual count of synthesized ivars, instead of count
// of properties which is the upper bound, but is safe.
unsigned FieldCount =
D->ivar_size() + std::distance(D->prop_begin(*this), D->prop_end(*this));
if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
FieldCount++;
const ASTRecordLayout &SL = getASTObjCInterfaceLayout(SD);
unsigned Alignment = SL.getAlignment();
uint64_t Size = SL.getSize();
NewEntry = new ASTRecordLayout(Size, Alignment);
NewEntry->InitializeLayout(FieldCount);
// Super class is at the beginning of the layout.
NewEntry->SetFieldOffset(0, 0);
} else {
NewEntry = new ASTRecordLayout();
NewEntry->InitializeLayout(FieldCount);
}
Entry = NewEntry;
unsigned StructPacking = 0;
if (const PackedAttr *PA = D->getAttr<PackedAttr>())
StructPacking = PA->getAlignment();
if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
NewEntry->SetAlignment(std::max(NewEntry->getAlignment(),
AA->getAlignment()));
// Layout each ivar sequentially.
unsigned i = 0;
for (ObjCInterfaceDecl::ivar_iterator IVI = D->ivar_begin(),
IVE = D->ivar_end(); IVI != IVE; ++IVI) {
const ObjCIvarDecl* Ivar = (*IVI);
NewEntry->LayoutField(Ivar, i++, false, StructPacking, *this);
}
// Also synthesized ivars
for (ObjCInterfaceDecl::prop_iterator I = D->prop_begin(*this),
E = D->prop_end(*this); I != E; ++I) {
if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
NewEntry->LayoutField(Ivar, i++, false, StructPacking, *this);
}
// Finally, round the size of the total struct up to the alignment of the
// struct itself.
NewEntry->FinalizeLayout();
return *NewEntry;
}
/// getASTRecordLayout - Get or compute information about the layout of the
/// specified record (struct/union/class), which indicates its size and field
/// position information.
const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
Change struct forward declarations and definitions to use unique RecordDecls, as opposed to creating a single RecordDecl and reusing it. This change effects both RecordDecls and CXXRecordDecls, but does not effect EnumDecls (yet). The motivation of this patch is as follows: - Capture more source information, necessary for refactoring/rewriting clients. - Pave the way to resolve ownership issues with RecordDecls with the forthcoming addition of DeclGroups. Current caveats: - Until DeclGroups are in place, we will leak RecordDecls not explicitly referenced by the AST. For example: typedef struct { ... } x; The RecordDecl for the struct will be leaked because the TypedefDecl doesn't refer to it. This will be solved with DeclGroups. - This patch also (temporarily) breaks CodeGen. More below. High-level changes: - As before, TagType still refers to a TagDecl, but it doesn't own it. When a struct/union/class is first referenced, a RecordType and RecordDecl are created for it, and the RecordType refers to that RecordDecl. Later, if a new RecordDecl is created, the pointer to a RecordDecl in RecordType is updated to point to the RecordDecl that defines the struct/union/class. - TagDecl and RecordDecl now how a method 'getDefinition()' to return the TagDecl*/RecordDecl* that refers to the TagDecl* that defines a particular enum/struct/class/union. This is useful from going from a RecordDecl* that defines a forward declaration to the RecordDecl* that provides the actual definition. Note that this also works for EnumDecls, except that in this case there is no distinction between forward declarations and definitions (yet). - Clients should no longer assume that 'isDefinition()' returns true from a RecordDecl if the corresponding struct/union/class has been defined. isDefinition() only returns true if a particular RecordDecl is the defining Decl. Use 'getDefinition()' instead to determine if a struct has been defined. - The main changes to Sema happen in ActOnTag. To make the changes more incremental, I split off the processing of enums and structs et al into two code paths. Enums use the original code path (which is in ActOnTag) and structs use the ActOnTagStruct. Eventually the two code paths will be merged, but the idea was to preserve the original logic both for comparison and not to change the logic for both enums and structs all at once. - There is NO CHAINING of RecordDecls for the same RecordType. All RecordDecls that correspond to the same type simply have a pointer to that type. If we need to figure out what are all the RecordDecls for a given type we can build a backmap. - The diff in CXXRecordDecl.[cpp,h] is actually very small; it just mimics the changes to RecordDecl. For some reason 'svn' marks the entire file as changed. Why is CodeGen broken: - Codegen assumes that there is an equivalence between RecordDecl* and RecordType*. This was true before because we only created one RecordDecl* for a given RecordType*, but it is no longer true. I believe this shouldn't be too hard to change, but the patch was big enough as it is. I have tested this patch on both the clang test suite, and by running the static analyzer over Postgresql and a large Apple-internal project (mix of Objective-C and C). llvm-svn: 55839
2008-09-06 01:16:31 +08:00
D = D->getDefinition(*this);
assert(D && "Cannot get layout of forward declarations!");
// Look up this layout, if already laid out, return what we have.
const ASTRecordLayout *&Entry = ASTRecordLayouts[D];
if (Entry) return *Entry;
// Allocate and assign into ASTRecordLayouts here. The "Entry" reference can
// be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into.
ASTRecordLayout *NewEntry = new ASTRecordLayout();
Entry = NewEntry;
// FIXME: Avoid linear walk through the fields, if possible.
NewEntry->InitializeLayout(std::distance(D->field_begin(*this),
D->field_end(*this)));
bool IsUnion = D->isUnion();
unsigned StructPacking = 0;
if (const PackedAttr *PA = D->getAttr<PackedAttr>())
StructPacking = PA->getAlignment();
if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
NewEntry->SetAlignment(std::max(NewEntry->getAlignment(),
AA->getAlignment()));
// Layout each field, for now, just sequentially, respecting alignment. In
// the future, this will need to be tweakable by targets.
unsigned FieldIdx = 0;
for (RecordDecl::field_iterator Field = D->field_begin(*this),
FieldEnd = D->field_end(*this);
Field != FieldEnd; (void)++Field, ++FieldIdx)
NewEntry->LayoutField(*Field, FieldIdx, IsUnion, StructPacking, *this);
// Finally, round the size of the total struct up to the alignment of the
// struct itself.
NewEntry->FinalizeLayout();
return *NewEntry;
}
//===----------------------------------------------------------------------===//
// Type creation/memoization methods
//===----------------------------------------------------------------------===//
QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
QualType CanT = getCanonicalType(T);
if (CanT.getAddressSpace() == AddressSpace)
return T;
// If we are composing extended qualifiers together, merge together into one
// ExtQualType node.
unsigned CVRQuals = T.getCVRQualifiers();
QualType::GCAttrTypes GCAttr = QualType::GCNone;
Type *TypeNode = T.getTypePtr();
if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
// If this type already has an address space specified, it cannot get
// another one.
assert(EQT->getAddressSpace() == 0 &&
"Type cannot be in multiple addr spaces!");
GCAttr = EQT->getObjCGCAttr();
TypeNode = EQT->getBaseType();
}
// Check if we've already instantiated this type.
llvm::FoldingSetNodeID ID;
ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);
void *InsertPos = 0;
if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(EXTQy, CVRQuals);
// If the base type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
QualType Canonical;
if (!TypeNode->isCanonical()) {
Canonical = getAddrSpaceQualType(CanT, AddressSpace);
// Update InsertPos, the previous call could have invalidated it.
ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
}
ExtQualType *New =
new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
ExtQualTypes.InsertNode(New, InsertPos);
Types.push_back(New);
return QualType(New, CVRQuals);
}
QualType ASTContext::getObjCGCQualType(QualType T,
QualType::GCAttrTypes GCAttr) {
QualType CanT = getCanonicalType(T);
if (CanT.getObjCGCAttr() == GCAttr)
return T;
// If we are composing extended qualifiers together, merge together into one
// ExtQualType node.
unsigned CVRQuals = T.getCVRQualifiers();
Type *TypeNode = T.getTypePtr();
unsigned AddressSpace = 0;
if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
// If this type already has an address space specified, it cannot get
// another one.
assert(EQT->getObjCGCAttr() == QualType::GCNone &&
"Type cannot be in multiple addr spaces!");
AddressSpace = EQT->getAddressSpace();
TypeNode = EQT->getBaseType();
}
// Check if we've already instantiated an gc qual'd type of this type.
llvm::FoldingSetNodeID ID;
ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);
void *InsertPos = 0;
if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(EXTQy, CVRQuals);
// If the base type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
// FIXME: Isn't this also not canonical if the base type is a array
// or pointer type? I can't find any documentation for objc_gc, though...
QualType Canonical;
if (!T->isCanonical()) {
Canonical = getObjCGCQualType(CanT, GCAttr);
// Update InsertPos, the previous call could have invalidated it.
ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
}
ExtQualType *New =
new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
ExtQualTypes.InsertNode(New, InsertPos);
Types.push_back(New);
return QualType(New, CVRQuals);
}
/// getComplexType - Return the uniqued reference to the type for a complex
/// number with the specified element type.
QualType ASTContext::getComplexType(QualType T) {
// Unique pointers, to guarantee there is only one pointer of a particular
// structure.
llvm::FoldingSetNodeID ID;
ComplexType::Profile(ID, T);
void *InsertPos = 0;
if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(CT, 0);
// If the pointee type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
QualType Canonical;
if (!T->isCanonical()) {
Canonical = getComplexType(getCanonicalType(T));
// Get the new insert position for the node we care about.
ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
}
ComplexType *New = new (*this,8) ComplexType(T, Canonical);
Types.push_back(New);
ComplexTypes.InsertNode(New, InsertPos);
return QualType(New, 0);
}
QualType ASTContext::getFixedWidthIntType(unsigned Width, bool Signed) {
llvm::DenseMap<unsigned, FixedWidthIntType*> &Map = Signed ?
SignedFixedWidthIntTypes : UnsignedFixedWidthIntTypes;
FixedWidthIntType *&Entry = Map[Width];
if (!Entry)
Entry = new FixedWidthIntType(Width, Signed);
return QualType(Entry, 0);
}
/// getPointerType - Return the uniqued reference to the type for a pointer to
/// the specified type.
QualType ASTContext::getPointerType(QualType T) {
// Unique pointers, to guarantee there is only one pointer of a particular
// structure.
llvm::FoldingSetNodeID ID;
PointerType::Profile(ID, T);
void *InsertPos = 0;
if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(PT, 0);
// If the pointee type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
QualType Canonical;
if (!T->isCanonical()) {
Canonical = getPointerType(getCanonicalType(T));
// Get the new insert position for the node we care about.
PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
}
PointerType *New = new (*this,8) PointerType(T, Canonical);
Types.push_back(New);
PointerTypes.InsertNode(New, InsertPos);
return QualType(New, 0);
}
/// getBlockPointerType - Return the uniqued reference to the type for
/// a pointer to the specified block.
QualType ASTContext::getBlockPointerType(QualType T) {
assert(T->isFunctionType() && "block of function types only");
// Unique pointers, to guarantee there is only one block of a particular
// structure.
llvm::FoldingSetNodeID ID;
BlockPointerType::Profile(ID, T);
void *InsertPos = 0;
if (BlockPointerType *PT =
BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(PT, 0);
// If the block pointee type isn't canonical, this won't be a canonical
// type either so fill in the canonical type field.
QualType Canonical;
if (!T->isCanonical()) {
Canonical = getBlockPointerType(getCanonicalType(T));
// Get the new insert position for the node we care about.
BlockPointerType *NewIP =
BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
}
BlockPointerType *New = new (*this,8) BlockPointerType(T, Canonical);
Types.push_back(New);
BlockPointerTypes.InsertNode(New, InsertPos);
return QualType(New, 0);
}
/// getLValueReferenceType - Return the uniqued reference to the type for an
/// lvalue reference to the specified type.
QualType ASTContext::getLValueReferenceType(QualType T) {
// Unique pointers, to guarantee there is only one pointer of a particular
// structure.
llvm::FoldingSetNodeID ID;
ReferenceType::Profile(ID, T);
void *InsertPos = 0;
if (LValueReferenceType *RT =
LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(RT, 0);
// If the referencee type isn't canonical, this won't be a canonical type
// either, so fill in the canonical type field.
QualType Canonical;
if (!T->isCanonical()) {
Canonical = getLValueReferenceType(getCanonicalType(T));
// Get the new insert position for the node we care about.
LValueReferenceType *NewIP =
LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
}
LValueReferenceType *New = new (*this,8) LValueReferenceType(T, Canonical);
Types.push_back(New);
LValueReferenceTypes.InsertNode(New, InsertPos);
return QualType(New, 0);
}
/// getRValueReferenceType - Return the uniqued reference to the type for an
/// rvalue reference to the specified type.
QualType ASTContext::getRValueReferenceType(QualType T) {
// Unique pointers, to guarantee there is only one pointer of a particular
// structure.
llvm::FoldingSetNodeID ID;
ReferenceType::Profile(ID, T);
void *InsertPos = 0;
if (RValueReferenceType *RT =
RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(RT, 0);
// If the referencee type isn't canonical, this won't be a canonical type
// either, so fill in the canonical type field.
QualType Canonical;
if (!T->isCanonical()) {
Canonical = getRValueReferenceType(getCanonicalType(T));
// Get the new insert position for the node we care about.
RValueReferenceType *NewIP =
RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
}
RValueReferenceType *New = new (*this,8) RValueReferenceType(T, Canonical);
Types.push_back(New);
RValueReferenceTypes.InsertNode(New, InsertPos);
return QualType(New, 0);
}
/// getMemberPointerType - Return the uniqued reference to the type for a
/// member pointer to the specified type, in the specified class.
QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls)
{
// Unique pointers, to guarantee there is only one pointer of a particular
// structure.
llvm::FoldingSetNodeID ID;
MemberPointerType::Profile(ID, T, Cls);
void *InsertPos = 0;
if (MemberPointerType *PT =
MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(PT, 0);
// If the pointee or class type isn't canonical, this won't be a canonical
// type either, so fill in the canonical type field.
QualType Canonical;
if (!T->isCanonical()) {
Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
// Get the new insert position for the node we care about.
MemberPointerType *NewIP =
MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
}
MemberPointerType *New = new (*this,8) MemberPointerType(T, Cls, Canonical);
Types.push_back(New);
MemberPointerTypes.InsertNode(New, InsertPos);
return QualType(New, 0);
}
/// getConstantArrayType - Return the unique reference to the type for an
/// array of the specified element type.
QualType ASTContext::getConstantArrayType(QualType EltTy,
const llvm::APInt &ArySize,
ArrayType::ArraySizeModifier ASM,
unsigned EltTypeQuals) {
llvm::FoldingSetNodeID ID;
ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
void *InsertPos = 0;
if (ConstantArrayType *ATP =
ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(ATP, 0);
// If the element type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
QualType Canonical;
if (!EltTy->isCanonical()) {
Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
ASM, EltTypeQuals);
// Get the new insert position for the node we care about.
ConstantArrayType *NewIP =
ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
}
ConstantArrayType *New =
new(*this,8)ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
ConstantArrayTypes.InsertNode(New, InsertPos);
Types.push_back(New);
return QualType(New, 0);
}
2007-08-31 02:14:25 +08:00
/// getVariableArrayType - Returns a non-unique reference to the type for a
/// variable array of the specified element type.
QualType ASTContext::getVariableArrayType(QualType EltTy, Expr *NumElts,
ArrayType::ArraySizeModifier ASM,
unsigned EltTypeQuals) {
// Since we don't unique expressions, it isn't possible to unique VLA's
// that have an expression provided for their size.
VariableArrayType *New =
new(*this,8)VariableArrayType(EltTy,QualType(), NumElts, ASM, EltTypeQuals);
VariableArrayTypes.push_back(New);
Types.push_back(New);
return QualType(New, 0);
}
/// getDependentSizedArrayType - Returns a non-unique reference to
/// the type for a dependently-sized array of the specified element
/// type. FIXME: We will need these to be uniqued, or at least
/// comparable, at some point.
QualType ASTContext::getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
ArrayType::ArraySizeModifier ASM,
unsigned EltTypeQuals) {
assert((NumElts->isTypeDependent() || NumElts->isValueDependent()) &&
"Size must be type- or value-dependent!");
// Since we don't unique expressions, it isn't possible to unique
// dependently-sized array types.
DependentSizedArrayType *New =
new (*this,8) DependentSizedArrayType(EltTy, QualType(), NumElts,
ASM, EltTypeQuals);
DependentSizedArrayTypes.push_back(New);
Types.push_back(New);
return QualType(New, 0);
}
QualType ASTContext::getIncompleteArrayType(QualType EltTy,
ArrayType::ArraySizeModifier ASM,
unsigned EltTypeQuals) {
llvm::FoldingSetNodeID ID;
IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
void *InsertPos = 0;
if (IncompleteArrayType *ATP =
IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(ATP, 0);
// If the element type isn't canonical, this won't be a canonical type
// either, so fill in the canonical type field.
QualType Canonical;
if (!EltTy->isCanonical()) {
Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
ASM, EltTypeQuals);
// Get the new insert position for the node we care about.
IncompleteArrayType *NewIP =
IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
}
IncompleteArrayType *New = new (*this,8) IncompleteArrayType(EltTy, Canonical,
ASM, EltTypeQuals);
IncompleteArrayTypes.InsertNode(New, InsertPos);
Types.push_back(New);
return QualType(New, 0);
}
/// getVectorType - Return the unique reference to a vector type of
/// the specified element type and size. VectorType must be a built-in type.
QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
BuiltinType *baseType;
baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
// Check if we've already instantiated a vector of this type.
llvm::FoldingSetNodeID ID;
VectorType::Profile(ID, vecType, NumElts, Type::Vector);
void *InsertPos = 0;
if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(VTP, 0);
// If the element type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
QualType Canonical;
if (!vecType->isCanonical()) {
Canonical = getVectorType(getCanonicalType(vecType), NumElts);
// Get the new insert position for the node we care about.
VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
}
VectorType *New = new (*this,8) VectorType(vecType, NumElts, Canonical);
VectorTypes.InsertNode(New, InsertPos);
Types.push_back(New);
return QualType(New, 0);
}
/// getExtVectorType - Return the unique reference to an extended vector type of
/// the specified element type and size. VectorType must be a built-in type.
QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
BuiltinType *baseType;
baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
// Check if we've already instantiated a vector of this type.
llvm::FoldingSetNodeID ID;
VectorType::Profile(ID, vecType, NumElts, Type::ExtVector);
void *InsertPos = 0;
if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(VTP, 0);
// If the element type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
QualType Canonical;
if (!vecType->isCanonical()) {
Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
// Get the new insert position for the node we care about.
VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
}
ExtVectorType *New = new (*this,8) ExtVectorType(vecType, NumElts, Canonical);
VectorTypes.InsertNode(New, InsertPos);
Types.push_back(New);
return QualType(New, 0);
}
/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
///
QualType ASTContext::getFunctionNoProtoType(QualType ResultTy) {
// Unique functions, to guarantee there is only one function of a particular
// structure.
llvm::FoldingSetNodeID ID;
FunctionNoProtoType::Profile(ID, ResultTy);
void *InsertPos = 0;
if (FunctionNoProtoType *FT =
FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(FT, 0);
QualType Canonical;
if (!ResultTy->isCanonical()) {
Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy));
// Get the new insert position for the node we care about.
FunctionNoProtoType *NewIP =
FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
}
FunctionNoProtoType *New =new(*this,8)FunctionNoProtoType(ResultTy,Canonical);
Types.push_back(New);
FunctionNoProtoTypes.InsertNode(New, InsertPos);
return QualType(New, 0);
}
/// getFunctionType - Return a normal function type with a typed argument
/// list. isVariadic indicates whether the argument list includes '...'.
QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
unsigned NumArgs, bool isVariadic,
unsigned TypeQuals) {
// Unique functions, to guarantee there is only one function of a particular
// structure.
llvm::FoldingSetNodeID ID;
FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
TypeQuals);
void *InsertPos = 0;
if (FunctionProtoType *FTP =
FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(FTP, 0);
// Determine whether the type being created is already canonical or not.
bool isCanonical = ResultTy->isCanonical();
for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
if (!ArgArray[i]->isCanonical())
isCanonical = false;
// If this type isn't canonical, get the canonical version of it.
QualType Canonical;
if (!isCanonical) {
llvm::SmallVector<QualType, 16> CanonicalArgs;
CanonicalArgs.reserve(NumArgs);
for (unsigned i = 0; i != NumArgs; ++i)
CanonicalArgs.push_back(getCanonicalType(ArgArray[i]));
Canonical = getFunctionType(getCanonicalType(ResultTy),
&CanonicalArgs[0], NumArgs,
isVariadic, TypeQuals);
// Get the new insert position for the node we care about.
FunctionProtoType *NewIP =
FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
}
// FunctionProtoType objects are allocated with extra bytes after them
// for a variable size array (for parameter types) at the end of them.
FunctionProtoType *FTP =
(FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
NumArgs*sizeof(QualType), 8);
new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
TypeQuals, Canonical);
Types.push_back(FTP);
FunctionProtoTypes.InsertNode(FTP, InsertPos);
return QualType(FTP, 0);
}
2006-11-10 15:17:23 +08:00
/// getTypeDeclType - Return the unique reference to the type for the
/// specified type declaration.
Change struct forward declarations and definitions to use unique RecordDecls, as opposed to creating a single RecordDecl and reusing it. This change effects both RecordDecls and CXXRecordDecls, but does not effect EnumDecls (yet). The motivation of this patch is as follows: - Capture more source information, necessary for refactoring/rewriting clients. - Pave the way to resolve ownership issues with RecordDecls with the forthcoming addition of DeclGroups. Current caveats: - Until DeclGroups are in place, we will leak RecordDecls not explicitly referenced by the AST. For example: typedef struct { ... } x; The RecordDecl for the struct will be leaked because the TypedefDecl doesn't refer to it. This will be solved with DeclGroups. - This patch also (temporarily) breaks CodeGen. More below. High-level changes: - As before, TagType still refers to a TagDecl, but it doesn't own it. When a struct/union/class is first referenced, a RecordType and RecordDecl are created for it, and the RecordType refers to that RecordDecl. Later, if a new RecordDecl is created, the pointer to a RecordDecl in RecordType is updated to point to the RecordDecl that defines the struct/union/class. - TagDecl and RecordDecl now how a method 'getDefinition()' to return the TagDecl*/RecordDecl* that refers to the TagDecl* that defines a particular enum/struct/class/union. This is useful from going from a RecordDecl* that defines a forward declaration to the RecordDecl* that provides the actual definition. Note that this also works for EnumDecls, except that in this case there is no distinction between forward declarations and definitions (yet). - Clients should no longer assume that 'isDefinition()' returns true from a RecordDecl if the corresponding struct/union/class has been defined. isDefinition() only returns true if a particular RecordDecl is the defining Decl. Use 'getDefinition()' instead to determine if a struct has been defined. - The main changes to Sema happen in ActOnTag. To make the changes more incremental, I split off the processing of enums and structs et al into two code paths. Enums use the original code path (which is in ActOnTag) and structs use the ActOnTagStruct. Eventually the two code paths will be merged, but the idea was to preserve the original logic both for comparison and not to change the logic for both enums and structs all at once. - There is NO CHAINING of RecordDecls for the same RecordType. All RecordDecls that correspond to the same type simply have a pointer to that type. If we need to figure out what are all the RecordDecls for a given type we can build a backmap. - The diff in CXXRecordDecl.[cpp,h] is actually very small; it just mimics the changes to RecordDecl. For some reason 'svn' marks the entire file as changed. Why is CodeGen broken: - Codegen assumes that there is an equivalence between RecordDecl* and RecordType*. This was true before because we only created one RecordDecl* for a given RecordType*, but it is no longer true. I believe this shouldn't be too hard to change, but the patch was big enough as it is. I have tested this patch on both the clang test suite, and by running the static analyzer over Postgresql and a large Apple-internal project (mix of Objective-C and C). llvm-svn: 55839
2008-09-06 01:16:31 +08:00
QualType ASTContext::getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl) {
assert(Decl && "Passed null for Decl param");
if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
return getTypedefType(Typedef);
else if (isa<TemplateTypeParmDecl>(Decl)) {
assert(false && "Template type parameter types are always available.");
} else if (ObjCInterfaceDecl *ObjCInterface = dyn_cast<ObjCInterfaceDecl>(Decl))
return getObjCInterfaceType(ObjCInterface);
if (RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
if (PrevDecl)
Decl->TypeForDecl = PrevDecl->TypeForDecl;
else
Decl->TypeForDecl = new (*this,8) RecordType(Record);
}
else if (EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
if (PrevDecl)
Decl->TypeForDecl = PrevDecl->TypeForDecl;
else
Decl->TypeForDecl = new (*this,8) EnumType(Enum);
Change struct forward declarations and definitions to use unique RecordDecls, as opposed to creating a single RecordDecl and reusing it. This change effects both RecordDecls and CXXRecordDecls, but does not effect EnumDecls (yet). The motivation of this patch is as follows: - Capture more source information, necessary for refactoring/rewriting clients. - Pave the way to resolve ownership issues with RecordDecls with the forthcoming addition of DeclGroups. Current caveats: - Until DeclGroups are in place, we will leak RecordDecls not explicitly referenced by the AST. For example: typedef struct { ... } x; The RecordDecl for the struct will be leaked because the TypedefDecl doesn't refer to it. This will be solved with DeclGroups. - This patch also (temporarily) breaks CodeGen. More below. High-level changes: - As before, TagType still refers to a TagDecl, but it doesn't own it. When a struct/union/class is first referenced, a RecordType and RecordDecl are created for it, and the RecordType refers to that RecordDecl. Later, if a new RecordDecl is created, the pointer to a RecordDecl in RecordType is updated to point to the RecordDecl that defines the struct/union/class. - TagDecl and RecordDecl now how a method 'getDefinition()' to return the TagDecl*/RecordDecl* that refers to the TagDecl* that defines a particular enum/struct/class/union. This is useful from going from a RecordDecl* that defines a forward declaration to the RecordDecl* that provides the actual definition. Note that this also works for EnumDecls, except that in this case there is no distinction between forward declarations and definitions (yet). - Clients should no longer assume that 'isDefinition()' returns true from a RecordDecl if the corresponding struct/union/class has been defined. isDefinition() only returns true if a particular RecordDecl is the defining Decl. Use 'getDefinition()' instead to determine if a struct has been defined. - The main changes to Sema happen in ActOnTag. To make the changes more incremental, I split off the processing of enums and structs et al into two code paths. Enums use the original code path (which is in ActOnTag) and structs use the ActOnTagStruct. Eventually the two code paths will be merged, but the idea was to preserve the original logic both for comparison and not to change the logic for both enums and structs all at once. - There is NO CHAINING of RecordDecls for the same RecordType. All RecordDecls that correspond to the same type simply have a pointer to that type. If we need to figure out what are all the RecordDecls for a given type we can build a backmap. - The diff in CXXRecordDecl.[cpp,h] is actually very small; it just mimics the changes to RecordDecl. For some reason 'svn' marks the entire file as changed. Why is CodeGen broken: - Codegen assumes that there is an equivalence between RecordDecl* and RecordType*. This was true before because we only created one RecordDecl* for a given RecordType*, but it is no longer true. I believe this shouldn't be too hard to change, but the patch was big enough as it is. I have tested this patch on both the clang test suite, and by running the static analyzer over Postgresql and a large Apple-internal project (mix of Objective-C and C). llvm-svn: 55839
2008-09-06 01:16:31 +08:00
}
else
assert(false && "TypeDecl without a type?");
Change struct forward declarations and definitions to use unique RecordDecls, as opposed to creating a single RecordDecl and reusing it. This change effects both RecordDecls and CXXRecordDecls, but does not effect EnumDecls (yet). The motivation of this patch is as follows: - Capture more source information, necessary for refactoring/rewriting clients. - Pave the way to resolve ownership issues with RecordDecls with the forthcoming addition of DeclGroups. Current caveats: - Until DeclGroups are in place, we will leak RecordDecls not explicitly referenced by the AST. For example: typedef struct { ... } x; The RecordDecl for the struct will be leaked because the TypedefDecl doesn't refer to it. This will be solved with DeclGroups. - This patch also (temporarily) breaks CodeGen. More below. High-level changes: - As before, TagType still refers to a TagDecl, but it doesn't own it. When a struct/union/class is first referenced, a RecordType and RecordDecl are created for it, and the RecordType refers to that RecordDecl. Later, if a new RecordDecl is created, the pointer to a RecordDecl in RecordType is updated to point to the RecordDecl that defines the struct/union/class. - TagDecl and RecordDecl now how a method 'getDefinition()' to return the TagDecl*/RecordDecl* that refers to the TagDecl* that defines a particular enum/struct/class/union. This is useful from going from a RecordDecl* that defines a forward declaration to the RecordDecl* that provides the actual definition. Note that this also works for EnumDecls, except that in this case there is no distinction between forward declarations and definitions (yet). - Clients should no longer assume that 'isDefinition()' returns true from a RecordDecl if the corresponding struct/union/class has been defined. isDefinition() only returns true if a particular RecordDecl is the defining Decl. Use 'getDefinition()' instead to determine if a struct has been defined. - The main changes to Sema happen in ActOnTag. To make the changes more incremental, I split off the processing of enums and structs et al into two code paths. Enums use the original code path (which is in ActOnTag) and structs use the ActOnTagStruct. Eventually the two code paths will be merged, but the idea was to preserve the original logic both for comparison and not to change the logic for both enums and structs all at once. - There is NO CHAINING of RecordDecls for the same RecordType. All RecordDecls that correspond to the same type simply have a pointer to that type. If we need to figure out what are all the RecordDecls for a given type we can build a backmap. - The diff in CXXRecordDecl.[cpp,h] is actually very small; it just mimics the changes to RecordDecl. For some reason 'svn' marks the entire file as changed. Why is CodeGen broken: - Codegen assumes that there is an equivalence between RecordDecl* and RecordType*. This was true before because we only created one RecordDecl* for a given RecordType*, but it is no longer true. I believe this shouldn't be too hard to change, but the patch was big enough as it is. I have tested this patch on both the clang test suite, and by running the static analyzer over Postgresql and a large Apple-internal project (mix of Objective-C and C). llvm-svn: 55839
2008-09-06 01:16:31 +08:00
if (!PrevDecl) Types.push_back(Decl->TypeForDecl);
return QualType(Decl->TypeForDecl, 0);
}
/// getTypedefType - Return the unique reference to the type for the
/// specified typename decl.
QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
Decl->TypeForDecl = new(*this,8) TypedefType(Type::Typedef, Decl, Canonical);
Types.push_back(Decl->TypeForDecl);
return QualType(Decl->TypeForDecl, 0);
}
/// getObjCInterfaceType - Return the unique reference to the type for the
/// specified ObjC interface decl.
QualType ASTContext::getObjCInterfaceType(ObjCInterfaceDecl *Decl) {
if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
Decl->TypeForDecl = new(*this,8) ObjCInterfaceType(Type::ObjCInterface, Decl);
Types.push_back(Decl->TypeForDecl);
return QualType(Decl->TypeForDecl, 0);
}
/// \brief Retrieve the template type parameter type for a template
/// parameter with the given depth, index, and (optionally) name.
QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
IdentifierInfo *Name) {
llvm::FoldingSetNodeID ID;
TemplateTypeParmType::Profile(ID, Depth, Index, Name);
void *InsertPos = 0;
TemplateTypeParmType *TypeParm
= TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
if (TypeParm)
return QualType(TypeParm, 0);
if (Name)
TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index, Name,
getTemplateTypeParmType(Depth, Index));
else
TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index);
Types.push_back(TypeParm);
TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
return QualType(TypeParm, 0);
}
QualType
ASTContext::getTemplateSpecializationType(TemplateName Template,
const TemplateArgument *Args,
unsigned NumArgs,
QualType Canon) {
if (!Canon.isNull())
Canon = getCanonicalType(Canon);
llvm::FoldingSetNodeID ID;
TemplateSpecializationType::Profile(ID, Template, Args, NumArgs);
void *InsertPos = 0;
TemplateSpecializationType *Spec
= TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
if (Spec)
return QualType(Spec, 0);
void *Mem = Allocate((sizeof(TemplateSpecializationType) +
sizeof(TemplateArgument) * NumArgs),
8);
Spec = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, Canon);
Types.push_back(Spec);
TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
return QualType(Spec, 0);
}
2009-03-19 08:18:19 +08:00
QualType
ASTContext::getQualifiedNameType(NestedNameSpecifier *NNS,
2009-03-19 08:18:19 +08:00
QualType NamedType) {
llvm::FoldingSetNodeID ID;
QualifiedNameType::Profile(ID, NNS, NamedType);
2009-03-19 08:18:19 +08:00
void *InsertPos = 0;
QualifiedNameType *T
= QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
if (T)
return QualType(T, 0);
T = new (*this) QualifiedNameType(NNS, NamedType,
getCanonicalType(NamedType));
2009-03-19 08:18:19 +08:00
Types.push_back(T);
QualifiedNameTypes.InsertNode(T, InsertPos);
return QualType(T, 0);
}
QualType ASTContext::getTypenameType(NestedNameSpecifier *NNS,
const IdentifierInfo *Name,
QualType Canon) {
assert(NNS->isDependent() && "nested-name-specifier must be dependent");
if (Canon.isNull()) {
NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
if (CanonNNS != NNS)
Canon = getTypenameType(CanonNNS, Name);
}
llvm::FoldingSetNodeID ID;
TypenameType::Profile(ID, NNS, Name);
void *InsertPos = 0;
TypenameType *T
= TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
if (T)
return QualType(T, 0);
T = new (*this) TypenameType(NNS, Name, Canon);
Types.push_back(T);
TypenameTypes.InsertNode(T, InsertPos);
return QualType(T, 0);
}
QualType
ASTContext::getTypenameType(NestedNameSpecifier *NNS,
const TemplateSpecializationType *TemplateId,
QualType Canon) {
assert(NNS->isDependent() && "nested-name-specifier must be dependent");
if (Canon.isNull()) {
NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
QualType CanonType = getCanonicalType(QualType(TemplateId, 0));
if (CanonNNS != NNS || CanonType != QualType(TemplateId, 0)) {
const TemplateSpecializationType *CanonTemplateId
= CanonType->getAsTemplateSpecializationType();
assert(CanonTemplateId &&
"Canonical type must also be a template specialization type");
Canon = getTypenameType(CanonNNS, CanonTemplateId);
}
}
llvm::FoldingSetNodeID ID;
TypenameType::Profile(ID, NNS, TemplateId);
void *InsertPos = 0;
TypenameType *T
= TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
if (T)
return QualType(T, 0);
T = new (*this) TypenameType(NNS, TemplateId, Canon);
Types.push_back(T);
TypenameTypes.InsertNode(T, InsertPos);
return QualType(T, 0);
}
/// CmpProtocolNames - Comparison predicate for sorting protocols
/// alphabetically.
static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
const ObjCProtocolDecl *RHS) {
return LHS->getDeclName() < RHS->getDeclName();
}
static void SortAndUniqueProtocols(ObjCProtocolDecl **&Protocols,
unsigned &NumProtocols) {
ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
// Sort protocols, keyed by name.
std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
// Remove duplicates.
ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
NumProtocols = ProtocolsEnd-Protocols;
}
/// getObjCQualifiedInterfaceType - Return a ObjCQualifiedInterfaceType type for
/// the given interface decl and the conforming protocol list.
QualType ASTContext::getObjCQualifiedInterfaceType(ObjCInterfaceDecl *Decl,
ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
// Sort the protocol list alphabetically to canonicalize it.
SortAndUniqueProtocols(Protocols, NumProtocols);
llvm::FoldingSetNodeID ID;
ObjCQualifiedInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
void *InsertPos = 0;
if (ObjCQualifiedInterfaceType *QT =
ObjCQualifiedInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(QT, 0);
// No Match;
ObjCQualifiedInterfaceType *QType =
new (*this,8) ObjCQualifiedInterfaceType(Decl, Protocols, NumProtocols);
Types.push_back(QType);
ObjCQualifiedInterfaceTypes.InsertNode(QType, InsertPos);
return QualType(QType, 0);
}
/// getObjCQualifiedIdType - Return an ObjCQualifiedIdType for the 'id' decl
/// and the conforming protocol list.
QualType ASTContext::getObjCQualifiedIdType(ObjCProtocolDecl **Protocols,
unsigned NumProtocols) {
// Sort the protocol list alphabetically to canonicalize it.
SortAndUniqueProtocols(Protocols, NumProtocols);
llvm::FoldingSetNodeID ID;
ObjCQualifiedIdType::Profile(ID, Protocols, NumProtocols);
void *InsertPos = 0;
if (ObjCQualifiedIdType *QT =
ObjCQualifiedIdTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(QT, 0);
// No Match;
ObjCQualifiedIdType *QType =
new (*this,8) ObjCQualifiedIdType(Protocols, NumProtocols);
Types.push_back(QType);
ObjCQualifiedIdTypes.InsertNode(QType, InsertPos);
return QualType(QType, 0);
}
/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
/// TypeOfExprType AST's (since expression's are never shared). For example,
/// multiple declarations that refer to "typeof(x)" all contain different
/// DeclRefExpr's. This doesn't effect the type checker, since it operates
/// on canonical type's (which are always unique).
QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
QualType Canonical = getCanonicalType(tofExpr->getType());
TypeOfExprType *toe = new (*this,8) TypeOfExprType(tofExpr, Canonical);
Types.push_back(toe);
return QualType(toe, 0);
}
/// getTypeOfType - Unlike many "get<Type>" functions, we don't unique
/// TypeOfType AST's. The only motivation to unique these nodes would be
/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
/// an issue. This doesn't effect the type checker, since it operates
/// on canonical type's (which are always unique).
QualType ASTContext::getTypeOfType(QualType tofType) {
QualType Canonical = getCanonicalType(tofType);
TypeOfType *tot = new (*this,8) TypeOfType(tofType, Canonical);
Types.push_back(tot);
return QualType(tot, 0);
}
/// getTagDeclType - Return the unique reference to the type for the
/// specified TagDecl (struct/union/class/enum) decl.
QualType ASTContext::getTagDeclType(TagDecl *Decl) {
assert (Decl);
return getTypeDeclType(Decl);
}
/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
/// needs to agree with the definition in <stddef.h>.
QualType ASTContext::getSizeType() const {
return getFromTargetType(Target.getSizeType());
}
/// getSignedWCharType - Return the type of "signed wchar_t".
/// Used when in C++, as a GCC extension.
QualType ASTContext::getSignedWCharType() const {
// FIXME: derive from "Target" ?
return WCharTy;
}
/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
/// Used when in C++, as a GCC extension.
QualType ASTContext::getUnsignedWCharType() const {
// FIXME: derive from "Target" ?
return UnsignedIntTy;
}
/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
QualType ASTContext::getPointerDiffType() const {
return getFromTargetType(Target.getPtrDiffType(0));
}
//===----------------------------------------------------------------------===//
// Type Operators
//===----------------------------------------------------------------------===//
/// getCanonicalType - Return the canonical (structural) type corresponding to
/// the specified potentially non-canonical type. The non-canonical version
/// of a type may have many "decorated" versions of types. Decorators can
/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
/// to be free of any of these, allowing two canonical types to be compared
/// for exact equality with a simple pointer comparison.
QualType ASTContext::getCanonicalType(QualType T) {
QualType CanType = T.getTypePtr()->getCanonicalTypeInternal();
// If the result has type qualifiers, make sure to canonicalize them as well.
unsigned TypeQuals = T.getCVRQualifiers() | CanType.getCVRQualifiers();
if (TypeQuals == 0) return CanType;
// If the type qualifiers are on an array type, get the canonical type of the
// array with the qualifiers applied to the element type.
ArrayType *AT = dyn_cast<ArrayType>(CanType);
if (!AT)
return CanType.getQualifiedType(TypeQuals);
// Get the canonical version of the element with the extra qualifiers on it.
// This can recursively sink qualifiers through multiple levels of arrays.
QualType NewEltTy=AT->getElementType().getWithAdditionalQualifiers(TypeQuals);
NewEltTy = getCanonicalType(NewEltTy);
if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
return getConstantArrayType(NewEltTy, CAT->getSize(),CAT->getSizeModifier(),
CAT->getIndexTypeQualifier());
if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
return getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
IAT->getIndexTypeQualifier());
if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
return getDependentSizedArrayType(NewEltTy, DSAT->getSizeExpr(),
DSAT->getSizeModifier(),
DSAT->getIndexTypeQualifier());
VariableArrayType *VAT = cast<VariableArrayType>(AT);
return getVariableArrayType(NewEltTy, VAT->getSizeExpr(),
VAT->getSizeModifier(),
VAT->getIndexTypeQualifier());
}
NestedNameSpecifier *
ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
if (!NNS)
return 0;
switch (NNS->getKind()) {
case NestedNameSpecifier::Identifier:
// Canonicalize the prefix but keep the identifier the same.
return NestedNameSpecifier::Create(*this,
getCanonicalNestedNameSpecifier(NNS->getPrefix()),
NNS->getAsIdentifier());
case NestedNameSpecifier::Namespace:
// A namespace is canonical; build a nested-name-specifier with
// this namespace and no prefix.
return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
case NestedNameSpecifier::TypeSpec:
case NestedNameSpecifier::TypeSpecWithTemplate: {
QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
NestedNameSpecifier *Prefix = 0;
// FIXME: This isn't the right check!
if (T->isDependentType())
Prefix = getCanonicalNestedNameSpecifier(NNS->getPrefix());
return NestedNameSpecifier::Create(*this, Prefix,
NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
T.getTypePtr());
}
case NestedNameSpecifier::Global:
// The global specifier is canonical and unique.
return NNS;
}
// Required to silence a GCC warning
return 0;
}
const ArrayType *ASTContext::getAsArrayType(QualType T) {
// Handle the non-qualified case efficiently.
if (T.getCVRQualifiers() == 0) {
// Handle the common positive case fast.
if (const ArrayType *AT = dyn_cast<ArrayType>(T))
return AT;
}
// Handle the common negative case fast, ignoring CVR qualifiers.
QualType CType = T->getCanonicalTypeInternal();
// Make sure to look through type qualifiers (like ExtQuals) for the negative
// test.
if (!isa<ArrayType>(CType) &&
!isa<ArrayType>(CType.getUnqualifiedType()))
return 0;
// Apply any CVR qualifiers from the array type to the element type. This
// implements C99 6.7.3p8: "If the specification of an array type includes
// any type qualifiers, the element type is so qualified, not the array type."
// If we get here, we either have type qualifiers on the type, or we have
// sugar such as a typedef in the way. If we have type qualifiers on the type
// we must propagate them down into the elemeng type.
unsigned CVRQuals = T.getCVRQualifiers();
unsigned AddrSpace = 0;
Type *Ty = T.getTypePtr();
// Rip through ExtQualType's and typedefs to get to a concrete type.
while (1) {
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(Ty)) {
AddrSpace = EXTQT->getAddressSpace();
Ty = EXTQT->getBaseType();
} else {
T = Ty->getDesugaredType();
if (T.getTypePtr() == Ty && T.getCVRQualifiers() == 0)
break;
CVRQuals |= T.getCVRQualifiers();
Ty = T.getTypePtr();
}
}
// If we have a simple case, just return now.
const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
if (ATy == 0 || (AddrSpace == 0 && CVRQuals == 0))
return ATy;
// Otherwise, we have an array and we have qualifiers on it. Push the
// qualifiers into the array element type and return a new array type.
// Get the canonical version of the element with the extra qualifiers on it.
// This can recursively sink qualifiers through multiple levels of arrays.
QualType NewEltTy = ATy->getElementType();
if (AddrSpace)
NewEltTy = getAddrSpaceQualType(NewEltTy, AddrSpace);
NewEltTy = NewEltTy.getWithAdditionalQualifiers(CVRQuals);
if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
CAT->getSizeModifier(),
CAT->getIndexTypeQualifier()));
if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
IAT->getSizeModifier(),
IAT->getIndexTypeQualifier()));
if (const DependentSizedArrayType *DSAT
= dyn_cast<DependentSizedArrayType>(ATy))
return cast<ArrayType>(
getDependentSizedArrayType(NewEltTy,
DSAT->getSizeExpr(),
DSAT->getSizeModifier(),
DSAT->getIndexTypeQualifier()));
const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
return cast<ArrayType>(getVariableArrayType(NewEltTy, VAT->getSizeExpr(),
VAT->getSizeModifier(),
VAT->getIndexTypeQualifier()));
}
/// getArrayDecayedType - Return the properly qualified result of decaying the
/// specified array type to a pointer. This operation is non-trivial when
/// handling typedefs etc. The canonical type of "T" must be an array type,
/// this returns a pointer to a properly qualified element of the array.
///
/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
QualType ASTContext::getArrayDecayedType(QualType Ty) {
// Get the element type with 'getAsArrayType' so that we don't lose any
// typedefs in the element type of the array. This also handles propagation
// of type qualifiers from the array type into the element type if present
// (C99 6.7.3p8).
const ArrayType *PrettyArrayType = getAsArrayType(Ty);
assert(PrettyArrayType && "Not an array type!");
QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
// int x[restrict 4] -> int *restrict
return PtrTy.getQualifiedType(PrettyArrayType->getIndexTypeQualifier());
}
QualType ASTContext::getBaseElementType(const VariableArrayType *VAT) {
QualType ElemTy = VAT->getElementType();
if (const VariableArrayType *VAT = getAsVariableArrayType(ElemTy))
return getBaseElementType(VAT);
return ElemTy;
}
/// getFloatingRank - Return a relative rank for floating point types.
/// This routine will assert if passed a built-in type that isn't a float.
static FloatingRank getFloatingRank(QualType T) {
if (const ComplexType *CT = T->getAsComplexType())
return getFloatingRank(CT->getElementType());
assert(T->getAsBuiltinType() && "getFloatingRank(): not a floating type");
switch (T->getAsBuiltinType()->getKind()) {
default: assert(0 && "getFloatingRank(): not a floating type");
case BuiltinType::Float: return FloatRank;
case BuiltinType::Double: return DoubleRank;
case BuiltinType::LongDouble: return LongDoubleRank;
}
}
/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
/// point or a complex type (based on typeDomain/typeSize).
/// 'typeDomain' is a real floating point or complex type.
/// 'typeSize' is a real floating point or complex type.
QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
QualType Domain) const {
FloatingRank EltRank = getFloatingRank(Size);
if (Domain->isComplexType()) {
switch (EltRank) {
default: assert(0 && "getFloatingRank(): illegal value for rank");
case FloatRank: return FloatComplexTy;
case DoubleRank: return DoubleComplexTy;
case LongDoubleRank: return LongDoubleComplexTy;
}
}
assert(Domain->isRealFloatingType() && "Unknown domain!");
switch (EltRank) {
default: assert(0 && "getFloatingRank(): illegal value for rank");
case FloatRank: return FloatTy;
case DoubleRank: return DoubleTy;
case LongDoubleRank: return LongDoubleTy;
}
}
/// getFloatingTypeOrder - Compare the rank of the two specified floating
/// point types, ignoring the domain of the type (i.e. 'double' ==
/// '_Complex double'). If LHS > RHS, return 1. If LHS == RHS, return 0. If
/// LHS < RHS, return -1.
int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
FloatingRank LHSR = getFloatingRank(LHS);
FloatingRank RHSR = getFloatingRank(RHS);
if (LHSR == RHSR)
return 0;
if (LHSR > RHSR)
return 1;
return -1;
}
/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
/// routine will assert if passed a built-in type that isn't an integer or enum,
/// or if it is not canonicalized.
unsigned ASTContext::getIntegerRank(Type *T) {
assert(T->isCanonical() && "T should be canonicalized");
if (EnumType* ET = dyn_cast<EnumType>(T))
T = ET->getDecl()->getIntegerType().getTypePtr();
// There are two things which impact the integer rank: the width, and
// the ordering of builtins. The builtin ordering is encoded in the
// bottom three bits; the width is encoded in the bits above that.
if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T)) {
return FWIT->getWidth() << 3;
}
switch (cast<BuiltinType>(T)->getKind()) {
default: assert(0 && "getIntegerRank(): not a built-in integer");
case BuiltinType::Bool:
return 1 + (getIntWidth(BoolTy) << 3);
case BuiltinType::Char_S:
case BuiltinType::Char_U:
case BuiltinType::SChar:
case BuiltinType::UChar:
return 2 + (getIntWidth(CharTy) << 3);
case BuiltinType::Short:
case BuiltinType::UShort:
return 3 + (getIntWidth(ShortTy) << 3);
case BuiltinType::Int:
case BuiltinType::UInt:
return 4 + (getIntWidth(IntTy) << 3);
case BuiltinType::Long:
case BuiltinType::ULong:
return 5 + (getIntWidth(LongTy) << 3);
case BuiltinType::LongLong:
case BuiltinType::ULongLong:
return 6 + (getIntWidth(LongLongTy) << 3);
}
}
/// getIntegerTypeOrder - Returns the highest ranked integer type:
/// C99 6.3.1.8p1. If LHS > RHS, return 1. If LHS == RHS, return 0. If
/// LHS < RHS, return -1.
int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
Type *LHSC = getCanonicalType(LHS).getTypePtr();
Type *RHSC = getCanonicalType(RHS).getTypePtr();
if (LHSC == RHSC) return 0;
bool LHSUnsigned = LHSC->isUnsignedIntegerType();
bool RHSUnsigned = RHSC->isUnsignedIntegerType();
unsigned LHSRank = getIntegerRank(LHSC);
unsigned RHSRank = getIntegerRank(RHSC);
if (LHSUnsigned == RHSUnsigned) { // Both signed or both unsigned.
if (LHSRank == RHSRank) return 0;
return LHSRank > RHSRank ? 1 : -1;
}
// Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
if (LHSUnsigned) {
// If the unsigned [LHS] type is larger, return it.
if (LHSRank >= RHSRank)
return 1;
// If the signed type can represent all values of the unsigned type, it
// wins. Because we are dealing with 2's complement and types that are
// powers of two larger than each other, this is always safe.
return -1;
}
// If the unsigned [RHS] type is larger, return it.
if (RHSRank >= LHSRank)
return -1;
// If the signed type can represent all values of the unsigned type, it
// wins. Because we are dealing with 2's complement and types that are
// powers of two larger than each other, this is always safe.
return 1;
}
// getCFConstantStringType - Return the type used for constant CFStrings.
QualType ASTContext::getCFConstantStringType() {
if (!CFConstantStringTypeDecl) {
CFConstantStringTypeDecl =
RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
&Idents.get("NSConstantString"));
QualType FieldTypes[4];
// const int *isa;
FieldTypes[0] = getPointerType(IntTy.getQualifiedType(QualType::Const));
// int flags;
FieldTypes[1] = IntTy;
// const char *str;
FieldTypes[2] = getPointerType(CharTy.getQualifiedType(QualType::Const));
// long length;
FieldTypes[3] = LongTy;
// Create fields
for (unsigned i = 0; i < 4; ++i) {
FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
SourceLocation(), 0,
FieldTypes[i], /*BitWidth=*/0,
/*Mutable=*/false);
CFConstantStringTypeDecl->addDecl(*this, Field);
}
CFConstantStringTypeDecl->completeDefinition(*this);
}
return getTagDeclType(CFConstantStringTypeDecl);
}
QualType ASTContext::getObjCFastEnumerationStateType()
{
if (!ObjCFastEnumerationStateTypeDecl) {
ObjCFastEnumerationStateTypeDecl =
RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
&Idents.get("__objcFastEnumerationState"));
QualType FieldTypes[] = {
UnsignedLongTy,
getPointerType(ObjCIdType),
getPointerType(UnsignedLongTy),
getConstantArrayType(UnsignedLongTy,
llvm::APInt(32, 5), ArrayType::Normal, 0)
};
for (size_t i = 0; i < 4; ++i) {
FieldDecl *Field = FieldDecl::Create(*this,
ObjCFastEnumerationStateTypeDecl,
SourceLocation(), 0,
FieldTypes[i], /*BitWidth=*/0,
/*Mutable=*/false);
ObjCFastEnumerationStateTypeDecl->addDecl(*this, Field);
}
ObjCFastEnumerationStateTypeDecl->completeDefinition(*this);
}
return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
}
// This returns true if a type has been typedefed to BOOL:
// typedef <type> BOOL;
2007-10-31 04:27:44 +08:00
static bool isTypeTypedefedAsBOOL(QualType T) {
if (const TypedefType *TT = dyn_cast<TypedefType>(T))
2008-11-24 11:52:59 +08:00
if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
return II->isStr("BOOL");
return false;
}
/// getObjCEncodingTypeSize returns size of type for objective-c encoding
/// purpose.
int ASTContext::getObjCEncodingTypeSize(QualType type) {
uint64_t sz = getTypeSize(type);
// Make all integer and enum types at least as large as an int
if (sz > 0 && type->isIntegralType())
sz = std::max(sz, getTypeSize(IntTy));
// Treat arrays as pointers, since that's how they're passed in.
else if (type->isArrayType())
sz = getTypeSize(VoidPtrTy);
return sz / getTypeSize(CharTy);
}
/// getObjCEncodingForMethodDecl - Return the encoded type for this method
/// declaration.
void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
2008-11-19 15:24:05 +08:00
std::string& S) {
// FIXME: This is not very efficient.
// Encode type qualifer, 'in', 'inout', etc. for the return type.
getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
// Encode result type.
getObjCEncodingForType(Decl->getResultType(), S);
// Compute size of all parameters.
// Start with computing size of a pointer in number of bytes.
// FIXME: There might(should) be a better way of doing this computation!
SourceLocation Loc;
int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy);
// The first two arguments (self and _cmd) are pointers; account for
// their size.
int ParmOffset = 2 * PtrSize;
for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
E = Decl->param_end(); PI != E; ++PI) {
QualType PType = (*PI)->getType();
int sz = getObjCEncodingTypeSize(PType);
assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type");
ParmOffset += sz;
}
S += llvm::utostr(ParmOffset);
S += "@0:";
S += llvm::utostr(PtrSize);
// Argument types.
ParmOffset = 2 * PtrSize;
for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
E = Decl->param_end(); PI != E; ++PI) {
ParmVarDecl *PVDecl = *PI;
QualType PType = PVDecl->getOriginalType();
if (const ArrayType *AT =
dyn_cast<ArrayType>(PType->getCanonicalTypeInternal()))
// Use array's original type only if it has known number of
// elements.
if (!dyn_cast<ConstantArrayType>(AT))
PType = PVDecl->getType();
// Process argument qualifiers for user supplied arguments; such as,
// 'in', 'inout', etc.
getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
getObjCEncodingForType(PType, S);
S += llvm::utostr(ParmOffset);
ParmOffset += getObjCEncodingTypeSize(PType);
}
}
/// getObjCEncodingForPropertyDecl - Return the encoded type for this
/// property declaration. If non-NULL, Container must be either an
/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
/// NULL when getting encodings for protocol properties.
/// Property attributes are stored as a comma-delimited C string. The simple
/// attributes readonly and bycopy are encoded as single characters. The
/// parametrized attributes, getter=name, setter=name, and ivar=name, are
/// encoded as single characters, followed by an identifier. Property types
/// are also encoded as a parametrized attribute. The characters used to encode
/// these attributes are defined by the following enumeration:
/// @code
/// enum PropertyAttributes {
/// kPropertyReadOnly = 'R', // property is read-only.
/// kPropertyBycopy = 'C', // property is a copy of the value last assigned
/// kPropertyByref = '&', // property is a reference to the value last assigned
/// kPropertyDynamic = 'D', // property is dynamic
/// kPropertyGetter = 'G', // followed by getter selector name
/// kPropertySetter = 'S', // followed by setter selector name
/// kPropertyInstanceVariable = 'V' // followed by instance variable name
/// kPropertyType = 't' // followed by old-style type encoding.
/// kPropertyWeak = 'W' // 'weak' property
/// kPropertyStrong = 'P' // property GC'able
/// kPropertyNonAtomic = 'N' // property non-atomic
/// };
/// @endcode
void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
const Decl *Container,
2008-11-19 15:24:05 +08:00
std::string& S) {
// Collect information from the property implementation decl(s).
bool Dynamic = false;
ObjCPropertyImplDecl *SynthesizePID = 0;
// FIXME: Duplicated code due to poor abstraction.
if (Container) {
if (const ObjCCategoryImplDecl *CID =
dyn_cast<ObjCCategoryImplDecl>(Container)) {
for (ObjCCategoryImplDecl::propimpl_iterator
i = CID->propimpl_begin(), e = CID->propimpl_end(); i != e; ++i) {
ObjCPropertyImplDecl *PID = *i;
if (PID->getPropertyDecl() == PD) {
if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
Dynamic = true;
} else {
SynthesizePID = PID;
}
}
}
} else {
const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
for (ObjCCategoryImplDecl::propimpl_iterator
i = OID->propimpl_begin(), e = OID->propimpl_end(); i != e; ++i) {
ObjCPropertyImplDecl *PID = *i;
if (PID->getPropertyDecl() == PD) {
if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
Dynamic = true;
} else {
SynthesizePID = PID;
}
}
}
}
}
// FIXME: This is not very efficient.
S = "T";
// Encode result type.
// GCC has some special rules regarding encoding of properties which
// closely resembles encoding of ivars.
getObjCEncodingForTypeImpl(PD->getType(), S, true, true, NULL,
true /* outermost type */,
true /* encoding for property */);
if (PD->isReadOnly()) {
S += ",R";
} else {
switch (PD->getSetterKind()) {
case ObjCPropertyDecl::Assign: break;
case ObjCPropertyDecl::Copy: S += ",C"; break;
case ObjCPropertyDecl::Retain: S += ",&"; break;
}
}
// It really isn't clear at all what this means, since properties
// are "dynamic by default".
if (Dynamic)
S += ",D";
if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
S += ",N";
if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
S += ",G";
S += PD->getGetterName().getAsString();
}
if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
S += ",S";
S += PD->getSetterName().getAsString();
}
if (SynthesizePID) {
const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
S += ",V";
S += OID->getNameAsString();
}
// FIXME: OBJCGC: weak & strong
}
/// getLegacyIntegralTypeEncoding -
/// Another legacy compatibility encoding: 32-bit longs are encoded as
/// 'l' or 'L' , but not always. For typedefs, we need to use
/// 'i' or 'I' instead if encoding a struct field, or a pointer!
///
void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
if (dyn_cast<TypedefType>(PointeeTy.getTypePtr())) {
if (const BuiltinType *BT = PointeeTy->getAsBuiltinType()) {
if (BT->getKind() == BuiltinType::ULong &&
((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
PointeeTy = UnsignedIntTy;
else
if (BT->getKind() == BuiltinType::Long &&
((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
PointeeTy = IntTy;
}
}
}
void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
FieldDecl *Field) {
// We follow the behavior of gcc, expanding structures which are
// directly pointed to, and expanding embedded structures. Note that
// these rules are sufficient to prevent recursive encoding of the
// same type.
getObjCEncodingForTypeImpl(T, S, true, true, Field,
true /* outermost type */);
}
static void EncodeBitField(const ASTContext *Context, std::string& S,
FieldDecl *FD) {
const Expr *E = FD->getBitWidth();
assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
ASTContext *Ctx = const_cast<ASTContext*>(Context);
unsigned N = E->getIntegerConstantExprValue(*Ctx).getZExtValue();
S += 'b';
S += llvm::utostr(N);
}
void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
bool ExpandPointedToStructures,
bool ExpandStructures,
FieldDecl *FD,
bool OutermostType,
bool EncodingProperty) {
if (const BuiltinType *BT = T->getAsBuiltinType()) {
if (FD && FD->isBitField()) {
EncodeBitField(this, S, FD);
}
else {
char encoding;
switch (BT->getKind()) {
default: assert(0 && "Unhandled builtin type kind");
case BuiltinType::Void: encoding = 'v'; break;
case BuiltinType::Bool: encoding = 'B'; break;
case BuiltinType::Char_U:
case BuiltinType::UChar: encoding = 'C'; break;
case BuiltinType::UShort: encoding = 'S'; break;
case BuiltinType::UInt: encoding = 'I'; break;
case BuiltinType::ULong:
encoding =
(const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'L' : 'Q';
break;
case BuiltinType::ULongLong: encoding = 'Q'; break;
case BuiltinType::Char_S:
case BuiltinType::SChar: encoding = 'c'; break;
case BuiltinType::Short: encoding = 's'; break;
case BuiltinType::Int: encoding = 'i'; break;
case BuiltinType::Long:
encoding =
(const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'l' : 'q';
break;
case BuiltinType::LongLong: encoding = 'q'; break;
case BuiltinType::Float: encoding = 'f'; break;
case BuiltinType::Double: encoding = 'd'; break;
case BuiltinType::LongDouble: encoding = 'd'; break;
}
S += encoding;
}
} else if (const ComplexType *CT = T->getAsComplexType()) {
S += 'j';
getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
false);
} else if (T->isObjCQualifiedIdType()) {
getObjCEncodingForTypeImpl(getObjCIdType(), S,
ExpandPointedToStructures,
ExpandStructures, FD);
if (FD || EncodingProperty) {
// Note that we do extended encoding of protocol qualifer list
// Only when doing ivar or property encoding.
const ObjCQualifiedIdType *QIDT = T->getAsObjCQualifiedIdType();
S += '"';
for (unsigned i =0; i < QIDT->getNumProtocols(); i++) {
ObjCProtocolDecl *Proto = QIDT->getProtocols(i);
S += '<';
S += Proto->getNameAsString();
S += '>';
}
S += '"';
}
return;
}
else if (const PointerType *PT = T->getAsPointerType()) {
QualType PointeeTy = PT->getPointeeType();
bool isReadOnly = false;
// For historical/compatibility reasons, the read-only qualifier of the
// pointee gets emitted _before_ the '^'. The read-only qualifier of
// the pointer itself gets ignored, _unless_ we are looking at a typedef!
// Also, do not emit the 'r' for anything but the outermost type!
if (dyn_cast<TypedefType>(T.getTypePtr())) {
if (OutermostType && T.isConstQualified()) {
isReadOnly = true;
S += 'r';
}
}
else if (OutermostType) {
QualType P = PointeeTy;
while (P->getAsPointerType())
P = P->getAsPointerType()->getPointeeType();
if (P.isConstQualified()) {
isReadOnly = true;
S += 'r';
}
}
if (isReadOnly) {
// Another legacy compatibility encoding. Some ObjC qualifier and type
// combinations need to be rearranged.
// Rewrite "in const" from "nr" to "rn"
const char * s = S.c_str();
int len = S.length();
if (len >= 2 && s[len-2] == 'n' && s[len-1] == 'r') {
std::string replace = "rn";
S.replace(S.end()-2, S.end(), replace);
}
}
if (isObjCIdStructType(PointeeTy)) {
S += '@';
return;
}
else if (PointeeTy->isObjCInterfaceType()) {
if (!EncodingProperty &&
isa<TypedefType>(PointeeTy.getTypePtr())) {
// Another historical/compatibility reason.
// We encode the underlying type which comes out as
// {...};
S += '^';
getObjCEncodingForTypeImpl(PointeeTy, S,
false, ExpandPointedToStructures,
NULL);
return;
}
S += '@';
if (FD || EncodingProperty) {
const ObjCInterfaceType *OIT =
PointeeTy.getUnqualifiedType()->getAsObjCInterfaceType();
ObjCInterfaceDecl *OI = OIT->getDecl();
S += '"';
S += OI->getNameAsCString();
for (unsigned i =0; i < OIT->getNumProtocols(); i++) {
ObjCProtocolDecl *Proto = OIT->getProtocol(i);
S += '<';
S += Proto->getNameAsString();
S += '>';
}
S += '"';
}
return;
} else if (isObjCClassStructType(PointeeTy)) {
S += '#';
return;
} else if (isObjCSelType(PointeeTy)) {
S += ':';
return;
}
if (PointeeTy->isCharType()) {
// char pointer types should be encoded as '*' unless it is a
// type that has been typedef'd to 'BOOL'.
if (!isTypeTypedefedAsBOOL(PointeeTy)) {
S += '*';
return;
}
}
S += '^';
getLegacyIntegralTypeEncoding(PointeeTy);
getObjCEncodingForTypeImpl(PointeeTy, S,
false, ExpandPointedToStructures,
NULL);
} else if (const ArrayType *AT =
// Ignore type qualifiers etc.
dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
if (isa<IncompleteArrayType>(AT)) {
// Incomplete arrays are encoded as a pointer to the array element.
S += '^';
getObjCEncodingForTypeImpl(AT->getElementType(), S,
false, ExpandStructures, FD);
} else {
S += '[';
if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
S += llvm::utostr(CAT->getSize().getZExtValue());
else {
//Variable length arrays are encoded as a regular array with 0 elements.
assert(isa<VariableArrayType>(AT) && "Unknown array type!");
S += '0';
}
getObjCEncodingForTypeImpl(AT->getElementType(), S,
false, ExpandStructures, FD);
S += ']';
}
2007-10-30 08:06:20 +08:00
} else if (T->getAsFunctionType()) {
S += '?';
} else if (const RecordType *RTy = T->getAsRecordType()) {
RecordDecl *RDecl = RTy->getDecl();
S += RDecl->isUnion() ? '(' : '{';
// Anonymous structures print as '?'
if (const IdentifierInfo *II = RDecl->getIdentifier()) {
S += II->getName();
} else {
S += '?';
}
if (ExpandStructures) {
S += '=';
for (RecordDecl::field_iterator Field = RDecl->field_begin(*this),
FieldEnd = RDecl->field_end(*this);
Field != FieldEnd; ++Field) {
if (FD) {
S += '"';
S += Field->getNameAsString();
S += '"';
}
// Special case bit-fields.
if (Field->isBitField()) {
getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
(*Field));
} else {
QualType qt = Field->getType();
getLegacyIntegralTypeEncoding(qt);
getObjCEncodingForTypeImpl(qt, S, false, true,
FD);
}
}
}
S += RDecl->isUnion() ? ')' : '}';
2007-12-13 06:30:11 +08:00
} else if (T->isEnumeralType()) {
if (FD && FD->isBitField())
EncodeBitField(this, S, FD);
else
S += 'i';
} else if (T->isBlockPointerType()) {
S += "@?"; // Unlike a pointer-to-function, which is "^?".
} else if (T->isObjCInterfaceType()) {
// @encode(class_name)
ObjCInterfaceDecl *OI = T->getAsObjCInterfaceType()->getDecl();
S += '{';
const IdentifierInfo *II = OI->getIdentifier();
S += II->getName();
S += '=';
llvm::SmallVector<FieldDecl*, 32> RecFields;
CollectObjCIvars(OI, RecFields);
for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
if (RecFields[i]->isBitField())
getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
RecFields[i]);
else
getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
FD);
}
S += '}';
}
else
assert(0 && "@encode for type not implemented!");
}
void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
std::string& S) const {
if (QT & Decl::OBJC_TQ_In)
S += 'n';
if (QT & Decl::OBJC_TQ_Inout)
S += 'N';
if (QT & Decl::OBJC_TQ_Out)
S += 'o';
if (QT & Decl::OBJC_TQ_Bycopy)
S += 'O';
if (QT & Decl::OBJC_TQ_Byref)
S += 'R';
if (QT & Decl::OBJC_TQ_Oneway)
S += 'V';
}
void ASTContext::setBuiltinVaListType(QualType T)
{
assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
BuiltinVaListType = T;
}
void ASTContext::setObjCIdType(TypedefDecl *TD)
{
ObjCIdType = getTypedefType(TD);
// typedef struct objc_object *id;
const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
// User error - caller will issue diagnostics.
if (!ptr)
return;
const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
// User error - caller will issue diagnostics.
if (!rec)
return;
IdStructType = rec;
}
void ASTContext::setObjCSelType(TypedefDecl *TD)
{
ObjCSelType = getTypedefType(TD);
// typedef struct objc_selector *SEL;
const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
if (!ptr)
return;
const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
if (!rec)
return;
SelStructType = rec;
}
void ASTContext::setObjCProtoType(QualType QT)
{
ObjCProtoType = QT;
}
void ASTContext::setObjCClassType(TypedefDecl *TD)
{
ObjCClassType = getTypedefType(TD);
// typedef struct objc_class *Class;
const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
assert(ptr && "'Class' incorrectly typed");
const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
assert(rec && "'Class' incorrectly typed");
ClassStructType = rec;
}
void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
assert(ObjCConstantStringType.isNull() &&
"'NSConstantString' type already set!");
ObjCConstantStringType = getObjCInterfaceType(Decl);
}
/// \brief Retrieve the template name that represents a qualified
/// template name such as \c std::vector.
TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
bool TemplateKeyword,
TemplateDecl *Template) {
llvm::FoldingSetNodeID ID;
QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
void *InsertPos = 0;
QualifiedTemplateName *QTN =
QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
if (!QTN) {
QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
QualifiedTemplateNames.InsertNode(QTN, InsertPos);
}
return TemplateName(QTN);
}
/// \brief Retrieve the template name that represents a dependent
/// template name such as \c MetaFun::template apply.
TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
const IdentifierInfo *Name) {
assert(NNS->isDependent() && "Nested name specifier must be dependent");
llvm::FoldingSetNodeID ID;
DependentTemplateName::Profile(ID, NNS, Name);
void *InsertPos = 0;
DependentTemplateName *QTN =
DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
if (QTN)
return TemplateName(QTN);
NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
if (CanonNNS == NNS) {
QTN = new (*this,4) DependentTemplateName(NNS, Name);
} else {
TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
}
DependentTemplateNames.InsertNode(QTN, InsertPos);
return TemplateName(QTN);
}
/// getFromTargetType - Given one of the integer types provided by
/// TargetInfo, produce the corresponding type. The unsigned @p Type
/// is actually a value of type @c TargetInfo::IntType.
QualType ASTContext::getFromTargetType(unsigned Type) const {
switch (Type) {
case TargetInfo::NoInt: return QualType();
case TargetInfo::SignedShort: return ShortTy;
case TargetInfo::UnsignedShort: return UnsignedShortTy;
case TargetInfo::SignedInt: return IntTy;
case TargetInfo::UnsignedInt: return UnsignedIntTy;
case TargetInfo::SignedLong: return LongTy;
case TargetInfo::UnsignedLong: return UnsignedLongTy;
case TargetInfo::SignedLongLong: return LongLongTy;
case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
}
assert(false && "Unhandled TargetInfo::IntType value");
return QualType();
}
//===----------------------------------------------------------------------===//
// Type Predicates.
//===----------------------------------------------------------------------===//
/// isObjCNSObjectType - Return true if this is an NSObject object using
/// NSObject attribute on a c-style pointer type.
/// FIXME - Make it work directly on types.
///
bool ASTContext::isObjCNSObjectType(QualType Ty) const {
if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
if (TypedefDecl *TD = TDT->getDecl())
if (TD->getAttr<ObjCNSObjectAttr>())
return true;
}
return false;
}
/// isObjCObjectPointerType - Returns true if type is an Objective-C pointer
/// to an object type. This includes "id" and "Class" (two 'special' pointers
/// to struct), Interface* (pointer to ObjCInterfaceType) and id<P> (qualified
/// ID type).
bool ASTContext::isObjCObjectPointerType(QualType Ty) const {
if (Ty->isObjCQualifiedIdType())
return true;
// Blocks are objects.
if (Ty->isBlockPointerType())
return true;
// All other object types are pointers.
const PointerType *PT = Ty->getAsPointerType();
if (PT == 0)
return false;
// If this a pointer to an interface (e.g. NSString*), it is ok.
if (PT->getPointeeType()->isObjCInterfaceType() ||
// If is has NSObject attribute, OK as well.
isObjCNSObjectType(Ty))
return true;
// Check to see if this is 'id' or 'Class', both of which are typedefs for
// pointer types. This looks for the typedef specifically, not for the
// underlying type. Iteratively strip off typedefs so that we can handle
// typedefs of typedefs.
while (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
if (Ty.getUnqualifiedType() == getObjCIdType() ||
Ty.getUnqualifiedType() == getObjCClassType())
return true;
Ty = TDT->getDecl()->getUnderlyingType();
}
return false;
}
/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
/// garbage collection attribute.
///
QualType::GCAttrTypes ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
QualType::GCAttrTypes GCAttrs = QualType::GCNone;
if (getLangOptions().ObjC1 &&
getLangOptions().getGCMode() != LangOptions::NonGC) {
GCAttrs = Ty.getObjCGCAttr();
// Default behavious under objective-c's gc is for objective-c pointers
// (or pointers to them) be treated as though they were declared
// as __strong.
if (GCAttrs == QualType::GCNone) {
if (isObjCObjectPointerType(Ty))
GCAttrs = QualType::Strong;
else if (Ty->isPointerType())
return getObjCGCAttrKind(Ty->getAsPointerType()->getPointeeType());
}
// Non-pointers have none gc'able attribute regardless of the attribute
// set on them.
else if (!isObjCObjectPointerType(Ty) && !Ty->isPointerType())
return QualType::GCNone;
}
return GCAttrs;
}
//===----------------------------------------------------------------------===//
// Type Compatibility Testing
//===----------------------------------------------------------------------===//
/// typesAreBlockCompatible - This routine is called when comparing two
/// block types. Types must be strictly compatible here. For example,
/// C unfortunately doesn't produce an error for the following:
///
/// int (*emptyArgFunc)();
/// int (*intArgList)(int) = emptyArgFunc;
///
/// For blocks, we will produce an error for the following (similar to C++):
///
/// int (^emptyArgBlock)();
/// int (^intArgBlock)(int) = emptyArgBlock;
///
/// FIXME: When the dust settles on this integration, fold this into mergeTypes.
///
bool ASTContext::typesAreBlockCompatible(QualType lhs, QualType rhs) {
const FunctionType *lbase = lhs->getAsFunctionType();
const FunctionType *rbase = rhs->getAsFunctionType();
const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
if (lproto && rproto == 0)
return false;
return !mergeTypes(lhs, rhs).isNull();
}
/// areCompatVectorTypes - Return true if the two specified vector types are
/// compatible.
static bool areCompatVectorTypes(const VectorType *LHS,
const VectorType *RHS) {
assert(LHS->isCanonical() && RHS->isCanonical());
return LHS->getElementType() == RHS->getElementType() &&
LHS->getNumElements() == RHS->getNumElements();
}
/// canAssignObjCInterfaces - Return true if the two interface types are
/// compatible for assignment from RHS to LHS. This handles validation of any
/// protocol qualifiers on the LHS or RHS.
///
bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
const ObjCInterfaceType *RHS) {
// Verify that the base decls are compatible: the RHS must be a subclass of
// the LHS.
if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
return false;
// RHS must have a superset of the protocols in the LHS. If the LHS is not
// protocol qualified at all, then we are good.
if (!isa<ObjCQualifiedInterfaceType>(LHS))
return true;
// Okay, we know the LHS has protocol qualifiers. If the RHS doesn't, then it
// isn't a superset.
if (!isa<ObjCQualifiedInterfaceType>(RHS))
return true; // FIXME: should return false!
// Finally, we must have two protocol-qualified interfaces.
const ObjCQualifiedInterfaceType *LHSP =cast<ObjCQualifiedInterfaceType>(LHS);
const ObjCQualifiedInterfaceType *RHSP =cast<ObjCQualifiedInterfaceType>(RHS);
// All LHS protocols must have a presence on the RHS.
assert(LHSP->qual_begin() != LHSP->qual_end() && "Empty LHS protocol list?");
for (ObjCQualifiedInterfaceType::qual_iterator LHSPI = LHSP->qual_begin(),
LHSPE = LHSP->qual_end();
LHSPI != LHSPE; LHSPI++) {
bool RHSImplementsProtocol = false;
// If the RHS doesn't implement the protocol on the left, the types
// are incompatible.
for (ObjCQualifiedInterfaceType::qual_iterator RHSPI = RHSP->qual_begin(),
RHSPE = RHSP->qual_end();
!RHSImplementsProtocol && (RHSPI != RHSPE); RHSPI++) {
if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier()))
RHSImplementsProtocol = true;
}
// FIXME: For better diagnostics, consider passing back the protocol name.
if (!RHSImplementsProtocol)
return false;
}
// The RHS implements all protocols listed on the LHS.
return true;
}
bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
// get the "pointed to" types
const PointerType *LHSPT = LHS->getAsPointerType();
const PointerType *RHSPT = RHS->getAsPointerType();
if (!LHSPT || !RHSPT)
return false;
QualType lhptee = LHSPT->getPointeeType();
QualType rhptee = RHSPT->getPointeeType();
const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
// ID acts sort of like void* for ObjC interfaces
if (LHSIface && isObjCIdStructType(rhptee))
return true;
if (RHSIface && isObjCIdStructType(lhptee))
return true;
if (!LHSIface || !RHSIface)
return false;
return canAssignObjCInterfaces(LHSIface, RHSIface) ||
canAssignObjCInterfaces(RHSIface, LHSIface);
}
/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
/// both shall have the identically qualified version of a compatible type.
/// C99 6.2.7p1: Two types have compatible types if their types are the
/// same. See 6.7.[2,3,5] for additional rules.
bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
return !mergeTypes(LHS, RHS).isNull();
}
QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) {
const FunctionType *lbase = lhs->getAsFunctionType();
const FunctionType *rbase = rhs->getAsFunctionType();
const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
bool allLTypes = true;
bool allRTypes = true;
// Check return type
QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
if (retType.isNull()) return QualType();
if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
allLTypes = false;
if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
allRTypes = false;
if (lproto && rproto) { // two C99 style function prototypes
unsigned lproto_nargs = lproto->getNumArgs();
unsigned rproto_nargs = rproto->getNumArgs();
// Compatible functions must have the same number of arguments
if (lproto_nargs != rproto_nargs)
return QualType();
// Variadic and non-variadic functions aren't compatible
if (lproto->isVariadic() != rproto->isVariadic())
return QualType();
if (lproto->getTypeQuals() != rproto->getTypeQuals())
return QualType();
// Check argument compatibility
llvm::SmallVector<QualType, 10> types;
for (unsigned i = 0; i < lproto_nargs; i++) {
QualType largtype = lproto->getArgType(i).getUnqualifiedType();
QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
QualType argtype = mergeTypes(largtype, rargtype);
if (argtype.isNull()) return QualType();
types.push_back(argtype);
if (getCanonicalType(argtype) != getCanonicalType(largtype))
allLTypes = false;
if (getCanonicalType(argtype) != getCanonicalType(rargtype))
allRTypes = false;
}
if (allLTypes) return lhs;
if (allRTypes) return rhs;
return getFunctionType(retType, types.begin(), types.size(),
lproto->isVariadic(), lproto->getTypeQuals());
}
if (lproto) allRTypes = false;
if (rproto) allLTypes = false;
const FunctionProtoType *proto = lproto ? lproto : rproto;
if (proto) {
if (proto->isVariadic()) return QualType();
// Check that the types are compatible with the types that
// would result from default argument promotions (C99 6.7.5.3p15).
// The only types actually affected are promotable integer
// types and floats, which would be passed as a different
// type depending on whether the prototype is visible.
unsigned proto_nargs = proto->getNumArgs();
for (unsigned i = 0; i < proto_nargs; ++i) {
QualType argTy = proto->getArgType(i);
if (argTy->isPromotableIntegerType() ||
getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
return QualType();
}
if (allLTypes) return lhs;
if (allRTypes) return rhs;
return getFunctionType(retType, proto->arg_type_begin(),
proto->getNumArgs(), lproto->isVariadic(),
lproto->getTypeQuals());
}
if (allLTypes) return lhs;
if (allRTypes) return rhs;
return getFunctionNoProtoType(retType);
}
QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
// C++ [expr]: If an expression initially has the type "reference to T", the
// type is adjusted to "T" prior to any further analysis, the expression
// designates the object or function denoted by the reference, and the
// expression is an lvalue unless the reference is an rvalue reference and
// the expression is a function call (possibly inside parentheses).
// FIXME: C++ shouldn't be going through here! The rules are different
// enough that they should be handled separately.
// FIXME: Merging of lvalue and rvalue references is incorrect. C++ *really*
// shouldn't be going through here!
if (const ReferenceType *RT = LHS->getAsReferenceType())
LHS = RT->getPointeeType();
if (const ReferenceType *RT = RHS->getAsReferenceType())
RHS = RT->getPointeeType();
QualType LHSCan = getCanonicalType(LHS),
RHSCan = getCanonicalType(RHS);
// If two types are identical, they are compatible.
if (LHSCan == RHSCan)
return LHS;
// If the qualifiers are different, the types aren't compatible
// Note that we handle extended qualifiers later, in the
// case for ExtQualType.
if (LHSCan.getCVRQualifiers() != RHSCan.getCVRQualifiers())
return QualType();
Type::TypeClass LHSClass = LHSCan->getTypeClass();
Type::TypeClass RHSClass = RHSCan->getTypeClass();
// We want to consider the two function types to be the same for these
// comparisons, just force one to the other.
if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
// Same as above for arrays
if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
LHSClass = Type::ConstantArray;
if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
RHSClass = Type::ConstantArray;
// Canonicalize ExtVector -> Vector.
if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
// Consider qualified interfaces and interfaces the same.
if (LHSClass == Type::ObjCQualifiedInterface) LHSClass = Type::ObjCInterface;
if (RHSClass == Type::ObjCQualifiedInterface) RHSClass = Type::ObjCInterface;
// If the canonical type classes don't match.
if (LHSClass != RHSClass) {
const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
// ID acts sort of like void* for ObjC interfaces
if (LHSIface && isObjCIdStructType(RHS))
return LHS;
if (RHSIface && isObjCIdStructType(LHS))
return RHS;
// ID is compatible with all qualified id types.
if (LHS->isObjCQualifiedIdType()) {
if (const PointerType *PT = RHS->getAsPointerType()) {
QualType pType = PT->getPointeeType();
if (isObjCIdStructType(pType))
return LHS;
// FIXME: need to use ObjCQualifiedIdTypesAreCompatible(LHS, RHS, true).
// Unfortunately, this API is part of Sema (which we don't have access
// to. Need to refactor. The following check is insufficient, since we
// need to make sure the class implements the protocol.
if (pType->isObjCInterfaceType())
return LHS;
}
}
if (RHS->isObjCQualifiedIdType()) {
if (const PointerType *PT = LHS->getAsPointerType()) {
QualType pType = PT->getPointeeType();
if (isObjCIdStructType(pType))
return RHS;
// FIXME: need to use ObjCQualifiedIdTypesAreCompatible(LHS, RHS, true).
// Unfortunately, this API is part of Sema (which we don't have access
// to. Need to refactor. The following check is insufficient, since we
// need to make sure the class implements the protocol.
if (pType->isObjCInterfaceType())
return RHS;
}
}
// C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
// a signed integer type, or an unsigned integer type.
if (const EnumType* ETy = LHS->getAsEnumType()) {
if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
return RHS;
}
if (const EnumType* ETy = RHS->getAsEnumType()) {
if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
return LHS;
}
return QualType();
}
// The canonical type classes match.
switch (LHSClass) {
#define TYPE(Class, Base)
#define ABSTRACT_TYPE(Class, Base)
#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
#define DEPENDENT_TYPE(Class, Base) case Type::Class:
#include "clang/AST/TypeNodes.def"
assert(false && "Non-canonical and dependent types shouldn't get here");
return QualType();
case Type::LValueReference:
case Type::RValueReference:
case Type::MemberPointer:
assert(false && "C++ should never be in mergeTypes");
return QualType();
case Type::IncompleteArray:
case Type::VariableArray:
case Type::FunctionProto:
case Type::ExtVector:
case Type::ObjCQualifiedInterface:
assert(false && "Types are eliminated above");
return QualType();
case Type::Pointer:
{
// Merge two pointer types, while trying to preserve typedef info
QualType LHSPointee = LHS->getAsPointerType()->getPointeeType();
QualType RHSPointee = RHS->getAsPointerType()->getPointeeType();
QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
if (ResultType.isNull()) return QualType();
if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
return LHS;
if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
return RHS;
return getPointerType(ResultType);
}
case Type::BlockPointer:
{
// Merge two block pointer types, while trying to preserve typedef info
QualType LHSPointee = LHS->getAsBlockPointerType()->getPointeeType();
QualType RHSPointee = RHS->getAsBlockPointerType()->getPointeeType();
QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
if (ResultType.isNull()) return QualType();
if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
return LHS;
if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
return RHS;
return getBlockPointerType(ResultType);
}
case Type::ConstantArray:
{
const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
return QualType();
QualType LHSElem = getAsArrayType(LHS)->getElementType();
QualType RHSElem = getAsArrayType(RHS)->getElementType();
QualType ResultType = mergeTypes(LHSElem, RHSElem);
if (ResultType.isNull()) return QualType();
if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
return LHS;
if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
return RHS;
if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
ArrayType::ArraySizeModifier(), 0);
if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
ArrayType::ArraySizeModifier(), 0);
const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
return LHS;
if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
return RHS;
if (LVAT) {
// FIXME: This isn't correct! But tricky to implement because
// the array's size has to be the size of LHS, but the type
// has to be different.
return LHS;
}
if (RVAT) {
// FIXME: This isn't correct! But tricky to implement because
// the array's size has to be the size of RHS, but the type
// has to be different.
return RHS;
}
if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
return getIncompleteArrayType(ResultType, ArrayType::ArraySizeModifier(),0);
}
case Type::FunctionNoProto:
return mergeFunctionTypes(LHS, RHS);
case Type::Record:
case Type::Enum:
// FIXME: Why are these compatible?
if (isObjCIdStructType(LHS) && isObjCClassStructType(RHS)) return LHS;
if (isObjCClassStructType(LHS) && isObjCIdStructType(RHS)) return LHS;
return QualType();
case Type::Builtin:
// Only exactly equal builtin types are compatible, which is tested above.
return QualType();
case Type::Complex:
// Distinct complex types are incompatible.
return QualType();
case Type::Vector:
// FIXME: The merged type should be an ExtVector!
if (areCompatVectorTypes(LHS->getAsVectorType(), RHS->getAsVectorType()))
return LHS;
return QualType();
case Type::ObjCInterface: {
// Check if the interfaces are assignment compatible.
// FIXME: This should be type compatibility, e.g. whether
// "LHS x; RHS x;" at global scope is legal.
const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
if (LHSIface && RHSIface &&
canAssignObjCInterfaces(LHSIface, RHSIface))
return LHS;
return QualType();
}
case Type::ObjCQualifiedId:
// Distinct qualified id's are not compatible.
return QualType();
case Type::FixedWidthInt:
// Distinct fixed-width integers are not compatible.
return QualType();
case Type::ObjCQualifiedClass:
// Distinct qualified classes are not compatible.
return QualType();
case Type::ExtQual:
// FIXME: ExtQual types can be compatible even if they're not
// identical!
return QualType();
// First attempt at an implementation, but I'm not really sure it's
// right...
#if 0
ExtQualType* LQual = cast<ExtQualType>(LHSCan);
ExtQualType* RQual = cast<ExtQualType>(RHSCan);
if (LQual->getAddressSpace() != RQual->getAddressSpace() ||
LQual->getObjCGCAttr() != RQual->getObjCGCAttr())
return QualType();
QualType LHSBase, RHSBase, ResultType, ResCanUnqual;
LHSBase = QualType(LQual->getBaseType(), 0);
RHSBase = QualType(RQual->getBaseType(), 0);
ResultType = mergeTypes(LHSBase, RHSBase);
if (ResultType.isNull()) return QualType();
ResCanUnqual = getCanonicalType(ResultType).getUnqualifiedType();
if (LHSCan.getUnqualifiedType() == ResCanUnqual)
return LHS;
if (RHSCan.getUnqualifiedType() == ResCanUnqual)
return RHS;
ResultType = getAddrSpaceQualType(ResultType, LQual->getAddressSpace());
ResultType = getObjCGCQualType(ResultType, LQual->getObjCGCAttr());
ResultType.setCVRQualifiers(LHSCan.getCVRQualifiers());
return ResultType;
#endif
case Type::TemplateSpecialization:
assert(false && "Dependent types have no size");
break;
}
return QualType();
}
//===----------------------------------------------------------------------===//
// Integer Predicates
//===----------------------------------------------------------------------===//
unsigned ASTContext::getIntWidth(QualType T) {
if (T == BoolTy)
return 1;
if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T)) {
return FWIT->getWidth();
}
// For builtin types, just use the standard type sizing method
return (unsigned)getTypeSize(T);
}
QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
assert(T->isSignedIntegerType() && "Unexpected type");
if (const EnumType* ETy = T->getAsEnumType())
T = ETy->getDecl()->getIntegerType();
const BuiltinType* BTy = T->getAsBuiltinType();
assert (BTy && "Unexpected signed integer type");
switch (BTy->getKind()) {
case BuiltinType::Char_S:
case BuiltinType::SChar:
return UnsignedCharTy;
case BuiltinType::Short:
return UnsignedShortTy;
case BuiltinType::Int:
return UnsignedIntTy;
case BuiltinType::Long:
return UnsignedLongTy;
case BuiltinType::LongLong:
return UnsignedLongLongTy;
default:
assert(0 && "Unexpected signed integer type");
return QualType();
}
}
//===----------------------------------------------------------------------===//
// Serialization Support
//===----------------------------------------------------------------------===//
enum {
BasicMetadataBlock = 1,
ASTContextBlock = 2,
DeclsBlock = 3
};
void ASTContext::EmitASTBitcodeBuffer(std::vector<unsigned char> &Buffer) const{
// Create bitstream.
llvm::BitstreamWriter Stream(Buffer);
// Emit the preamble.
Stream.Emit((unsigned)'B', 8);
Stream.Emit((unsigned)'C', 8);
Stream.Emit(0xC, 4);
Stream.Emit(0xF, 4);
Stream.Emit(0xE, 4);
Stream.Emit(0x0, 4);
// Create serializer.
llvm::Serializer S(Stream);
// ===---------------------------------------------------===/
// Serialize the "Translation Unit" metadata.
// ===---------------------------------------------------===/
// Emit ASTContext.
S.EnterBlock(ASTContextBlock);
S.EmitOwnedPtr(this);
S.ExitBlock(); // exit "ASTContextBlock"
S.EnterBlock(BasicMetadataBlock);
// Block for SourceManager and Target. Allows easy skipping
// around to the block for the Selectors during deserialization.
S.EnterBlock();
// Emit the SourceManager.
S.Emit(getSourceManager());
// Emit the Target.
S.EmitPtr(&Target);
S.EmitCStr(Target.getTargetTriple());
S.ExitBlock(); // exit "SourceManager and Target Block"
// Emit the Selectors.
S.Emit(Selectors);
// Emit the Identifier Table.
S.Emit(Idents);
S.ExitBlock(); // exit "BasicMetadataBlock"
}
/// Emit - Serialize an ASTContext object to Bitcode.
void ASTContext::Emit(llvm::Serializer& S) const {
S.Emit(LangOpts);
S.EmitRef(SourceMgr);
S.EmitRef(Target);
S.EmitRef(Idents);
S.EmitRef(Selectors);
// Emit the size of the type vector so that we can reserve that size
// when we reconstitute the ASTContext object.
S.EmitInt(Types.size());
for (std::vector<Type*>::const_iterator I=Types.begin(), E=Types.end();
I!=E;++I)
(*I)->Emit(S);
S.EmitOwnedPtr(TUDecl);
// FIXME: S.EmitOwnedPtr(CFConstantStringTypeDecl);
}
ASTContext *ASTContext::ReadASTBitcodeBuffer(llvm::MemoryBuffer &Buffer,
FileManager &FMgr) {
// Check if the file is of the proper length.
if (Buffer.getBufferSize() & 0x3) {
// FIXME: Provide diagnostic: "Length should be a multiple of 4 bytes."
return 0;
}
// Create the bitstream reader.
unsigned char *BufPtr = (unsigned char *)Buffer.getBufferStart();
llvm::BitstreamReader Stream(BufPtr, BufPtr+Buffer.getBufferSize());
if (Stream.Read(8) != 'B' ||
Stream.Read(8) != 'C' ||
Stream.Read(4) != 0xC ||
Stream.Read(4) != 0xF ||
Stream.Read(4) != 0xE ||
Stream.Read(4) != 0x0) {
// FIXME: Provide diagnostic.
return NULL;
}
// Create the deserializer.
llvm::Deserializer Dezr(Stream);
// ===---------------------------------------------------===/
// Deserialize the "Translation Unit" metadata.
// ===---------------------------------------------------===/
// Skip to the BasicMetaDataBlock. First jump to ASTContextBlock
// (which will appear earlier) and record its location.
bool FoundBlock = Dezr.SkipToBlock(ASTContextBlock);
assert (FoundBlock);
llvm::Deserializer::Location ASTContextBlockLoc =
Dezr.getCurrentBlockLocation();
FoundBlock = Dezr.SkipToBlock(BasicMetadataBlock);
assert (FoundBlock);
// Read the SourceManager.
SourceManager::CreateAndRegister(Dezr, FMgr);
{ // Read the TargetInfo.
llvm::SerializedPtrID PtrID = Dezr.ReadPtrID();
char* triple = Dezr.ReadCStr(NULL,0,true);
Dezr.RegisterPtr(PtrID, TargetInfo::CreateTargetInfo(std::string(triple)));
delete [] triple;
}
// For Selectors, we must read the identifier table first because the
// SelectorTable depends on the identifiers being already deserialized.
llvm::Deserializer::Location SelectorBlkLoc = Dezr.getCurrentBlockLocation();
Dezr.SkipBlock();
// Read the identifier table.
IdentifierTable::CreateAndRegister(Dezr);
// Now jump back and read the selectors.
Dezr.JumpTo(SelectorBlkLoc);
SelectorTable::CreateAndRegister(Dezr);
// Now jump back to ASTContextBlock and read the ASTContext.
Dezr.JumpTo(ASTContextBlockLoc);
return Dezr.ReadOwnedPtr<ASTContext>();
}
ASTContext* ASTContext::Create(llvm::Deserializer& D) {
// Read the language options.
LangOptions LOpts;
LOpts.Read(D);
SourceManager &SM = D.ReadRef<SourceManager>();
TargetInfo &t = D.ReadRef<TargetInfo>();
IdentifierTable &idents = D.ReadRef<IdentifierTable>();
SelectorTable &sels = D.ReadRef<SelectorTable>();
unsigned size_reserve = D.ReadInt();
ASTContext* A = new ASTContext(LOpts, SM, t, idents, sels,
size_reserve);
for (unsigned i = 0; i < size_reserve; ++i)
Type::Create(*A,i,D);
A->TUDecl = cast<TranslationUnitDecl>(D.ReadOwnedPtr<Decl>(*A));
// FIXME: A->CFConstantStringTypeDecl = D.ReadOwnedPtr<RecordDecl>();
return A;
}
ExternalASTSource::~ExternalASTSource() { }
void ExternalASTSource::PrintStats() { }