llvm-project/llvm/lib/Analysis/CFGPrinter.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

335 lines
13 KiB
C++
Raw Normal View History

//===- CFGPrinter.cpp - DOT printer for the control flow graph ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines a `-dot-cfg` analysis pass, which emits the
// `<prefix>.<fnname>.dot` file for each function in the program, with a graph
// of the CFG for that function. The default value for `<prefix>` is `cfg` but
// can be customized as needed.
//
// The other main feature of this file is that it implements the
// Function::viewCFG method, which is useful for debugging passes which operate
// on the CFG.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/CFGPrinter.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/FileSystem.h"
#include <algorithm>
using namespace llvm;
static cl::opt<std::string>
CFGFuncName("cfg-func-name", cl::Hidden,
cl::desc("The name of a function (or its substring)"
" whose CFG is viewed/printed."));
static cl::opt<std::string> CFGDotFilenamePrefix(
"cfg-dot-filename-prefix", cl::Hidden,
cl::desc("The prefix used for the CFG dot file names."));
static cl::opt<bool> HideUnreachablePaths("cfg-hide-unreachable-paths",
cl::init(false));
static cl::opt<bool> HideDeoptimizePaths("cfg-hide-deoptimize-paths",
cl::init(false));
static cl::opt<double> HideColdPaths(
"cfg-hide-cold-paths", cl::init(0.0),
cl::desc("Hide blocks with relative frequency below the given value"));
static cl::opt<bool> ShowHeatColors("cfg-heat-colors", cl::init(true),
cl::Hidden,
cl::desc("Show heat colors in CFG"));
static cl::opt<bool> UseRawEdgeWeight("cfg-raw-weights", cl::init(false),
cl::Hidden,
cl::desc("Use raw weights for labels. "
"Use percentages as default."));
static cl::opt<bool>
ShowEdgeWeight("cfg-weights", cl::init(false), cl::Hidden,
cl::desc("Show edges labeled with weights"));
static void writeCFGToDotFile(Function &F, BlockFrequencyInfo *BFI,
BranchProbabilityInfo *BPI, uint64_t MaxFreq,
bool CFGOnly = false) {
std::string Filename =
(CFGDotFilenamePrefix + "." + F.getName() + ".dot").str();
errs() << "Writing '" << Filename << "'...";
std::error_code EC;
raw_fd_ostream File(Filename, EC, sys::fs::OF_Text);
DOTFuncInfo CFGInfo(&F, BFI, BPI, MaxFreq);
CFGInfo.setHeatColors(ShowHeatColors);
CFGInfo.setEdgeWeights(ShowEdgeWeight);
CFGInfo.setRawEdgeWeights(UseRawEdgeWeight);
if (!EC)
WriteGraph(File, &CFGInfo, CFGOnly);
else
errs() << " error opening file for writing!";
errs() << "\n";
}
static void viewCFG(Function &F, const BlockFrequencyInfo *BFI,
const BranchProbabilityInfo *BPI, uint64_t MaxFreq,
bool CFGOnly = false) {
DOTFuncInfo CFGInfo(&F, BFI, BPI, MaxFreq);
CFGInfo.setHeatColors(ShowHeatColors);
CFGInfo.setEdgeWeights(ShowEdgeWeight);
CFGInfo.setRawEdgeWeights(UseRawEdgeWeight);
ViewGraph(&CFGInfo, "cfg." + F.getName(), CFGOnly);
}
namespace {
struct CFGViewerLegacyPass : public FunctionPass {
static char ID; // Pass identifcation, replacement for typeid
CFGViewerLegacyPass() : FunctionPass(ID) {
initializeCFGViewerLegacyPassPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override {
if (!CFGFuncName.empty() && !F.getName().contains(CFGFuncName))
return false;
auto *BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
viewCFG(F, BFI, BPI, getMaxFreq(F, BFI));
return false;
}
void print(raw_ostream &OS, const Module * = nullptr) const override {}
void getAnalysisUsage(AnalysisUsage &AU) const override {
FunctionPass::getAnalysisUsage(AU);
AU.addRequired<BlockFrequencyInfoWrapperPass>();
AU.addRequired<BranchProbabilityInfoWrapperPass>();
AU.setPreservesAll();
}
};
} // namespace
char CFGViewerLegacyPass::ID = 0;
INITIALIZE_PASS(CFGViewerLegacyPass, "view-cfg", "View CFG of function", false,
true)
PreservedAnalyses CFGViewerPass::run(Function &F, FunctionAnalysisManager &AM) {
if (!CFGFuncName.empty() && !F.getName().contains(CFGFuncName))
return PreservedAnalyses::all();
auto *BFI = &AM.getResult<BlockFrequencyAnalysis>(F);
auto *BPI = &AM.getResult<BranchProbabilityAnalysis>(F);
viewCFG(F, BFI, BPI, getMaxFreq(F, BFI));
return PreservedAnalyses::all();
}
namespace {
struct CFGOnlyViewerLegacyPass : public FunctionPass {
static char ID; // Pass identifcation, replacement for typeid
CFGOnlyViewerLegacyPass() : FunctionPass(ID) {
initializeCFGOnlyViewerLegacyPassPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override {
if (!CFGFuncName.empty() && !F.getName().contains(CFGFuncName))
return false;
auto *BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
viewCFG(F, BFI, BPI, getMaxFreq(F, BFI), /*CFGOnly=*/true);
return false;
}
void print(raw_ostream &OS, const Module * = nullptr) const override {}
void getAnalysisUsage(AnalysisUsage &AU) const override {
FunctionPass::getAnalysisUsage(AU);
AU.addRequired<BlockFrequencyInfoWrapperPass>();
AU.addRequired<BranchProbabilityInfoWrapperPass>();
AU.setPreservesAll();
}
};
} // namespace
char CFGOnlyViewerLegacyPass::ID = 0;
INITIALIZE_PASS(CFGOnlyViewerLegacyPass, "view-cfg-only",
"View CFG of function (with no function bodies)", false, true)
PreservedAnalyses CFGOnlyViewerPass::run(Function &F,
FunctionAnalysisManager &AM) {
if (!CFGFuncName.empty() && !F.getName().contains(CFGFuncName))
return PreservedAnalyses::all();
auto *BFI = &AM.getResult<BlockFrequencyAnalysis>(F);
auto *BPI = &AM.getResult<BranchProbabilityAnalysis>(F);
viewCFG(F, BFI, BPI, getMaxFreq(F, BFI), /*CFGOnly=*/true);
return PreservedAnalyses::all();
}
namespace {
struct CFGPrinterLegacyPass : public FunctionPass {
static char ID; // Pass identification, replacement for typeid
CFGPrinterLegacyPass() : FunctionPass(ID) {
initializeCFGPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override {
if (!CFGFuncName.empty() && !F.getName().contains(CFGFuncName))
return false;
auto *BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
writeCFGToDotFile(F, BFI, BPI, getMaxFreq(F, BFI));
return false;
}
void print(raw_ostream &OS, const Module * = nullptr) const override {}
void getAnalysisUsage(AnalysisUsage &AU) const override {
FunctionPass::getAnalysisUsage(AU);
AU.addRequired<BlockFrequencyInfoWrapperPass>();
AU.addRequired<BranchProbabilityInfoWrapperPass>();
AU.setPreservesAll();
}
};
} // namespace
char CFGPrinterLegacyPass::ID = 0;
INITIALIZE_PASS(CFGPrinterLegacyPass, "dot-cfg",
"Print CFG of function to 'dot' file", false, true)
PreservedAnalyses CFGPrinterPass::run(Function &F,
FunctionAnalysisManager &AM) {
if (!CFGFuncName.empty() && !F.getName().contains(CFGFuncName))
return PreservedAnalyses::all();
auto *BFI = &AM.getResult<BlockFrequencyAnalysis>(F);
auto *BPI = &AM.getResult<BranchProbabilityAnalysis>(F);
writeCFGToDotFile(F, BFI, BPI, getMaxFreq(F, BFI));
return PreservedAnalyses::all();
}
namespace {
struct CFGOnlyPrinterLegacyPass : public FunctionPass {
static char ID; // Pass identification, replacement for typeid
CFGOnlyPrinterLegacyPass() : FunctionPass(ID) {
initializeCFGOnlyPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override {
if (!CFGFuncName.empty() && !F.getName().contains(CFGFuncName))
return false;
auto *BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
writeCFGToDotFile(F, BFI, BPI, getMaxFreq(F, BFI), /*CFGOnly=*/true);
return false;
}
void print(raw_ostream &OS, const Module * = nullptr) const override {}
void getAnalysisUsage(AnalysisUsage &AU) const override {
FunctionPass::getAnalysisUsage(AU);
AU.addRequired<BlockFrequencyInfoWrapperPass>();
AU.addRequired<BranchProbabilityInfoWrapperPass>();
AU.setPreservesAll();
}
};
} // namespace
char CFGOnlyPrinterLegacyPass::ID = 0;
INITIALIZE_PASS(CFGOnlyPrinterLegacyPass, "dot-cfg-only",
"Print CFG of function to 'dot' file (with no function bodies)",
false, true)
PreservedAnalyses CFGOnlyPrinterPass::run(Function &F,
FunctionAnalysisManager &AM) {
if (!CFGFuncName.empty() && !F.getName().contains(CFGFuncName))
return PreservedAnalyses::all();
auto *BFI = &AM.getResult<BlockFrequencyAnalysis>(F);
auto *BPI = &AM.getResult<BranchProbabilityAnalysis>(F);
writeCFGToDotFile(F, BFI, BPI, getMaxFreq(F, BFI), /*CFGOnly=*/true);
return PreservedAnalyses::all();
}
/// viewCFG - This function is meant for use from the debugger. You can just
/// say 'call F->viewCFG()' and a ghostview window should pop up from the
/// program, displaying the CFG of the current function. This depends on there
/// being a 'dot' and 'gv' program in your path.
///
void Function::viewCFG() const { viewCFG(false, nullptr, nullptr); }
void Function::viewCFG(bool ViewCFGOnly, const BlockFrequencyInfo *BFI,
const BranchProbabilityInfo *BPI) const {
if (!CFGFuncName.empty() && !getName().contains(CFGFuncName))
return;
DOTFuncInfo CFGInfo(this, BFI, BPI, BFI ? getMaxFreq(*this, BFI) : 0);
ViewGraph(&CFGInfo, "cfg" + getName(), ViewCFGOnly);
}
/// viewCFGOnly - This function is meant for use from the debugger. It works
/// just like viewCFG, but it does not include the contents of basic blocks
/// into the nodes, just the label. If you are only interested in the CFG
/// this can make the graph smaller.
///
void Function::viewCFGOnly() const { viewCFGOnly(nullptr, nullptr); }
void Function::viewCFGOnly(const BlockFrequencyInfo *BFI,
const BranchProbabilityInfo *BPI) const {
viewCFG(true, BFI, BPI);
}
FunctionPass *llvm::createCFGPrinterLegacyPassPass() {
return new CFGPrinterLegacyPass();
}
FunctionPass *llvm::createCFGOnlyPrinterLegacyPassPass() {
return new CFGOnlyPrinterLegacyPass();
}
/// Find all blocks on the paths which terminate with a deoptimize or
/// unreachable (i.e. all blocks which are post-dominated by a deoptimize
/// or unreachable). These paths are hidden if the corresponding cl::opts
/// are enabled.
void DOTGraphTraits<DOTFuncInfo *>::computeDeoptOrUnreachablePaths(
const Function *F) {
auto evaluateBB = [&](const BasicBlock *Node) {
2020-12-29 11:55:20 +08:00
if (succ_empty(Node)) {
const Instruction *TI = Node->getTerminator();
isOnDeoptOrUnreachablePath[Node] =
(HideUnreachablePaths && isa<UnreachableInst>(TI)) ||
(HideDeoptimizePaths && Node->getTerminatingDeoptimizeCall());
return;
}
isOnDeoptOrUnreachablePath[Node] =
2021-01-07 10:27:36 +08:00
llvm::all_of(successors(Node), [this](const BasicBlock *BB) {
return isOnDeoptOrUnreachablePath[BB];
2021-01-07 10:27:36 +08:00
});
};
/// The post order traversal iteration is done to know the status of
/// isOnDeoptOrUnreachablePath for all the successors on the current BB.
llvm::for_each(post_order(&F->getEntryBlock()), evaluateBB);
}
bool DOTGraphTraits<DOTFuncInfo *>::isNodeHidden(const BasicBlock *Node,
const DOTFuncInfo *CFGInfo) {
if (HideColdPaths.getNumOccurrences() > 0)
if (auto *BFI = CFGInfo->getBFI()) {
uint64_t NodeFreq = BFI->getBlockFreq(Node).getFrequency();
uint64_t EntryFreq = BFI->getEntryFreq();
// Hide blocks with relative frequency below HideColdPaths threshold.
if ((double)NodeFreq / EntryFreq < HideColdPaths)
return true;
}
if (HideUnreachablePaths || HideDeoptimizePaths) {
if (isOnDeoptOrUnreachablePath.find(Node) ==
isOnDeoptOrUnreachablePath.end())
computeDeoptOrUnreachablePaths(Node->getParent());
return isOnDeoptOrUnreachablePath[Node];
}
return false;
}