llvm-project/lldb/source/Expression/DWARFExpression.cpp

3404 lines
122 KiB
C++
Raw Normal View History

//===-- DWARFExpression.cpp -------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/Expression/DWARFExpression.h"
// C Includes
#include <inttypes.h>
// C++ Includes
#include <vector>
#include "lldb/Core/Module.h"
#include "lldb/Core/Value.h"
#include "lldb/Core/dwarf.h"
#include "lldb/Utility/DataEncoder.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/RegisterValue.h"
#include "lldb/Utility/Scalar.h"
#include "lldb/Utility/StreamString.h"
#include "lldb/Utility/VMRange.h"
#include "lldb/Host/Host.h"
#include "lldb/Utility/Endian.h"
#include "lldb/Symbol/Function.h"
#include "lldb/Target/ABI.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/StackFrame.h"
#include "lldb/Target/StackID.h"
Added support for reading thread-local storage variables, as defined using the __thread modifier. To make this work this patch extends LLDB to: - Explicitly track the link_map address for each module. This is effectively the module handle, not sure why it wasn't already being stored off anywhere. As an extension later, it would be nice if someone were to add support for printing this as part of the modules list. - Allow reading the per-thread data pointer via ptrace. I have added support for Linux here. I'll be happy to add support for FreeBSD once this is reviewed. OS X does not appear to have __thread variables, so maybe we don't need it there. Windows support should eventually be workable along the same lines. - Make DWARF expressions track which module they originated from. - Add support for the DW_OP_GNU_push_tls_address DWARF opcode, as generated by gcc and recent versions of clang. Earlier versions of clang (such as 3.2, which is default on Ubuntu right now) do not generate TLS debug info correctly so can not be supported here. - Understand the format of the pthread DTV block. This is where it gets tricky. We have three basic options here: 1) Call "dlinfo" or "__tls_get_addr" on the inferior and ask it directly. However this won't work on core dumps, and generally speaking it's not a good idea for the debugger to call functions itself, as it has the potential to not work depending on the state of the target. 2) Use libthread_db. This is what GDB does. However this option requires having a version of libthread_db on the host cross-compiled for each potential target. This places a large burden on the user, and would make it very hard to cross-debug from Windows to Linux, for example. Trying to build a library intended exclusively for one OS on a different one is not pleasant. GDB sidesteps the problem and asks the user to figure it out. 3) Parse the DTV structure ourselves. On initial inspection this seems to be a bad option, as the DTV structure (the format used by the runtime to manage TLS data) is not in fact a kernel data structure, it is implemented entirely in useerland in libc. Therefore the layout of it's fields are version and OS dependent, and are not standardized. However, it turns out not to be such a problem. All OSes use basically the same algorithm (a per-module lookup table) as detailed in Ulrich Drepper's TLS ELF ABI document, so we can easily write code to decode it ourselves. The only question therefore is the exact field layouts required. Happily, the implementors of libpthread expose the structure of the DTV via metadata exported as symbols from the .so itself, designed exactly for this kind of thing. So this patch simply reads that metadata in, and re-implements libthread_db's algorithm itself. We thereby get cross-platform TLS lookup without either requiring third-party libraries, while still being independent of the version of libpthread being used. Test case included. llvm-svn: 192922
2013-10-18 05:14:00 +08:00
#include "lldb/Target/Thread.h"
#include "Plugins/SymbolFile/DWARF/DWARFUnit.h"
using namespace lldb;
using namespace lldb_private;
static lldb::addr_t
ReadAddressFromDebugAddrSection(const DWARFUnit *dwarf_cu,
uint32_t index) {
uint32_t index_size = dwarf_cu->GetAddressByteSize();
dw_offset_t addr_base = dwarf_cu->GetAddrBase();
lldb::offset_t offset = addr_base + index * index_size;
return dwarf_cu->GetSymbolFileDWARF()->get_debug_addr_data().GetMaxU64(
&offset, index_size);
}
//----------------------------------------------------------------------
// DWARFExpression constructor
//----------------------------------------------------------------------
DWARFExpression::DWARFExpression(DWARFUnit *dwarf_cu)
: m_module_wp(), m_data(), m_dwarf_cu(dwarf_cu),
m_reg_kind(eRegisterKindDWARF), m_loclist_slide(LLDB_INVALID_ADDRESS) {}
DWARFExpression::DWARFExpression(const DWARFExpression &rhs)
: m_module_wp(rhs.m_module_wp), m_data(rhs.m_data),
m_dwarf_cu(rhs.m_dwarf_cu), m_reg_kind(rhs.m_reg_kind),
m_loclist_slide(rhs.m_loclist_slide) {}
DWARFExpression::DWARFExpression(lldb::ModuleSP module_sp,
const DataExtractor &data,
DWARFUnit *dwarf_cu,
lldb::offset_t data_offset,
lldb::offset_t data_length)
: m_module_wp(), m_data(data, data_offset, data_length),
m_dwarf_cu(dwarf_cu), m_reg_kind(eRegisterKindDWARF),
m_loclist_slide(LLDB_INVALID_ADDRESS) {
if (module_sp)
m_module_wp = module_sp;
}
//----------------------------------------------------------------------
// Destructor
//----------------------------------------------------------------------
DWARFExpression::~DWARFExpression() {}
bool DWARFExpression::IsValid() const { return m_data.GetByteSize() > 0; }
void DWARFExpression::SetOpcodeData(const DataExtractor &data) {
m_data = data;
}
void DWARFExpression::CopyOpcodeData(lldb::ModuleSP module_sp,
const DataExtractor &data,
lldb::offset_t data_offset,
lldb::offset_t data_length) {
const uint8_t *bytes = data.PeekData(data_offset, data_length);
if (bytes) {
m_module_wp = module_sp;
m_data.SetData(DataBufferSP(new DataBufferHeap(bytes, data_length)));
m_data.SetByteOrder(data.GetByteOrder());
m_data.SetAddressByteSize(data.GetAddressByteSize());
}
}
void DWARFExpression::CopyOpcodeData(const void *data,
lldb::offset_t data_length,
ByteOrder byte_order,
uint8_t addr_byte_size) {
if (data && data_length) {
m_data.SetData(DataBufferSP(new DataBufferHeap(data, data_length)));
m_data.SetByteOrder(byte_order);
m_data.SetAddressByteSize(addr_byte_size);
}
}
void DWARFExpression::CopyOpcodeData(uint64_t const_value,
lldb::offset_t const_value_byte_size,
uint8_t addr_byte_size) {
if (const_value_byte_size) {
m_data.SetData(
DataBufferSP(new DataBufferHeap(&const_value, const_value_byte_size)));
m_data.SetByteOrder(endian::InlHostByteOrder());
m_data.SetAddressByteSize(addr_byte_size);
}
}
void DWARFExpression::SetOpcodeData(lldb::ModuleSP module_sp,
const DataExtractor &data,
lldb::offset_t data_offset,
lldb::offset_t data_length) {
m_module_wp = module_sp;
m_data.SetData(data, data_offset, data_length);
}
void DWARFExpression::DumpLocation(Stream *s, lldb::offset_t offset,
lldb::offset_t length,
lldb::DescriptionLevel level,
ABI *abi) const {
if (!m_data.ValidOffsetForDataOfSize(offset, length))
return;
const lldb::offset_t start_offset = offset;
const lldb::offset_t end_offset = offset + length;
while (m_data.ValidOffset(offset) && offset < end_offset) {
const lldb::offset_t op_offset = offset;
const uint8_t op = m_data.GetU8(&offset);
switch (level) {
default:
break;
case lldb::eDescriptionLevelBrief:
if (op_offset > start_offset)
s->PutChar(' ');
break;
case lldb::eDescriptionLevelFull:
case lldb::eDescriptionLevelVerbose:
if (op_offset > start_offset)
s->EOL();
s->Indent();
if (level == lldb::eDescriptionLevelFull)
break;
// Fall through for verbose and print offset and DW_OP prefix..
s->Printf("0x%8.8" PRIx64 ": %s", op_offset,
op >= DW_OP_APPLE_uninit ? "DW_OP_APPLE_" : "DW_OP_");
break;
}
switch (op) {
case DW_OP_addr:
*s << "DW_OP_addr(" << m_data.GetAddress(&offset) << ") ";
break; // 0x03 1 address
case DW_OP_deref:
*s << "DW_OP_deref";
break; // 0x06
case DW_OP_const1u:
s->Printf("DW_OP_const1u(0x%2.2x)", m_data.GetU8(&offset));
break; // 0x08 1 1-byte constant
case DW_OP_const1s:
s->Printf("DW_OP_const1s(0x%2.2x)", m_data.GetU8(&offset));
break; // 0x09 1 1-byte constant
case DW_OP_const2u:
s->Printf("DW_OP_const2u(0x%4.4x)", m_data.GetU16(&offset));
break; // 0x0a 1 2-byte constant
case DW_OP_const2s:
s->Printf("DW_OP_const2s(0x%4.4x)", m_data.GetU16(&offset));
break; // 0x0b 1 2-byte constant
case DW_OP_const4u:
s->Printf("DW_OP_const4u(0x%8.8x)", m_data.GetU32(&offset));
break; // 0x0c 1 4-byte constant
case DW_OP_const4s:
s->Printf("DW_OP_const4s(0x%8.8x)", m_data.GetU32(&offset));
break; // 0x0d 1 4-byte constant
case DW_OP_const8u:
s->Printf("DW_OP_const8u(0x%16.16" PRIx64 ")", m_data.GetU64(&offset));
break; // 0x0e 1 8-byte constant
case DW_OP_const8s:
s->Printf("DW_OP_const8s(0x%16.16" PRIx64 ")", m_data.GetU64(&offset));
break; // 0x0f 1 8-byte constant
case DW_OP_constu:
s->Printf("DW_OP_constu(0x%" PRIx64 ")", m_data.GetULEB128(&offset));
break; // 0x10 1 ULEB128 constant
case DW_OP_consts:
s->Printf("DW_OP_consts(0x%" PRId64 ")", m_data.GetSLEB128(&offset));
break; // 0x11 1 SLEB128 constant
case DW_OP_dup:
s->PutCString("DW_OP_dup");
break; // 0x12
case DW_OP_drop:
s->PutCString("DW_OP_drop");
break; // 0x13
case DW_OP_over:
s->PutCString("DW_OP_over");
break; // 0x14
case DW_OP_pick:
s->Printf("DW_OP_pick(0x%2.2x)", m_data.GetU8(&offset));
break; // 0x15 1 1-byte stack index
case DW_OP_swap:
s->PutCString("DW_OP_swap");
break; // 0x16
case DW_OP_rot:
s->PutCString("DW_OP_rot");
break; // 0x17
case DW_OP_xderef:
s->PutCString("DW_OP_xderef");
break; // 0x18
case DW_OP_abs:
s->PutCString("DW_OP_abs");
break; // 0x19
case DW_OP_and:
s->PutCString("DW_OP_and");
break; // 0x1a
case DW_OP_div:
s->PutCString("DW_OP_div");
break; // 0x1b
case DW_OP_minus:
s->PutCString("DW_OP_minus");
break; // 0x1c
case DW_OP_mod:
s->PutCString("DW_OP_mod");
break; // 0x1d
case DW_OP_mul:
s->PutCString("DW_OP_mul");
break; // 0x1e
case DW_OP_neg:
s->PutCString("DW_OP_neg");
break; // 0x1f
case DW_OP_not:
s->PutCString("DW_OP_not");
break; // 0x20
case DW_OP_or:
s->PutCString("DW_OP_or");
break; // 0x21
case DW_OP_plus:
s->PutCString("DW_OP_plus");
break; // 0x22
case DW_OP_plus_uconst: // 0x23 1 ULEB128 addend
s->Printf("DW_OP_plus_uconst(0x%" PRIx64 ")",
m_data.GetULEB128(&offset));
break;
case DW_OP_shl:
s->PutCString("DW_OP_shl");
break; // 0x24
case DW_OP_shr:
s->PutCString("DW_OP_shr");
break; // 0x25
case DW_OP_shra:
s->PutCString("DW_OP_shra");
break; // 0x26
case DW_OP_xor:
s->PutCString("DW_OP_xor");
break; // 0x27
case DW_OP_skip:
s->Printf("DW_OP_skip(0x%4.4x)", m_data.GetU16(&offset));
break; // 0x2f 1 signed 2-byte constant
case DW_OP_bra:
s->Printf("DW_OP_bra(0x%4.4x)", m_data.GetU16(&offset));
break; // 0x28 1 signed 2-byte constant
case DW_OP_eq:
s->PutCString("DW_OP_eq");
break; // 0x29
case DW_OP_ge:
s->PutCString("DW_OP_ge");
break; // 0x2a
case DW_OP_gt:
s->PutCString("DW_OP_gt");
break; // 0x2b
case DW_OP_le:
s->PutCString("DW_OP_le");
break; // 0x2c
case DW_OP_lt:
s->PutCString("DW_OP_lt");
break; // 0x2d
case DW_OP_ne:
s->PutCString("DW_OP_ne");
break; // 0x2e
case DW_OP_lit0: // 0x30
case DW_OP_lit1: // 0x31
case DW_OP_lit2: // 0x32
case DW_OP_lit3: // 0x33
case DW_OP_lit4: // 0x34
case DW_OP_lit5: // 0x35
case DW_OP_lit6: // 0x36
case DW_OP_lit7: // 0x37
case DW_OP_lit8: // 0x38
case DW_OP_lit9: // 0x39
case DW_OP_lit10: // 0x3A
case DW_OP_lit11: // 0x3B
case DW_OP_lit12: // 0x3C
case DW_OP_lit13: // 0x3D
case DW_OP_lit14: // 0x3E
case DW_OP_lit15: // 0x3F
case DW_OP_lit16: // 0x40
case DW_OP_lit17: // 0x41
case DW_OP_lit18: // 0x42
case DW_OP_lit19: // 0x43
case DW_OP_lit20: // 0x44
case DW_OP_lit21: // 0x45
case DW_OP_lit22: // 0x46
case DW_OP_lit23: // 0x47
case DW_OP_lit24: // 0x48
case DW_OP_lit25: // 0x49
case DW_OP_lit26: // 0x4A
case DW_OP_lit27: // 0x4B
case DW_OP_lit28: // 0x4C
case DW_OP_lit29: // 0x4D
case DW_OP_lit30: // 0x4E
case DW_OP_lit31:
s->Printf("DW_OP_lit%i", op - DW_OP_lit0);
break; // 0x4f
case DW_OP_reg0: // 0x50
case DW_OP_reg1: // 0x51
case DW_OP_reg2: // 0x52
case DW_OP_reg3: // 0x53
case DW_OP_reg4: // 0x54
case DW_OP_reg5: // 0x55
case DW_OP_reg6: // 0x56
case DW_OP_reg7: // 0x57
case DW_OP_reg8: // 0x58
case DW_OP_reg9: // 0x59
case DW_OP_reg10: // 0x5A
case DW_OP_reg11: // 0x5B
case DW_OP_reg12: // 0x5C
case DW_OP_reg13: // 0x5D
case DW_OP_reg14: // 0x5E
case DW_OP_reg15: // 0x5F
case DW_OP_reg16: // 0x60
case DW_OP_reg17: // 0x61
case DW_OP_reg18: // 0x62
case DW_OP_reg19: // 0x63
case DW_OP_reg20: // 0x64
case DW_OP_reg21: // 0x65
case DW_OP_reg22: // 0x66
case DW_OP_reg23: // 0x67
case DW_OP_reg24: // 0x68
case DW_OP_reg25: // 0x69
case DW_OP_reg26: // 0x6A
case DW_OP_reg27: // 0x6B
case DW_OP_reg28: // 0x6C
case DW_OP_reg29: // 0x6D
case DW_OP_reg30: // 0x6E
case DW_OP_reg31: // 0x6F
{
uint32_t reg_num = op - DW_OP_reg0;
if (abi) {
RegisterInfo reg_info;
if (abi->GetRegisterInfoByKind(m_reg_kind, reg_num, reg_info)) {
if (reg_info.name) {
s->PutCString(reg_info.name);
break;
} else if (reg_info.alt_name) {
s->PutCString(reg_info.alt_name);
break;
}
}
}
s->Printf("DW_OP_reg%u", reg_num);
break;
} break;
case DW_OP_breg0:
case DW_OP_breg1:
case DW_OP_breg2:
case DW_OP_breg3:
case DW_OP_breg4:
case DW_OP_breg5:
case DW_OP_breg6:
case DW_OP_breg7:
case DW_OP_breg8:
case DW_OP_breg9:
case DW_OP_breg10:
case DW_OP_breg11:
case DW_OP_breg12:
case DW_OP_breg13:
case DW_OP_breg14:
case DW_OP_breg15:
case DW_OP_breg16:
case DW_OP_breg17:
case DW_OP_breg18:
case DW_OP_breg19:
case DW_OP_breg20:
case DW_OP_breg21:
case DW_OP_breg22:
case DW_OP_breg23:
case DW_OP_breg24:
case DW_OP_breg25:
case DW_OP_breg26:
case DW_OP_breg27:
case DW_OP_breg28:
case DW_OP_breg29:
case DW_OP_breg30:
case DW_OP_breg31: {
uint32_t reg_num = op - DW_OP_breg0;
int64_t reg_offset = m_data.GetSLEB128(&offset);
if (abi) {
RegisterInfo reg_info;
if (abi->GetRegisterInfoByKind(m_reg_kind, reg_num, reg_info)) {
if (reg_info.name) {
s->Printf("[%s%+" PRIi64 "]", reg_info.name, reg_offset);
break;
} else if (reg_info.alt_name) {
s->Printf("[%s%+" PRIi64 "]", reg_info.alt_name, reg_offset);
break;
}
}
}
s->Printf("DW_OP_breg%i(0x%" PRIx64 ")", reg_num, reg_offset);
} break;
case DW_OP_regx: // 0x90 1 ULEB128 register
{
uint32_t reg_num = m_data.GetULEB128(&offset);
if (abi) {
RegisterInfo reg_info;
if (abi->GetRegisterInfoByKind(m_reg_kind, reg_num, reg_info)) {
if (reg_info.name) {
s->PutCString(reg_info.name);
Added support for reading thread-local storage variables, as defined using the __thread modifier. To make this work this patch extends LLDB to: - Explicitly track the link_map address for each module. This is effectively the module handle, not sure why it wasn't already being stored off anywhere. As an extension later, it would be nice if someone were to add support for printing this as part of the modules list. - Allow reading the per-thread data pointer via ptrace. I have added support for Linux here. I'll be happy to add support for FreeBSD once this is reviewed. OS X does not appear to have __thread variables, so maybe we don't need it there. Windows support should eventually be workable along the same lines. - Make DWARF expressions track which module they originated from. - Add support for the DW_OP_GNU_push_tls_address DWARF opcode, as generated by gcc and recent versions of clang. Earlier versions of clang (such as 3.2, which is default on Ubuntu right now) do not generate TLS debug info correctly so can not be supported here. - Understand the format of the pthread DTV block. This is where it gets tricky. We have three basic options here: 1) Call "dlinfo" or "__tls_get_addr" on the inferior and ask it directly. However this won't work on core dumps, and generally speaking it's not a good idea for the debugger to call functions itself, as it has the potential to not work depending on the state of the target. 2) Use libthread_db. This is what GDB does. However this option requires having a version of libthread_db on the host cross-compiled for each potential target. This places a large burden on the user, and would make it very hard to cross-debug from Windows to Linux, for example. Trying to build a library intended exclusively for one OS on a different one is not pleasant. GDB sidesteps the problem and asks the user to figure it out. 3) Parse the DTV structure ourselves. On initial inspection this seems to be a bad option, as the DTV structure (the format used by the runtime to manage TLS data) is not in fact a kernel data structure, it is implemented entirely in useerland in libc. Therefore the layout of it's fields are version and OS dependent, and are not standardized. However, it turns out not to be such a problem. All OSes use basically the same algorithm (a per-module lookup table) as detailed in Ulrich Drepper's TLS ELF ABI document, so we can easily write code to decode it ourselves. The only question therefore is the exact field layouts required. Happily, the implementors of libpthread expose the structure of the DTV via metadata exported as symbols from the .so itself, designed exactly for this kind of thing. So this patch simply reads that metadata in, and re-implements libthread_db's algorithm itself. We thereby get cross-platform TLS lookup without either requiring third-party libraries, while still being independent of the version of libpthread being used. Test case included. llvm-svn: 192922
2013-10-18 05:14:00 +08:00
break;
} else if (reg_info.alt_name) {
s->PutCString(reg_info.alt_name);
break;
}
}
}
s->Printf("DW_OP_regx(%" PRIu32 ")", reg_num);
break;
} break;
case DW_OP_fbreg: // 0x91 1 SLEB128 offset
s->Printf("DW_OP_fbreg(%" PRIi64 ")", m_data.GetSLEB128(&offset));
break;
case DW_OP_bregx: // 0x92 2 ULEB128 register followed by SLEB128 offset
{
uint32_t reg_num = m_data.GetULEB128(&offset);
int64_t reg_offset = m_data.GetSLEB128(&offset);
if (abi) {
RegisterInfo reg_info;
if (abi->GetRegisterInfoByKind(m_reg_kind, reg_num, reg_info)) {
if (reg_info.name) {
s->Printf("[%s%+" PRIi64 "]", reg_info.name, reg_offset);
break;
} else if (reg_info.alt_name) {
s->Printf("[%s%+" PRIi64 "]", reg_info.alt_name, reg_offset);
break;
}
}
}
s->Printf("DW_OP_bregx(reg=%" PRIu32 ",offset=%" PRIi64 ")", reg_num,
reg_offset);
} break;
case DW_OP_piece: // 0x93 1 ULEB128 size of piece addressed
s->Printf("DW_OP_piece(0x%" PRIx64 ")", m_data.GetULEB128(&offset));
break;
case DW_OP_deref_size: // 0x94 1 1-byte size of data retrieved
s->Printf("DW_OP_deref_size(0x%2.2x)", m_data.GetU8(&offset));
break;
case DW_OP_xderef_size: // 0x95 1 1-byte size of data retrieved
s->Printf("DW_OP_xderef_size(0x%2.2x)", m_data.GetU8(&offset));
break;
case DW_OP_nop:
s->PutCString("DW_OP_nop");
break; // 0x96
case DW_OP_push_object_address:
s->PutCString("DW_OP_push_object_address");
break; // 0x97 DWARF3
case DW_OP_call2: // 0x98 DWARF3 1 2-byte offset of DIE
s->Printf("DW_OP_call2(0x%4.4x)", m_data.GetU16(&offset));
break;
case DW_OP_call4: // 0x99 DWARF3 1 4-byte offset of DIE
s->Printf("DW_OP_call4(0x%8.8x)", m_data.GetU32(&offset));
break;
case DW_OP_call_ref: // 0x9a DWARF3 1 4- or 8-byte offset of DIE
s->Printf("DW_OP_call_ref(0x%8.8" PRIx64 ")", m_data.GetAddress(&offset));
break;
// case DW_OP_call_frame_cfa: s << "call_frame_cfa"; break;
// // 0x9c DWARF3
// case DW_OP_bit_piece: // 0x9d DWARF3 2
// s->Printf("DW_OP_bit_piece(0x%x, 0x%x)",
// m_data.GetULEB128(&offset), m_data.GetULEB128(&offset));
// break;
// case DW_OP_lo_user: s->PutCString("DW_OP_lo_user"); break;
// // 0xe0
// case DW_OP_hi_user: s->PutCString("DW_OP_hi_user"); break;
// // 0xff
// case DW_OP_APPLE_extern:
// s->Printf("DW_OP_APPLE_extern(%" PRIu64 ")",
// m_data.GetULEB128(&offset));
// break;
// case DW_OP_APPLE_array_ref:
// s->PutCString("DW_OP_APPLE_array_ref");
// break;
case DW_OP_form_tls_address:
s->PutCString("DW_OP_form_tls_address"); // 0x9b
break;
case DW_OP_GNU_addr_index: // 0xfb
s->Printf("DW_OP_GNU_addr_index(0x%" PRIx64 ")",
m_data.GetULEB128(&offset));
break;
case DW_OP_GNU_const_index: // 0xfc
s->Printf("DW_OP_GNU_const_index(0x%" PRIx64 ")",
m_data.GetULEB128(&offset));
break;
case DW_OP_GNU_push_tls_address:
s->PutCString("DW_OP_GNU_push_tls_address"); // 0xe0
break;
case DW_OP_APPLE_uninit:
s->PutCString("DW_OP_APPLE_uninit"); // 0xF0
break;
// case DW_OP_APPLE_assign: // 0xF1 - pops value off and
// assigns it to second item on stack (2nd item must have
// assignable context)
// s->PutCString("DW_OP_APPLE_assign");
// break;
// case DW_OP_APPLE_address_of: // 0xF2 - gets the address of
// the top stack item (top item must be a variable, or have
// value_type that is an address already)
// s->PutCString("DW_OP_APPLE_address_of");
// break;
// case DW_OP_APPLE_value_of: // 0xF3 - pops the value off the
// stack and pushes the value of that object (top item must be a
// variable, or expression local)
// s->PutCString("DW_OP_APPLE_value_of");
// break;
// case DW_OP_APPLE_deref_type: // 0xF4 - gets the address of
// the top stack item (top item must be a variable, or a clang
// type)
// s->PutCString("DW_OP_APPLE_deref_type");
// break;
// case DW_OP_APPLE_expr_local: // 0xF5 - ULEB128 expression
// local index
// s->Printf("DW_OP_APPLE_expr_local(%" PRIu64 ")",
// m_data.GetULEB128(&offset));
// break;
// case DW_OP_APPLE_constf: // 0xF6 - 1 byte float size,
// followed by constant float data
// {
// uint8_t float_length = m_data.GetU8(&offset);
// s->Printf("DW_OP_APPLE_constf(<%u> ", float_length);
// m_data.Dump(s, offset, eFormatHex, float_length, 1,
// UINT32_MAX, DW_INVALID_ADDRESS, 0, 0);
// s->PutChar(')');
// // Consume the float data
// m_data.GetData(&offset, float_length);
// }
// break;
// case DW_OP_APPLE_scalar_cast:
// s->Printf("DW_OP_APPLE_scalar_cast(%s)",
// Scalar::GetValueTypeAsCString
// ((Scalar::Type)m_data.GetU8(&offset)));
// break;
// case DW_OP_APPLE_clang_cast:
// {
// clang::Type *clang_type = (clang::Type
// *)m_data.GetMaxU64(&offset, sizeof(void*));
// s->Printf("DW_OP_APPLE_clang_cast(%p)", clang_type);
// }
// break;
// case DW_OP_APPLE_clear:
// s->PutCString("DW_OP_APPLE_clear");
// break;
// case DW_OP_APPLE_error: // 0xFF - Stops expression
// evaluation and returns an error (no args)
// s->PutCString("DW_OP_APPLE_error");
// break;
}
}
}
void DWARFExpression::SetLocationListSlide(addr_t slide) {
m_loclist_slide = slide;
}
int DWARFExpression::GetRegisterKind() { return m_reg_kind; }
void DWARFExpression::SetRegisterKind(RegisterKind reg_kind) {
m_reg_kind = reg_kind;
}
bool DWARFExpression::IsLocationList() const {
return m_loclist_slide != LLDB_INVALID_ADDRESS;
}
void DWARFExpression::GetDescription(Stream *s, lldb::DescriptionLevel level,
addr_t location_list_base_addr,
ABI *abi) const {
if (IsLocationList()) {
// We have a location list
lldb::offset_t offset = 0;
uint32_t count = 0;
addr_t curr_base_addr = location_list_base_addr;
while (m_data.ValidOffset(offset)) {
addr_t begin_addr_offset = LLDB_INVALID_ADDRESS;
addr_t end_addr_offset = LLDB_INVALID_ADDRESS;
if (!AddressRangeForLocationListEntry(m_dwarf_cu, m_data, &offset,
begin_addr_offset, end_addr_offset))
break;
if (begin_addr_offset == 0 && end_addr_offset == 0)
break;
if (begin_addr_offset < end_addr_offset) {
if (count > 0)
s->PutCString(", ");
VMRange addr_range(curr_base_addr + begin_addr_offset,
curr_base_addr + end_addr_offset);
addr_range.Dump(s, 0, 8);
s->PutChar('{');
lldb::offset_t location_length = m_data.GetU16(&offset);
DumpLocation(s, offset, location_length, level, abi);
s->PutChar('}');
offset += location_length;
} else {
if ((m_data.GetAddressByteSize() == 4 &&
(begin_addr_offset == UINT32_MAX)) ||
(m_data.GetAddressByteSize() == 8 &&
(begin_addr_offset == UINT64_MAX))) {
curr_base_addr = end_addr_offset + location_list_base_addr;
// We have a new base address
if (count > 0)
s->PutCString(", ");
*s << "base_addr = " << end_addr_offset;
}
}
count++;
}
} else {
// We have a normal location that contains DW_OP location opcodes
DumpLocation(s, 0, m_data.GetByteSize(), level, abi);
}
}
static bool ReadRegisterValueAsScalar(RegisterContext *reg_ctx,
lldb::RegisterKind reg_kind,
uint32_t reg_num, Status *error_ptr,
Value &value) {
if (reg_ctx == NULL) {
if (error_ptr)
error_ptr->SetErrorStringWithFormat("No register context in frame.\n");
} else {
uint32_t native_reg =
reg_ctx->ConvertRegisterKindToRegisterNumber(reg_kind, reg_num);
if (native_reg == LLDB_INVALID_REGNUM) {
if (error_ptr)
error_ptr->SetErrorStringWithFormat("Unable to convert register "
"kind=%u reg_num=%u to a native "
"register number.\n",
reg_kind, reg_num);
} else {
const RegisterInfo *reg_info =
reg_ctx->GetRegisterInfoAtIndex(native_reg);
RegisterValue reg_value;
if (reg_ctx->ReadRegister(reg_info, reg_value)) {
if (reg_value.GetScalarValue(value.GetScalar())) {
value.SetValueType(Value::eValueTypeScalar);
value.SetContext(Value::eContextTypeRegisterInfo,
const_cast<RegisterInfo *>(reg_info));
if (error_ptr)
error_ptr->Clear();
return true;
} else {
// If we get this error, then we need to implement a value buffer in
// the dwarf expression evaluation function...
if (error_ptr)
error_ptr->SetErrorStringWithFormat(
"register %s can't be converted to a scalar value",
reg_info->name);
}
} else {
if (error_ptr)
error_ptr->SetErrorStringWithFormat("register %s is not available",
reg_info->name);
}
}
}
return false;
}
// bool
// DWARFExpression::LocationListContainsLoadAddress (Process* process, const
// Address &addr) const
Looking at some of the test suite failures in DWARF in .o files with the debug map showed that the location lists in the .o files needed some refactoring in order to work. The case that was failing was where a function that was in the "__TEXT.__textcoal_nt" in the .o file, and in the "__TEXT.__text" section in the main executable. This made symbol lookup fail due to the way we were finding a real address in the debug map which was by finding the section that the function was in in the .o file and trying to find this in the main executable. Now the section list supports finding a linked address in a section or any child sections. After fixing this, we ran into issue that were due to DWARF and how it represents locations lists. DWARF makes a list of address ranges and expressions that go along with those address ranges. The location addresses are expressed in terms of a compile unit address + offset. This works fine as long as nothing moves around. When stuff moves around and offsets change between the remapped compile unit base address and the new function address, then we can run into trouble. To deal with this, we now store supply a location list slide amount to any location list expressions that will allow us to make the location list addresses into zero based offsets from the object that owns the location list (always a function in our case). With these fixes we can now re-link random address ranges inside the debugger for use with our DWARF + debug map, incremental linking, and more. Another issue that arose when doing the DWARF in the .o files was that GCC 4.2 emits a ".debug_aranges" that only mentions functions that are externally visible. This makes .debug_aranges useless to us and we now generate a real address range lookup table in the DWARF parser at the same time as we index the name tables (that are needed because .debug_pubnames is just as useless). llvm-gcc doesn't generate a .debug_aranges section, though this could be fixed, we aren't going to rely upon it. Renamed a bunch of "UINT_MAX" to "UINT32_MAX". llvm-svn: 113829
2010-09-14 10:20:48 +08:00
//{
// return LocationListContainsLoadAddress(process,
// addr.GetLoadAddress(process));
Looking at some of the test suite failures in DWARF in .o files with the debug map showed that the location lists in the .o files needed some refactoring in order to work. The case that was failing was where a function that was in the "__TEXT.__textcoal_nt" in the .o file, and in the "__TEXT.__text" section in the main executable. This made symbol lookup fail due to the way we were finding a real address in the debug map which was by finding the section that the function was in in the .o file and trying to find this in the main executable. Now the section list supports finding a linked address in a section or any child sections. After fixing this, we ran into issue that were due to DWARF and how it represents locations lists. DWARF makes a list of address ranges and expressions that go along with those address ranges. The location addresses are expressed in terms of a compile unit address + offset. This works fine as long as nothing moves around. When stuff moves around and offsets change between the remapped compile unit base address and the new function address, then we can run into trouble. To deal with this, we now store supply a location list slide amount to any location list expressions that will allow us to make the location list addresses into zero based offsets from the object that owns the location list (always a function in our case). With these fixes we can now re-link random address ranges inside the debugger for use with our DWARF + debug map, incremental linking, and more. Another issue that arose when doing the DWARF in the .o files was that GCC 4.2 emits a ".debug_aranges" that only mentions functions that are externally visible. This makes .debug_aranges useless to us and we now generate a real address range lookup table in the DWARF parser at the same time as we index the name tables (that are needed because .debug_pubnames is just as useless). llvm-gcc doesn't generate a .debug_aranges section, though this could be fixed, we aren't going to rely upon it. Renamed a bunch of "UINT_MAX" to "UINT32_MAX". llvm-svn: 113829
2010-09-14 10:20:48 +08:00
//}
//
// bool
// DWARFExpression::LocationListContainsLoadAddress (Process* process, addr_t
// load_addr) const
Looking at some of the test suite failures in DWARF in .o files with the debug map showed that the location lists in the .o files needed some refactoring in order to work. The case that was failing was where a function that was in the "__TEXT.__textcoal_nt" in the .o file, and in the "__TEXT.__text" section in the main executable. This made symbol lookup fail due to the way we were finding a real address in the debug map which was by finding the section that the function was in in the .o file and trying to find this in the main executable. Now the section list supports finding a linked address in a section or any child sections. After fixing this, we ran into issue that were due to DWARF and how it represents locations lists. DWARF makes a list of address ranges and expressions that go along with those address ranges. The location addresses are expressed in terms of a compile unit address + offset. This works fine as long as nothing moves around. When stuff moves around and offsets change between the remapped compile unit base address and the new function address, then we can run into trouble. To deal with this, we now store supply a location list slide amount to any location list expressions that will allow us to make the location list addresses into zero based offsets from the object that owns the location list (always a function in our case). With these fixes we can now re-link random address ranges inside the debugger for use with our DWARF + debug map, incremental linking, and more. Another issue that arose when doing the DWARF in the .o files was that GCC 4.2 emits a ".debug_aranges" that only mentions functions that are externally visible. This makes .debug_aranges useless to us and we now generate a real address range lookup table in the DWARF parser at the same time as we index the name tables (that are needed because .debug_pubnames is just as useless). llvm-gcc doesn't generate a .debug_aranges section, though this could be fixed, we aren't going to rely upon it. Renamed a bunch of "UINT_MAX" to "UINT32_MAX". llvm-svn: 113829
2010-09-14 10:20:48 +08:00
//{
// if (load_addr == LLDB_INVALID_ADDRESS)
// return false;
//
// if (IsLocationList())
// {
// lldb::offset_t offset = 0;
Looking at some of the test suite failures in DWARF in .o files with the debug map showed that the location lists in the .o files needed some refactoring in order to work. The case that was failing was where a function that was in the "__TEXT.__textcoal_nt" in the .o file, and in the "__TEXT.__text" section in the main executable. This made symbol lookup fail due to the way we were finding a real address in the debug map which was by finding the section that the function was in in the .o file and trying to find this in the main executable. Now the section list supports finding a linked address in a section or any child sections. After fixing this, we ran into issue that were due to DWARF and how it represents locations lists. DWARF makes a list of address ranges and expressions that go along with those address ranges. The location addresses are expressed in terms of a compile unit address + offset. This works fine as long as nothing moves around. When stuff moves around and offsets change between the remapped compile unit base address and the new function address, then we can run into trouble. To deal with this, we now store supply a location list slide amount to any location list expressions that will allow us to make the location list addresses into zero based offsets from the object that owns the location list (always a function in our case). With these fixes we can now re-link random address ranges inside the debugger for use with our DWARF + debug map, incremental linking, and more. Another issue that arose when doing the DWARF in the .o files was that GCC 4.2 emits a ".debug_aranges" that only mentions functions that are externally visible. This makes .debug_aranges useless to us and we now generate a real address range lookup table in the DWARF parser at the same time as we index the name tables (that are needed because .debug_pubnames is just as useless). llvm-gcc doesn't generate a .debug_aranges section, though this could be fixed, we aren't going to rely upon it. Renamed a bunch of "UINT_MAX" to "UINT32_MAX". llvm-svn: 113829
2010-09-14 10:20:48 +08:00
//
// addr_t loc_list_base_addr = m_loclist_slide.GetLoadAddress(process);
//
// if (loc_list_base_addr == LLDB_INVALID_ADDRESS)
// return false;
//
// while (m_data.ValidOffset(offset))
// {
// // We need to figure out what the value is for the location.
// addr_t lo_pc = m_data.GetAddress(&offset);
// addr_t hi_pc = m_data.GetAddress(&offset);
// if (lo_pc == 0 && hi_pc == 0)
// break;
// else
// {
// lo_pc += loc_list_base_addr;
// hi_pc += loc_list_base_addr;
//
// if (lo_pc <= load_addr && load_addr < hi_pc)
// return true;
//
// offset += m_data.GetU16(&offset);
// }
// }
// }
// return false;
//}
static offset_t GetOpcodeDataSize(const DataExtractor &data,
const lldb::offset_t data_offset,
const uint8_t op) {
lldb::offset_t offset = data_offset;
switch (op) {
case DW_OP_addr:
case DW_OP_call_ref: // 0x9a 1 address sized offset of DIE (DWARF3)
return data.GetAddressByteSize();
// Opcodes with no arguments
case DW_OP_deref: // 0x06
case DW_OP_dup: // 0x12
case DW_OP_drop: // 0x13
case DW_OP_over: // 0x14
case DW_OP_swap: // 0x16
case DW_OP_rot: // 0x17
case DW_OP_xderef: // 0x18
case DW_OP_abs: // 0x19
case DW_OP_and: // 0x1a
case DW_OP_div: // 0x1b
case DW_OP_minus: // 0x1c
case DW_OP_mod: // 0x1d
case DW_OP_mul: // 0x1e
case DW_OP_neg: // 0x1f
case DW_OP_not: // 0x20
case DW_OP_or: // 0x21
case DW_OP_plus: // 0x22
case DW_OP_shl: // 0x24
case DW_OP_shr: // 0x25
case DW_OP_shra: // 0x26
case DW_OP_xor: // 0x27
case DW_OP_eq: // 0x29
case DW_OP_ge: // 0x2a
case DW_OP_gt: // 0x2b
case DW_OP_le: // 0x2c
case DW_OP_lt: // 0x2d
case DW_OP_ne: // 0x2e
case DW_OP_lit0: // 0x30
case DW_OP_lit1: // 0x31
case DW_OP_lit2: // 0x32
case DW_OP_lit3: // 0x33
case DW_OP_lit4: // 0x34
case DW_OP_lit5: // 0x35
case DW_OP_lit6: // 0x36
case DW_OP_lit7: // 0x37
case DW_OP_lit8: // 0x38
case DW_OP_lit9: // 0x39
case DW_OP_lit10: // 0x3A
case DW_OP_lit11: // 0x3B
case DW_OP_lit12: // 0x3C
case DW_OP_lit13: // 0x3D
case DW_OP_lit14: // 0x3E
case DW_OP_lit15: // 0x3F
case DW_OP_lit16: // 0x40
case DW_OP_lit17: // 0x41
case DW_OP_lit18: // 0x42
case DW_OP_lit19: // 0x43
case DW_OP_lit20: // 0x44
case DW_OP_lit21: // 0x45
case DW_OP_lit22: // 0x46
case DW_OP_lit23: // 0x47
case DW_OP_lit24: // 0x48
case DW_OP_lit25: // 0x49
case DW_OP_lit26: // 0x4A
case DW_OP_lit27: // 0x4B
case DW_OP_lit28: // 0x4C
case DW_OP_lit29: // 0x4D
case DW_OP_lit30: // 0x4E
case DW_OP_lit31: // 0x4f
case DW_OP_reg0: // 0x50
case DW_OP_reg1: // 0x51
case DW_OP_reg2: // 0x52
case DW_OP_reg3: // 0x53
case DW_OP_reg4: // 0x54
case DW_OP_reg5: // 0x55
case DW_OP_reg6: // 0x56
case DW_OP_reg7: // 0x57
case DW_OP_reg8: // 0x58
case DW_OP_reg9: // 0x59
case DW_OP_reg10: // 0x5A
case DW_OP_reg11: // 0x5B
case DW_OP_reg12: // 0x5C
case DW_OP_reg13: // 0x5D
case DW_OP_reg14: // 0x5E
case DW_OP_reg15: // 0x5F
case DW_OP_reg16: // 0x60
case DW_OP_reg17: // 0x61
case DW_OP_reg18: // 0x62
case DW_OP_reg19: // 0x63
case DW_OP_reg20: // 0x64
case DW_OP_reg21: // 0x65
case DW_OP_reg22: // 0x66
case DW_OP_reg23: // 0x67
case DW_OP_reg24: // 0x68
case DW_OP_reg25: // 0x69
case DW_OP_reg26: // 0x6A
case DW_OP_reg27: // 0x6B
case DW_OP_reg28: // 0x6C
case DW_OP_reg29: // 0x6D
case DW_OP_reg30: // 0x6E
case DW_OP_reg31: // 0x6F
case DW_OP_nop: // 0x96
case DW_OP_push_object_address: // 0x97 DWARF3
case DW_OP_form_tls_address: // 0x9b DWARF3
case DW_OP_call_frame_cfa: // 0x9c DWARF3
case DW_OP_stack_value: // 0x9f DWARF4
case DW_OP_GNU_push_tls_address: // 0xe0 GNU extension
return 0;
// Opcodes with a single 1 byte arguments
case DW_OP_const1u: // 0x08 1 1-byte constant
case DW_OP_const1s: // 0x09 1 1-byte constant
case DW_OP_pick: // 0x15 1 1-byte stack index
case DW_OP_deref_size: // 0x94 1 1-byte size of data retrieved
case DW_OP_xderef_size: // 0x95 1 1-byte size of data retrieved
return 1;
// Opcodes with a single 2 byte arguments
case DW_OP_const2u: // 0x0a 1 2-byte constant
case DW_OP_const2s: // 0x0b 1 2-byte constant
case DW_OP_skip: // 0x2f 1 signed 2-byte constant
case DW_OP_bra: // 0x28 1 signed 2-byte constant
case DW_OP_call2: // 0x98 1 2-byte offset of DIE (DWARF3)
return 2;
// Opcodes with a single 4 byte arguments
case DW_OP_const4u: // 0x0c 1 4-byte constant
case DW_OP_const4s: // 0x0d 1 4-byte constant
case DW_OP_call4: // 0x99 1 4-byte offset of DIE (DWARF3)
return 4;
// Opcodes with a single 8 byte arguments
case DW_OP_const8u: // 0x0e 1 8-byte constant
case DW_OP_const8s: // 0x0f 1 8-byte constant
return 8;
// All opcodes that have a single ULEB (signed or unsigned) argument
case DW_OP_constu: // 0x10 1 ULEB128 constant
case DW_OP_consts: // 0x11 1 SLEB128 constant
case DW_OP_plus_uconst: // 0x23 1 ULEB128 addend
case DW_OP_breg0: // 0x70 1 ULEB128 register
case DW_OP_breg1: // 0x71 1 ULEB128 register
case DW_OP_breg2: // 0x72 1 ULEB128 register
case DW_OP_breg3: // 0x73 1 ULEB128 register
case DW_OP_breg4: // 0x74 1 ULEB128 register
case DW_OP_breg5: // 0x75 1 ULEB128 register
case DW_OP_breg6: // 0x76 1 ULEB128 register
case DW_OP_breg7: // 0x77 1 ULEB128 register
case DW_OP_breg8: // 0x78 1 ULEB128 register
case DW_OP_breg9: // 0x79 1 ULEB128 register
case DW_OP_breg10: // 0x7a 1 ULEB128 register
case DW_OP_breg11: // 0x7b 1 ULEB128 register
case DW_OP_breg12: // 0x7c 1 ULEB128 register
case DW_OP_breg13: // 0x7d 1 ULEB128 register
case DW_OP_breg14: // 0x7e 1 ULEB128 register
case DW_OP_breg15: // 0x7f 1 ULEB128 register
case DW_OP_breg16: // 0x80 1 ULEB128 register
case DW_OP_breg17: // 0x81 1 ULEB128 register
case DW_OP_breg18: // 0x82 1 ULEB128 register
case DW_OP_breg19: // 0x83 1 ULEB128 register
case DW_OP_breg20: // 0x84 1 ULEB128 register
case DW_OP_breg21: // 0x85 1 ULEB128 register
case DW_OP_breg22: // 0x86 1 ULEB128 register
case DW_OP_breg23: // 0x87 1 ULEB128 register
case DW_OP_breg24: // 0x88 1 ULEB128 register
case DW_OP_breg25: // 0x89 1 ULEB128 register
case DW_OP_breg26: // 0x8a 1 ULEB128 register
case DW_OP_breg27: // 0x8b 1 ULEB128 register
case DW_OP_breg28: // 0x8c 1 ULEB128 register
case DW_OP_breg29: // 0x8d 1 ULEB128 register
case DW_OP_breg30: // 0x8e 1 ULEB128 register
case DW_OP_breg31: // 0x8f 1 ULEB128 register
case DW_OP_regx: // 0x90 1 ULEB128 register
case DW_OP_fbreg: // 0x91 1 SLEB128 offset
case DW_OP_piece: // 0x93 1 ULEB128 size of piece addressed
case DW_OP_GNU_addr_index: // 0xfb 1 ULEB128 index
case DW_OP_GNU_const_index: // 0xfc 1 ULEB128 index
data.Skip_LEB128(&offset);
return offset - data_offset;
// All opcodes that have a 2 ULEB (signed or unsigned) arguments
case DW_OP_bregx: // 0x92 2 ULEB128 register followed by SLEB128 offset
case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3);
data.Skip_LEB128(&offset);
data.Skip_LEB128(&offset);
return offset - data_offset;
case DW_OP_implicit_value: // 0x9e ULEB128 size followed by block of that size
// (DWARF4)
{
uint64_t block_len = data.Skip_LEB128(&offset);
offset += block_len;
return offset - data_offset;
}
default:
break;
}
return LLDB_INVALID_OFFSET;
<rdar://problem/10338439> This is the actual fix for the above radar where global variables that weren't initialized were not being shown correctly when leaving the DWARF in the .o files. Global variables that aren't intialized have symbols in the .o files that specify they are undefined and external to the .o file, yet document the size of the variable. This allows the compiler to emit a single copy, but makes it harder for our DWARF in .o files with the executable having a debug map because the symbol for the global in the .o file doesn't exist in a section that we can assign a fixed up linked address to, and also the DWARF contains an invalid address in the "DW_OP_addr" location (always zero). This means that the DWARF is incorrect and actually maps all such global varaibles to the first file address in the .o file which is usually the first function. So we can fix this in either of two ways: make a new fake section in the .o file so that we have a file address in the .o file that we can relink, or fix the the variable as it is created in the .o file DWARF parser and actually give it the file address from the executable. Each variable contains a SymbolContextScope, or a single pointer that helps us to recreate where the variables came from (which module, file, function, etc). This context helps us to resolve any file addresses that might be in the location description of the variable by pointing us to which file the file address comes from, so we can just replace the SymbolContextScope and also fix up the location, which we would have had to do for the other case as well, and update the file address. Now globals display correctly. The above changes made it possible to determine if a variable is a global or static variable when parsing DWARF. The DWARF emits a DW_TAG_variable tag for each variable (local, global, or static), yet DWARF provides no way for us to classify these variables into these categories. We can now detect when a variable has a simple address expressions as its location and this will help us classify these correctly. While making the above changes I also noticed that we had two symbol types: eSymbolTypeExtern and eSymbolTypeUndefined which mean essentially the same thing: the symbol is not defined in the current object file. Symbol objects also have a bit that specifies if a symbol is externally visible, so I got rid of the eSymbolTypeExtern symbol type and moved all code locations that used it to use the eSymbolTypeUndefined type. llvm-svn: 144489
2011-11-13 12:15:56 +08:00
}
lldb::addr_t DWARFExpression::GetLocation_DW_OP_addr(uint32_t op_addr_idx,
bool &error) const {
error = false;
if (IsLocationList())
return LLDB_INVALID_ADDRESS;
lldb::offset_t offset = 0;
uint32_t curr_op_addr_idx = 0;
while (m_data.ValidOffset(offset)) {
const uint8_t op = m_data.GetU8(&offset);
if (op == DW_OP_addr) {
const lldb::addr_t op_file_addr = m_data.GetAddress(&offset);
if (curr_op_addr_idx == op_addr_idx)
return op_file_addr;
else
++curr_op_addr_idx;
} else if (op == DW_OP_GNU_addr_index) {
uint64_t index = m_data.GetULEB128(&offset);
if (curr_op_addr_idx == op_addr_idx) {
if (!m_dwarf_cu) {
error = true;
break;
<rdar://problem/10338439> This is the actual fix for the above radar where global variables that weren't initialized were not being shown correctly when leaving the DWARF in the .o files. Global variables that aren't intialized have symbols in the .o files that specify they are undefined and external to the .o file, yet document the size of the variable. This allows the compiler to emit a single copy, but makes it harder for our DWARF in .o files with the executable having a debug map because the symbol for the global in the .o file doesn't exist in a section that we can assign a fixed up linked address to, and also the DWARF contains an invalid address in the "DW_OP_addr" location (always zero). This means that the DWARF is incorrect and actually maps all such global varaibles to the first file address in the .o file which is usually the first function. So we can fix this in either of two ways: make a new fake section in the .o file so that we have a file address in the .o file that we can relink, or fix the the variable as it is created in the .o file DWARF parser and actually give it the file address from the executable. Each variable contains a SymbolContextScope, or a single pointer that helps us to recreate where the variables came from (which module, file, function, etc). This context helps us to resolve any file addresses that might be in the location description of the variable by pointing us to which file the file address comes from, so we can just replace the SymbolContextScope and also fix up the location, which we would have had to do for the other case as well, and update the file address. Now globals display correctly. The above changes made it possible to determine if a variable is a global or static variable when parsing DWARF. The DWARF emits a DW_TAG_variable tag for each variable (local, global, or static), yet DWARF provides no way for us to classify these variables into these categories. We can now detect when a variable has a simple address expressions as its location and this will help us classify these correctly. While making the above changes I also noticed that we had two symbol types: eSymbolTypeExtern and eSymbolTypeUndefined which mean essentially the same thing: the symbol is not defined in the current object file. Symbol objects also have a bit that specifies if a symbol is externally visible, so I got rid of the eSymbolTypeExtern symbol type and moved all code locations that used it to use the eSymbolTypeUndefined type. llvm-svn: 144489
2011-11-13 12:15:56 +08:00
}
return ReadAddressFromDebugAddrSection(m_dwarf_cu, index);
} else
++curr_op_addr_idx;
} else {
const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
if (op_arg_size == LLDB_INVALID_OFFSET) {
error = true;
break;
}
offset += op_arg_size;
<rdar://problem/10338439> This is the actual fix for the above radar where global variables that weren't initialized were not being shown correctly when leaving the DWARF in the .o files. Global variables that aren't intialized have symbols in the .o files that specify they are undefined and external to the .o file, yet document the size of the variable. This allows the compiler to emit a single copy, but makes it harder for our DWARF in .o files with the executable having a debug map because the symbol for the global in the .o file doesn't exist in a section that we can assign a fixed up linked address to, and also the DWARF contains an invalid address in the "DW_OP_addr" location (always zero). This means that the DWARF is incorrect and actually maps all such global varaibles to the first file address in the .o file which is usually the first function. So we can fix this in either of two ways: make a new fake section in the .o file so that we have a file address in the .o file that we can relink, or fix the the variable as it is created in the .o file DWARF parser and actually give it the file address from the executable. Each variable contains a SymbolContextScope, or a single pointer that helps us to recreate where the variables came from (which module, file, function, etc). This context helps us to resolve any file addresses that might be in the location description of the variable by pointing us to which file the file address comes from, so we can just replace the SymbolContextScope and also fix up the location, which we would have had to do for the other case as well, and update the file address. Now globals display correctly. The above changes made it possible to determine if a variable is a global or static variable when parsing DWARF. The DWARF emits a DW_TAG_variable tag for each variable (local, global, or static), yet DWARF provides no way for us to classify these variables into these categories. We can now detect when a variable has a simple address expressions as its location and this will help us classify these correctly. While making the above changes I also noticed that we had two symbol types: eSymbolTypeExtern and eSymbolTypeUndefined which mean essentially the same thing: the symbol is not defined in the current object file. Symbol objects also have a bit that specifies if a symbol is externally visible, so I got rid of the eSymbolTypeExtern symbol type and moved all code locations that used it to use the eSymbolTypeUndefined type. llvm-svn: 144489
2011-11-13 12:15:56 +08:00
}
}
return LLDB_INVALID_ADDRESS;
<rdar://problem/10338439> This is the actual fix for the above radar where global variables that weren't initialized were not being shown correctly when leaving the DWARF in the .o files. Global variables that aren't intialized have symbols in the .o files that specify they are undefined and external to the .o file, yet document the size of the variable. This allows the compiler to emit a single copy, but makes it harder for our DWARF in .o files with the executable having a debug map because the symbol for the global in the .o file doesn't exist in a section that we can assign a fixed up linked address to, and also the DWARF contains an invalid address in the "DW_OP_addr" location (always zero). This means that the DWARF is incorrect and actually maps all such global varaibles to the first file address in the .o file which is usually the first function. So we can fix this in either of two ways: make a new fake section in the .o file so that we have a file address in the .o file that we can relink, or fix the the variable as it is created in the .o file DWARF parser and actually give it the file address from the executable. Each variable contains a SymbolContextScope, or a single pointer that helps us to recreate where the variables came from (which module, file, function, etc). This context helps us to resolve any file addresses that might be in the location description of the variable by pointing us to which file the file address comes from, so we can just replace the SymbolContextScope and also fix up the location, which we would have had to do for the other case as well, and update the file address. Now globals display correctly. The above changes made it possible to determine if a variable is a global or static variable when parsing DWARF. The DWARF emits a DW_TAG_variable tag for each variable (local, global, or static), yet DWARF provides no way for us to classify these variables into these categories. We can now detect when a variable has a simple address expressions as its location and this will help us classify these correctly. While making the above changes I also noticed that we had two symbol types: eSymbolTypeExtern and eSymbolTypeUndefined which mean essentially the same thing: the symbol is not defined in the current object file. Symbol objects also have a bit that specifies if a symbol is externally visible, so I got rid of the eSymbolTypeExtern symbol type and moved all code locations that used it to use the eSymbolTypeUndefined type. llvm-svn: 144489
2011-11-13 12:15:56 +08:00
}
bool DWARFExpression::Update_DW_OP_addr(lldb::addr_t file_addr) {
if (IsLocationList())
return false;
lldb::offset_t offset = 0;
while (m_data.ValidOffset(offset)) {
const uint8_t op = m_data.GetU8(&offset);
if (op == DW_OP_addr) {
const uint32_t addr_byte_size = m_data.GetAddressByteSize();
// We have to make a copy of the data as we don't know if this data is
// from a read only memory mapped buffer, so we duplicate all of the data
// first, then modify it, and if all goes well, we then replace the data
// for this expression
// So first we copy the data into a heap buffer
std::unique_ptr<DataBufferHeap> head_data_ap(
new DataBufferHeap(m_data.GetDataStart(), m_data.GetByteSize()));
// Make en encoder so we can write the address into the buffer using the
// correct byte order (endianness)
DataEncoder encoder(head_data_ap->GetBytes(), head_data_ap->GetByteSize(),
m_data.GetByteOrder(), addr_byte_size);
// Replace the address in the new buffer
if (encoder.PutMaxU64(offset, addr_byte_size, file_addr) == UINT32_MAX)
<rdar://problem/10338439> This is the actual fix for the above radar where global variables that weren't initialized were not being shown correctly when leaving the DWARF in the .o files. Global variables that aren't intialized have symbols in the .o files that specify they are undefined and external to the .o file, yet document the size of the variable. This allows the compiler to emit a single copy, but makes it harder for our DWARF in .o files with the executable having a debug map because the symbol for the global in the .o file doesn't exist in a section that we can assign a fixed up linked address to, and also the DWARF contains an invalid address in the "DW_OP_addr" location (always zero). This means that the DWARF is incorrect and actually maps all such global varaibles to the first file address in the .o file which is usually the first function. So we can fix this in either of two ways: make a new fake section in the .o file so that we have a file address in the .o file that we can relink, or fix the the variable as it is created in the .o file DWARF parser and actually give it the file address from the executable. Each variable contains a SymbolContextScope, or a single pointer that helps us to recreate where the variables came from (which module, file, function, etc). This context helps us to resolve any file addresses that might be in the location description of the variable by pointing us to which file the file address comes from, so we can just replace the SymbolContextScope and also fix up the location, which we would have had to do for the other case as well, and update the file address. Now globals display correctly. The above changes made it possible to determine if a variable is a global or static variable when parsing DWARF. The DWARF emits a DW_TAG_variable tag for each variable (local, global, or static), yet DWARF provides no way for us to classify these variables into these categories. We can now detect when a variable has a simple address expressions as its location and this will help us classify these correctly. While making the above changes I also noticed that we had two symbol types: eSymbolTypeExtern and eSymbolTypeUndefined which mean essentially the same thing: the symbol is not defined in the current object file. Symbol objects also have a bit that specifies if a symbol is externally visible, so I got rid of the eSymbolTypeExtern symbol type and moved all code locations that used it to use the eSymbolTypeUndefined type. llvm-svn: 144489
2011-11-13 12:15:56 +08:00
return false;
// All went well, so now we can reset the data using a shared pointer to
// the heap data so "m_data" will now correctly manage the heap data.
m_data.SetData(DataBufferSP(head_data_ap.release()));
return true;
} else {
const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
if (op_arg_size == LLDB_INVALID_OFFSET)
break;
offset += op_arg_size;
<rdar://problem/10338439> This is the actual fix for the above radar where global variables that weren't initialized were not being shown correctly when leaving the DWARF in the .o files. Global variables that aren't intialized have symbols in the .o files that specify they are undefined and external to the .o file, yet document the size of the variable. This allows the compiler to emit a single copy, but makes it harder for our DWARF in .o files with the executable having a debug map because the symbol for the global in the .o file doesn't exist in a section that we can assign a fixed up linked address to, and also the DWARF contains an invalid address in the "DW_OP_addr" location (always zero). This means that the DWARF is incorrect and actually maps all such global varaibles to the first file address in the .o file which is usually the first function. So we can fix this in either of two ways: make a new fake section in the .o file so that we have a file address in the .o file that we can relink, or fix the the variable as it is created in the .o file DWARF parser and actually give it the file address from the executable. Each variable contains a SymbolContextScope, or a single pointer that helps us to recreate where the variables came from (which module, file, function, etc). This context helps us to resolve any file addresses that might be in the location description of the variable by pointing us to which file the file address comes from, so we can just replace the SymbolContextScope and also fix up the location, which we would have had to do for the other case as well, and update the file address. Now globals display correctly. The above changes made it possible to determine if a variable is a global or static variable when parsing DWARF. The DWARF emits a DW_TAG_variable tag for each variable (local, global, or static), yet DWARF provides no way for us to classify these variables into these categories. We can now detect when a variable has a simple address expressions as its location and this will help us classify these correctly. While making the above changes I also noticed that we had two symbol types: eSymbolTypeExtern and eSymbolTypeUndefined which mean essentially the same thing: the symbol is not defined in the current object file. Symbol objects also have a bit that specifies if a symbol is externally visible, so I got rid of the eSymbolTypeExtern symbol type and moved all code locations that used it to use the eSymbolTypeUndefined type. llvm-svn: 144489
2011-11-13 12:15:56 +08:00
}
}
return false;
}
bool DWARFExpression::ContainsThreadLocalStorage() const {
// We are assuming for now that any thread local variable will not have a
// location list. This has been true for all thread local variables we have
// seen so far produced by any compiler.
if (IsLocationList())
<rdar://problem/10338439> This is the actual fix for the above radar where global variables that weren't initialized were not being shown correctly when leaving the DWARF in the .o files. Global variables that aren't intialized have symbols in the .o files that specify they are undefined and external to the .o file, yet document the size of the variable. This allows the compiler to emit a single copy, but makes it harder for our DWARF in .o files with the executable having a debug map because the symbol for the global in the .o file doesn't exist in a section that we can assign a fixed up linked address to, and also the DWARF contains an invalid address in the "DW_OP_addr" location (always zero). This means that the DWARF is incorrect and actually maps all such global varaibles to the first file address in the .o file which is usually the first function. So we can fix this in either of two ways: make a new fake section in the .o file so that we have a file address in the .o file that we can relink, or fix the the variable as it is created in the .o file DWARF parser and actually give it the file address from the executable. Each variable contains a SymbolContextScope, or a single pointer that helps us to recreate where the variables came from (which module, file, function, etc). This context helps us to resolve any file addresses that might be in the location description of the variable by pointing us to which file the file address comes from, so we can just replace the SymbolContextScope and also fix up the location, which we would have had to do for the other case as well, and update the file address. Now globals display correctly. The above changes made it possible to determine if a variable is a global or static variable when parsing DWARF. The DWARF emits a DW_TAG_variable tag for each variable (local, global, or static), yet DWARF provides no way for us to classify these variables into these categories. We can now detect when a variable has a simple address expressions as its location and this will help us classify these correctly. While making the above changes I also noticed that we had two symbol types: eSymbolTypeExtern and eSymbolTypeUndefined which mean essentially the same thing: the symbol is not defined in the current object file. Symbol objects also have a bit that specifies if a symbol is externally visible, so I got rid of the eSymbolTypeExtern symbol type and moved all code locations that used it to use the eSymbolTypeUndefined type. llvm-svn: 144489
2011-11-13 12:15:56 +08:00
return false;
lldb::offset_t offset = 0;
while (m_data.ValidOffset(offset)) {
const uint8_t op = m_data.GetU8(&offset);
if (op == DW_OP_form_tls_address || op == DW_OP_GNU_push_tls_address)
return true;
const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
if (op_arg_size == LLDB_INVALID_OFFSET)
return false;
else
offset += op_arg_size;
}
return false;
<rdar://problem/10338439> This is the actual fix for the above radar where global variables that weren't initialized were not being shown correctly when leaving the DWARF in the .o files. Global variables that aren't intialized have symbols in the .o files that specify they are undefined and external to the .o file, yet document the size of the variable. This allows the compiler to emit a single copy, but makes it harder for our DWARF in .o files with the executable having a debug map because the symbol for the global in the .o file doesn't exist in a section that we can assign a fixed up linked address to, and also the DWARF contains an invalid address in the "DW_OP_addr" location (always zero). This means that the DWARF is incorrect and actually maps all such global varaibles to the first file address in the .o file which is usually the first function. So we can fix this in either of two ways: make a new fake section in the .o file so that we have a file address in the .o file that we can relink, or fix the the variable as it is created in the .o file DWARF parser and actually give it the file address from the executable. Each variable contains a SymbolContextScope, or a single pointer that helps us to recreate where the variables came from (which module, file, function, etc). This context helps us to resolve any file addresses that might be in the location description of the variable by pointing us to which file the file address comes from, so we can just replace the SymbolContextScope and also fix up the location, which we would have had to do for the other case as well, and update the file address. Now globals display correctly. The above changes made it possible to determine if a variable is a global or static variable when parsing DWARF. The DWARF emits a DW_TAG_variable tag for each variable (local, global, or static), yet DWARF provides no way for us to classify these variables into these categories. We can now detect when a variable has a simple address expressions as its location and this will help us classify these correctly. While making the above changes I also noticed that we had two symbol types: eSymbolTypeExtern and eSymbolTypeUndefined which mean essentially the same thing: the symbol is not defined in the current object file. Symbol objects also have a bit that specifies if a symbol is externally visible, so I got rid of the eSymbolTypeExtern symbol type and moved all code locations that used it to use the eSymbolTypeUndefined type. llvm-svn: 144489
2011-11-13 12:15:56 +08:00
}
bool DWARFExpression::LinkThreadLocalStorage(
lldb::ModuleSP new_module_sp,
std::function<lldb::addr_t(lldb::addr_t file_addr)> const
&link_address_callback) {
// We are assuming for now that any thread local variable will not have a
// location list. This has been true for all thread local variables we have
// seen so far produced by any compiler.
if (IsLocationList())
return false;
<rdar://problem/10338439> This is the actual fix for the above radar where global variables that weren't initialized were not being shown correctly when leaving the DWARF in the .o files. Global variables that aren't intialized have symbols in the .o files that specify they are undefined and external to the .o file, yet document the size of the variable. This allows the compiler to emit a single copy, but makes it harder for our DWARF in .o files with the executable having a debug map because the symbol for the global in the .o file doesn't exist in a section that we can assign a fixed up linked address to, and also the DWARF contains an invalid address in the "DW_OP_addr" location (always zero). This means that the DWARF is incorrect and actually maps all such global varaibles to the first file address in the .o file which is usually the first function. So we can fix this in either of two ways: make a new fake section in the .o file so that we have a file address in the .o file that we can relink, or fix the the variable as it is created in the .o file DWARF parser and actually give it the file address from the executable. Each variable contains a SymbolContextScope, or a single pointer that helps us to recreate where the variables came from (which module, file, function, etc). This context helps us to resolve any file addresses that might be in the location description of the variable by pointing us to which file the file address comes from, so we can just replace the SymbolContextScope and also fix up the location, which we would have had to do for the other case as well, and update the file address. Now globals display correctly. The above changes made it possible to determine if a variable is a global or static variable when parsing DWARF. The DWARF emits a DW_TAG_variable tag for each variable (local, global, or static), yet DWARF provides no way for us to classify these variables into these categories. We can now detect when a variable has a simple address expressions as its location and this will help us classify these correctly. While making the above changes I also noticed that we had two symbol types: eSymbolTypeExtern and eSymbolTypeUndefined which mean essentially the same thing: the symbol is not defined in the current object file. Symbol objects also have a bit that specifies if a symbol is externally visible, so I got rid of the eSymbolTypeExtern symbol type and moved all code locations that used it to use the eSymbolTypeUndefined type. llvm-svn: 144489
2011-11-13 12:15:56 +08:00
const uint32_t addr_byte_size = m_data.GetAddressByteSize();
// We have to make a copy of the data as we don't know if this data is from a
// read only memory mapped buffer, so we duplicate all of the data first,
// then modify it, and if all goes well, we then replace the data for this
// expression
// So first we copy the data into a heap buffer
std::shared_ptr<DataBufferHeap> heap_data_sp(
new DataBufferHeap(m_data.GetDataStart(), m_data.GetByteSize()));
// Make en encoder so we can write the address into the buffer using the
// correct byte order (endianness)
DataEncoder encoder(heap_data_sp->GetBytes(), heap_data_sp->GetByteSize(),
m_data.GetByteOrder(), addr_byte_size);
lldb::offset_t offset = 0;
lldb::offset_t const_offset = 0;
lldb::addr_t const_value = 0;
size_t const_byte_size = 0;
while (m_data.ValidOffset(offset)) {
const uint8_t op = m_data.GetU8(&offset);
bool decoded_data = false;
switch (op) {
case DW_OP_const4u:
// Remember the const offset in case we later have a
// DW_OP_form_tls_address or DW_OP_GNU_push_tls_address
const_offset = offset;
const_value = m_data.GetU32(&offset);
decoded_data = true;
const_byte_size = 4;
break;
case DW_OP_const8u:
// Remember the const offset in case we later have a
// DW_OP_form_tls_address or DW_OP_GNU_push_tls_address
const_offset = offset;
const_value = m_data.GetU64(&offset);
decoded_data = true;
const_byte_size = 8;
break;
case DW_OP_form_tls_address:
case DW_OP_GNU_push_tls_address:
// DW_OP_form_tls_address and DW_OP_GNU_push_tls_address must be preceded
// by a file address on the stack. We assume that DW_OP_const4u or
// DW_OP_const8u is used for these values, and we check that the last
// opcode we got before either of these was DW_OP_const4u or
// DW_OP_const8u. If so, then we can link the value accodingly. For
// Darwin, the value in the DW_OP_const4u or DW_OP_const8u is the file
// address of a structure that contains a function pointer, the pthread
// key and the offset into the data pointed to by the pthread key. So we
// must link this address and also set the module of this expression to
// the new_module_sp so we can resolve the file address correctly
if (const_byte_size > 0) {
lldb::addr_t linked_file_addr = link_address_callback(const_value);
if (linked_file_addr == LLDB_INVALID_ADDRESS)
return false;
// Replace the address in the new buffer
if (encoder.PutMaxU64(const_offset, const_byte_size,
linked_file_addr) == UINT32_MAX)
return false;
}
break;
Added support for thread local variables on all Apple OS variants. We had support that assumed that thread local data for a variable could be determined solely from the module in which the variable exists. While this work for linux, it doesn't work for Apple OSs. The DWARF for thread local variables consists of location opcodes that do something like: DW_OP_const8u (x) DW_OP_form_tls_address or DW_OP_const8u (x) DW_OP_GNU_push_tls_address The "x" is allowed to be anything that is needed to determine the location of the variable. For Linux "x" is the offset within the TLS data for a given executable (ModuleSP in LLDB). For Apple OS variants, it is the file address of the data structure that contains a pthread key that can be used with pthread_getspecific() and the offset needed. This fix passes the "x" along to the thread: virtual lldb::addr_t lldb_private::Thread::GetThreadLocalData(const lldb::ModuleSP module, lldb::addr_t tls_file_addr); Then this is passed along to the DynamicLoader::GetThreadLocalData(): virtual lldb::addr_t lldb_private::DynamicLoader::GetThreadLocalData(const lldb::ModuleSP module, const lldb::ThreadSP thread, lldb::addr_t tls_file_addr); This allows each DynamicLoader plug-in do the right thing for the current OS. The DynamicLoaderMacOSXDYLD was modified to be able to grab the pthread key from the data structure that is in memory and call "void *pthread_getspecific(pthread_key_t key)" to get the value of the thread local storage and it caches it per thread since it never changes. I had to update the test case to access the thread local data before trying to print it as on Apple OS variants, thread locals are not available unless they have been accessed at least one by the current thread. I also added a new lldb::ValueType named "eValueTypeVariableThreadLocal" so that we can ask SBValue objects for their ValueType and be able to tell when we have a thread local variable. <rdar://problem/23308080> llvm-svn: 274366
2016-07-02 01:17:23 +08:00
default:
const_offset = 0;
const_value = 0;
const_byte_size = 0;
break;
Added support for thread local variables on all Apple OS variants. We had support that assumed that thread local data for a variable could be determined solely from the module in which the variable exists. While this work for linux, it doesn't work for Apple OSs. The DWARF for thread local variables consists of location opcodes that do something like: DW_OP_const8u (x) DW_OP_form_tls_address or DW_OP_const8u (x) DW_OP_GNU_push_tls_address The "x" is allowed to be anything that is needed to determine the location of the variable. For Linux "x" is the offset within the TLS data for a given executable (ModuleSP in LLDB). For Apple OS variants, it is the file address of the data structure that contains a pthread key that can be used with pthread_getspecific() and the offset needed. This fix passes the "x" along to the thread: virtual lldb::addr_t lldb_private::Thread::GetThreadLocalData(const lldb::ModuleSP module, lldb::addr_t tls_file_addr); Then this is passed along to the DynamicLoader::GetThreadLocalData(): virtual lldb::addr_t lldb_private::DynamicLoader::GetThreadLocalData(const lldb::ModuleSP module, const lldb::ThreadSP thread, lldb::addr_t tls_file_addr); This allows each DynamicLoader plug-in do the right thing for the current OS. The DynamicLoaderMacOSXDYLD was modified to be able to grab the pthread key from the data structure that is in memory and call "void *pthread_getspecific(pthread_key_t key)" to get the value of the thread local storage and it caches it per thread since it never changes. I had to update the test case to access the thread local data before trying to print it as on Apple OS variants, thread locals are not available unless they have been accessed at least one by the current thread. I also added a new lldb::ValueType named "eValueTypeVariableThreadLocal" so that we can ask SBValue objects for their ValueType and be able to tell when we have a thread local variable. <rdar://problem/23308080> llvm-svn: 274366
2016-07-02 01:17:23 +08:00
}
if (!decoded_data) {
const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
if (op_arg_size == LLDB_INVALID_OFFSET)
Added support for thread local variables on all Apple OS variants. We had support that assumed that thread local data for a variable could be determined solely from the module in which the variable exists. While this work for linux, it doesn't work for Apple OSs. The DWARF for thread local variables consists of location opcodes that do something like: DW_OP_const8u (x) DW_OP_form_tls_address or DW_OP_const8u (x) DW_OP_GNU_push_tls_address The "x" is allowed to be anything that is needed to determine the location of the variable. For Linux "x" is the offset within the TLS data for a given executable (ModuleSP in LLDB). For Apple OS variants, it is the file address of the data structure that contains a pthread key that can be used with pthread_getspecific() and the offset needed. This fix passes the "x" along to the thread: virtual lldb::addr_t lldb_private::Thread::GetThreadLocalData(const lldb::ModuleSP module, lldb::addr_t tls_file_addr); Then this is passed along to the DynamicLoader::GetThreadLocalData(): virtual lldb::addr_t lldb_private::DynamicLoader::GetThreadLocalData(const lldb::ModuleSP module, const lldb::ThreadSP thread, lldb::addr_t tls_file_addr); This allows each DynamicLoader plug-in do the right thing for the current OS. The DynamicLoaderMacOSXDYLD was modified to be able to grab the pthread key from the data structure that is in memory and call "void *pthread_getspecific(pthread_key_t key)" to get the value of the thread local storage and it caches it per thread since it never changes. I had to update the test case to access the thread local data before trying to print it as on Apple OS variants, thread locals are not available unless they have been accessed at least one by the current thread. I also added a new lldb::ValueType named "eValueTypeVariableThreadLocal" so that we can ask SBValue objects for their ValueType and be able to tell when we have a thread local variable. <rdar://problem/23308080> llvm-svn: 274366
2016-07-02 01:17:23 +08:00
return false;
else
offset += op_arg_size;
}
}
// If we linked the TLS address correctly, update the module so that when the
// expression is evaluated it can resolve the file address to a load address
// and read the
// TLS data
m_module_wp = new_module_sp;
m_data.SetData(heap_data_sp);
return true;
}
Added support for thread local variables on all Apple OS variants. We had support that assumed that thread local data for a variable could be determined solely from the module in which the variable exists. While this work for linux, it doesn't work for Apple OSs. The DWARF for thread local variables consists of location opcodes that do something like: DW_OP_const8u (x) DW_OP_form_tls_address or DW_OP_const8u (x) DW_OP_GNU_push_tls_address The "x" is allowed to be anything that is needed to determine the location of the variable. For Linux "x" is the offset within the TLS data for a given executable (ModuleSP in LLDB). For Apple OS variants, it is the file address of the data structure that contains a pthread key that can be used with pthread_getspecific() and the offset needed. This fix passes the "x" along to the thread: virtual lldb::addr_t lldb_private::Thread::GetThreadLocalData(const lldb::ModuleSP module, lldb::addr_t tls_file_addr); Then this is passed along to the DynamicLoader::GetThreadLocalData(): virtual lldb::addr_t lldb_private::DynamicLoader::GetThreadLocalData(const lldb::ModuleSP module, const lldb::ThreadSP thread, lldb::addr_t tls_file_addr); This allows each DynamicLoader plug-in do the right thing for the current OS. The DynamicLoaderMacOSXDYLD was modified to be able to grab the pthread key from the data structure that is in memory and call "void *pthread_getspecific(pthread_key_t key)" to get the value of the thread local storage and it caches it per thread since it never changes. I had to update the test case to access the thread local data before trying to print it as on Apple OS variants, thread locals are not available unless they have been accessed at least one by the current thread. I also added a new lldb::ValueType named "eValueTypeVariableThreadLocal" so that we can ask SBValue objects for their ValueType and be able to tell when we have a thread local variable. <rdar://problem/23308080> llvm-svn: 274366
2016-07-02 01:17:23 +08:00
bool DWARFExpression::LocationListContainsAddress(
lldb::addr_t loclist_base_addr, lldb::addr_t addr) const {
if (addr == LLDB_INVALID_ADDRESS)
return false;
Added support for thread local variables on all Apple OS variants. We had support that assumed that thread local data for a variable could be determined solely from the module in which the variable exists. While this work for linux, it doesn't work for Apple OSs. The DWARF for thread local variables consists of location opcodes that do something like: DW_OP_const8u (x) DW_OP_form_tls_address or DW_OP_const8u (x) DW_OP_GNU_push_tls_address The "x" is allowed to be anything that is needed to determine the location of the variable. For Linux "x" is the offset within the TLS data for a given executable (ModuleSP in LLDB). For Apple OS variants, it is the file address of the data structure that contains a pthread key that can be used with pthread_getspecific() and the offset needed. This fix passes the "x" along to the thread: virtual lldb::addr_t lldb_private::Thread::GetThreadLocalData(const lldb::ModuleSP module, lldb::addr_t tls_file_addr); Then this is passed along to the DynamicLoader::GetThreadLocalData(): virtual lldb::addr_t lldb_private::DynamicLoader::GetThreadLocalData(const lldb::ModuleSP module, const lldb::ThreadSP thread, lldb::addr_t tls_file_addr); This allows each DynamicLoader plug-in do the right thing for the current OS. The DynamicLoaderMacOSXDYLD was modified to be able to grab the pthread key from the data structure that is in memory and call "void *pthread_getspecific(pthread_key_t key)" to get the value of the thread local storage and it caches it per thread since it never changes. I had to update the test case to access the thread local data before trying to print it as on Apple OS variants, thread locals are not available unless they have been accessed at least one by the current thread. I also added a new lldb::ValueType named "eValueTypeVariableThreadLocal" so that we can ask SBValue objects for their ValueType and be able to tell when we have a thread local variable. <rdar://problem/23308080> llvm-svn: 274366
2016-07-02 01:17:23 +08:00
if (IsLocationList()) {
lldb::offset_t offset = 0;
Added support for thread local variables on all Apple OS variants. We had support that assumed that thread local data for a variable could be determined solely from the module in which the variable exists. While this work for linux, it doesn't work for Apple OSs. The DWARF for thread local variables consists of location opcodes that do something like: DW_OP_const8u (x) DW_OP_form_tls_address or DW_OP_const8u (x) DW_OP_GNU_push_tls_address The "x" is allowed to be anything that is needed to determine the location of the variable. For Linux "x" is the offset within the TLS data for a given executable (ModuleSP in LLDB). For Apple OS variants, it is the file address of the data structure that contains a pthread key that can be used with pthread_getspecific() and the offset needed. This fix passes the "x" along to the thread: virtual lldb::addr_t lldb_private::Thread::GetThreadLocalData(const lldb::ModuleSP module, lldb::addr_t tls_file_addr); Then this is passed along to the DynamicLoader::GetThreadLocalData(): virtual lldb::addr_t lldb_private::DynamicLoader::GetThreadLocalData(const lldb::ModuleSP module, const lldb::ThreadSP thread, lldb::addr_t tls_file_addr); This allows each DynamicLoader plug-in do the right thing for the current OS. The DynamicLoaderMacOSXDYLD was modified to be able to grab the pthread key from the data structure that is in memory and call "void *pthread_getspecific(pthread_key_t key)" to get the value of the thread local storage and it caches it per thread since it never changes. I had to update the test case to access the thread local data before trying to print it as on Apple OS variants, thread locals are not available unless they have been accessed at least one by the current thread. I also added a new lldb::ValueType named "eValueTypeVariableThreadLocal" so that we can ask SBValue objects for their ValueType and be able to tell when we have a thread local variable. <rdar://problem/23308080> llvm-svn: 274366
2016-07-02 01:17:23 +08:00
if (loclist_base_addr == LLDB_INVALID_ADDRESS)
return false;
Added support for thread local variables on all Apple OS variants. We had support that assumed that thread local data for a variable could be determined solely from the module in which the variable exists. While this work for linux, it doesn't work for Apple OSs. The DWARF for thread local variables consists of location opcodes that do something like: DW_OP_const8u (x) DW_OP_form_tls_address or DW_OP_const8u (x) DW_OP_GNU_push_tls_address The "x" is allowed to be anything that is needed to determine the location of the variable. For Linux "x" is the offset within the TLS data for a given executable (ModuleSP in LLDB). For Apple OS variants, it is the file address of the data structure that contains a pthread key that can be used with pthread_getspecific() and the offset needed. This fix passes the "x" along to the thread: virtual lldb::addr_t lldb_private::Thread::GetThreadLocalData(const lldb::ModuleSP module, lldb::addr_t tls_file_addr); Then this is passed along to the DynamicLoader::GetThreadLocalData(): virtual lldb::addr_t lldb_private::DynamicLoader::GetThreadLocalData(const lldb::ModuleSP module, const lldb::ThreadSP thread, lldb::addr_t tls_file_addr); This allows each DynamicLoader plug-in do the right thing for the current OS. The DynamicLoaderMacOSXDYLD was modified to be able to grab the pthread key from the data structure that is in memory and call "void *pthread_getspecific(pthread_key_t key)" to get the value of the thread local storage and it caches it per thread since it never changes. I had to update the test case to access the thread local data before trying to print it as on Apple OS variants, thread locals are not available unless they have been accessed at least one by the current thread. I also added a new lldb::ValueType named "eValueTypeVariableThreadLocal" so that we can ask SBValue objects for their ValueType and be able to tell when we have a thread local variable. <rdar://problem/23308080> llvm-svn: 274366
2016-07-02 01:17:23 +08:00
while (m_data.ValidOffset(offset)) {
// We need to figure out what the value is for the location.
addr_t lo_pc = LLDB_INVALID_ADDRESS;
addr_t hi_pc = LLDB_INVALID_ADDRESS;
if (!AddressRangeForLocationListEntry(m_dwarf_cu, m_data, &offset, lo_pc,
hi_pc))
break;
Added support for thread local variables on all Apple OS variants. We had support that assumed that thread local data for a variable could be determined solely from the module in which the variable exists. While this work for linux, it doesn't work for Apple OSs. The DWARF for thread local variables consists of location opcodes that do something like: DW_OP_const8u (x) DW_OP_form_tls_address or DW_OP_const8u (x) DW_OP_GNU_push_tls_address The "x" is allowed to be anything that is needed to determine the location of the variable. For Linux "x" is the offset within the TLS data for a given executable (ModuleSP in LLDB). For Apple OS variants, it is the file address of the data structure that contains a pthread key that can be used with pthread_getspecific() and the offset needed. This fix passes the "x" along to the thread: virtual lldb::addr_t lldb_private::Thread::GetThreadLocalData(const lldb::ModuleSP module, lldb::addr_t tls_file_addr); Then this is passed along to the DynamicLoader::GetThreadLocalData(): virtual lldb::addr_t lldb_private::DynamicLoader::GetThreadLocalData(const lldb::ModuleSP module, const lldb::ThreadSP thread, lldb::addr_t tls_file_addr); This allows each DynamicLoader plug-in do the right thing for the current OS. The DynamicLoaderMacOSXDYLD was modified to be able to grab the pthread key from the data structure that is in memory and call "void *pthread_getspecific(pthread_key_t key)" to get the value of the thread local storage and it caches it per thread since it never changes. I had to update the test case to access the thread local data before trying to print it as on Apple OS variants, thread locals are not available unless they have been accessed at least one by the current thread. I also added a new lldb::ValueType named "eValueTypeVariableThreadLocal" so that we can ask SBValue objects for their ValueType and be able to tell when we have a thread local variable. <rdar://problem/23308080> llvm-svn: 274366
2016-07-02 01:17:23 +08:00
if (lo_pc == 0 && hi_pc == 0)
break;
Added support for thread local variables on all Apple OS variants. We had support that assumed that thread local data for a variable could be determined solely from the module in which the variable exists. While this work for linux, it doesn't work for Apple OSs. The DWARF for thread local variables consists of location opcodes that do something like: DW_OP_const8u (x) DW_OP_form_tls_address or DW_OP_const8u (x) DW_OP_GNU_push_tls_address The "x" is allowed to be anything that is needed to determine the location of the variable. For Linux "x" is the offset within the TLS data for a given executable (ModuleSP in LLDB). For Apple OS variants, it is the file address of the data structure that contains a pthread key that can be used with pthread_getspecific() and the offset needed. This fix passes the "x" along to the thread: virtual lldb::addr_t lldb_private::Thread::GetThreadLocalData(const lldb::ModuleSP module, lldb::addr_t tls_file_addr); Then this is passed along to the DynamicLoader::GetThreadLocalData(): virtual lldb::addr_t lldb_private::DynamicLoader::GetThreadLocalData(const lldb::ModuleSP module, const lldb::ThreadSP thread, lldb::addr_t tls_file_addr); This allows each DynamicLoader plug-in do the right thing for the current OS. The DynamicLoaderMacOSXDYLD was modified to be able to grab the pthread key from the data structure that is in memory and call "void *pthread_getspecific(pthread_key_t key)" to get the value of the thread local storage and it caches it per thread since it never changes. I had to update the test case to access the thread local data before trying to print it as on Apple OS variants, thread locals are not available unless they have been accessed at least one by the current thread. I also added a new lldb::ValueType named "eValueTypeVariableThreadLocal" so that we can ask SBValue objects for their ValueType and be able to tell when we have a thread local variable. <rdar://problem/23308080> llvm-svn: 274366
2016-07-02 01:17:23 +08:00
lo_pc += loclist_base_addr - m_loclist_slide;
hi_pc += loclist_base_addr - m_loclist_slide;
Added support for thread local variables on all Apple OS variants. We had support that assumed that thread local data for a variable could be determined solely from the module in which the variable exists. While this work for linux, it doesn't work for Apple OSs. The DWARF for thread local variables consists of location opcodes that do something like: DW_OP_const8u (x) DW_OP_form_tls_address or DW_OP_const8u (x) DW_OP_GNU_push_tls_address The "x" is allowed to be anything that is needed to determine the location of the variable. For Linux "x" is the offset within the TLS data for a given executable (ModuleSP in LLDB). For Apple OS variants, it is the file address of the data structure that contains a pthread key that can be used with pthread_getspecific() and the offset needed. This fix passes the "x" along to the thread: virtual lldb::addr_t lldb_private::Thread::GetThreadLocalData(const lldb::ModuleSP module, lldb::addr_t tls_file_addr); Then this is passed along to the DynamicLoader::GetThreadLocalData(): virtual lldb::addr_t lldb_private::DynamicLoader::GetThreadLocalData(const lldb::ModuleSP module, const lldb::ThreadSP thread, lldb::addr_t tls_file_addr); This allows each DynamicLoader plug-in do the right thing for the current OS. The DynamicLoaderMacOSXDYLD was modified to be able to grab the pthread key from the data structure that is in memory and call "void *pthread_getspecific(pthread_key_t key)" to get the value of the thread local storage and it caches it per thread since it never changes. I had to update the test case to access the thread local data before trying to print it as on Apple OS variants, thread locals are not available unless they have been accessed at least one by the current thread. I also added a new lldb::ValueType named "eValueTypeVariableThreadLocal" so that we can ask SBValue objects for their ValueType and be able to tell when we have a thread local variable. <rdar://problem/23308080> llvm-svn: 274366
2016-07-02 01:17:23 +08:00
if (lo_pc <= addr && addr < hi_pc)
return true;
Added support for thread local variables on all Apple OS variants. We had support that assumed that thread local data for a variable could be determined solely from the module in which the variable exists. While this work for linux, it doesn't work for Apple OSs. The DWARF for thread local variables consists of location opcodes that do something like: DW_OP_const8u (x) DW_OP_form_tls_address or DW_OP_const8u (x) DW_OP_GNU_push_tls_address The "x" is allowed to be anything that is needed to determine the location of the variable. For Linux "x" is the offset within the TLS data for a given executable (ModuleSP in LLDB). For Apple OS variants, it is the file address of the data structure that contains a pthread key that can be used with pthread_getspecific() and the offset needed. This fix passes the "x" along to the thread: virtual lldb::addr_t lldb_private::Thread::GetThreadLocalData(const lldb::ModuleSP module, lldb::addr_t tls_file_addr); Then this is passed along to the DynamicLoader::GetThreadLocalData(): virtual lldb::addr_t lldb_private::DynamicLoader::GetThreadLocalData(const lldb::ModuleSP module, const lldb::ThreadSP thread, lldb::addr_t tls_file_addr); This allows each DynamicLoader plug-in do the right thing for the current OS. The DynamicLoaderMacOSXDYLD was modified to be able to grab the pthread key from the data structure that is in memory and call "void *pthread_getspecific(pthread_key_t key)" to get the value of the thread local storage and it caches it per thread since it never changes. I had to update the test case to access the thread local data before trying to print it as on Apple OS variants, thread locals are not available unless they have been accessed at least one by the current thread. I also added a new lldb::ValueType named "eValueTypeVariableThreadLocal" so that we can ask SBValue objects for their ValueType and be able to tell when we have a thread local variable. <rdar://problem/23308080> llvm-svn: 274366
2016-07-02 01:17:23 +08:00
offset += m_data.GetU16(&offset);
Added support for thread local variables on all Apple OS variants. We had support that assumed that thread local data for a variable could be determined solely from the module in which the variable exists. While this work for linux, it doesn't work for Apple OSs. The DWARF for thread local variables consists of location opcodes that do something like: DW_OP_const8u (x) DW_OP_form_tls_address or DW_OP_const8u (x) DW_OP_GNU_push_tls_address The "x" is allowed to be anything that is needed to determine the location of the variable. For Linux "x" is the offset within the TLS data for a given executable (ModuleSP in LLDB). For Apple OS variants, it is the file address of the data structure that contains a pthread key that can be used with pthread_getspecific() and the offset needed. This fix passes the "x" along to the thread: virtual lldb::addr_t lldb_private::Thread::GetThreadLocalData(const lldb::ModuleSP module, lldb::addr_t tls_file_addr); Then this is passed along to the DynamicLoader::GetThreadLocalData(): virtual lldb::addr_t lldb_private::DynamicLoader::GetThreadLocalData(const lldb::ModuleSP module, const lldb::ThreadSP thread, lldb::addr_t tls_file_addr); This allows each DynamicLoader plug-in do the right thing for the current OS. The DynamicLoaderMacOSXDYLD was modified to be able to grab the pthread key from the data structure that is in memory and call "void *pthread_getspecific(pthread_key_t key)" to get the value of the thread local storage and it caches it per thread since it never changes. I had to update the test case to access the thread local data before trying to print it as on Apple OS variants, thread locals are not available unless they have been accessed at least one by the current thread. I also added a new lldb::ValueType named "eValueTypeVariableThreadLocal" so that we can ask SBValue objects for their ValueType and be able to tell when we have a thread local variable. <rdar://problem/23308080> llvm-svn: 274366
2016-07-02 01:17:23 +08:00
}
}
return false;
Added support for thread local variables on all Apple OS variants. We had support that assumed that thread local data for a variable could be determined solely from the module in which the variable exists. While this work for linux, it doesn't work for Apple OSs. The DWARF for thread local variables consists of location opcodes that do something like: DW_OP_const8u (x) DW_OP_form_tls_address or DW_OP_const8u (x) DW_OP_GNU_push_tls_address The "x" is allowed to be anything that is needed to determine the location of the variable. For Linux "x" is the offset within the TLS data for a given executable (ModuleSP in LLDB). For Apple OS variants, it is the file address of the data structure that contains a pthread key that can be used with pthread_getspecific() and the offset needed. This fix passes the "x" along to the thread: virtual lldb::addr_t lldb_private::Thread::GetThreadLocalData(const lldb::ModuleSP module, lldb::addr_t tls_file_addr); Then this is passed along to the DynamicLoader::GetThreadLocalData(): virtual lldb::addr_t lldb_private::DynamicLoader::GetThreadLocalData(const lldb::ModuleSP module, const lldb::ThreadSP thread, lldb::addr_t tls_file_addr); This allows each DynamicLoader plug-in do the right thing for the current OS. The DynamicLoaderMacOSXDYLD was modified to be able to grab the pthread key from the data structure that is in memory and call "void *pthread_getspecific(pthread_key_t key)" to get the value of the thread local storage and it caches it per thread since it never changes. I had to update the test case to access the thread local data before trying to print it as on Apple OS variants, thread locals are not available unless they have been accessed at least one by the current thread. I also added a new lldb::ValueType named "eValueTypeVariableThreadLocal" so that we can ask SBValue objects for their ValueType and be able to tell when we have a thread local variable. <rdar://problem/23308080> llvm-svn: 274366
2016-07-02 01:17:23 +08:00
}
bool DWARFExpression::GetLocation(addr_t base_addr, addr_t pc,
lldb::offset_t &offset,
lldb::offset_t &length) {
offset = 0;
if (!IsLocationList()) {
length = m_data.GetByteSize();
return true;
}
if (base_addr != LLDB_INVALID_ADDRESS && pc != LLDB_INVALID_ADDRESS) {
addr_t curr_base_addr = base_addr;
while (m_data.ValidOffset(offset)) {
// We need to figure out what the value is for the location.
addr_t lo_pc = LLDB_INVALID_ADDRESS;
addr_t hi_pc = LLDB_INVALID_ADDRESS;
if (!AddressRangeForLocationListEntry(m_dwarf_cu, m_data, &offset, lo_pc,
hi_pc))
break;
if (lo_pc == 0 && hi_pc == 0)
break;
lo_pc += curr_base_addr - m_loclist_slide;
hi_pc += curr_base_addr - m_loclist_slide;
length = m_data.GetU16(&offset);
if (length > 0 && lo_pc <= pc && pc < hi_pc)
return true;
offset += length;
}
}
offset = LLDB_INVALID_OFFSET;
length = 0;
return false;
}
bool DWARFExpression::DumpLocationForAddress(Stream *s,
lldb::DescriptionLevel level,
addr_t base_addr, addr_t address,
ABI *abi) {
lldb::offset_t offset = 0;
lldb::offset_t length = 0;
if (GetLocation(base_addr, address, offset, length)) {
if (length > 0) {
DumpLocation(s, offset, length, level, abi);
return true;
}
}
return false;
}
bool DWARFExpression::Evaluate(ExecutionContextScope *exe_scope,
lldb::addr_t loclist_base_load_addr,
const Value *initial_value_ptr,
const Value *object_address_ptr, Value &result,
Status *error_ptr) const {
ExecutionContext exe_ctx(exe_scope);
return Evaluate(&exe_ctx, nullptr, loclist_base_load_addr, initial_value_ptr,
object_address_ptr, result, error_ptr);
}
bool DWARFExpression::Evaluate(ExecutionContext *exe_ctx,
RegisterContext *reg_ctx,
lldb::addr_t loclist_base_load_addr,
const Value *initial_value_ptr,
const Value *object_address_ptr, Value &result,
Status *error_ptr) const {
ModuleSP module_sp = m_module_wp.lock();
if (IsLocationList()) {
lldb::offset_t offset = 0;
addr_t pc;
StackFrame *frame = NULL;
if (reg_ctx)
pc = reg_ctx->GetPC();
else {
frame = exe_ctx->GetFramePtr();
if (!frame)
return false;
RegisterContextSP reg_ctx_sp = frame->GetRegisterContext();
if (!reg_ctx_sp)
return false;
pc = reg_ctx_sp->GetPC();
}
if (loclist_base_load_addr != LLDB_INVALID_ADDRESS) {
if (pc == LLDB_INVALID_ADDRESS) {
if (error_ptr)
error_ptr->SetErrorString("Invalid PC in frame.");
return false;
}
addr_t curr_loclist_base_load_addr = loclist_base_load_addr;
while (m_data.ValidOffset(offset)) {
// We need to figure out what the value is for the location.
addr_t lo_pc = LLDB_INVALID_ADDRESS;
addr_t hi_pc = LLDB_INVALID_ADDRESS;
if (!AddressRangeForLocationListEntry(m_dwarf_cu, m_data, &offset,
lo_pc, hi_pc))
break;
if (lo_pc == 0 && hi_pc == 0)
break;
lo_pc += curr_loclist_base_load_addr - m_loclist_slide;
hi_pc += curr_loclist_base_load_addr - m_loclist_slide;
uint16_t length = m_data.GetU16(&offset);
if (length > 0 && lo_pc <= pc && pc < hi_pc) {
return DWARFExpression::Evaluate(
exe_ctx, reg_ctx, module_sp, m_data, m_dwarf_cu, offset, length,
m_reg_kind, initial_value_ptr, object_address_ptr, result,
error_ptr);
}
offset += length;
}
}
if (error_ptr)
error_ptr->SetErrorString("variable not available");
return false;
}
// Not a location list, just a single expression.
return DWARFExpression::Evaluate(
exe_ctx, reg_ctx, module_sp, m_data, m_dwarf_cu, 0, m_data.GetByteSize(),
m_reg_kind, initial_value_ptr, object_address_ptr, result, error_ptr);
}
bool DWARFExpression::Evaluate(
ExecutionContext *exe_ctx, RegisterContext *reg_ctx,
lldb::ModuleSP module_sp, const DataExtractor &opcodes,
DWARFUnit *dwarf_cu, const lldb::offset_t opcodes_offset,
const lldb::offset_t opcodes_length, const lldb::RegisterKind reg_kind,
const Value *initial_value_ptr, const Value *object_address_ptr,
Value &result, Status *error_ptr) {
if (opcodes_length == 0) {
if (error_ptr)
error_ptr->SetErrorString(
"no location, value may have been optimized out");
return false;
}
std::vector<Value> stack;
Process *process = NULL;
StackFrame *frame = NULL;
if (exe_ctx) {
process = exe_ctx->GetProcessPtr();
frame = exe_ctx->GetFramePtr();
}
if (reg_ctx == NULL && frame)
reg_ctx = frame->GetRegisterContext().get();
if (initial_value_ptr)
stack.push_back(*initial_value_ptr);
lldb::offset_t offset = opcodes_offset;
const lldb::offset_t end_offset = opcodes_offset + opcodes_length;
Value tmp;
uint32_t reg_num;
/// Insertion point for evaluating multi-piece expression.
uint64_t op_piece_offset = 0;
Value pieces; // Used for DW_OP_piece
// Make sure all of the data is available in opcodes.
if (!opcodes.ValidOffsetForDataOfSize(opcodes_offset, opcodes_length)) {
if (error_ptr)
error_ptr->SetErrorString(
"invalid offset and/or length for opcodes buffer.");
return false;
}
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
while (opcodes.ValidOffset(offset) && offset < end_offset) {
const lldb::offset_t op_offset = offset;
const uint8_t op = opcodes.GetU8(&offset);
if (log && log->GetVerbose()) {
size_t count = stack.size();
log->Printf("Stack before operation has %" PRIu64 " values:",
(uint64_t)count);
for (size_t i = 0; i < count; ++i) {
StreamString new_value;
new_value.Printf("[%" PRIu64 "]", (uint64_t)i);
stack[i].Dump(&new_value);
log->Printf(" %s", new_value.GetData());
}
log->Printf("0x%8.8" PRIx64 ": %s", op_offset, DW_OP_value_to_name(op));
}
switch (op) {
//----------------------------------------------------------------------
// The DW_OP_addr operation has a single operand that encodes a machine
// address and whose size is the size of an address on the target machine.
//----------------------------------------------------------------------
case DW_OP_addr:
stack.push_back(Scalar(opcodes.GetAddress(&offset)));
stack.back().SetValueType(Value::eValueTypeFileAddress);
// Convert the file address to a load address, so subsequent
// DWARF operators can operate on it.
if (frame)
stack.back().ConvertToLoadAddress(module_sp.get(),
frame->CalculateTarget().get());
break;
//----------------------------------------------------------------------
// The DW_OP_addr_sect_offset4 is used for any location expressions in
// shared libraries that have a location like:
// DW_OP_addr(0x1000)
// If this address resides in a shared library, then this virtual address
// won't make sense when it is evaluated in the context of a running
// process where shared libraries have been slid. To account for this, this
// new address type where we can store the section pointer and a 4 byte
// offset.
//----------------------------------------------------------------------
// case DW_OP_addr_sect_offset4:
// {
// result_type = eResultTypeFileAddress;
// lldb::Section *sect = (lldb::Section
// *)opcodes.GetMaxU64(&offset, sizeof(void *));
// lldb::addr_t sect_offset = opcodes.GetU32(&offset);
//
// Address so_addr (sect, sect_offset);
// lldb::addr_t load_addr = so_addr.GetLoadAddress();
// if (load_addr != LLDB_INVALID_ADDRESS)
// {
// // We successfully resolve a file address to a load
// // address.
// stack.push_back(load_addr);
// break;
// }
// else
// {
// // We were able
// if (error_ptr)
// error_ptr->SetErrorStringWithFormat ("Section %s in
// %s is not currently loaded.\n",
// sect->GetName().AsCString(),
// sect->GetModule()->GetFileSpec().GetFilename().AsCString());
// return false;
// }
// }
// break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_deref
// OPERANDS: none
// DESCRIPTION: Pops the top stack entry and treats it as an address.
// The value retrieved from that address is pushed. The size of the data
// retrieved from the dereferenced address is the size of an address on the
// target machine.
//----------------------------------------------------------------------
case DW_OP_deref: {
if (stack.empty()) {
if (error_ptr)
error_ptr->SetErrorString("Expression stack empty for DW_OP_deref.");
return false;
}
Value::ValueType value_type = stack.back().GetValueType();
switch (value_type) {
case Value::eValueTypeHostAddress: {
void *src = (void *)stack.back().GetScalar().ULongLong();
intptr_t ptr;
::memcpy(&ptr, src, sizeof(void *));
stack.back().GetScalar() = ptr;
stack.back().ClearContext();
} break;
case Value::eValueTypeFileAddress: {
auto file_addr = stack.back().GetScalar().ULongLong(
LLDB_INVALID_ADDRESS);
if (!module_sp) {
if (error_ptr)
error_ptr->SetErrorStringWithFormat(
"need module to resolve file address for DW_OP_deref");
return false;
}
Address so_addr;
if (!module_sp->ResolveFileAddress(file_addr, so_addr)) {
if (error_ptr)
error_ptr->SetErrorStringWithFormat(
"failed to resolve file address in module");
return false;
}
addr_t load_Addr = so_addr.GetLoadAddress(exe_ctx->GetTargetPtr());
if (load_Addr == LLDB_INVALID_ADDRESS) {
if (error_ptr)
error_ptr->SetErrorStringWithFormat(
"failed to resolve load address");
return false;
}
stack.back().GetScalar() = load_Addr;
stack.back().SetValueType(Value::eValueTypeLoadAddress);
// Fall through to load address code below...
} LLVM_FALLTHROUGH;
case Value::eValueTypeLoadAddress:
if (exe_ctx) {
if (process) {
lldb::addr_t pointer_addr =
stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
Status error;
lldb::addr_t pointer_value =
process->ReadPointerFromMemory(pointer_addr, error);
if (pointer_value != LLDB_INVALID_ADDRESS) {
stack.back().GetScalar() = pointer_value;
stack.back().ClearContext();
} else {
if (error_ptr)
error_ptr->SetErrorStringWithFormat(
"Failed to dereference pointer from 0x%" PRIx64
" for DW_OP_deref: %s\n",
pointer_addr, error.AsCString());
return false;
}
} else {
if (error_ptr)
error_ptr->SetErrorStringWithFormat(
"NULL process for DW_OP_deref.\n");
return false;
}
} else {
if (error_ptr)
error_ptr->SetErrorStringWithFormat(
"NULL execution context for DW_OP_deref.\n");
return false;
}
break;
default:
break;
}
} break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_deref_size
// OPERANDS: 1
// 1 - uint8_t that specifies the size of the data to dereference.
// DESCRIPTION: Behaves like the DW_OP_deref operation: it pops the top
// stack entry and treats it as an address. The value retrieved from that
// address is pushed. In the DW_OP_deref_size operation, however, the size
// in bytes of the data retrieved from the dereferenced address is
// specified by the single operand. This operand is a 1-byte unsigned
// integral constant whose value may not be larger than the size of an
// address on the target machine. The data retrieved is zero extended to
// the size of an address on the target machine before being pushed on the
// expression stack.
//----------------------------------------------------------------------
case DW_OP_deref_size: {
if (stack.empty()) {
if (error_ptr)
error_ptr->SetErrorString(
"Expression stack empty for DW_OP_deref_size.");
return false;
}
uint8_t size = opcodes.GetU8(&offset);
Value::ValueType value_type = stack.back().GetValueType();
switch (value_type) {
case Value::eValueTypeHostAddress: {
void *src = (void *)stack.back().GetScalar().ULongLong();
intptr_t ptr;
::memcpy(&ptr, src, sizeof(void *));
// I can't decide whether the size operand should apply to the bytes in
// their
// lldb-host endianness or the target endianness.. I doubt this'll ever
// come up but I'll opt for assuming big endian regardless.
switch (size) {
case 1:
ptr = ptr & 0xff;
break;
case 2:
ptr = ptr & 0xffff;
break;
case 3:
ptr = ptr & 0xffffff;
break;
case 4:
ptr = ptr & 0xffffffff;
break;
// the casts are added to work around the case where intptr_t is a 32
// bit quantity;
// presumably we won't hit the 5..7 cases if (void*) is 32-bits in this
// program.
case 5:
ptr = (intptr_t)ptr & 0xffffffffffULL;
break;
case 6:
ptr = (intptr_t)ptr & 0xffffffffffffULL;
break;
case 7:
ptr = (intptr_t)ptr & 0xffffffffffffffULL;
break;
default:
break;
}
stack.back().GetScalar() = ptr;
stack.back().ClearContext();
} break;
case Value::eValueTypeLoadAddress:
if (exe_ctx) {
if (process) {
lldb::addr_t pointer_addr =
stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
uint8_t addr_bytes[sizeof(lldb::addr_t)];
Status error;
if (process->ReadMemory(pointer_addr, &addr_bytes, size, error) ==
size) {
DataExtractor addr_data(addr_bytes, sizeof(addr_bytes),
process->GetByteOrder(), size);
lldb::offset_t addr_data_offset = 0;
switch (size) {
case 1:
stack.back().GetScalar() = addr_data.GetU8(&addr_data_offset);
break;
case 2:
stack.back().GetScalar() = addr_data.GetU16(&addr_data_offset);
break;
case 4:
stack.back().GetScalar() = addr_data.GetU32(&addr_data_offset);
break;
case 8:
stack.back().GetScalar() = addr_data.GetU64(&addr_data_offset);
break;
default:
stack.back().GetScalar() =
addr_data.GetPointer(&addr_data_offset);
}
stack.back().ClearContext();
} else {
if (error_ptr)
error_ptr->SetErrorStringWithFormat(
"Failed to dereference pointer from 0x%" PRIx64
" for DW_OP_deref: %s\n",
pointer_addr, error.AsCString());
return false;
}
} else {
if (error_ptr)
error_ptr->SetErrorStringWithFormat(
"NULL process for DW_OP_deref.\n");
return false;
}
} else {
if (error_ptr)
error_ptr->SetErrorStringWithFormat(
"NULL execution context for DW_OP_deref.\n");
return false;
}
break;
default:
break;
}
} break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_xderef_size
// OPERANDS: 1
// 1 - uint8_t that specifies the size of the data to dereference.
// DESCRIPTION: Behaves like the DW_OP_xderef operation: the entry at
// the top of the stack is treated as an address. The second stack entry is
// treated as an "address space identifier" for those architectures that
// support multiple address spaces. The top two stack elements are popped,
// a data item is retrieved through an implementation-defined address
// calculation and pushed as the new stack top. In the DW_OP_xderef_size
// operation, however, the size in bytes of the data retrieved from the
// dereferenced address is specified by the single operand. This operand is
// a 1-byte unsigned integral constant whose value may not be larger than
// the size of an address on the target machine. The data retrieved is zero
// extended to the size of an address on the target machine before being
// pushed on the expression stack.
//----------------------------------------------------------------------
case DW_OP_xderef_size:
if (error_ptr)
error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef_size.");
return false;
//----------------------------------------------------------------------
// OPCODE: DW_OP_xderef
// OPERANDS: none
// DESCRIPTION: Provides an extended dereference mechanism. The entry at
// the top of the stack is treated as an address. The second stack entry is
// treated as an "address space identifier" for those architectures that
// support multiple address spaces. The top two stack elements are popped,
// a data item is retrieved through an implementation-defined address
// calculation and pushed as the new stack top. The size of the data
// retrieved from the dereferenced address is the size of an address on the
// target machine.
//----------------------------------------------------------------------
case DW_OP_xderef:
if (error_ptr)
error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef.");
return false;
//----------------------------------------------------------------------
// All DW_OP_constXXX opcodes have a single operand as noted below:
//
// Opcode Operand 1
// --------------- ----------------------------------------------------
// DW_OP_const1u 1-byte unsigned integer constant DW_OP_const1s
// 1-byte signed integer constant DW_OP_const2u 2-byte unsigned integer
// constant DW_OP_const2s 2-byte signed integer constant DW_OP_const4u
// 4-byte unsigned integer constant DW_OP_const4s 4-byte signed integer
// constant DW_OP_const8u 8-byte unsigned integer constant DW_OP_const8s
// 8-byte signed integer constant DW_OP_constu unsigned LEB128 integer
// constant DW_OP_consts signed LEB128 integer constant
//----------------------------------------------------------------------
case DW_OP_const1u:
stack.push_back(Scalar((uint8_t)opcodes.GetU8(&offset)));
break;
case DW_OP_const1s:
stack.push_back(Scalar((int8_t)opcodes.GetU8(&offset)));
break;
case DW_OP_const2u:
stack.push_back(Scalar((uint16_t)opcodes.GetU16(&offset)));
break;
case DW_OP_const2s:
stack.push_back(Scalar((int16_t)opcodes.GetU16(&offset)));
break;
case DW_OP_const4u:
stack.push_back(Scalar((uint32_t)opcodes.GetU32(&offset)));
break;
case DW_OP_const4s:
stack.push_back(Scalar((int32_t)opcodes.GetU32(&offset)));
break;
case DW_OP_const8u:
stack.push_back(Scalar((uint64_t)opcodes.GetU64(&offset)));
break;
case DW_OP_const8s:
stack.push_back(Scalar((int64_t)opcodes.GetU64(&offset)));
break;
case DW_OP_constu:
stack.push_back(Scalar(opcodes.GetULEB128(&offset)));
break;
case DW_OP_consts:
stack.push_back(Scalar(opcodes.GetSLEB128(&offset)));
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_dup
// OPERANDS: none
// DESCRIPTION: duplicates the value at the top of the stack
//----------------------------------------------------------------------
case DW_OP_dup:
if (stack.empty()) {
if (error_ptr)
error_ptr->SetErrorString("Expression stack empty for DW_OP_dup.");
return false;
} else
stack.push_back(stack.back());
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_drop
// OPERANDS: none
// DESCRIPTION: pops the value at the top of the stack
//----------------------------------------------------------------------
case DW_OP_drop:
if (stack.empty()) {
if (error_ptr)
error_ptr->SetErrorString("Expression stack empty for DW_OP_drop.");
return false;
} else
stack.pop_back();
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_over
// OPERANDS: none
// DESCRIPTION: Duplicates the entry currently second in the stack at
// the top of the stack.
//----------------------------------------------------------------------
case DW_OP_over:
if (stack.size() < 2) {
if (error_ptr)
error_ptr->SetErrorString(
"Expression stack needs at least 2 items for DW_OP_over.");
return false;
} else
stack.push_back(stack[stack.size() - 2]);
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_pick
// OPERANDS: uint8_t index into the current stack
// DESCRIPTION: The stack entry with the specified index (0 through 255,
// inclusive) is pushed on the stack
//----------------------------------------------------------------------
case DW_OP_pick: {
uint8_t pick_idx = opcodes.GetU8(&offset);
if (pick_idx < stack.size())
stack.push_back(stack[pick_idx]);
else {
if (error_ptr)
error_ptr->SetErrorStringWithFormat(
"Index %u out of range for DW_OP_pick.\n", pick_idx);
return false;
}
} break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_swap
// OPERANDS: none
// DESCRIPTION: swaps the top two stack entries. The entry at the top
// of the stack becomes the second stack entry, and the second entry
// becomes the top of the stack
//----------------------------------------------------------------------
case DW_OP_swap:
if (stack.size() < 2) {
if (error_ptr)
error_ptr->SetErrorString(
"Expression stack needs at least 2 items for DW_OP_swap.");
return false;
} else {
tmp = stack.back();
stack.back() = stack[stack.size() - 2];
stack[stack.size() - 2] = tmp;
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_rot
// OPERANDS: none
// DESCRIPTION: Rotates the first three stack entries. The entry at
// the top of the stack becomes the third stack entry, the second entry
// becomes the top of the stack, and the third entry becomes the second
// entry.
//----------------------------------------------------------------------
case DW_OP_rot:
if (stack.size() < 3) {
if (error_ptr)
error_ptr->SetErrorString(
"Expression stack needs at least 3 items for DW_OP_rot.");
return false;
} else {
size_t last_idx = stack.size() - 1;
Value old_top = stack[last_idx];
stack[last_idx] = stack[last_idx - 1];
stack[last_idx - 1] = stack[last_idx - 2];
stack[last_idx - 2] = old_top;
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_abs
// OPERANDS: none
// DESCRIPTION: pops the top stack entry, interprets it as a signed
// value and pushes its absolute value. If the absolute value can not be
// represented, the result is undefined.
//----------------------------------------------------------------------
case DW_OP_abs:
if (stack.empty()) {
if (error_ptr)
error_ptr->SetErrorString(
"Expression stack needs at least 1 item for DW_OP_abs.");
return false;
} else if (stack.back().ResolveValue(exe_ctx).AbsoluteValue() == false) {
if (error_ptr)
error_ptr->SetErrorString(
"Failed to take the absolute value of the first stack item.");
return false;
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_and
// OPERANDS: none
// DESCRIPTION: pops the top two stack values, performs a bitwise and
// operation on the two, and pushes the result.
//----------------------------------------------------------------------
case DW_OP_and:
if (stack.size() < 2) {
if (error_ptr)
error_ptr->SetErrorString(
"Expression stack needs at least 2 items for DW_OP_and.");
return false;
} else {
tmp = stack.back();
stack.pop_back();
stack.back().ResolveValue(exe_ctx) =
stack.back().ResolveValue(exe_ctx) & tmp.ResolveValue(exe_ctx);
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_div
// OPERANDS: none
// DESCRIPTION: pops the top two stack values, divides the former second
// entry by the former top of the stack using signed division, and pushes
// the result.
//----------------------------------------------------------------------
case DW_OP_div:
if (stack.size() < 2) {
if (error_ptr)
error_ptr->SetErrorString(
"Expression stack needs at least 2 items for DW_OP_div.");
return false;
} else {
tmp = stack.back();
if (tmp.ResolveValue(exe_ctx).IsZero()) {
if (error_ptr)
error_ptr->SetErrorString("Divide by zero.");
return false;
} else {
stack.pop_back();
stack.back() =
stack.back().ResolveValue(exe_ctx) / tmp.ResolveValue(exe_ctx);
if (!stack.back().ResolveValue(exe_ctx).IsValid()) {
if (error_ptr)
error_ptr->SetErrorString("Divide failed.");
return false;
}
}
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_minus
// OPERANDS: none
// DESCRIPTION: pops the top two stack values, subtracts the former top
// of the stack from the former second entry, and pushes the result.
//----------------------------------------------------------------------
case DW_OP_minus:
if (stack.size() < 2) {
if (error_ptr)
error_ptr->SetErrorString(
"Expression stack needs at least 2 items for DW_OP_minus.");
return false;
} else {
tmp = stack.back();
stack.pop_back();
stack.back().ResolveValue(exe_ctx) =
stack.back().ResolveValue(exe_ctx) - tmp.ResolveValue(exe_ctx);
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_mod
// OPERANDS: none
// DESCRIPTION: pops the top two stack values and pushes the result of
// the calculation: former second stack entry modulo the former top of the
// stack.
//----------------------------------------------------------------------
case DW_OP_mod:
if (stack.size() < 2) {
if (error_ptr)
error_ptr->SetErrorString(
"Expression stack needs at least 2 items for DW_OP_mod.");
return false;
} else {
tmp = stack.back();
stack.pop_back();
stack.back().ResolveValue(exe_ctx) =
stack.back().ResolveValue(exe_ctx) % tmp.ResolveValue(exe_ctx);
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_mul
// OPERANDS: none
// DESCRIPTION: pops the top two stack entries, multiplies them
// together, and pushes the result.
//----------------------------------------------------------------------
case DW_OP_mul:
if (stack.size() < 2) {
if (error_ptr)
error_ptr->SetErrorString(
"Expression stack needs at least 2 items for DW_OP_mul.");
return false;
} else {
tmp = stack.back();
stack.pop_back();
stack.back().ResolveValue(exe_ctx) =
stack.back().ResolveValue(exe_ctx) * tmp.ResolveValue(exe_ctx);
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_neg
// OPERANDS: none
// DESCRIPTION: pops the top stack entry, and pushes its negation.
//----------------------------------------------------------------------
case DW_OP_neg:
if (stack.empty()) {
if (error_ptr)
error_ptr->SetErrorString(
"Expression stack needs at least 1 item for DW_OP_neg.");
return false;
} else {
if (stack.back().ResolveValue(exe_ctx).UnaryNegate() == false) {
if (error_ptr)
error_ptr->SetErrorString("Unary negate failed.");
return false;
}
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_not
// OPERANDS: none
// DESCRIPTION: pops the top stack entry, and pushes its bitwise
// complement
//----------------------------------------------------------------------
case DW_OP_not:
if (stack.empty()) {
if (error_ptr)
error_ptr->SetErrorString(
"Expression stack needs at least 1 item for DW_OP_not.");
return false;
} else {
if (stack.back().ResolveValue(exe_ctx).OnesComplement() == false) {
if (error_ptr)
error_ptr->SetErrorString("Logical NOT failed.");
return false;
}
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_or
// OPERANDS: none
// DESCRIPTION: pops the top two stack entries, performs a bitwise or
// operation on the two, and pushes the result.
//----------------------------------------------------------------------
case DW_OP_or:
if (stack.size() < 2) {
if (error_ptr)
error_ptr->SetErrorString(
"Expression stack needs at least 2 items for DW_OP_or.");
return false;
} else {
tmp = stack.back();
stack.pop_back();
stack.back().ResolveValue(exe_ctx) =
stack.back().ResolveValue(exe_ctx) | tmp.ResolveValue(exe_ctx);
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_plus
// OPERANDS: none
// DESCRIPTION: pops the top two stack entries, adds them together, and
// pushes the result.
//----------------------------------------------------------------------
case DW_OP_plus:
if (stack.size() < 2) {
if (error_ptr)
error_ptr->SetErrorString(
"Expression stack needs at least 2 items for DW_OP_plus.");
return false;
} else {
tmp = stack.back();
stack.pop_back();
stack.back().GetScalar() += tmp.GetScalar();
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_plus_uconst
// OPERANDS: none
// DESCRIPTION: pops the top stack entry, adds it to the unsigned LEB128
// constant operand and pushes the result.
//----------------------------------------------------------------------
case DW_OP_plus_uconst:
if (stack.empty()) {
if (error_ptr)
error_ptr->SetErrorString(
"Expression stack needs at least 1 item for DW_OP_plus_uconst.");
return false;
} else {
const uint64_t uconst_value = opcodes.GetULEB128(&offset);
// Implicit conversion from a UINT to a Scalar...
stack.back().GetScalar() += uconst_value;
if (!stack.back().GetScalar().IsValid()) {
if (error_ptr)
error_ptr->SetErrorString("DW_OP_plus_uconst failed.");
return false;
}
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_shl
// OPERANDS: none
// DESCRIPTION: pops the top two stack entries, shifts the former
// second entry left by the number of bits specified by the former top of
// the stack, and pushes the result.
//----------------------------------------------------------------------
case DW_OP_shl:
if (stack.size() < 2) {
if (error_ptr)
error_ptr->SetErrorString(
"Expression stack needs at least 2 items for DW_OP_shl.");
return false;
} else {
tmp = stack.back();
stack.pop_back();
stack.back().ResolveValue(exe_ctx) <<= tmp.ResolveValue(exe_ctx);
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_shr
// OPERANDS: none
// DESCRIPTION: pops the top two stack entries, shifts the former second
// entry right logically (filling with zero bits) by the number of bits
// specified by the former top of the stack, and pushes the result.
//----------------------------------------------------------------------
case DW_OP_shr:
if (stack.size() < 2) {
if (error_ptr)
error_ptr->SetErrorString(
"Expression stack needs at least 2 items for DW_OP_shr.");
return false;
} else {
tmp = stack.back();
stack.pop_back();
if (stack.back().ResolveValue(exe_ctx).ShiftRightLogical(
tmp.ResolveValue(exe_ctx)) == false) {
if (error_ptr)
error_ptr->SetErrorString("DW_OP_shr failed.");
return false;
}
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_shra
// OPERANDS: none
// DESCRIPTION: pops the top two stack entries, shifts the former second
// entry right arithmetically (divide the magnitude by 2, keep the same
// sign for the result) by the number of bits specified by the former top
// of the stack, and pushes the result.
//----------------------------------------------------------------------
case DW_OP_shra:
if (stack.size() < 2) {
if (error_ptr)
error_ptr->SetErrorString(
"Expression stack needs at least 2 items for DW_OP_shra.");
return false;
} else {
tmp = stack.back();
stack.pop_back();
stack.back().ResolveValue(exe_ctx) >>= tmp.ResolveValue(exe_ctx);
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_xor
// OPERANDS: none
// DESCRIPTION: pops the top two stack entries, performs the bitwise
// exclusive-or operation on the two, and pushes the result.
//----------------------------------------------------------------------
case DW_OP_xor:
if (stack.size() < 2) {
if (error_ptr)
error_ptr->SetErrorString(
"Expression stack needs at least 2 items for DW_OP_xor.");
return false;
} else {
tmp = stack.back();
stack.pop_back();
stack.back().ResolveValue(exe_ctx) =
stack.back().ResolveValue(exe_ctx) ^ tmp.ResolveValue(exe_ctx);
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_skip
// OPERANDS: int16_t
// DESCRIPTION: An unconditional branch. Its single operand is a 2-byte
// signed integer constant. The 2-byte constant is the number of bytes of
// the DWARF expression to skip forward or backward from the current
// operation, beginning after the 2-byte constant.
//----------------------------------------------------------------------
case DW_OP_skip: {
int16_t skip_offset = (int16_t)opcodes.GetU16(&offset);
lldb::offset_t new_offset = offset + skip_offset;
if (new_offset >= opcodes_offset && new_offset < end_offset)
offset = new_offset;
else {
if (error_ptr)
error_ptr->SetErrorString("Invalid opcode offset in DW_OP_skip.");
return false;
}
} break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_bra
// OPERANDS: int16_t
// DESCRIPTION: A conditional branch. Its single operand is a 2-byte
// signed integer constant. This operation pops the top of stack. If the
// value popped is not the constant 0, the 2-byte constant operand is the
// number of bytes of the DWARF expression to skip forward or backward from
// the current operation, beginning after the 2-byte constant.
//----------------------------------------------------------------------
case DW_OP_bra:
if (stack.empty()) {
if (error_ptr)
error_ptr->SetErrorString(
"Expression stack needs at least 1 item for DW_OP_bra.");
return false;
} else {
tmp = stack.back();
stack.pop_back();
int16_t bra_offset = (int16_t)opcodes.GetU16(&offset);
Scalar zero(0);
if (tmp.ResolveValue(exe_ctx) != zero) {
lldb::offset_t new_offset = offset + bra_offset;
if (new_offset >= opcodes_offset && new_offset < end_offset)
offset = new_offset;
else {
if (error_ptr)
error_ptr->SetErrorString("Invalid opcode offset in DW_OP_bra.");
return false;
}
}
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_eq
// OPERANDS: none
// DESCRIPTION: pops the top two stack values, compares using the
// equals (==) operator.
// STACK RESULT: push the constant value 1 onto the stack if the result
// of the operation is true or the constant value 0 if the result of the
// operation is false.
//----------------------------------------------------------------------
case DW_OP_eq:
if (stack.size() < 2) {
if (error_ptr)
error_ptr->SetErrorString(
"Expression stack needs at least 2 items for DW_OP_eq.");
return false;
} else {
tmp = stack.back();
stack.pop_back();
stack.back().ResolveValue(exe_ctx) =
stack.back().ResolveValue(exe_ctx) == tmp.ResolveValue(exe_ctx);
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_ge
// OPERANDS: none
// DESCRIPTION: pops the top two stack values, compares using the
// greater than or equal to (>=) operator.
// STACK RESULT: push the constant value 1 onto the stack if the result
// of the operation is true or the constant value 0 if the result of the
// operation is false.
//----------------------------------------------------------------------
case DW_OP_ge:
if (stack.size() < 2) {
if (error_ptr)
error_ptr->SetErrorString(
"Expression stack needs at least 2 items for DW_OP_ge.");
return false;
} else {
tmp = stack.back();
stack.pop_back();
stack.back().ResolveValue(exe_ctx) =
stack.back().ResolveValue(exe_ctx) >= tmp.ResolveValue(exe_ctx);
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_gt
// OPERANDS: none
// DESCRIPTION: pops the top two stack values, compares using the
// greater than (>) operator.
// STACK RESULT: push the constant value 1 onto the stack if the result
// of the operation is true or the constant value 0 if the result of the
// operation is false.
//----------------------------------------------------------------------
case DW_OP_gt:
if (stack.size() < 2) {
if (error_ptr)
error_ptr->SetErrorString(
"Expression stack needs at least 2 items for DW_OP_gt.");
return false;
} else {
tmp = stack.back();
stack.pop_back();
stack.back().ResolveValue(exe_ctx) =
stack.back().ResolveValue(exe_ctx) > tmp.ResolveValue(exe_ctx);
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_le
// OPERANDS: none
// DESCRIPTION: pops the top two stack values, compares using the
// less than or equal to (<=) operator.
// STACK RESULT: push the constant value 1 onto the stack if the result
// of the operation is true or the constant value 0 if the result of the
// operation is false.
//----------------------------------------------------------------------
case DW_OP_le:
if (stack.size() < 2) {
if (error_ptr)
error_ptr->SetErrorString(
"Expression stack needs at least 2 items for DW_OP_le.");
return false;
} else {
tmp = stack.back();
stack.pop_back();
stack.back().ResolveValue(exe_ctx) =
stack.back().ResolveValue(exe_ctx) <= tmp.ResolveValue(exe_ctx);
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_lt
// OPERANDS: none
// DESCRIPTION: pops the top two stack values, compares using the
// less than (<) operator.
// STACK RESULT: push the constant value 1 onto the stack if the result
// of the operation is true or the constant value 0 if the result of the
// operation is false.
//----------------------------------------------------------------------
case DW_OP_lt:
if (stack.size() < 2) {
if (error_ptr)
error_ptr->SetErrorString(
"Expression stack needs at least 2 items for DW_OP_lt.");
return false;
} else {
tmp = stack.back();
stack.pop_back();
stack.back().ResolveValue(exe_ctx) =
stack.back().ResolveValue(exe_ctx) < tmp.ResolveValue(exe_ctx);
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_ne
// OPERANDS: none
// DESCRIPTION: pops the top two stack values, compares using the
// not equal (!=) operator.
// STACK RESULT: push the constant value 1 onto the stack if the result
// of the operation is true or the constant value 0 if the result of the
// operation is false.
//----------------------------------------------------------------------
case DW_OP_ne:
if (stack.size() < 2) {
if (error_ptr)
error_ptr->SetErrorString(
"Expression stack needs at least 2 items for DW_OP_ne.");
return false;
} else {
tmp = stack.back();
stack.pop_back();
stack.back().ResolveValue(exe_ctx) =
stack.back().ResolveValue(exe_ctx) != tmp.ResolveValue(exe_ctx);
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_litn
// OPERANDS: none
// DESCRIPTION: encode the unsigned literal values from 0 through 31.
// STACK RESULT: push the unsigned literal constant value onto the top
// of the stack.
//----------------------------------------------------------------------
case DW_OP_lit0:
case DW_OP_lit1:
case DW_OP_lit2:
case DW_OP_lit3:
case DW_OP_lit4:
case DW_OP_lit5:
case DW_OP_lit6:
case DW_OP_lit7:
case DW_OP_lit8:
case DW_OP_lit9:
case DW_OP_lit10:
case DW_OP_lit11:
case DW_OP_lit12:
case DW_OP_lit13:
case DW_OP_lit14:
case DW_OP_lit15:
case DW_OP_lit16:
case DW_OP_lit17:
case DW_OP_lit18:
case DW_OP_lit19:
case DW_OP_lit20:
case DW_OP_lit21:
case DW_OP_lit22:
case DW_OP_lit23:
case DW_OP_lit24:
case DW_OP_lit25:
case DW_OP_lit26:
case DW_OP_lit27:
case DW_OP_lit28:
case DW_OP_lit29:
case DW_OP_lit30:
case DW_OP_lit31:
stack.push_back(Scalar(op - DW_OP_lit0));
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_regN
// OPERANDS: none
// DESCRIPTION: Push the value in register n on the top of the stack.
//----------------------------------------------------------------------
case DW_OP_reg0:
case DW_OP_reg1:
case DW_OP_reg2:
case DW_OP_reg3:
case DW_OP_reg4:
case DW_OP_reg5:
case DW_OP_reg6:
case DW_OP_reg7:
case DW_OP_reg8:
case DW_OP_reg9:
case DW_OP_reg10:
case DW_OP_reg11:
case DW_OP_reg12:
case DW_OP_reg13:
case DW_OP_reg14:
case DW_OP_reg15:
case DW_OP_reg16:
case DW_OP_reg17:
case DW_OP_reg18:
case DW_OP_reg19:
case DW_OP_reg20:
case DW_OP_reg21:
case DW_OP_reg22:
case DW_OP_reg23:
case DW_OP_reg24:
case DW_OP_reg25:
case DW_OP_reg26:
case DW_OP_reg27:
case DW_OP_reg28:
case DW_OP_reg29:
case DW_OP_reg30:
case DW_OP_reg31: {
reg_num = op - DW_OP_reg0;
if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr, tmp))
stack.push_back(tmp);
else
return false;
} break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_regx
// OPERANDS:
// ULEB128 literal operand that encodes the register.
// DESCRIPTION: Push the value in register on the top of the stack.
//----------------------------------------------------------------------
case DW_OP_regx: {
reg_num = opcodes.GetULEB128(&offset);
if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr, tmp))
stack.push_back(tmp);
else
return false;
} break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_bregN
// OPERANDS:
// SLEB128 offset from register N
// DESCRIPTION: Value is in memory at the address specified by register
// N plus an offset.
//----------------------------------------------------------------------
case DW_OP_breg0:
case DW_OP_breg1:
case DW_OP_breg2:
case DW_OP_breg3:
case DW_OP_breg4:
case DW_OP_breg5:
case DW_OP_breg6:
case DW_OP_breg7:
case DW_OP_breg8:
case DW_OP_breg9:
case DW_OP_breg10:
case DW_OP_breg11:
case DW_OP_breg12:
case DW_OP_breg13:
case DW_OP_breg14:
case DW_OP_breg15:
case DW_OP_breg16:
case DW_OP_breg17:
case DW_OP_breg18:
case DW_OP_breg19:
case DW_OP_breg20:
case DW_OP_breg21:
case DW_OP_breg22:
case DW_OP_breg23:
case DW_OP_breg24:
case DW_OP_breg25:
case DW_OP_breg26:
case DW_OP_breg27:
case DW_OP_breg28:
case DW_OP_breg29:
case DW_OP_breg30:
case DW_OP_breg31: {
reg_num = op - DW_OP_breg0;
if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr,
tmp)) {
int64_t breg_offset = opcodes.GetSLEB128(&offset);
tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset;
tmp.ClearContext();
stack.push_back(tmp);
stack.back().SetValueType(Value::eValueTypeLoadAddress);
} else
return false;
} break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_bregx
// OPERANDS: 2
// ULEB128 literal operand that encodes the register.
// SLEB128 offset from register N
// DESCRIPTION: Value is in memory at the address specified by register
// N plus an offset.
//----------------------------------------------------------------------
case DW_OP_bregx: {
reg_num = opcodes.GetULEB128(&offset);
if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr,
tmp)) {
int64_t breg_offset = opcodes.GetSLEB128(&offset);
tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset;
tmp.ClearContext();
stack.push_back(tmp);
stack.back().SetValueType(Value::eValueTypeLoadAddress);
} else
return false;
} break;
case DW_OP_fbreg:
if (exe_ctx) {
if (frame) {
Scalar value;
if (frame->GetFrameBaseValue(value, error_ptr)) {
int64_t fbreg_offset = opcodes.GetSLEB128(&offset);
value += fbreg_offset;
stack.push_back(value);
stack.back().SetValueType(Value::eValueTypeLoadAddress);
} else
return false;
} else {
if (error_ptr)
error_ptr->SetErrorString(
"Invalid stack frame in context for DW_OP_fbreg opcode.");
return false;
}
} else {
if (error_ptr)
error_ptr->SetErrorStringWithFormat(
"NULL execution context for DW_OP_fbreg.\n");
return false;
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_nop
// OPERANDS: none
// DESCRIPTION: A place holder. It has no effect on the location stack
// or any of its values.
//----------------------------------------------------------------------
case DW_OP_nop:
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_piece
// OPERANDS: 1
// ULEB128: byte size of the piece
// DESCRIPTION: The operand describes the size in bytes of the piece of
// the object referenced by the DWARF expression whose result is at the top
// of the stack. If the piece is located in a register, but does not occupy
// the entire register, the placement of the piece within that register is
// defined by the ABI.
//
// Many compilers store a single variable in sets of registers, or store a
// variable partially in memory and partially in registers. DW_OP_piece
// provides a way of describing how large a part of a variable a particular
// DWARF expression refers to.
//----------------------------------------------------------------------
case DW_OP_piece: {
const uint64_t piece_byte_size = opcodes.GetULEB128(&offset);
if (piece_byte_size > 0) {
Value curr_piece;
if (stack.empty()) {
// In a multi-piece expression, this means that the current piece is
// not available. Fill with zeros for now by resizing the data and
// appending it
curr_piece.ResizeData(piece_byte_size);
::memset(curr_piece.GetBuffer().GetBytes(), 0, piece_byte_size);
pieces.AppendDataToHostBuffer(curr_piece);
} else {
Status error;
// Extract the current piece into "curr_piece"
Value curr_piece_source_value(stack.back());
stack.pop_back();
const Value::ValueType curr_piece_source_value_type =
curr_piece_source_value.GetValueType();
switch (curr_piece_source_value_type) {
case Value::eValueTypeLoadAddress:
if (process) {
if (curr_piece.ResizeData(piece_byte_size) == piece_byte_size) {
lldb::addr_t load_addr =
curr_piece_source_value.GetScalar().ULongLong(
LLDB_INVALID_ADDRESS);
if (process->ReadMemory(
load_addr, curr_piece.GetBuffer().GetBytes(),
piece_byte_size, error) != piece_byte_size) {
if (error_ptr)
error_ptr->SetErrorStringWithFormat(
"failed to read memory DW_OP_piece(%" PRIu64
") from 0x%" PRIx64,
piece_byte_size, load_addr);
return false;
}
} else {
if (error_ptr)
error_ptr->SetErrorStringWithFormat(
"failed to resize the piece memory buffer for "
"DW_OP_piece(%" PRIu64 ")",
piece_byte_size);
return false;
}
}
break;
case Value::eValueTypeFileAddress:
case Value::eValueTypeHostAddress:
if (error_ptr) {
lldb::addr_t addr = curr_piece_source_value.GetScalar().ULongLong(
LLDB_INVALID_ADDRESS);
error_ptr->SetErrorStringWithFormat(
"failed to read memory DW_OP_piece(%" PRIu64
") from %s address 0x%" PRIx64,
piece_byte_size, curr_piece_source_value.GetValueType() ==
Value::eValueTypeFileAddress
? "file"
: "host",
addr);
}
return false;
case Value::eValueTypeScalar: {
uint32_t bit_size = piece_byte_size * 8;
uint32_t bit_offset = 0;
if (!curr_piece_source_value.GetScalar().ExtractBitfield(
bit_size, bit_offset)) {
if (error_ptr)
error_ptr->SetErrorStringWithFormat(
"unable to extract %" PRIu64 " bytes from a %" PRIu64
" byte scalar value.",
piece_byte_size,
(uint64_t)curr_piece_source_value.GetScalar()
.GetByteSize());
return false;
}
curr_piece = curr_piece_source_value;
} break;
case Value::eValueTypeVector: {
if (curr_piece_source_value.GetVector().length >= piece_byte_size)
curr_piece_source_value.GetVector().length = piece_byte_size;
else {
if (error_ptr)
error_ptr->SetErrorStringWithFormat(
"unable to extract %" PRIu64 " bytes from a %" PRIu64
" byte vector value.",
piece_byte_size,
(uint64_t)curr_piece_source_value.GetVector().length);
return false;
}
} break;
}
// Check if this is the first piece?
if (op_piece_offset == 0) {
// This is the first piece, we should push it back onto the stack
// so subsequent pieces will be able to access this piece and add
// to it
if (pieces.AppendDataToHostBuffer(curr_piece) == 0) {
if (error_ptr)
error_ptr->SetErrorString("failed to append piece data");
return false;
}
} else {
// If this is the second or later piece there should be a value on
// the stack
if (pieces.GetBuffer().GetByteSize() != op_piece_offset) {
if (error_ptr)
error_ptr->SetErrorStringWithFormat(
"DW_OP_piece for offset %" PRIu64
" but top of stack is of size %" PRIu64,
op_piece_offset, pieces.GetBuffer().GetByteSize());
return false;
}
if (pieces.AppendDataToHostBuffer(curr_piece) == 0) {
if (error_ptr)
error_ptr->SetErrorString("failed to append piece data");
return false;
}
}
op_piece_offset += piece_byte_size;
}
}
} break;
case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3);
if (stack.size() < 1) {
if (error_ptr)
error_ptr->SetErrorString(
"Expression stack needs at least 1 item for DW_OP_bit_piece.");
return false;
} else {
const uint64_t piece_bit_size = opcodes.GetULEB128(&offset);
const uint64_t piece_bit_offset = opcodes.GetULEB128(&offset);
switch (stack.back().GetValueType()) {
case Value::eValueTypeScalar: {
if (!stack.back().GetScalar().ExtractBitfield(piece_bit_size,
piece_bit_offset)) {
if (error_ptr)
error_ptr->SetErrorStringWithFormat(
"unable to extract %" PRIu64 " bit value with %" PRIu64
" bit offset from a %" PRIu64 " bit scalar value.",
piece_bit_size, piece_bit_offset,
(uint64_t)(stack.back().GetScalar().GetByteSize() * 8));
return false;
}
} break;
case Value::eValueTypeFileAddress:
case Value::eValueTypeLoadAddress:
case Value::eValueTypeHostAddress:
if (error_ptr) {
error_ptr->SetErrorStringWithFormat(
"unable to extract DW_OP_bit_piece(bit_size = %" PRIu64
", bit_offset = %" PRIu64 ") from an address value.",
piece_bit_size, piece_bit_offset);
}
return false;
case Value::eValueTypeVector:
if (error_ptr) {
error_ptr->SetErrorStringWithFormat(
"unable to extract DW_OP_bit_piece(bit_size = %" PRIu64
", bit_offset = %" PRIu64 ") from a vector value.",
piece_bit_size, piece_bit_offset);
}
return false;
}
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_push_object_address
// OPERANDS: none
// DESCRIPTION: Pushes the address of the object currently being
// evaluated as part of evaluation of a user presented expression. This
// object may correspond to an independent variable described by its own
// DIE or it may be a component of an array, structure, or class whose
// address has been dynamically determined by an earlier step during user
// expression evaluation.
//----------------------------------------------------------------------
case DW_OP_push_object_address:
if (object_address_ptr)
stack.push_back(*object_address_ptr);
else {
if (error_ptr)
error_ptr->SetErrorString("DW_OP_push_object_address used without "
"specifying an object address");
return false;
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_call2
// OPERANDS:
// uint16_t compile unit relative offset of a DIE
// DESCRIPTION: Performs subroutine calls during evaluation
// of a DWARF expression. The operand is the 2-byte unsigned offset of a
// debugging information entry in the current compilation unit.
//
// Operand interpretation is exactly like that for DW_FORM_ref2.
//
// This operation transfers control of DWARF expression evaluation to the
// DW_AT_location attribute of the referenced DIE. If there is no such
// attribute, then there is no effect. Execution of the DWARF expression of
// a DW_AT_location attribute may add to and/or remove from values on the
// stack. Execution returns to the point following the call when the end of
// the attribute is reached. Values on the stack at the time of the call
// may be used as parameters by the called expression and values left on
// the stack by the called expression may be used as return values by prior
// agreement between the calling and called expressions.
//----------------------------------------------------------------------
case DW_OP_call2:
if (error_ptr)
error_ptr->SetErrorString("Unimplemented opcode DW_OP_call2.");
return false;
//----------------------------------------------------------------------
// OPCODE: DW_OP_call4
// OPERANDS: 1
// uint32_t compile unit relative offset of a DIE
// DESCRIPTION: Performs a subroutine call during evaluation of a DWARF
// expression. For DW_OP_call4, the operand is a 4-byte unsigned offset of
// a debugging information entry in the current compilation unit.
//
// Operand interpretation DW_OP_call4 is exactly like that for
// DW_FORM_ref4.
//
// This operation transfers control of DWARF expression evaluation to the
// DW_AT_location attribute of the referenced DIE. If there is no such
// attribute, then there is no effect. Execution of the DWARF expression of
// a DW_AT_location attribute may add to and/or remove from values on the
// stack. Execution returns to the point following the call when the end of
// the attribute is reached. Values on the stack at the time of the call
// may be used as parameters by the called expression and values left on
// the stack by the called expression may be used as return values by prior
// agreement between the calling and called expressions.
//----------------------------------------------------------------------
case DW_OP_call4:
if (error_ptr)
error_ptr->SetErrorString("Unimplemented opcode DW_OP_call4.");
return false;
//----------------------------------------------------------------------
// OPCODE: DW_OP_stack_value
// OPERANDS: None
// DESCRIPTION: Specifies that the object does not exist in memory but
// rather is a constant value. The value from the top of the stack is the
// value to be used. This is the actual object value and not the location.
//----------------------------------------------------------------------
case DW_OP_stack_value:
stack.back().SetValueType(Value::eValueTypeScalar);
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_call_frame_cfa
// OPERANDS: None
// DESCRIPTION: Specifies a DWARF expression that pushes the value of
// the canonical frame address consistent with the call frame information
// located in .debug_frame (or in the FDEs of the eh_frame section).
//----------------------------------------------------------------------
case DW_OP_call_frame_cfa:
if (frame) {
// Note that we don't have to parse FDEs because this DWARF expression
// is commonly evaluated with a valid stack frame.
StackID id = frame->GetStackID();
addr_t cfa = id.GetCallFrameAddress();
if (cfa != LLDB_INVALID_ADDRESS) {
stack.push_back(Scalar(cfa));
stack.back().SetValueType(Value::eValueTypeLoadAddress);
} else if (error_ptr)
error_ptr->SetErrorString("Stack frame does not include a canonical "
"frame address for DW_OP_call_frame_cfa "
"opcode.");
} else {
if (error_ptr)
error_ptr->SetErrorString("Invalid stack frame in context for "
"DW_OP_call_frame_cfa opcode.");
return false;
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_form_tls_address (or the old pre-DWARFv3 vendor extension
// opcode, DW_OP_GNU_push_tls_address)
// OPERANDS: none
// DESCRIPTION: Pops a TLS offset from the stack, converts it to
// an address in the current thread's thread-local storage block, and
// pushes it on the stack.
//----------------------------------------------------------------------
case DW_OP_form_tls_address:
case DW_OP_GNU_push_tls_address: {
if (stack.size() < 1) {
if (error_ptr) {
if (op == DW_OP_form_tls_address)
error_ptr->SetErrorString(
"DW_OP_form_tls_address needs an argument.");
else
error_ptr->SetErrorString(
"DW_OP_GNU_push_tls_address needs an argument.");
}
return false;
}
if (!exe_ctx || !module_sp) {
if (error_ptr)
error_ptr->SetErrorString("No context to evaluate TLS within.");
return false;
}
Added support for reading thread-local storage variables, as defined using the __thread modifier. To make this work this patch extends LLDB to: - Explicitly track the link_map address for each module. This is effectively the module handle, not sure why it wasn't already being stored off anywhere. As an extension later, it would be nice if someone were to add support for printing this as part of the modules list. - Allow reading the per-thread data pointer via ptrace. I have added support for Linux here. I'll be happy to add support for FreeBSD once this is reviewed. OS X does not appear to have __thread variables, so maybe we don't need it there. Windows support should eventually be workable along the same lines. - Make DWARF expressions track which module they originated from. - Add support for the DW_OP_GNU_push_tls_address DWARF opcode, as generated by gcc and recent versions of clang. Earlier versions of clang (such as 3.2, which is default on Ubuntu right now) do not generate TLS debug info correctly so can not be supported here. - Understand the format of the pthread DTV block. This is where it gets tricky. We have three basic options here: 1) Call "dlinfo" or "__tls_get_addr" on the inferior and ask it directly. However this won't work on core dumps, and generally speaking it's not a good idea for the debugger to call functions itself, as it has the potential to not work depending on the state of the target. 2) Use libthread_db. This is what GDB does. However this option requires having a version of libthread_db on the host cross-compiled for each potential target. This places a large burden on the user, and would make it very hard to cross-debug from Windows to Linux, for example. Trying to build a library intended exclusively for one OS on a different one is not pleasant. GDB sidesteps the problem and asks the user to figure it out. 3) Parse the DTV structure ourselves. On initial inspection this seems to be a bad option, as the DTV structure (the format used by the runtime to manage TLS data) is not in fact a kernel data structure, it is implemented entirely in useerland in libc. Therefore the layout of it's fields are version and OS dependent, and are not standardized. However, it turns out not to be such a problem. All OSes use basically the same algorithm (a per-module lookup table) as detailed in Ulrich Drepper's TLS ELF ABI document, so we can easily write code to decode it ourselves. The only question therefore is the exact field layouts required. Happily, the implementors of libpthread expose the structure of the DTV via metadata exported as symbols from the .so itself, designed exactly for this kind of thing. So this patch simply reads that metadata in, and re-implements libthread_db's algorithm itself. We thereby get cross-platform TLS lookup without either requiring third-party libraries, while still being independent of the version of libpthread being used. Test case included. llvm-svn: 192922
2013-10-18 05:14:00 +08:00
Thread *thread = exe_ctx->GetThreadPtr();
if (!thread) {
if (error_ptr)
error_ptr->SetErrorString("No thread to evaluate TLS within.");
return false;
}
Added support for reading thread-local storage variables, as defined using the __thread modifier. To make this work this patch extends LLDB to: - Explicitly track the link_map address for each module. This is effectively the module handle, not sure why it wasn't already being stored off anywhere. As an extension later, it would be nice if someone were to add support for printing this as part of the modules list. - Allow reading the per-thread data pointer via ptrace. I have added support for Linux here. I'll be happy to add support for FreeBSD once this is reviewed. OS X does not appear to have __thread variables, so maybe we don't need it there. Windows support should eventually be workable along the same lines. - Make DWARF expressions track which module they originated from. - Add support for the DW_OP_GNU_push_tls_address DWARF opcode, as generated by gcc and recent versions of clang. Earlier versions of clang (such as 3.2, which is default on Ubuntu right now) do not generate TLS debug info correctly so can not be supported here. - Understand the format of the pthread DTV block. This is where it gets tricky. We have three basic options here: 1) Call "dlinfo" or "__tls_get_addr" on the inferior and ask it directly. However this won't work on core dumps, and generally speaking it's not a good idea for the debugger to call functions itself, as it has the potential to not work depending on the state of the target. 2) Use libthread_db. This is what GDB does. However this option requires having a version of libthread_db on the host cross-compiled for each potential target. This places a large burden on the user, and would make it very hard to cross-debug from Windows to Linux, for example. Trying to build a library intended exclusively for one OS on a different one is not pleasant. GDB sidesteps the problem and asks the user to figure it out. 3) Parse the DTV structure ourselves. On initial inspection this seems to be a bad option, as the DTV structure (the format used by the runtime to manage TLS data) is not in fact a kernel data structure, it is implemented entirely in useerland in libc. Therefore the layout of it's fields are version and OS dependent, and are not standardized. However, it turns out not to be such a problem. All OSes use basically the same algorithm (a per-module lookup table) as detailed in Ulrich Drepper's TLS ELF ABI document, so we can easily write code to decode it ourselves. The only question therefore is the exact field layouts required. Happily, the implementors of libpthread expose the structure of the DTV via metadata exported as symbols from the .so itself, designed exactly for this kind of thing. So this patch simply reads that metadata in, and re-implements libthread_db's algorithm itself. We thereby get cross-platform TLS lookup without either requiring third-party libraries, while still being independent of the version of libpthread being used. Test case included. llvm-svn: 192922
2013-10-18 05:14:00 +08:00
// Lookup the TLS block address for this thread and module.
const addr_t tls_file_addr =
stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
const addr_t tls_load_addr =
thread->GetThreadLocalData(module_sp, tls_file_addr);
Added support for reading thread-local storage variables, as defined using the __thread modifier. To make this work this patch extends LLDB to: - Explicitly track the link_map address for each module. This is effectively the module handle, not sure why it wasn't already being stored off anywhere. As an extension later, it would be nice if someone were to add support for printing this as part of the modules list. - Allow reading the per-thread data pointer via ptrace. I have added support for Linux here. I'll be happy to add support for FreeBSD once this is reviewed. OS X does not appear to have __thread variables, so maybe we don't need it there. Windows support should eventually be workable along the same lines. - Make DWARF expressions track which module they originated from. - Add support for the DW_OP_GNU_push_tls_address DWARF opcode, as generated by gcc and recent versions of clang. Earlier versions of clang (such as 3.2, which is default on Ubuntu right now) do not generate TLS debug info correctly so can not be supported here. - Understand the format of the pthread DTV block. This is where it gets tricky. We have three basic options here: 1) Call "dlinfo" or "__tls_get_addr" on the inferior and ask it directly. However this won't work on core dumps, and generally speaking it's not a good idea for the debugger to call functions itself, as it has the potential to not work depending on the state of the target. 2) Use libthread_db. This is what GDB does. However this option requires having a version of libthread_db on the host cross-compiled for each potential target. This places a large burden on the user, and would make it very hard to cross-debug from Windows to Linux, for example. Trying to build a library intended exclusively for one OS on a different one is not pleasant. GDB sidesteps the problem and asks the user to figure it out. 3) Parse the DTV structure ourselves. On initial inspection this seems to be a bad option, as the DTV structure (the format used by the runtime to manage TLS data) is not in fact a kernel data structure, it is implemented entirely in useerland in libc. Therefore the layout of it's fields are version and OS dependent, and are not standardized. However, it turns out not to be such a problem. All OSes use basically the same algorithm (a per-module lookup table) as detailed in Ulrich Drepper's TLS ELF ABI document, so we can easily write code to decode it ourselves. The only question therefore is the exact field layouts required. Happily, the implementors of libpthread expose the structure of the DTV via metadata exported as symbols from the .so itself, designed exactly for this kind of thing. So this patch simply reads that metadata in, and re-implements libthread_db's algorithm itself. We thereby get cross-platform TLS lookup without either requiring third-party libraries, while still being independent of the version of libpthread being used. Test case included. llvm-svn: 192922
2013-10-18 05:14:00 +08:00
if (tls_load_addr == LLDB_INVALID_ADDRESS) {
if (error_ptr)
error_ptr->SetErrorString(
"No TLS data currently exists for this thread.");
return false;
}
stack.back().GetScalar() = tls_load_addr;
stack.back().SetValueType(Value::eValueTypeLoadAddress);
} break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_GNU_addr_index
// OPERANDS: 1
// ULEB128: index to the .debug_addr section
// DESCRIPTION: Pushes an address to the stack from the .debug_addr
// section with the base address specified by the DW_AT_addr_base attribute
// and the 0 based index is the ULEB128 encoded index.
//----------------------------------------------------------------------
case DW_OP_GNU_addr_index: {
if (!dwarf_cu) {
if (error_ptr)
error_ptr->SetErrorString("DW_OP_GNU_addr_index found without a "
"compile unit being specified");
return false;
}
uint64_t index = opcodes.GetULEB128(&offset);
uint32_t index_size = dwarf_cu->GetAddressByteSize();
dw_offset_t addr_base = dwarf_cu->GetAddrBase();
lldb::offset_t offset = addr_base + index * index_size;
uint64_t value =
dwarf_cu->GetSymbolFileDWARF()->get_debug_addr_data().GetMaxU64(
&offset, index_size);
stack.push_back(Scalar(value));
stack.back().SetValueType(Value::eValueTypeFileAddress);
} break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_GNU_const_index
// OPERANDS: 1
// ULEB128: index to the .debug_addr section
// DESCRIPTION: Pushes an constant with the size of a machine address to
// the stack from the .debug_addr section with the base address specified
// by the DW_AT_addr_base attribute and the 0 based index is the ULEB128
// encoded index.
//----------------------------------------------------------------------
case DW_OP_GNU_const_index: {
if (!dwarf_cu) {
if (error_ptr)
error_ptr->SetErrorString("DW_OP_GNU_const_index found without a "
"compile unit being specified");
return false;
}
uint64_t index = opcodes.GetULEB128(&offset);
uint32_t index_size = dwarf_cu->GetAddressByteSize();
dw_offset_t addr_base = dwarf_cu->GetAddrBase();
lldb::offset_t offset = addr_base + index * index_size;
const DWARFDataExtractor &debug_addr =
dwarf_cu->GetSymbolFileDWARF()->get_debug_addr_data();
switch (index_size) {
case 4:
stack.push_back(Scalar(debug_addr.GetU32(&offset)));
break;
case 8:
stack.push_back(Scalar(debug_addr.GetU64(&offset)));
break;
default:
assert(false && "Unhandled index size");
return false;
}
} break;
Added support for reading thread-local storage variables, as defined using the __thread modifier. To make this work this patch extends LLDB to: - Explicitly track the link_map address for each module. This is effectively the module handle, not sure why it wasn't already being stored off anywhere. As an extension later, it would be nice if someone were to add support for printing this as part of the modules list. - Allow reading the per-thread data pointer via ptrace. I have added support for Linux here. I'll be happy to add support for FreeBSD once this is reviewed. OS X does not appear to have __thread variables, so maybe we don't need it there. Windows support should eventually be workable along the same lines. - Make DWARF expressions track which module they originated from. - Add support for the DW_OP_GNU_push_tls_address DWARF opcode, as generated by gcc and recent versions of clang. Earlier versions of clang (such as 3.2, which is default on Ubuntu right now) do not generate TLS debug info correctly so can not be supported here. - Understand the format of the pthread DTV block. This is where it gets tricky. We have three basic options here: 1) Call "dlinfo" or "__tls_get_addr" on the inferior and ask it directly. However this won't work on core dumps, and generally speaking it's not a good idea for the debugger to call functions itself, as it has the potential to not work depending on the state of the target. 2) Use libthread_db. This is what GDB does. However this option requires having a version of libthread_db on the host cross-compiled for each potential target. This places a large burden on the user, and would make it very hard to cross-debug from Windows to Linux, for example. Trying to build a library intended exclusively for one OS on a different one is not pleasant. GDB sidesteps the problem and asks the user to figure it out. 3) Parse the DTV structure ourselves. On initial inspection this seems to be a bad option, as the DTV structure (the format used by the runtime to manage TLS data) is not in fact a kernel data structure, it is implemented entirely in useerland in libc. Therefore the layout of it's fields are version and OS dependent, and are not standardized. However, it turns out not to be such a problem. All OSes use basically the same algorithm (a per-module lookup table) as detailed in Ulrich Drepper's TLS ELF ABI document, so we can easily write code to decode it ourselves. The only question therefore is the exact field layouts required. Happily, the implementors of libpthread expose the structure of the DTV via metadata exported as symbols from the .so itself, designed exactly for this kind of thing. So this patch simply reads that metadata in, and re-implements libthread_db's algorithm itself. We thereby get cross-platform TLS lookup without either requiring third-party libraries, while still being independent of the version of libpthread being used. Test case included. llvm-svn: 192922
2013-10-18 05:14:00 +08:00
default:
if (log)
log->Printf("Unhandled opcode %s in DWARFExpression.",
DW_OP_value_to_name(op));
break;
}
}
if (stack.empty()) {
// Nothing on the stack, check if we created a piece value from DW_OP_piece
// or DW_OP_bit_piece opcodes
if (pieces.GetBuffer().GetByteSize()) {
result = pieces;
} else {
if (error_ptr)
error_ptr->SetErrorString("Stack empty after evaluation.");
return false;
}
} else {
if (log && log->GetVerbose()) {
size_t count = stack.size();
log->Printf("Stack after operation has %" PRIu64 " values:",
(uint64_t)count);
for (size_t i = 0; i < count; ++i) {
StreamString new_value;
new_value.Printf("[%" PRIu64 "]", (uint64_t)i);
stack[i].Dump(&new_value);
log->Printf(" %s", new_value.GetData());
}
}
result = stack.back();
}
return true; // Return true on success
}
Added support for reading thread-local storage variables, as defined using the __thread modifier. To make this work this patch extends LLDB to: - Explicitly track the link_map address for each module. This is effectively the module handle, not sure why it wasn't already being stored off anywhere. As an extension later, it would be nice if someone were to add support for printing this as part of the modules list. - Allow reading the per-thread data pointer via ptrace. I have added support for Linux here. I'll be happy to add support for FreeBSD once this is reviewed. OS X does not appear to have __thread variables, so maybe we don't need it there. Windows support should eventually be workable along the same lines. - Make DWARF expressions track which module they originated from. - Add support for the DW_OP_GNU_push_tls_address DWARF opcode, as generated by gcc and recent versions of clang. Earlier versions of clang (such as 3.2, which is default on Ubuntu right now) do not generate TLS debug info correctly so can not be supported here. - Understand the format of the pthread DTV block. This is where it gets tricky. We have three basic options here: 1) Call "dlinfo" or "__tls_get_addr" on the inferior and ask it directly. However this won't work on core dumps, and generally speaking it's not a good idea for the debugger to call functions itself, as it has the potential to not work depending on the state of the target. 2) Use libthread_db. This is what GDB does. However this option requires having a version of libthread_db on the host cross-compiled for each potential target. This places a large burden on the user, and would make it very hard to cross-debug from Windows to Linux, for example. Trying to build a library intended exclusively for one OS on a different one is not pleasant. GDB sidesteps the problem and asks the user to figure it out. 3) Parse the DTV structure ourselves. On initial inspection this seems to be a bad option, as the DTV structure (the format used by the runtime to manage TLS data) is not in fact a kernel data structure, it is implemented entirely in useerland in libc. Therefore the layout of it's fields are version and OS dependent, and are not standardized. However, it turns out not to be such a problem. All OSes use basically the same algorithm (a per-module lookup table) as detailed in Ulrich Drepper's TLS ELF ABI document, so we can easily write code to decode it ourselves. The only question therefore is the exact field layouts required. Happily, the implementors of libpthread expose the structure of the DTV via metadata exported as symbols from the .so itself, designed exactly for this kind of thing. So this patch simply reads that metadata in, and re-implements libthread_db's algorithm itself. We thereby get cross-platform TLS lookup without either requiring third-party libraries, while still being independent of the version of libpthread being used. Test case included. llvm-svn: 192922
2013-10-18 05:14:00 +08:00
size_t DWARFExpression::LocationListSize(const DWARFUnit *dwarf_cu,
const DataExtractor &debug_loc_data,
lldb::offset_t offset) {
const lldb::offset_t debug_loc_offset = offset;
while (debug_loc_data.ValidOffset(offset)) {
lldb::addr_t start_addr = LLDB_INVALID_ADDRESS;
lldb::addr_t end_addr = LLDB_INVALID_ADDRESS;
if (!AddressRangeForLocationListEntry(dwarf_cu, debug_loc_data, &offset,
start_addr, end_addr))
break;
if (start_addr == 0 && end_addr == 0)
break;
uint16_t loc_length = debug_loc_data.GetU16(&offset);
offset += loc_length;
}
if (offset > debug_loc_offset)
return offset - debug_loc_offset;
return 0;
}
bool DWARFExpression::AddressRangeForLocationListEntry(
const DWARFUnit *dwarf_cu, const DataExtractor &debug_loc_data,
lldb::offset_t *offset_ptr, lldb::addr_t &low_pc, lldb::addr_t &high_pc) {
if (!debug_loc_data.ValidOffset(*offset_ptr))
return false;
switch (dwarf_cu->GetSymbolFileDWARF()->GetLocationListFormat()) {
case NonLocationList:
return false;
case RegularLocationList:
low_pc = debug_loc_data.GetAddress(offset_ptr);
high_pc = debug_loc_data.GetAddress(offset_ptr);
return true;
case SplitDwarfLocationList:
switch (debug_loc_data.GetU8(offset_ptr)) {
case DW_LLE_end_of_list:
return false;
case DW_LLE_startx_endx: {
uint64_t index = debug_loc_data.GetULEB128(offset_ptr);
low_pc = ReadAddressFromDebugAddrSection(dwarf_cu, index);
index = debug_loc_data.GetULEB128(offset_ptr);
high_pc = ReadAddressFromDebugAddrSection(dwarf_cu, index);
return true;
}
case DW_LLE_startx_length: {
uint64_t index = debug_loc_data.GetULEB128(offset_ptr);
low_pc = ReadAddressFromDebugAddrSection(dwarf_cu, index);
uint32_t length = debug_loc_data.GetU32(offset_ptr);
high_pc = low_pc + length;
return true;
}
default:
// Not supported entry type
return false;
}
}
assert(false && "Not supported location list type");
return false;
}
static bool print_dwarf_exp_op(Stream &s, const DataExtractor &data,
lldb::offset_t *offset_ptr, int address_size,
int dwarf_ref_size) {
uint8_t opcode = data.GetU8(offset_ptr);
DRC_class opcode_class;
uint64_t uint;
int64_t sint;
int size;
opcode_class = DW_OP_value_to_class(opcode) & (~DRC_DWARFv3);
s.Printf("%s ", DW_OP_value_to_name(opcode));
/* Does this take zero parameters? If so we can shortcut this function. */
if (opcode_class == DRC_ZEROOPERANDS)
return true;
if (opcode_class == DRC_TWOOPERANDS && opcode == DW_OP_bregx) {
uint = data.GetULEB128(offset_ptr);
sint = data.GetSLEB128(offset_ptr);
s.Printf("%" PRIu64 " %" PRIi64, uint, sint);
return true;
}
if (opcode_class != DRC_ONEOPERAND) {
s.Printf("UNKNOWN OP %u", opcode);
return false;
}
switch (opcode) {
case DW_OP_addr:
size = address_size;
break;
case DW_OP_const1u:
size = 1;
break;
case DW_OP_const1s:
size = -1;
break;
case DW_OP_const2u:
size = 2;
break;
case DW_OP_const2s:
size = -2;
break;
case DW_OP_const4u:
size = 4;
break;
case DW_OP_const4s:
size = -4;
break;
case DW_OP_const8u:
size = 8;
break;
case DW_OP_const8s:
size = -8;
break;
case DW_OP_constu:
size = 128;
break;
case DW_OP_consts:
size = -128;
break;
case DW_OP_fbreg:
size = -128;
break;
case DW_OP_breg0:
case DW_OP_breg1:
case DW_OP_breg2:
case DW_OP_breg3:
case DW_OP_breg4:
case DW_OP_breg5:
case DW_OP_breg6:
case DW_OP_breg7:
case DW_OP_breg8:
case DW_OP_breg9:
case DW_OP_breg10:
case DW_OP_breg11:
case DW_OP_breg12:
case DW_OP_breg13:
case DW_OP_breg14:
case DW_OP_breg15:
case DW_OP_breg16:
case DW_OP_breg17:
case DW_OP_breg18:
case DW_OP_breg19:
case DW_OP_breg20:
case DW_OP_breg21:
case DW_OP_breg22:
case DW_OP_breg23:
case DW_OP_breg24:
case DW_OP_breg25:
case DW_OP_breg26:
case DW_OP_breg27:
case DW_OP_breg28:
case DW_OP_breg29:
case DW_OP_breg30:
case DW_OP_breg31:
size = -128;
break;
case DW_OP_pick:
case DW_OP_deref_size:
case DW_OP_xderef_size:
size = 1;
break;
case DW_OP_skip:
case DW_OP_bra:
size = -2;
break;
case DW_OP_call2:
size = 2;
break;
case DW_OP_call4:
size = 4;
break;
case DW_OP_call_ref:
size = dwarf_ref_size;
break;
case DW_OP_piece:
case DW_OP_plus_uconst:
case DW_OP_regx:
case DW_OP_GNU_addr_index:
case DW_OP_GNU_const_index:
size = 128;
break;
default:
s.Printf("UNKNOWN ONE-OPERAND OPCODE, #%u", opcode);
return true;
}
switch (size) {
case -1:
sint = (int8_t)data.GetU8(offset_ptr);
s.Printf("%+" PRIi64, sint);
break;
case -2:
sint = (int16_t)data.GetU16(offset_ptr);
s.Printf("%+" PRIi64, sint);
break;
case -4:
sint = (int32_t)data.GetU32(offset_ptr);
s.Printf("%+" PRIi64, sint);
break;
case -8:
sint = (int64_t)data.GetU64(offset_ptr);
s.Printf("%+" PRIi64, sint);
break;
case -128:
sint = data.GetSLEB128(offset_ptr);
s.Printf("%+" PRIi64, sint);
break;
case 1:
uint = data.GetU8(offset_ptr);
s.Printf("0x%2.2" PRIx64, uint);
break;
case 2:
uint = data.GetU16(offset_ptr);
s.Printf("0x%4.4" PRIx64, uint);
break;
case 4:
uint = data.GetU32(offset_ptr);
s.Printf("0x%8.8" PRIx64, uint);
break;
case 8:
uint = data.GetU64(offset_ptr);
s.Printf("0x%16.16" PRIx64, uint);
break;
case 128:
uint = data.GetULEB128(offset_ptr);
s.Printf("0x%" PRIx64, uint);
break;
}
return false;
}
bool DWARFExpression::PrintDWARFExpression(Stream &s, const DataExtractor &data,
int address_size, int dwarf_ref_size,
bool location_expression) {
int op_count = 0;
lldb::offset_t offset = 0;
while (data.ValidOffset(offset)) {
if (location_expression && op_count > 0)
return false;
if (op_count > 0)
s.PutCString(", ");
if (!print_dwarf_exp_op(s, data, &offset, address_size, dwarf_ref_size))
return false;
op_count++;
}
return true;
}
void DWARFExpression::PrintDWARFLocationList(
Stream &s, const DWARFUnit *cu, const DataExtractor &debug_loc_data,
lldb::offset_t offset) {
uint64_t start_addr, end_addr;
uint32_t addr_size = DWARFUnit::GetAddressByteSize(cu);
s.SetAddressByteSize(DWARFUnit::GetAddressByteSize(cu));
dw_addr_t base_addr = cu ? cu->GetBaseAddress() : 0;
while (debug_loc_data.ValidOffset(offset)) {
start_addr = debug_loc_data.GetMaxU64(&offset, addr_size);
end_addr = debug_loc_data.GetMaxU64(&offset, addr_size);
if (start_addr == 0 && end_addr == 0)
break;
s.PutCString("\n ");
s.Indent();
if (cu)
s.AddressRange(start_addr + base_addr, end_addr + base_addr,
cu->GetAddressByteSize(), NULL, ": ");
uint32_t loc_length = debug_loc_data.GetU16(&offset);
DataExtractor locationData(debug_loc_data, offset, loc_length);
PrintDWARFExpression(s, locationData, addr_size, 4, false);
offset += loc_length;
}
}
bool DWARFExpression::GetOpAndEndOffsets(StackFrame &frame,
lldb::offset_t &op_offset,
lldb::offset_t &end_offset) {
SymbolContext sc = frame.GetSymbolContext(eSymbolContextFunction);
if (!sc.function) {
return false;
}
addr_t loclist_base_file_addr =
sc.function->GetAddressRange().GetBaseAddress().GetFileAddress();
if (loclist_base_file_addr == LLDB_INVALID_ADDRESS) {
return false;
}
addr_t pc_file_addr = frame.GetFrameCodeAddress().GetFileAddress();
lldb::offset_t opcodes_offset, opcodes_length;
if (!GetLocation(loclist_base_file_addr, pc_file_addr, opcodes_offset,
opcodes_length)) {
return false;
}
if (opcodes_length == 0) {
return false;
}
op_offset = opcodes_offset;
end_offset = opcodes_offset + opcodes_length;
return true;
}
bool DWARFExpression::MatchesOperand(StackFrame &frame,
const Instruction::Operand &operand) {
using namespace OperandMatchers;
lldb::offset_t op_offset;
lldb::offset_t end_offset;
if (!GetOpAndEndOffsets(frame, op_offset, end_offset)) {
return false;
}
if (!m_data.ValidOffset(op_offset) || op_offset >= end_offset) {
return false;
}
RegisterContextSP reg_ctx_sp = frame.GetRegisterContext();
if (!reg_ctx_sp) {
return false;
}
DataExtractor opcodes = m_data;
uint8_t opcode = opcodes.GetU8(&op_offset);
if (opcode == DW_OP_fbreg) {
int64_t offset = opcodes.GetSLEB128(&op_offset);
DWARFExpression *fb_expr = frame.GetFrameBaseExpression(nullptr);
if (!fb_expr) {
return false;
}
auto recurse = [&frame, fb_expr](const Instruction::Operand &child) {
return fb_expr->MatchesOperand(frame, child);
};
if (!offset &&
MatchUnaryOp(MatchOpType(Instruction::Operand::Type::Dereference),
recurse)(operand)) {
return true;
}
return MatchUnaryOp(
MatchOpType(Instruction::Operand::Type::Dereference),
MatchBinaryOp(MatchOpType(Instruction::Operand::Type::Sum),
MatchImmOp(offset), recurse))(operand);
}
bool dereference = false;
const RegisterInfo *reg = nullptr;
int64_t offset = 0;
if (opcode >= DW_OP_reg0 && opcode <= DW_OP_reg31) {
reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, opcode - DW_OP_reg0);
} else if (opcode >= DW_OP_breg0 && opcode <= DW_OP_breg31) {
offset = opcodes.GetSLEB128(&op_offset);
reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, opcode - DW_OP_breg0);
} else if (opcode == DW_OP_regx) {
uint32_t reg_num = static_cast<uint32_t>(opcodes.GetULEB128(&op_offset));
reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, reg_num);
} else if (opcode == DW_OP_bregx) {
uint32_t reg_num = static_cast<uint32_t>(opcodes.GetULEB128(&op_offset));
offset = opcodes.GetSLEB128(&op_offset);
reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, reg_num);
} else {
return false;
}
if (!reg) {
return false;
}
if (dereference) {
if (!offset &&
MatchUnaryOp(MatchOpType(Instruction::Operand::Type::Dereference),
MatchRegOp(*reg))(operand)) {
return true;
}
return MatchUnaryOp(
MatchOpType(Instruction::Operand::Type::Dereference),
MatchBinaryOp(MatchOpType(Instruction::Operand::Type::Sum),
MatchRegOp(*reg),
MatchImmOp(offset)))(operand);
} else {
return MatchRegOp(*reg)(operand);
}
}