llvm-project/lldb/source/Target/Platform.cpp

696 lines
21 KiB
C++
Raw Normal View History

LLDB now has "Platform" plug-ins. Platform plug-ins are plug-ins that provide an interface to a local or remote debugging platform. By default each host OS that supports LLDB should be registering a "default" platform that will be used unless a new platform is selected. Platforms are responsible for things such as: - getting process information by name or by processs ID - finding platform files. This is useful for remote debugging where there is an SDK with files that might already or need to be cached for debug access. - getting a list of platform supported architectures in the exact order they should be selected. This helps the native x86 platform on MacOSX select the correct x86_64/i386 slice from universal binaries. - Connect to remote platforms for remote debugging - Resolving an executable including finding an executable inside platform specific bundles (macosx uses .app bundles that contain files) and also selecting the appropriate slice of universal files for a given platform. So by default there is always a local platform, but remote platforms can be connected to. I will soon be adding a new "platform" command that will support the following commands: (lldb) platform connect --name machine1 macosx connect://host:port Connected to "machine1" platform. (lldb) platform disconnect macosx This allows LLDB to be well setup to do remote debugging and also once connected process listing and finding for things like: (lldb) process attach --name x<TAB> The currently selected platform plug-in can now auto complete any available processes that start with "x". The responsibilities for the platform plug-in will soon grow and expand. llvm-svn: 127286
2011-03-09 06:40:15 +08:00
//===-- Platform.cpp --------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/Target/Platform.h"
// C Includes
// C++ Includes
// Other libraries and framework includes
// Project includes
#include "lldb/Breakpoint/BreakpointIDList.h"
LLDB now has "Platform" plug-ins. Platform plug-ins are plug-ins that provide an interface to a local or remote debugging platform. By default each host OS that supports LLDB should be registering a "default" platform that will be used unless a new platform is selected. Platforms are responsible for things such as: - getting process information by name or by processs ID - finding platform files. This is useful for remote debugging where there is an SDK with files that might already or need to be cached for debug access. - getting a list of platform supported architectures in the exact order they should be selected. This helps the native x86 platform on MacOSX select the correct x86_64/i386 slice from universal binaries. - Connect to remote platforms for remote debugging - Resolving an executable including finding an executable inside platform specific bundles (macosx uses .app bundles that contain files) and also selecting the appropriate slice of universal files for a given platform. So by default there is always a local platform, but remote platforms can be connected to. I will soon be adding a new "platform" command that will support the following commands: (lldb) platform connect --name machine1 macosx connect://host:port Connected to "machine1" platform. (lldb) platform disconnect macosx This allows LLDB to be well setup to do remote debugging and also once connected process listing and finding for things like: (lldb) process attach --name x<TAB> The currently selected platform plug-in can now auto complete any available processes that start with "x". The responsibilities for the platform plug-in will soon grow and expand. llvm-svn: 127286
2011-03-09 06:40:15 +08:00
#include "lldb/Core/Error.h"
Moved the execution context that was in the Debugger into the CommandInterpreter where it was always being used. Make sure that Modules can track their object file offsets correctly to allow opening of sub object files (like the "__commpage" on darwin). Modified the Platforms to be able to launch processes. The first part of this move is the platform soon will become the entity that launches your program and when it does, it uses a new ProcessLaunchInfo class which encapsulates all process launching settings. This simplifies the internal APIs needed for launching. I want to slowly phase out process launching from the process classes, so for now we can still launch just as we used to, but eventually the platform is the object that should do the launching. Modified the Host::LaunchProcess in the MacOSX Host.mm to correctly be able to launch processes with all of the new eLaunchFlag settings. Modified any code that was manually launching processes to use the Host::LaunchProcess functions. Fixed an issue where lldb_private::Args had implicitly defined copy constructors that could do the wrong thing. This has now been fixed by adding an appropriate copy constructor and assignment operator. Make sure we don't add empty ModuleSP entries to a module list. Fixed the commpage module creation on MacOSX, but we still need to train the MacOSX dynamic loader to not get rid of it when it doesn't have an entry in the all image infos. Abstracted many more calls from in ProcessGDBRemote down into the GDBRemoteCommunicationClient subclass to make the classes cleaner and more efficient. Fixed the default iOS ARM register context to be correct and also added support for targets that don't support the qThreadStopInfo packet by selecting the current thread (only if needed) and then sending a stop reply packet. Debugserver can now start up with a --unix-socket (-u for short) and can then bind to port zero and send the port it bound to to a listening process on the other end. This allows the GDB remote platform to spawn new GDB server instances (debugserver) to allow platform debugging. llvm-svn: 129351
2011-04-12 13:54:46 +08:00
#include "lldb/Core/Log.h"
<rdar://problem/11757916> Make breakpoint setting by file and line much more efficient by only looking for inlined breakpoint locations if we are setting a breakpoint in anything but a source implementation file. Implementing this complex for a many reasons. Turns out that parsing compile units lazily had some issues with respect to how we need to do things with DWARF in .o files. So the fixes in the checkin for this makes these changes: - Add a new setting called "target.inline-breakpoint-strategy" which can be set to "never", "always", or "headers". "never" will never try and set any inlined breakpoints (fastest). "always" always looks for inlined breakpoint locations (slowest, but most accurate). "headers", which is the default setting, will only look for inlined breakpoint locations if the breakpoint is set in what are consudered to be header files, which is realy defined as "not in an implementation source file". - modify the breakpoint setting by file and line to check the current "target.inline-breakpoint-strategy" setting and act accordingly - Modify compile units to be able to get their language and other info lazily. This allows us to create compile units from the debug map and not have to fill all of the details in, and then lazily discover this information as we go on debuggging. This is needed to avoid parsing all .o files when setting breakpoints in implementation only files (no inlines). Otherwise we would need to parse the .o file, the object file (mach-o in our case) and the symbol file (DWARF in the object file) just to see what the compile unit was. - modify the "SymbolFileDWARFDebugMap" to subclass lldb_private::Module so that the virtual "GetObjectFile()" and "GetSymbolVendor()" functions can be intercepted when the .o file contenst are later lazilly needed. Prior to this fix, when we first instantiated the "SymbolFileDWARFDebugMap" class, we would also make modules, object files and symbol files for every .o file in the debug map because we needed to fix up the sections in the .o files with information that is in the executable debug map. Now we lazily do this in the DebugMapModule::GetObjectFile() Cleaned up header includes a bit as well. llvm-svn: 162860
2012-08-30 05:13:06 +08:00
#include "lldb/Core/ModuleSpec.h"
LLDB now has "Platform" plug-ins. Platform plug-ins are plug-ins that provide an interface to a local or remote debugging platform. By default each host OS that supports LLDB should be registering a "default" platform that will be used unless a new platform is selected. Platforms are responsible for things such as: - getting process information by name or by processs ID - finding platform files. This is useful for remote debugging where there is an SDK with files that might already or need to be cached for debug access. - getting a list of platform supported architectures in the exact order they should be selected. This helps the native x86 platform on MacOSX select the correct x86_64/i386 slice from universal binaries. - Connect to remote platforms for remote debugging - Resolving an executable including finding an executable inside platform specific bundles (macosx uses .app bundles that contain files) and also selecting the appropriate slice of universal files for a given platform. So by default there is always a local platform, but remote platforms can be connected to. I will soon be adding a new "platform" command that will support the following commands: (lldb) platform connect --name machine1 macosx connect://host:port Connected to "machine1" platform. (lldb) platform disconnect macosx This allows LLDB to be well setup to do remote debugging and also once connected process listing and finding for things like: (lldb) process attach --name x<TAB> The currently selected platform plug-in can now auto complete any available processes that start with "x". The responsibilities for the platform plug-in will soon grow and expand. llvm-svn: 127286
2011-03-09 06:40:15 +08:00
#include "lldb/Core/PluginManager.h"
#include "lldb/Host/FileSpec.h"
Added more platform support. There are now some new commands: platform status -- gets status information for the selected platform platform create <platform-name> -- creates a new instance of a remote platform platform list -- list all available platforms platform select -- select a platform instance as the current platform (not working yet) When using "platform create" it will create a remote platform and make it the selected platform. For instances for iPhone OS debugging on Mac OS X one can do: (lldb) platform create remote-ios --sdk-version=4.0 Remote platform: iOS platform SDK version: 4.0 SDK path: "/Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0" Not connected to a remote device. (lldb) file ~/Documents/a.out Current executable set to '~/Documents/a.out' (armv6). (lldb) image list [ 0] /Volumes/work/gclayton/Documents/devb/attach/a.out [ 1] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/dyld [ 2] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/libSystem.B.dylib Note that this is all happening prior to running _or_ connecting to a remote platform. Once connected to a remote platform the OS version might change which means we will need to update our dependecies. Also once we run, we will need to match up the actualy binaries with the actualy UUID's to files in the SDK, or download and cache them locally. This is just the start of the remote platforms, but this modification is the first iteration in getting the platforms really doing something. llvm-svn: 127934
2011-03-19 09:12:21 +08:00
#include "lldb/Host/Host.h"
Moved the execution context that was in the Debugger into the CommandInterpreter where it was always being used. Make sure that Modules can track their object file offsets correctly to allow opening of sub object files (like the "__commpage" on darwin). Modified the Platforms to be able to launch processes. The first part of this move is the platform soon will become the entity that launches your program and when it does, it uses a new ProcessLaunchInfo class which encapsulates all process launching settings. This simplifies the internal APIs needed for launching. I want to slowly phase out process launching from the process classes, so for now we can still launch just as we used to, but eventually the platform is the object that should do the launching. Modified the Host::LaunchProcess in the MacOSX Host.mm to correctly be able to launch processes with all of the new eLaunchFlag settings. Modified any code that was manually launching processes to use the Host::LaunchProcess functions. Fixed an issue where lldb_private::Args had implicitly defined copy constructors that could do the wrong thing. This has now been fixed by adding an appropriate copy constructor and assignment operator. Make sure we don't add empty ModuleSP entries to a module list. Fixed the commpage module creation on MacOSX, but we still need to train the MacOSX dynamic loader to not get rid of it when it doesn't have an entry in the all image infos. Abstracted many more calls from in ProcessGDBRemote down into the GDBRemoteCommunicationClient subclass to make the classes cleaner and more efficient. Fixed the default iOS ARM register context to be correct and also added support for targets that don't support the qThreadStopInfo packet by selecting the current thread (only if needed) and then sending a stop reply packet. Debugserver can now start up with a --unix-socket (-u for short) and can then bind to port zero and send the port it bound to to a listening process on the other end. This allows the GDB remote platform to spawn new GDB server instances (debugserver) to allow platform debugging. llvm-svn: 129351
2011-04-12 13:54:46 +08:00
#include "lldb/Target/Process.h"
LLDB now has "Platform" plug-ins. Platform plug-ins are plug-ins that provide an interface to a local or remote debugging platform. By default each host OS that supports LLDB should be registering a "default" platform that will be used unless a new platform is selected. Platforms are responsible for things such as: - getting process information by name or by processs ID - finding platform files. This is useful for remote debugging where there is an SDK with files that might already or need to be cached for debug access. - getting a list of platform supported architectures in the exact order they should be selected. This helps the native x86 platform on MacOSX select the correct x86_64/i386 slice from universal binaries. - Connect to remote platforms for remote debugging - Resolving an executable including finding an executable inside platform specific bundles (macosx uses .app bundles that contain files) and also selecting the appropriate slice of universal files for a given platform. So by default there is always a local platform, but remote platforms can be connected to. I will soon be adding a new "platform" command that will support the following commands: (lldb) platform connect --name machine1 macosx connect://host:port Connected to "machine1" platform. (lldb) platform disconnect macosx This allows LLDB to be well setup to do remote debugging and also once connected process listing and finding for things like: (lldb) process attach --name x<TAB> The currently selected platform plug-in can now auto complete any available processes that start with "x". The responsibilities for the platform plug-in will soon grow and expand. llvm-svn: 127286
2011-03-09 06:40:15 +08:00
#include "lldb/Target/Target.h"
using namespace lldb;
using namespace lldb_private;
// Use a singleton function for g_local_platform_sp to avoid init
// constructors since LLDB is often part of a shared library
static PlatformSP&
GetDefaultPlatformSP ()
{
static PlatformSP g_default_platform_sp;
return g_default_platform_sp;
}
static Mutex &
GetConnectedPlatformListMutex ()
{
static Mutex g_remote_connected_platforms_mutex (Mutex::eMutexTypeRecursive);
return g_remote_connected_platforms_mutex;
}
static std::vector<PlatformSP> &
GetConnectedPlatformList ()
{
static std::vector<PlatformSP> g_remote_connected_platforms;
return g_remote_connected_platforms;
}
const char *
Platform::GetHostPlatformName ()
{
return "host";
}
LLDB now has "Platform" plug-ins. Platform plug-ins are plug-ins that provide an interface to a local or remote debugging platform. By default each host OS that supports LLDB should be registering a "default" platform that will be used unless a new platform is selected. Platforms are responsible for things such as: - getting process information by name or by processs ID - finding platform files. This is useful for remote debugging where there is an SDK with files that might already or need to be cached for debug access. - getting a list of platform supported architectures in the exact order they should be selected. This helps the native x86 platform on MacOSX select the correct x86_64/i386 slice from universal binaries. - Connect to remote platforms for remote debugging - Resolving an executable including finding an executable inside platform specific bundles (macosx uses .app bundles that contain files) and also selecting the appropriate slice of universal files for a given platform. So by default there is always a local platform, but remote platforms can be connected to. I will soon be adding a new "platform" command that will support the following commands: (lldb) platform connect --name machine1 macosx connect://host:port Connected to "machine1" platform. (lldb) platform disconnect macosx This allows LLDB to be well setup to do remote debugging and also once connected process listing and finding for things like: (lldb) process attach --name x<TAB> The currently selected platform plug-in can now auto complete any available processes that start with "x". The responsibilities for the platform plug-in will soon grow and expand. llvm-svn: 127286
2011-03-09 06:40:15 +08:00
//------------------------------------------------------------------
/// Get the native host platform plug-in.
///
/// There should only be one of these for each host that LLDB runs
/// upon that should be statically compiled in and registered using
/// preprocessor macros or other similar build mechanisms.
///
/// This platform will be used as the default platform when launching
/// or attaching to processes unless another platform is specified.
//------------------------------------------------------------------
PlatformSP
Platform::GetDefaultPlatform ()
{
return GetDefaultPlatformSP ();
}
void
Platform::SetDefaultPlatform (const lldb::PlatformSP &platform_sp)
{
// The native platform should use its static void Platform::Initialize()
// function to register itself as the native platform.
GetDefaultPlatformSP () = platform_sp;
}
Error
Platform::GetFile (const FileSpec &platform_file,
const UUID *uuid_ptr,
FileSpec &local_file)
LLDB now has "Platform" plug-ins. Platform plug-ins are plug-ins that provide an interface to a local or remote debugging platform. By default each host OS that supports LLDB should be registering a "default" platform that will be used unless a new platform is selected. Platforms are responsible for things such as: - getting process information by name or by processs ID - finding platform files. This is useful for remote debugging where there is an SDK with files that might already or need to be cached for debug access. - getting a list of platform supported architectures in the exact order they should be selected. This helps the native x86 platform on MacOSX select the correct x86_64/i386 slice from universal binaries. - Connect to remote platforms for remote debugging - Resolving an executable including finding an executable inside platform specific bundles (macosx uses .app bundles that contain files) and also selecting the appropriate slice of universal files for a given platform. So by default there is always a local platform, but remote platforms can be connected to. I will soon be adding a new "platform" command that will support the following commands: (lldb) platform connect --name machine1 macosx connect://host:port Connected to "machine1" platform. (lldb) platform disconnect macosx This allows LLDB to be well setup to do remote debugging and also once connected process listing and finding for things like: (lldb) process attach --name x<TAB> The currently selected platform plug-in can now auto complete any available processes that start with "x". The responsibilities for the platform plug-in will soon grow and expand. llvm-svn: 127286
2011-03-09 06:40:15 +08:00
{
// Default to the local case
local_file = platform_file;
return Error();
}
Many improvements to the Platform base class and subclasses. The base Platform class now implements the Host functionality for a lot of things that make sense by default so that subclasses can check: int PlatformSubclass::Foo () { if (IsHost()) return Platform::Foo (); // Let the platform base class do the host specific stuff // Platform subclass specific code... int result = ... return result; } Added new functions to the platform: virtual const char *Platform::GetUserName (uint32_t uid); virtual const char *Platform::GetGroupName (uint32_t gid); The user and group names are cached locally so that remote platforms can avoid sending packets multiple times to resolve this information. Added the parent process ID to the ProcessInfo class. Added a new ProcessInfoMatch class which helps us to match processes up and changed the Host layer over to using this new class. The new class allows us to search for processs: 1 - by name (equal to, starts with, ends with, contains, and regex) 2 - by pid 3 - And further check for parent pid == value, uid == value, gid == value, euid == value, egid == value, arch == value, parent == value. This is all hookup up to the "platform process list" command which required adding dumping routines to dump process information. If the Host class implements the process lookup routines, you can now lists processes on your local machine: machine1.foo.com % lldb (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari 94727 244 username usergroup username usergroup x86_64-apple-darwin Xcode 92742 92710 username usergroup username usergroup i386-apple-darwin debugserver This of course also works remotely with the lldb-platform: machine1.foo.com % lldb-platform --listen 1234 machine2.foo.com % lldb (lldb) platform create remote-macosx Platform: remote-macosx Connected: no (lldb) platform connect connect://localhost:1444 Platform: remote-macosx Triple: x86_64-apple-darwin OS Version: 10.6.7 (10J869) Kernel: Darwin Kernel Version 10.7.0: Sat Jan 29 15:17:16 PST 2011; root:xnu-1504.9.37~1/RELEASE_I386 Hostname: machine1.foo.com Connected: yes (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99556 244 username usergroup username usergroup x86_64-apple-darwin trustevaluation 99548 65539 username usergroup username usergroup x86_64-apple-darwin lldb 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari The lldb-platform implements everything with the Host:: layer, so this should "just work" for linux. I will probably be adding more stuff to the Host layer for launching processes and attaching to processes so that this support should eventually just work as well. Modified the target to be able to be created with an architecture that differs from the main executable. This is needed for iOS debugging since we can have an "armv6" binary which can run on an "armv7" machine, so we want to be able to do: % lldb (lldb) platform create remote-ios (lldb) file --arch armv7 a.out Where "a.out" is an armv6 executable. The platform then can correctly decide to open all "armv7" images for all dependent shared libraries. Modified the disassembly to show the current PC value. Example output: (lldb) disassemble --frame a.out`main: 0x1eb7: pushl %ebp 0x1eb8: movl %esp, %ebp 0x1eba: pushl %ebx 0x1ebb: subl $20, %esp 0x1ebe: calll 0x1ec3 ; main + 12 at test.c:18 0x1ec3: popl %ebx -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf 0x1edb: leal 213(%ebx), %eax 0x1ee1: movl %eax, (%esp) 0x1ee4: calll 0x1f1e ; puts 0x1ee9: calll 0x1f0c ; getchar 0x1eee: movl $20, (%esp) 0x1ef5: calll 0x1e6a ; sleep_loop at test.c:6 0x1efa: movl $12, %eax 0x1eff: addl $20, %esp 0x1f02: popl %ebx 0x1f03: leave 0x1f04: ret This can be handy when dealing with the new --line options that was recently added: (lldb) disassemble --line a.out`main + 13 at test.c:19 18 { -> 19 printf("Process: %i\n\n", getpid()); 20 puts("Press any key to continue..."); getchar(); -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf Modified the ModuleList to have a lookup based solely on a UUID. Since the UUID is typically the MD5 checksum of a binary image, there is no need to give the path and architecture when searching for a pre-existing image in an image list. Now that we support remote debugging a bit better, our lldb_private::Module needs to be able to track what the original path for file was as the platform knows it, as well as where the file is locally. The module has the two following functions to retrieve both paths: const FileSpec &Module::GetFileSpec () const; const FileSpec &Module::GetPlatformFileSpec () const; llvm-svn: 128563
2011-03-31 02:16:51 +08:00
Error
Platform::GetSharedModule (const ModuleSpec &module_spec,
Many improvements to the Platform base class and subclasses. The base Platform class now implements the Host functionality for a lot of things that make sense by default so that subclasses can check: int PlatformSubclass::Foo () { if (IsHost()) return Platform::Foo (); // Let the platform base class do the host specific stuff // Platform subclass specific code... int result = ... return result; } Added new functions to the platform: virtual const char *Platform::GetUserName (uint32_t uid); virtual const char *Platform::GetGroupName (uint32_t gid); The user and group names are cached locally so that remote platforms can avoid sending packets multiple times to resolve this information. Added the parent process ID to the ProcessInfo class. Added a new ProcessInfoMatch class which helps us to match processes up and changed the Host layer over to using this new class. The new class allows us to search for processs: 1 - by name (equal to, starts with, ends with, contains, and regex) 2 - by pid 3 - And further check for parent pid == value, uid == value, gid == value, euid == value, egid == value, arch == value, parent == value. This is all hookup up to the "platform process list" command which required adding dumping routines to dump process information. If the Host class implements the process lookup routines, you can now lists processes on your local machine: machine1.foo.com % lldb (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari 94727 244 username usergroup username usergroup x86_64-apple-darwin Xcode 92742 92710 username usergroup username usergroup i386-apple-darwin debugserver This of course also works remotely with the lldb-platform: machine1.foo.com % lldb-platform --listen 1234 machine2.foo.com % lldb (lldb) platform create remote-macosx Platform: remote-macosx Connected: no (lldb) platform connect connect://localhost:1444 Platform: remote-macosx Triple: x86_64-apple-darwin OS Version: 10.6.7 (10J869) Kernel: Darwin Kernel Version 10.7.0: Sat Jan 29 15:17:16 PST 2011; root:xnu-1504.9.37~1/RELEASE_I386 Hostname: machine1.foo.com Connected: yes (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99556 244 username usergroup username usergroup x86_64-apple-darwin trustevaluation 99548 65539 username usergroup username usergroup x86_64-apple-darwin lldb 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari The lldb-platform implements everything with the Host:: layer, so this should "just work" for linux. I will probably be adding more stuff to the Host layer for launching processes and attaching to processes so that this support should eventually just work as well. Modified the target to be able to be created with an architecture that differs from the main executable. This is needed for iOS debugging since we can have an "armv6" binary which can run on an "armv7" machine, so we want to be able to do: % lldb (lldb) platform create remote-ios (lldb) file --arch armv7 a.out Where "a.out" is an armv6 executable. The platform then can correctly decide to open all "armv7" images for all dependent shared libraries. Modified the disassembly to show the current PC value. Example output: (lldb) disassemble --frame a.out`main: 0x1eb7: pushl %ebp 0x1eb8: movl %esp, %ebp 0x1eba: pushl %ebx 0x1ebb: subl $20, %esp 0x1ebe: calll 0x1ec3 ; main + 12 at test.c:18 0x1ec3: popl %ebx -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf 0x1edb: leal 213(%ebx), %eax 0x1ee1: movl %eax, (%esp) 0x1ee4: calll 0x1f1e ; puts 0x1ee9: calll 0x1f0c ; getchar 0x1eee: movl $20, (%esp) 0x1ef5: calll 0x1e6a ; sleep_loop at test.c:6 0x1efa: movl $12, %eax 0x1eff: addl $20, %esp 0x1f02: popl %ebx 0x1f03: leave 0x1f04: ret This can be handy when dealing with the new --line options that was recently added: (lldb) disassemble --line a.out`main + 13 at test.c:19 18 { -> 19 printf("Process: %i\n\n", getpid()); 20 puts("Press any key to continue..."); getchar(); -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf Modified the ModuleList to have a lookup based solely on a UUID. Since the UUID is typically the MD5 checksum of a binary image, there is no need to give the path and architecture when searching for a pre-existing image in an image list. Now that we support remote debugging a bit better, our lldb_private::Module needs to be able to track what the original path for file was as the platform knows it, as well as where the file is locally. The module has the two following functions to retrieve both paths: const FileSpec &Module::GetFileSpec () const; const FileSpec &Module::GetPlatformFileSpec () const; llvm-svn: 128563
2011-03-31 02:16:51 +08:00
ModuleSP &module_sp,
const FileSpecList *module_search_paths_ptr,
Many improvements to the Platform base class and subclasses. The base Platform class now implements the Host functionality for a lot of things that make sense by default so that subclasses can check: int PlatformSubclass::Foo () { if (IsHost()) return Platform::Foo (); // Let the platform base class do the host specific stuff // Platform subclass specific code... int result = ... return result; } Added new functions to the platform: virtual const char *Platform::GetUserName (uint32_t uid); virtual const char *Platform::GetGroupName (uint32_t gid); The user and group names are cached locally so that remote platforms can avoid sending packets multiple times to resolve this information. Added the parent process ID to the ProcessInfo class. Added a new ProcessInfoMatch class which helps us to match processes up and changed the Host layer over to using this new class. The new class allows us to search for processs: 1 - by name (equal to, starts with, ends with, contains, and regex) 2 - by pid 3 - And further check for parent pid == value, uid == value, gid == value, euid == value, egid == value, arch == value, parent == value. This is all hookup up to the "platform process list" command which required adding dumping routines to dump process information. If the Host class implements the process lookup routines, you can now lists processes on your local machine: machine1.foo.com % lldb (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari 94727 244 username usergroup username usergroup x86_64-apple-darwin Xcode 92742 92710 username usergroup username usergroup i386-apple-darwin debugserver This of course also works remotely with the lldb-platform: machine1.foo.com % lldb-platform --listen 1234 machine2.foo.com % lldb (lldb) platform create remote-macosx Platform: remote-macosx Connected: no (lldb) platform connect connect://localhost:1444 Platform: remote-macosx Triple: x86_64-apple-darwin OS Version: 10.6.7 (10J869) Kernel: Darwin Kernel Version 10.7.0: Sat Jan 29 15:17:16 PST 2011; root:xnu-1504.9.37~1/RELEASE_I386 Hostname: machine1.foo.com Connected: yes (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99556 244 username usergroup username usergroup x86_64-apple-darwin trustevaluation 99548 65539 username usergroup username usergroup x86_64-apple-darwin lldb 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari The lldb-platform implements everything with the Host:: layer, so this should "just work" for linux. I will probably be adding more stuff to the Host layer for launching processes and attaching to processes so that this support should eventually just work as well. Modified the target to be able to be created with an architecture that differs from the main executable. This is needed for iOS debugging since we can have an "armv6" binary which can run on an "armv7" machine, so we want to be able to do: % lldb (lldb) platform create remote-ios (lldb) file --arch armv7 a.out Where "a.out" is an armv6 executable. The platform then can correctly decide to open all "armv7" images for all dependent shared libraries. Modified the disassembly to show the current PC value. Example output: (lldb) disassemble --frame a.out`main: 0x1eb7: pushl %ebp 0x1eb8: movl %esp, %ebp 0x1eba: pushl %ebx 0x1ebb: subl $20, %esp 0x1ebe: calll 0x1ec3 ; main + 12 at test.c:18 0x1ec3: popl %ebx -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf 0x1edb: leal 213(%ebx), %eax 0x1ee1: movl %eax, (%esp) 0x1ee4: calll 0x1f1e ; puts 0x1ee9: calll 0x1f0c ; getchar 0x1eee: movl $20, (%esp) 0x1ef5: calll 0x1e6a ; sleep_loop at test.c:6 0x1efa: movl $12, %eax 0x1eff: addl $20, %esp 0x1f02: popl %ebx 0x1f03: leave 0x1f04: ret This can be handy when dealing with the new --line options that was recently added: (lldb) disassemble --line a.out`main + 13 at test.c:19 18 { -> 19 printf("Process: %i\n\n", getpid()); 20 puts("Press any key to continue..."); getchar(); -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf Modified the ModuleList to have a lookup based solely on a UUID. Since the UUID is typically the MD5 checksum of a binary image, there is no need to give the path and architecture when searching for a pre-existing image in an image list. Now that we support remote debugging a bit better, our lldb_private::Module needs to be able to track what the original path for file was as the platform knows it, as well as where the file is locally. The module has the two following functions to retrieve both paths: const FileSpec &Module::GetFileSpec () const; const FileSpec &Module::GetPlatformFileSpec () const; llvm-svn: 128563
2011-03-31 02:16:51 +08:00
ModuleSP *old_module_sp_ptr,
bool *did_create_ptr)
{
// Don't do any path remapping for the default implementation
// of the platform GetSharedModule function, just call through
// to our static ModuleList function. Platform subclasses that
// implement remote debugging, might have a developer kits
// installed that have cached versions of the files for the
// remote target, or might implement a download and cache
// locally implementation.
const bool always_create = false;
return ModuleList::GetSharedModule (module_spec,
Many improvements to the Platform base class and subclasses. The base Platform class now implements the Host functionality for a lot of things that make sense by default so that subclasses can check: int PlatformSubclass::Foo () { if (IsHost()) return Platform::Foo (); // Let the platform base class do the host specific stuff // Platform subclass specific code... int result = ... return result; } Added new functions to the platform: virtual const char *Platform::GetUserName (uint32_t uid); virtual const char *Platform::GetGroupName (uint32_t gid); The user and group names are cached locally so that remote platforms can avoid sending packets multiple times to resolve this information. Added the parent process ID to the ProcessInfo class. Added a new ProcessInfoMatch class which helps us to match processes up and changed the Host layer over to using this new class. The new class allows us to search for processs: 1 - by name (equal to, starts with, ends with, contains, and regex) 2 - by pid 3 - And further check for parent pid == value, uid == value, gid == value, euid == value, egid == value, arch == value, parent == value. This is all hookup up to the "platform process list" command which required adding dumping routines to dump process information. If the Host class implements the process lookup routines, you can now lists processes on your local machine: machine1.foo.com % lldb (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari 94727 244 username usergroup username usergroup x86_64-apple-darwin Xcode 92742 92710 username usergroup username usergroup i386-apple-darwin debugserver This of course also works remotely with the lldb-platform: machine1.foo.com % lldb-platform --listen 1234 machine2.foo.com % lldb (lldb) platform create remote-macosx Platform: remote-macosx Connected: no (lldb) platform connect connect://localhost:1444 Platform: remote-macosx Triple: x86_64-apple-darwin OS Version: 10.6.7 (10J869) Kernel: Darwin Kernel Version 10.7.0: Sat Jan 29 15:17:16 PST 2011; root:xnu-1504.9.37~1/RELEASE_I386 Hostname: machine1.foo.com Connected: yes (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99556 244 username usergroup username usergroup x86_64-apple-darwin trustevaluation 99548 65539 username usergroup username usergroup x86_64-apple-darwin lldb 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari The lldb-platform implements everything with the Host:: layer, so this should "just work" for linux. I will probably be adding more stuff to the Host layer for launching processes and attaching to processes so that this support should eventually just work as well. Modified the target to be able to be created with an architecture that differs from the main executable. This is needed for iOS debugging since we can have an "armv6" binary which can run on an "armv7" machine, so we want to be able to do: % lldb (lldb) platform create remote-ios (lldb) file --arch armv7 a.out Where "a.out" is an armv6 executable. The platform then can correctly decide to open all "armv7" images for all dependent shared libraries. Modified the disassembly to show the current PC value. Example output: (lldb) disassemble --frame a.out`main: 0x1eb7: pushl %ebp 0x1eb8: movl %esp, %ebp 0x1eba: pushl %ebx 0x1ebb: subl $20, %esp 0x1ebe: calll 0x1ec3 ; main + 12 at test.c:18 0x1ec3: popl %ebx -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf 0x1edb: leal 213(%ebx), %eax 0x1ee1: movl %eax, (%esp) 0x1ee4: calll 0x1f1e ; puts 0x1ee9: calll 0x1f0c ; getchar 0x1eee: movl $20, (%esp) 0x1ef5: calll 0x1e6a ; sleep_loop at test.c:6 0x1efa: movl $12, %eax 0x1eff: addl $20, %esp 0x1f02: popl %ebx 0x1f03: leave 0x1f04: ret This can be handy when dealing with the new --line options that was recently added: (lldb) disassemble --line a.out`main + 13 at test.c:19 18 { -> 19 printf("Process: %i\n\n", getpid()); 20 puts("Press any key to continue..."); getchar(); -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf Modified the ModuleList to have a lookup based solely on a UUID. Since the UUID is typically the MD5 checksum of a binary image, there is no need to give the path and architecture when searching for a pre-existing image in an image list. Now that we support remote debugging a bit better, our lldb_private::Module needs to be able to track what the original path for file was as the platform knows it, as well as where the file is locally. The module has the two following functions to retrieve both paths: const FileSpec &Module::GetFileSpec () const; const FileSpec &Module::GetPlatformFileSpec () const; llvm-svn: 128563
2011-03-31 02:16:51 +08:00
module_sp,
module_search_paths_ptr,
Many improvements to the Platform base class and subclasses. The base Platform class now implements the Host functionality for a lot of things that make sense by default so that subclasses can check: int PlatformSubclass::Foo () { if (IsHost()) return Platform::Foo (); // Let the platform base class do the host specific stuff // Platform subclass specific code... int result = ... return result; } Added new functions to the platform: virtual const char *Platform::GetUserName (uint32_t uid); virtual const char *Platform::GetGroupName (uint32_t gid); The user and group names are cached locally so that remote platforms can avoid sending packets multiple times to resolve this information. Added the parent process ID to the ProcessInfo class. Added a new ProcessInfoMatch class which helps us to match processes up and changed the Host layer over to using this new class. The new class allows us to search for processs: 1 - by name (equal to, starts with, ends with, contains, and regex) 2 - by pid 3 - And further check for parent pid == value, uid == value, gid == value, euid == value, egid == value, arch == value, parent == value. This is all hookup up to the "platform process list" command which required adding dumping routines to dump process information. If the Host class implements the process lookup routines, you can now lists processes on your local machine: machine1.foo.com % lldb (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari 94727 244 username usergroup username usergroup x86_64-apple-darwin Xcode 92742 92710 username usergroup username usergroup i386-apple-darwin debugserver This of course also works remotely with the lldb-platform: machine1.foo.com % lldb-platform --listen 1234 machine2.foo.com % lldb (lldb) platform create remote-macosx Platform: remote-macosx Connected: no (lldb) platform connect connect://localhost:1444 Platform: remote-macosx Triple: x86_64-apple-darwin OS Version: 10.6.7 (10J869) Kernel: Darwin Kernel Version 10.7.0: Sat Jan 29 15:17:16 PST 2011; root:xnu-1504.9.37~1/RELEASE_I386 Hostname: machine1.foo.com Connected: yes (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99556 244 username usergroup username usergroup x86_64-apple-darwin trustevaluation 99548 65539 username usergroup username usergroup x86_64-apple-darwin lldb 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari The lldb-platform implements everything with the Host:: layer, so this should "just work" for linux. I will probably be adding more stuff to the Host layer for launching processes and attaching to processes so that this support should eventually just work as well. Modified the target to be able to be created with an architecture that differs from the main executable. This is needed for iOS debugging since we can have an "armv6" binary which can run on an "armv7" machine, so we want to be able to do: % lldb (lldb) platform create remote-ios (lldb) file --arch armv7 a.out Where "a.out" is an armv6 executable. The platform then can correctly decide to open all "armv7" images for all dependent shared libraries. Modified the disassembly to show the current PC value. Example output: (lldb) disassemble --frame a.out`main: 0x1eb7: pushl %ebp 0x1eb8: movl %esp, %ebp 0x1eba: pushl %ebx 0x1ebb: subl $20, %esp 0x1ebe: calll 0x1ec3 ; main + 12 at test.c:18 0x1ec3: popl %ebx -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf 0x1edb: leal 213(%ebx), %eax 0x1ee1: movl %eax, (%esp) 0x1ee4: calll 0x1f1e ; puts 0x1ee9: calll 0x1f0c ; getchar 0x1eee: movl $20, (%esp) 0x1ef5: calll 0x1e6a ; sleep_loop at test.c:6 0x1efa: movl $12, %eax 0x1eff: addl $20, %esp 0x1f02: popl %ebx 0x1f03: leave 0x1f04: ret This can be handy when dealing with the new --line options that was recently added: (lldb) disassemble --line a.out`main + 13 at test.c:19 18 { -> 19 printf("Process: %i\n\n", getpid()); 20 puts("Press any key to continue..."); getchar(); -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf Modified the ModuleList to have a lookup based solely on a UUID. Since the UUID is typically the MD5 checksum of a binary image, there is no need to give the path and architecture when searching for a pre-existing image in an image list. Now that we support remote debugging a bit better, our lldb_private::Module needs to be able to track what the original path for file was as the platform knows it, as well as where the file is locally. The module has the two following functions to retrieve both paths: const FileSpec &Module::GetFileSpec () const; const FileSpec &Module::GetPlatformFileSpec () const; llvm-svn: 128563
2011-03-31 02:16:51 +08:00
old_module_sp_ptr,
did_create_ptr,
always_create);
}
LLDB now has "Platform" plug-ins. Platform plug-ins are plug-ins that provide an interface to a local or remote debugging platform. By default each host OS that supports LLDB should be registering a "default" platform that will be used unless a new platform is selected. Platforms are responsible for things such as: - getting process information by name or by processs ID - finding platform files. This is useful for remote debugging where there is an SDK with files that might already or need to be cached for debug access. - getting a list of platform supported architectures in the exact order they should be selected. This helps the native x86 platform on MacOSX select the correct x86_64/i386 slice from universal binaries. - Connect to remote platforms for remote debugging - Resolving an executable including finding an executable inside platform specific bundles (macosx uses .app bundles that contain files) and also selecting the appropriate slice of universal files for a given platform. So by default there is always a local platform, but remote platforms can be connected to. I will soon be adding a new "platform" command that will support the following commands: (lldb) platform connect --name machine1 macosx connect://host:port Connected to "machine1" platform. (lldb) platform disconnect macosx This allows LLDB to be well setup to do remote debugging and also once connected process listing and finding for things like: (lldb) process attach --name x<TAB> The currently selected platform plug-in can now auto complete any available processes that start with "x". The responsibilities for the platform plug-in will soon grow and expand. llvm-svn: 127286
2011-03-09 06:40:15 +08:00
PlatformSP
Added more platform support. There are now some new commands: platform status -- gets status information for the selected platform platform create <platform-name> -- creates a new instance of a remote platform platform list -- list all available platforms platform select -- select a platform instance as the current platform (not working yet) When using "platform create" it will create a remote platform and make it the selected platform. For instances for iPhone OS debugging on Mac OS X one can do: (lldb) platform create remote-ios --sdk-version=4.0 Remote platform: iOS platform SDK version: 4.0 SDK path: "/Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0" Not connected to a remote device. (lldb) file ~/Documents/a.out Current executable set to '~/Documents/a.out' (armv6). (lldb) image list [ 0] /Volumes/work/gclayton/Documents/devb/attach/a.out [ 1] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/dyld [ 2] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/libSystem.B.dylib Note that this is all happening prior to running _or_ connecting to a remote platform. Once connected to a remote platform the OS version might change which means we will need to update our dependecies. Also once we run, we will need to match up the actualy binaries with the actualy UUID's to files in the SDK, or download and cache them locally. This is just the start of the remote platforms, but this modification is the first iteration in getting the platforms really doing something. llvm-svn: 127934
2011-03-19 09:12:21 +08:00
Platform::Create (const char *platform_name, Error &error)
LLDB now has "Platform" plug-ins. Platform plug-ins are plug-ins that provide an interface to a local or remote debugging platform. By default each host OS that supports LLDB should be registering a "default" platform that will be used unless a new platform is selected. Platforms are responsible for things such as: - getting process information by name or by processs ID - finding platform files. This is useful for remote debugging where there is an SDK with files that might already or need to be cached for debug access. - getting a list of platform supported architectures in the exact order they should be selected. This helps the native x86 platform on MacOSX select the correct x86_64/i386 slice from universal binaries. - Connect to remote platforms for remote debugging - Resolving an executable including finding an executable inside platform specific bundles (macosx uses .app bundles that contain files) and also selecting the appropriate slice of universal files for a given platform. So by default there is always a local platform, but remote platforms can be connected to. I will soon be adding a new "platform" command that will support the following commands: (lldb) platform connect --name machine1 macosx connect://host:port Connected to "machine1" platform. (lldb) platform disconnect macosx This allows LLDB to be well setup to do remote debugging and also once connected process listing and finding for things like: (lldb) process attach --name x<TAB> The currently selected platform plug-in can now auto complete any available processes that start with "x". The responsibilities for the platform plug-in will soon grow and expand. llvm-svn: 127286
2011-03-09 06:40:15 +08:00
{
PlatformCreateInstance create_callback = NULL;
lldb::PlatformSP platform_sp;
Added more platform support. There are now some new commands: platform status -- gets status information for the selected platform platform create <platform-name> -- creates a new instance of a remote platform platform list -- list all available platforms platform select -- select a platform instance as the current platform (not working yet) When using "platform create" it will create a remote platform and make it the selected platform. For instances for iPhone OS debugging on Mac OS X one can do: (lldb) platform create remote-ios --sdk-version=4.0 Remote platform: iOS platform SDK version: 4.0 SDK path: "/Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0" Not connected to a remote device. (lldb) file ~/Documents/a.out Current executable set to '~/Documents/a.out' (armv6). (lldb) image list [ 0] /Volumes/work/gclayton/Documents/devb/attach/a.out [ 1] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/dyld [ 2] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/libSystem.B.dylib Note that this is all happening prior to running _or_ connecting to a remote platform. Once connected to a remote platform the OS version might change which means we will need to update our dependecies. Also once we run, we will need to match up the actualy binaries with the actualy UUID's to files in the SDK, or download and cache them locally. This is just the start of the remote platforms, but this modification is the first iteration in getting the platforms really doing something. llvm-svn: 127934
2011-03-19 09:12:21 +08:00
if (platform_name && platform_name[0])
LLDB now has "Platform" plug-ins. Platform plug-ins are plug-ins that provide an interface to a local or remote debugging platform. By default each host OS that supports LLDB should be registering a "default" platform that will be used unless a new platform is selected. Platforms are responsible for things such as: - getting process information by name or by processs ID - finding platform files. This is useful for remote debugging where there is an SDK with files that might already or need to be cached for debug access. - getting a list of platform supported architectures in the exact order they should be selected. This helps the native x86 platform on MacOSX select the correct x86_64/i386 slice from universal binaries. - Connect to remote platforms for remote debugging - Resolving an executable including finding an executable inside platform specific bundles (macosx uses .app bundles that contain files) and also selecting the appropriate slice of universal files for a given platform. So by default there is always a local platform, but remote platforms can be connected to. I will soon be adding a new "platform" command that will support the following commands: (lldb) platform connect --name machine1 macosx connect://host:port Connected to "machine1" platform. (lldb) platform disconnect macosx This allows LLDB to be well setup to do remote debugging and also once connected process listing and finding for things like: (lldb) process attach --name x<TAB> The currently selected platform plug-in can now auto complete any available processes that start with "x". The responsibilities for the platform plug-in will soon grow and expand. llvm-svn: 127286
2011-03-09 06:40:15 +08:00
{
create_callback = PluginManager::GetPlatformCreateCallbackForPluginName (platform_name);
if (create_callback)
platform_sp.reset(create_callback(true, NULL));
LLDB now has "Platform" plug-ins. Platform plug-ins are plug-ins that provide an interface to a local or remote debugging platform. By default each host OS that supports LLDB should be registering a "default" platform that will be used unless a new platform is selected. Platforms are responsible for things such as: - getting process information by name or by processs ID - finding platform files. This is useful for remote debugging where there is an SDK with files that might already or need to be cached for debug access. - getting a list of platform supported architectures in the exact order they should be selected. This helps the native x86 platform on MacOSX select the correct x86_64/i386 slice from universal binaries. - Connect to remote platforms for remote debugging - Resolving an executable including finding an executable inside platform specific bundles (macosx uses .app bundles that contain files) and also selecting the appropriate slice of universal files for a given platform. So by default there is always a local platform, but remote platforms can be connected to. I will soon be adding a new "platform" command that will support the following commands: (lldb) platform connect --name machine1 macosx connect://host:port Connected to "machine1" platform. (lldb) platform disconnect macosx This allows LLDB to be well setup to do remote debugging and also once connected process listing and finding for things like: (lldb) process attach --name x<TAB> The currently selected platform plug-in can now auto complete any available processes that start with "x". The responsibilities for the platform plug-in will soon grow and expand. llvm-svn: 127286
2011-03-09 06:40:15 +08:00
else
Added more platform support. There are now some new commands: platform status -- gets status information for the selected platform platform create <platform-name> -- creates a new instance of a remote platform platform list -- list all available platforms platform select -- select a platform instance as the current platform (not working yet) When using "platform create" it will create a remote platform and make it the selected platform. For instances for iPhone OS debugging on Mac OS X one can do: (lldb) platform create remote-ios --sdk-version=4.0 Remote platform: iOS platform SDK version: 4.0 SDK path: "/Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0" Not connected to a remote device. (lldb) file ~/Documents/a.out Current executable set to '~/Documents/a.out' (armv6). (lldb) image list [ 0] /Volumes/work/gclayton/Documents/devb/attach/a.out [ 1] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/dyld [ 2] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/libSystem.B.dylib Note that this is all happening prior to running _or_ connecting to a remote platform. Once connected to a remote platform the OS version might change which means we will need to update our dependecies. Also once we run, we will need to match up the actualy binaries with the actualy UUID's to files in the SDK, or download and cache them locally. This is just the start of the remote platforms, but this modification is the first iteration in getting the platforms really doing something. llvm-svn: 127934
2011-03-19 09:12:21 +08:00
error.SetErrorStringWithFormat ("unable to find a plug-in for the platform named \"%s\"", platform_name);
LLDB now has "Platform" plug-ins. Platform plug-ins are plug-ins that provide an interface to a local or remote debugging platform. By default each host OS that supports LLDB should be registering a "default" platform that will be used unless a new platform is selected. Platforms are responsible for things such as: - getting process information by name or by processs ID - finding platform files. This is useful for remote debugging where there is an SDK with files that might already or need to be cached for debug access. - getting a list of platform supported architectures in the exact order they should be selected. This helps the native x86 platform on MacOSX select the correct x86_64/i386 slice from universal binaries. - Connect to remote platforms for remote debugging - Resolving an executable including finding an executable inside platform specific bundles (macosx uses .app bundles that contain files) and also selecting the appropriate slice of universal files for a given platform. So by default there is always a local platform, but remote platforms can be connected to. I will soon be adding a new "platform" command that will support the following commands: (lldb) platform connect --name machine1 macosx connect://host:port Connected to "machine1" platform. (lldb) platform disconnect macosx This allows LLDB to be well setup to do remote debugging and also once connected process listing and finding for things like: (lldb) process attach --name x<TAB> The currently selected platform plug-in can now auto complete any available processes that start with "x". The responsibilities for the platform plug-in will soon grow and expand. llvm-svn: 127286
2011-03-09 06:40:15 +08:00
}
else
Added more platform support. There are now some new commands: platform status -- gets status information for the selected platform platform create <platform-name> -- creates a new instance of a remote platform platform list -- list all available platforms platform select -- select a platform instance as the current platform (not working yet) When using "platform create" it will create a remote platform and make it the selected platform. For instances for iPhone OS debugging on Mac OS X one can do: (lldb) platform create remote-ios --sdk-version=4.0 Remote platform: iOS platform SDK version: 4.0 SDK path: "/Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0" Not connected to a remote device. (lldb) file ~/Documents/a.out Current executable set to '~/Documents/a.out' (armv6). (lldb) image list [ 0] /Volumes/work/gclayton/Documents/devb/attach/a.out [ 1] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/dyld [ 2] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/libSystem.B.dylib Note that this is all happening prior to running _or_ connecting to a remote platform. Once connected to a remote platform the OS version might change which means we will need to update our dependecies. Also once we run, we will need to match up the actualy binaries with the actualy UUID's to files in the SDK, or download and cache them locally. This is just the start of the remote platforms, but this modification is the first iteration in getting the platforms really doing something. llvm-svn: 127934
2011-03-19 09:12:21 +08:00
error.SetErrorString ("invalid platform name");
LLDB now has "Platform" plug-ins. Platform plug-ins are plug-ins that provide an interface to a local or remote debugging platform. By default each host OS that supports LLDB should be registering a "default" platform that will be used unless a new platform is selected. Platforms are responsible for things such as: - getting process information by name or by processs ID - finding platform files. This is useful for remote debugging where there is an SDK with files that might already or need to be cached for debug access. - getting a list of platform supported architectures in the exact order they should be selected. This helps the native x86 platform on MacOSX select the correct x86_64/i386 slice from universal binaries. - Connect to remote platforms for remote debugging - Resolving an executable including finding an executable inside platform specific bundles (macosx uses .app bundles that contain files) and also selecting the appropriate slice of universal files for a given platform. So by default there is always a local platform, but remote platforms can be connected to. I will soon be adding a new "platform" command that will support the following commands: (lldb) platform connect --name machine1 macosx connect://host:port Connected to "machine1" platform. (lldb) platform disconnect macosx This allows LLDB to be well setup to do remote debugging and also once connected process listing and finding for things like: (lldb) process attach --name x<TAB> The currently selected platform plug-in can now auto complete any available processes that start with "x". The responsibilities for the platform plug-in will soon grow and expand. llvm-svn: 127286
2011-03-09 06:40:15 +08:00
return platform_sp;
}
PlatformSP
Platform::Create (const ArchSpec &arch, ArchSpec *platform_arch_ptr, Error &error)
{
lldb::PlatformSP platform_sp;
if (arch.IsValid())
{
uint32_t idx;
PlatformCreateInstance create_callback;
for (idx = 0; (create_callback = PluginManager::GetPlatformCreateCallbackAtIndex (idx)); ++idx)
{
if (create_callback)
platform_sp.reset(create_callback(false, &arch));
if (platform_sp && platform_sp->IsCompatibleArchitecture(arch, platform_arch_ptr))
return platform_sp;
}
}
else
error.SetErrorString ("invalid platform name");
if (platform_arch_ptr)
platform_arch_ptr->Clear();
platform_sp.reset();
return platform_sp;
}
LLDB now has "Platform" plug-ins. Platform plug-ins are plug-ins that provide an interface to a local or remote debugging platform. By default each host OS that supports LLDB should be registering a "default" platform that will be used unless a new platform is selected. Platforms are responsible for things such as: - getting process information by name or by processs ID - finding platform files. This is useful for remote debugging where there is an SDK with files that might already or need to be cached for debug access. - getting a list of platform supported architectures in the exact order they should be selected. This helps the native x86 platform on MacOSX select the correct x86_64/i386 slice from universal binaries. - Connect to remote platforms for remote debugging - Resolving an executable including finding an executable inside platform specific bundles (macosx uses .app bundles that contain files) and also selecting the appropriate slice of universal files for a given platform. So by default there is always a local platform, but remote platforms can be connected to. I will soon be adding a new "platform" command that will support the following commands: (lldb) platform connect --name machine1 macosx connect://host:port Connected to "machine1" platform. (lldb) platform disconnect macosx This allows LLDB to be well setup to do remote debugging and also once connected process listing and finding for things like: (lldb) process attach --name x<TAB> The currently selected platform plug-in can now auto complete any available processes that start with "x". The responsibilities for the platform plug-in will soon grow and expand. llvm-svn: 127286
2011-03-09 06:40:15 +08:00
uint32_t
Platform::GetNumConnectedRemotePlatforms ()
{
Mutex::Locker locker (GetConnectedPlatformListMutex ());
return GetConnectedPlatformList().size();
}
PlatformSP
Platform::GetConnectedRemotePlatformAtIndex (uint32_t idx)
{
PlatformSP platform_sp;
{
Mutex::Locker locker (GetConnectedPlatformListMutex ());
if (idx < GetConnectedPlatformList().size())
platform_sp = GetConnectedPlatformList ()[idx];
}
return platform_sp;
}
//------------------------------------------------------------------
/// Default Constructor
//------------------------------------------------------------------
Added more platform support. There are now some new commands: platform status -- gets status information for the selected platform platform create <platform-name> -- creates a new instance of a remote platform platform list -- list all available platforms platform select -- select a platform instance as the current platform (not working yet) When using "platform create" it will create a remote platform and make it the selected platform. For instances for iPhone OS debugging on Mac OS X one can do: (lldb) platform create remote-ios --sdk-version=4.0 Remote platform: iOS platform SDK version: 4.0 SDK path: "/Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0" Not connected to a remote device. (lldb) file ~/Documents/a.out Current executable set to '~/Documents/a.out' (armv6). (lldb) image list [ 0] /Volumes/work/gclayton/Documents/devb/attach/a.out [ 1] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/dyld [ 2] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/libSystem.B.dylib Note that this is all happening prior to running _or_ connecting to a remote platform. Once connected to a remote platform the OS version might change which means we will need to update our dependecies. Also once we run, we will need to match up the actualy binaries with the actualy UUID's to files in the SDK, or download and cache them locally. This is just the start of the remote platforms, but this modification is the first iteration in getting the platforms really doing something. llvm-svn: 127934
2011-03-19 09:12:21 +08:00
Platform::Platform (bool is_host) :
m_is_host (is_host),
m_os_version_set_while_connected (false),
m_system_arch_set_while_connected (false),
m_sdk_sysroot (),
m_sdk_build (),
Added more platform support. There are now some new commands: platform status -- gets status information for the selected platform platform create <platform-name> -- creates a new instance of a remote platform platform list -- list all available platforms platform select -- select a platform instance as the current platform (not working yet) When using "platform create" it will create a remote platform and make it the selected platform. For instances for iPhone OS debugging on Mac OS X one can do: (lldb) platform create remote-ios --sdk-version=4.0 Remote platform: iOS platform SDK version: 4.0 SDK path: "/Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0" Not connected to a remote device. (lldb) file ~/Documents/a.out Current executable set to '~/Documents/a.out' (armv6). (lldb) image list [ 0] /Volumes/work/gclayton/Documents/devb/attach/a.out [ 1] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/dyld [ 2] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/libSystem.B.dylib Note that this is all happening prior to running _or_ connecting to a remote platform. Once connected to a remote platform the OS version might change which means we will need to update our dependecies. Also once we run, we will need to match up the actualy binaries with the actualy UUID's to files in the SDK, or download and cache them locally. This is just the start of the remote platforms, but this modification is the first iteration in getting the platforms really doing something. llvm-svn: 127934
2011-03-19 09:12:21 +08:00
m_remote_url (),
m_name (),
Added more platform support. There are now some new commands: platform status -- gets status information for the selected platform platform create <platform-name> -- creates a new instance of a remote platform platform list -- list all available platforms platform select -- select a platform instance as the current platform (not working yet) When using "platform create" it will create a remote platform and make it the selected platform. For instances for iPhone OS debugging on Mac OS X one can do: (lldb) platform create remote-ios --sdk-version=4.0 Remote platform: iOS platform SDK version: 4.0 SDK path: "/Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0" Not connected to a remote device. (lldb) file ~/Documents/a.out Current executable set to '~/Documents/a.out' (armv6). (lldb) image list [ 0] /Volumes/work/gclayton/Documents/devb/attach/a.out [ 1] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/dyld [ 2] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/libSystem.B.dylib Note that this is all happening prior to running _or_ connecting to a remote platform. Once connected to a remote platform the OS version might change which means we will need to update our dependecies. Also once we run, we will need to match up the actualy binaries with the actualy UUID's to files in the SDK, or download and cache them locally. This is just the start of the remote platforms, but this modification is the first iteration in getting the platforms really doing something. llvm-svn: 127934
2011-03-19 09:12:21 +08:00
m_major_os_version (UINT32_MAX),
m_minor_os_version (UINT32_MAX),
Many improvements to the Platform base class and subclasses. The base Platform class now implements the Host functionality for a lot of things that make sense by default so that subclasses can check: int PlatformSubclass::Foo () { if (IsHost()) return Platform::Foo (); // Let the platform base class do the host specific stuff // Platform subclass specific code... int result = ... return result; } Added new functions to the platform: virtual const char *Platform::GetUserName (uint32_t uid); virtual const char *Platform::GetGroupName (uint32_t gid); The user and group names are cached locally so that remote platforms can avoid sending packets multiple times to resolve this information. Added the parent process ID to the ProcessInfo class. Added a new ProcessInfoMatch class which helps us to match processes up and changed the Host layer over to using this new class. The new class allows us to search for processs: 1 - by name (equal to, starts with, ends with, contains, and regex) 2 - by pid 3 - And further check for parent pid == value, uid == value, gid == value, euid == value, egid == value, arch == value, parent == value. This is all hookup up to the "platform process list" command which required adding dumping routines to dump process information. If the Host class implements the process lookup routines, you can now lists processes on your local machine: machine1.foo.com % lldb (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari 94727 244 username usergroup username usergroup x86_64-apple-darwin Xcode 92742 92710 username usergroup username usergroup i386-apple-darwin debugserver This of course also works remotely with the lldb-platform: machine1.foo.com % lldb-platform --listen 1234 machine2.foo.com % lldb (lldb) platform create remote-macosx Platform: remote-macosx Connected: no (lldb) platform connect connect://localhost:1444 Platform: remote-macosx Triple: x86_64-apple-darwin OS Version: 10.6.7 (10J869) Kernel: Darwin Kernel Version 10.7.0: Sat Jan 29 15:17:16 PST 2011; root:xnu-1504.9.37~1/RELEASE_I386 Hostname: machine1.foo.com Connected: yes (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99556 244 username usergroup username usergroup x86_64-apple-darwin trustevaluation 99548 65539 username usergroup username usergroup x86_64-apple-darwin lldb 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari The lldb-platform implements everything with the Host:: layer, so this should "just work" for linux. I will probably be adding more stuff to the Host layer for launching processes and attaching to processes so that this support should eventually just work as well. Modified the target to be able to be created with an architecture that differs from the main executable. This is needed for iOS debugging since we can have an "armv6" binary which can run on an "armv7" machine, so we want to be able to do: % lldb (lldb) platform create remote-ios (lldb) file --arch armv7 a.out Where "a.out" is an armv6 executable. The platform then can correctly decide to open all "armv7" images for all dependent shared libraries. Modified the disassembly to show the current PC value. Example output: (lldb) disassemble --frame a.out`main: 0x1eb7: pushl %ebp 0x1eb8: movl %esp, %ebp 0x1eba: pushl %ebx 0x1ebb: subl $20, %esp 0x1ebe: calll 0x1ec3 ; main + 12 at test.c:18 0x1ec3: popl %ebx -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf 0x1edb: leal 213(%ebx), %eax 0x1ee1: movl %eax, (%esp) 0x1ee4: calll 0x1f1e ; puts 0x1ee9: calll 0x1f0c ; getchar 0x1eee: movl $20, (%esp) 0x1ef5: calll 0x1e6a ; sleep_loop at test.c:6 0x1efa: movl $12, %eax 0x1eff: addl $20, %esp 0x1f02: popl %ebx 0x1f03: leave 0x1f04: ret This can be handy when dealing with the new --line options that was recently added: (lldb) disassemble --line a.out`main + 13 at test.c:19 18 { -> 19 printf("Process: %i\n\n", getpid()); 20 puts("Press any key to continue..."); getchar(); -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf Modified the ModuleList to have a lookup based solely on a UUID. Since the UUID is typically the MD5 checksum of a binary image, there is no need to give the path and architecture when searching for a pre-existing image in an image list. Now that we support remote debugging a bit better, our lldb_private::Module needs to be able to track what the original path for file was as the platform knows it, as well as where the file is locally. The module has the two following functions to retrieve both paths: const FileSpec &Module::GetFileSpec () const; const FileSpec &Module::GetPlatformFileSpec () const; llvm-svn: 128563
2011-03-31 02:16:51 +08:00
m_update_os_version (UINT32_MAX),
m_system_arch(),
m_uid_map_mutex (Mutex::eMutexTypeNormal),
m_gid_map_mutex (Mutex::eMutexTypeNormal),
m_uid_map(),
m_gid_map(),
m_max_uid_name_len (0),
m_max_gid_name_len (0)
LLDB now has "Platform" plug-ins. Platform plug-ins are plug-ins that provide an interface to a local or remote debugging platform. By default each host OS that supports LLDB should be registering a "default" platform that will be used unless a new platform is selected. Platforms are responsible for things such as: - getting process information by name or by processs ID - finding platform files. This is useful for remote debugging where there is an SDK with files that might already or need to be cached for debug access. - getting a list of platform supported architectures in the exact order they should be selected. This helps the native x86 platform on MacOSX select the correct x86_64/i386 slice from universal binaries. - Connect to remote platforms for remote debugging - Resolving an executable including finding an executable inside platform specific bundles (macosx uses .app bundles that contain files) and also selecting the appropriate slice of universal files for a given platform. So by default there is always a local platform, but remote platforms can be connected to. I will soon be adding a new "platform" command that will support the following commands: (lldb) platform connect --name machine1 macosx connect://host:port Connected to "machine1" platform. (lldb) platform disconnect macosx This allows LLDB to be well setup to do remote debugging and also once connected process listing and finding for things like: (lldb) process attach --name x<TAB> The currently selected platform plug-in can now auto complete any available processes that start with "x". The responsibilities for the platform plug-in will soon grow and expand. llvm-svn: 127286
2011-03-09 06:40:15 +08:00
{
Moved the execution context that was in the Debugger into the CommandInterpreter where it was always being used. Make sure that Modules can track their object file offsets correctly to allow opening of sub object files (like the "__commpage" on darwin). Modified the Platforms to be able to launch processes. The first part of this move is the platform soon will become the entity that launches your program and when it does, it uses a new ProcessLaunchInfo class which encapsulates all process launching settings. This simplifies the internal APIs needed for launching. I want to slowly phase out process launching from the process classes, so for now we can still launch just as we used to, but eventually the platform is the object that should do the launching. Modified the Host::LaunchProcess in the MacOSX Host.mm to correctly be able to launch processes with all of the new eLaunchFlag settings. Modified any code that was manually launching processes to use the Host::LaunchProcess functions. Fixed an issue where lldb_private::Args had implicitly defined copy constructors that could do the wrong thing. This has now been fixed by adding an appropriate copy constructor and assignment operator. Make sure we don't add empty ModuleSP entries to a module list. Fixed the commpage module creation on MacOSX, but we still need to train the MacOSX dynamic loader to not get rid of it when it doesn't have an entry in the all image infos. Abstracted many more calls from in ProcessGDBRemote down into the GDBRemoteCommunicationClient subclass to make the classes cleaner and more efficient. Fixed the default iOS ARM register context to be correct and also added support for targets that don't support the qThreadStopInfo packet by selecting the current thread (only if needed) and then sending a stop reply packet. Debugserver can now start up with a --unix-socket (-u for short) and can then bind to port zero and send the port it bound to to a listening process on the other end. This allows the GDB remote platform to spawn new GDB server instances (debugserver) to allow platform debugging. llvm-svn: 129351
2011-04-12 13:54:46 +08:00
LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_OBJECT));
if (log)
log->Printf ("%p Platform::Platform()", this);
LLDB now has "Platform" plug-ins. Platform plug-ins are plug-ins that provide an interface to a local or remote debugging platform. By default each host OS that supports LLDB should be registering a "default" platform that will be used unless a new platform is selected. Platforms are responsible for things such as: - getting process information by name or by processs ID - finding platform files. This is useful for remote debugging where there is an SDK with files that might already or need to be cached for debug access. - getting a list of platform supported architectures in the exact order they should be selected. This helps the native x86 platform on MacOSX select the correct x86_64/i386 slice from universal binaries. - Connect to remote platforms for remote debugging - Resolving an executable including finding an executable inside platform specific bundles (macosx uses .app bundles that contain files) and also selecting the appropriate slice of universal files for a given platform. So by default there is always a local platform, but remote platforms can be connected to. I will soon be adding a new "platform" command that will support the following commands: (lldb) platform connect --name machine1 macosx connect://host:port Connected to "machine1" platform. (lldb) platform disconnect macosx This allows LLDB to be well setup to do remote debugging and also once connected process listing and finding for things like: (lldb) process attach --name x<TAB> The currently selected platform plug-in can now auto complete any available processes that start with "x". The responsibilities for the platform plug-in will soon grow and expand. llvm-svn: 127286
2011-03-09 06:40:15 +08:00
}
//------------------------------------------------------------------
/// Destructor.
///
/// The destructor is virtual since this class is designed to be
/// inherited from by the plug-in instance.
//------------------------------------------------------------------
Platform::~Platform()
{
Moved the execution context that was in the Debugger into the CommandInterpreter where it was always being used. Make sure that Modules can track their object file offsets correctly to allow opening of sub object files (like the "__commpage" on darwin). Modified the Platforms to be able to launch processes. The first part of this move is the platform soon will become the entity that launches your program and when it does, it uses a new ProcessLaunchInfo class which encapsulates all process launching settings. This simplifies the internal APIs needed for launching. I want to slowly phase out process launching from the process classes, so for now we can still launch just as we used to, but eventually the platform is the object that should do the launching. Modified the Host::LaunchProcess in the MacOSX Host.mm to correctly be able to launch processes with all of the new eLaunchFlag settings. Modified any code that was manually launching processes to use the Host::LaunchProcess functions. Fixed an issue where lldb_private::Args had implicitly defined copy constructors that could do the wrong thing. This has now been fixed by adding an appropriate copy constructor and assignment operator. Make sure we don't add empty ModuleSP entries to a module list. Fixed the commpage module creation on MacOSX, but we still need to train the MacOSX dynamic loader to not get rid of it when it doesn't have an entry in the all image infos. Abstracted many more calls from in ProcessGDBRemote down into the GDBRemoteCommunicationClient subclass to make the classes cleaner and more efficient. Fixed the default iOS ARM register context to be correct and also added support for targets that don't support the qThreadStopInfo packet by selecting the current thread (only if needed) and then sending a stop reply packet. Debugserver can now start up with a --unix-socket (-u for short) and can then bind to port zero and send the port it bound to to a listening process on the other end. This allows the GDB remote platform to spawn new GDB server instances (debugserver) to allow platform debugging. llvm-svn: 129351
2011-04-12 13:54:46 +08:00
LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_OBJECT));
if (log)
log->Printf ("%p Platform::~Platform()", this);
LLDB now has "Platform" plug-ins. Platform plug-ins are plug-ins that provide an interface to a local or remote debugging platform. By default each host OS that supports LLDB should be registering a "default" platform that will be used unless a new platform is selected. Platforms are responsible for things such as: - getting process information by name or by processs ID - finding platform files. This is useful for remote debugging where there is an SDK with files that might already or need to be cached for debug access. - getting a list of platform supported architectures in the exact order they should be selected. This helps the native x86 platform on MacOSX select the correct x86_64/i386 slice from universal binaries. - Connect to remote platforms for remote debugging - Resolving an executable including finding an executable inside platform specific bundles (macosx uses .app bundles that contain files) and also selecting the appropriate slice of universal files for a given platform. So by default there is always a local platform, but remote platforms can be connected to. I will soon be adding a new "platform" command that will support the following commands: (lldb) platform connect --name machine1 macosx connect://host:port Connected to "machine1" platform. (lldb) platform disconnect macosx This allows LLDB to be well setup to do remote debugging and also once connected process listing and finding for things like: (lldb) process attach --name x<TAB> The currently selected platform plug-in can now auto complete any available processes that start with "x". The responsibilities for the platform plug-in will soon grow and expand. llvm-svn: 127286
2011-03-09 06:40:15 +08:00
}
void
Platform::GetStatus (Stream &strm)
{
uint32_t major = UINT32_MAX;
uint32_t minor = UINT32_MAX;
uint32_t update = UINT32_MAX;
std::string s;
Many improvements to the Platform base class and subclasses. The base Platform class now implements the Host functionality for a lot of things that make sense by default so that subclasses can check: int PlatformSubclass::Foo () { if (IsHost()) return Platform::Foo (); // Let the platform base class do the host specific stuff // Platform subclass specific code... int result = ... return result; } Added new functions to the platform: virtual const char *Platform::GetUserName (uint32_t uid); virtual const char *Platform::GetGroupName (uint32_t gid); The user and group names are cached locally so that remote platforms can avoid sending packets multiple times to resolve this information. Added the parent process ID to the ProcessInfo class. Added a new ProcessInfoMatch class which helps us to match processes up and changed the Host layer over to using this new class. The new class allows us to search for processs: 1 - by name (equal to, starts with, ends with, contains, and regex) 2 - by pid 3 - And further check for parent pid == value, uid == value, gid == value, euid == value, egid == value, arch == value, parent == value. This is all hookup up to the "platform process list" command which required adding dumping routines to dump process information. If the Host class implements the process lookup routines, you can now lists processes on your local machine: machine1.foo.com % lldb (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari 94727 244 username usergroup username usergroup x86_64-apple-darwin Xcode 92742 92710 username usergroup username usergroup i386-apple-darwin debugserver This of course also works remotely with the lldb-platform: machine1.foo.com % lldb-platform --listen 1234 machine2.foo.com % lldb (lldb) platform create remote-macosx Platform: remote-macosx Connected: no (lldb) platform connect connect://localhost:1444 Platform: remote-macosx Triple: x86_64-apple-darwin OS Version: 10.6.7 (10J869) Kernel: Darwin Kernel Version 10.7.0: Sat Jan 29 15:17:16 PST 2011; root:xnu-1504.9.37~1/RELEASE_I386 Hostname: machine1.foo.com Connected: yes (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99556 244 username usergroup username usergroup x86_64-apple-darwin trustevaluation 99548 65539 username usergroup username usergroup x86_64-apple-darwin lldb 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari The lldb-platform implements everything with the Host:: layer, so this should "just work" for linux. I will probably be adding more stuff to the Host layer for launching processes and attaching to processes so that this support should eventually just work as well. Modified the target to be able to be created with an architecture that differs from the main executable. This is needed for iOS debugging since we can have an "armv6" binary which can run on an "armv7" machine, so we want to be able to do: % lldb (lldb) platform create remote-ios (lldb) file --arch armv7 a.out Where "a.out" is an armv6 executable. The platform then can correctly decide to open all "armv7" images for all dependent shared libraries. Modified the disassembly to show the current PC value. Example output: (lldb) disassemble --frame a.out`main: 0x1eb7: pushl %ebp 0x1eb8: movl %esp, %ebp 0x1eba: pushl %ebx 0x1ebb: subl $20, %esp 0x1ebe: calll 0x1ec3 ; main + 12 at test.c:18 0x1ec3: popl %ebx -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf 0x1edb: leal 213(%ebx), %eax 0x1ee1: movl %eax, (%esp) 0x1ee4: calll 0x1f1e ; puts 0x1ee9: calll 0x1f0c ; getchar 0x1eee: movl $20, (%esp) 0x1ef5: calll 0x1e6a ; sleep_loop at test.c:6 0x1efa: movl $12, %eax 0x1eff: addl $20, %esp 0x1f02: popl %ebx 0x1f03: leave 0x1f04: ret This can be handy when dealing with the new --line options that was recently added: (lldb) disassemble --line a.out`main + 13 at test.c:19 18 { -> 19 printf("Process: %i\n\n", getpid()); 20 puts("Press any key to continue..."); getchar(); -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf Modified the ModuleList to have a lookup based solely on a UUID. Since the UUID is typically the MD5 checksum of a binary image, there is no need to give the path and architecture when searching for a pre-existing image in an image list. Now that we support remote debugging a bit better, our lldb_private::Module needs to be able to track what the original path for file was as the platform knows it, as well as where the file is locally. The module has the two following functions to retrieve both paths: const FileSpec &Module::GetFileSpec () const; const FileSpec &Module::GetPlatformFileSpec () const; llvm-svn: 128563
2011-03-31 02:16:51 +08:00
strm.Printf (" Platform: %s\n", GetShortPluginName());
ArchSpec arch (GetSystemArchitecture());
if (arch.IsValid())
{
if (!arch.GetTriple().str().empty())
Many improvements to the Platform base class and subclasses. The base Platform class now implements the Host functionality for a lot of things that make sense by default so that subclasses can check: int PlatformSubclass::Foo () { if (IsHost()) return Platform::Foo (); // Let the platform base class do the host specific stuff // Platform subclass specific code... int result = ... return result; } Added new functions to the platform: virtual const char *Platform::GetUserName (uint32_t uid); virtual const char *Platform::GetGroupName (uint32_t gid); The user and group names are cached locally so that remote platforms can avoid sending packets multiple times to resolve this information. Added the parent process ID to the ProcessInfo class. Added a new ProcessInfoMatch class which helps us to match processes up and changed the Host layer over to using this new class. The new class allows us to search for processs: 1 - by name (equal to, starts with, ends with, contains, and regex) 2 - by pid 3 - And further check for parent pid == value, uid == value, gid == value, euid == value, egid == value, arch == value, parent == value. This is all hookup up to the "platform process list" command which required adding dumping routines to dump process information. If the Host class implements the process lookup routines, you can now lists processes on your local machine: machine1.foo.com % lldb (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari 94727 244 username usergroup username usergroup x86_64-apple-darwin Xcode 92742 92710 username usergroup username usergroup i386-apple-darwin debugserver This of course also works remotely with the lldb-platform: machine1.foo.com % lldb-platform --listen 1234 machine2.foo.com % lldb (lldb) platform create remote-macosx Platform: remote-macosx Connected: no (lldb) platform connect connect://localhost:1444 Platform: remote-macosx Triple: x86_64-apple-darwin OS Version: 10.6.7 (10J869) Kernel: Darwin Kernel Version 10.7.0: Sat Jan 29 15:17:16 PST 2011; root:xnu-1504.9.37~1/RELEASE_I386 Hostname: machine1.foo.com Connected: yes (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99556 244 username usergroup username usergroup x86_64-apple-darwin trustevaluation 99548 65539 username usergroup username usergroup x86_64-apple-darwin lldb 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari The lldb-platform implements everything with the Host:: layer, so this should "just work" for linux. I will probably be adding more stuff to the Host layer for launching processes and attaching to processes so that this support should eventually just work as well. Modified the target to be able to be created with an architecture that differs from the main executable. This is needed for iOS debugging since we can have an "armv6" binary which can run on an "armv7" machine, so we want to be able to do: % lldb (lldb) platform create remote-ios (lldb) file --arch armv7 a.out Where "a.out" is an armv6 executable. The platform then can correctly decide to open all "armv7" images for all dependent shared libraries. Modified the disassembly to show the current PC value. Example output: (lldb) disassemble --frame a.out`main: 0x1eb7: pushl %ebp 0x1eb8: movl %esp, %ebp 0x1eba: pushl %ebx 0x1ebb: subl $20, %esp 0x1ebe: calll 0x1ec3 ; main + 12 at test.c:18 0x1ec3: popl %ebx -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf 0x1edb: leal 213(%ebx), %eax 0x1ee1: movl %eax, (%esp) 0x1ee4: calll 0x1f1e ; puts 0x1ee9: calll 0x1f0c ; getchar 0x1eee: movl $20, (%esp) 0x1ef5: calll 0x1e6a ; sleep_loop at test.c:6 0x1efa: movl $12, %eax 0x1eff: addl $20, %esp 0x1f02: popl %ebx 0x1f03: leave 0x1f04: ret This can be handy when dealing with the new --line options that was recently added: (lldb) disassemble --line a.out`main + 13 at test.c:19 18 { -> 19 printf("Process: %i\n\n", getpid()); 20 puts("Press any key to continue..."); getchar(); -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf Modified the ModuleList to have a lookup based solely on a UUID. Since the UUID is typically the MD5 checksum of a binary image, there is no need to give the path and architecture when searching for a pre-existing image in an image list. Now that we support remote debugging a bit better, our lldb_private::Module needs to be able to track what the original path for file was as the platform knows it, as well as where the file is locally. The module has the two following functions to retrieve both paths: const FileSpec &Module::GetFileSpec () const; const FileSpec &Module::GetPlatformFileSpec () const; llvm-svn: 128563
2011-03-31 02:16:51 +08:00
strm.Printf(" Triple: %s\n", arch.GetTriple().str().c_str());
}
if (GetOSVersion(major, minor, update))
{
Many improvements to the Platform base class and subclasses. The base Platform class now implements the Host functionality for a lot of things that make sense by default so that subclasses can check: int PlatformSubclass::Foo () { if (IsHost()) return Platform::Foo (); // Let the platform base class do the host specific stuff // Platform subclass specific code... int result = ... return result; } Added new functions to the platform: virtual const char *Platform::GetUserName (uint32_t uid); virtual const char *Platform::GetGroupName (uint32_t gid); The user and group names are cached locally so that remote platforms can avoid sending packets multiple times to resolve this information. Added the parent process ID to the ProcessInfo class. Added a new ProcessInfoMatch class which helps us to match processes up and changed the Host layer over to using this new class. The new class allows us to search for processs: 1 - by name (equal to, starts with, ends with, contains, and regex) 2 - by pid 3 - And further check for parent pid == value, uid == value, gid == value, euid == value, egid == value, arch == value, parent == value. This is all hookup up to the "platform process list" command which required adding dumping routines to dump process information. If the Host class implements the process lookup routines, you can now lists processes on your local machine: machine1.foo.com % lldb (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari 94727 244 username usergroup username usergroup x86_64-apple-darwin Xcode 92742 92710 username usergroup username usergroup i386-apple-darwin debugserver This of course also works remotely with the lldb-platform: machine1.foo.com % lldb-platform --listen 1234 machine2.foo.com % lldb (lldb) platform create remote-macosx Platform: remote-macosx Connected: no (lldb) platform connect connect://localhost:1444 Platform: remote-macosx Triple: x86_64-apple-darwin OS Version: 10.6.7 (10J869) Kernel: Darwin Kernel Version 10.7.0: Sat Jan 29 15:17:16 PST 2011; root:xnu-1504.9.37~1/RELEASE_I386 Hostname: machine1.foo.com Connected: yes (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99556 244 username usergroup username usergroup x86_64-apple-darwin trustevaluation 99548 65539 username usergroup username usergroup x86_64-apple-darwin lldb 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari The lldb-platform implements everything with the Host:: layer, so this should "just work" for linux. I will probably be adding more stuff to the Host layer for launching processes and attaching to processes so that this support should eventually just work as well. Modified the target to be able to be created with an architecture that differs from the main executable. This is needed for iOS debugging since we can have an "armv6" binary which can run on an "armv7" machine, so we want to be able to do: % lldb (lldb) platform create remote-ios (lldb) file --arch armv7 a.out Where "a.out" is an armv6 executable. The platform then can correctly decide to open all "armv7" images for all dependent shared libraries. Modified the disassembly to show the current PC value. Example output: (lldb) disassemble --frame a.out`main: 0x1eb7: pushl %ebp 0x1eb8: movl %esp, %ebp 0x1eba: pushl %ebx 0x1ebb: subl $20, %esp 0x1ebe: calll 0x1ec3 ; main + 12 at test.c:18 0x1ec3: popl %ebx -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf 0x1edb: leal 213(%ebx), %eax 0x1ee1: movl %eax, (%esp) 0x1ee4: calll 0x1f1e ; puts 0x1ee9: calll 0x1f0c ; getchar 0x1eee: movl $20, (%esp) 0x1ef5: calll 0x1e6a ; sleep_loop at test.c:6 0x1efa: movl $12, %eax 0x1eff: addl $20, %esp 0x1f02: popl %ebx 0x1f03: leave 0x1f04: ret This can be handy when dealing with the new --line options that was recently added: (lldb) disassemble --line a.out`main + 13 at test.c:19 18 { -> 19 printf("Process: %i\n\n", getpid()); 20 puts("Press any key to continue..."); getchar(); -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf Modified the ModuleList to have a lookup based solely on a UUID. Since the UUID is typically the MD5 checksum of a binary image, there is no need to give the path and architecture when searching for a pre-existing image in an image list. Now that we support remote debugging a bit better, our lldb_private::Module needs to be able to track what the original path for file was as the platform knows it, as well as where the file is locally. The module has the two following functions to retrieve both paths: const FileSpec &Module::GetFileSpec () const; const FileSpec &Module::GetPlatformFileSpec () const; llvm-svn: 128563
2011-03-31 02:16:51 +08:00
strm.Printf("OS Version: %u", major);
if (minor != UINT32_MAX)
strm.Printf(".%u", minor);
if (update != UINT32_MAX)
strm.Printf(".%u", update);
if (GetOSBuildString (s))
strm.Printf(" (%s)", s.c_str());
strm.EOL();
}
if (GetOSKernelDescription (s))
Many improvements to the Platform base class and subclasses. The base Platform class now implements the Host functionality for a lot of things that make sense by default so that subclasses can check: int PlatformSubclass::Foo () { if (IsHost()) return Platform::Foo (); // Let the platform base class do the host specific stuff // Platform subclass specific code... int result = ... return result; } Added new functions to the platform: virtual const char *Platform::GetUserName (uint32_t uid); virtual const char *Platform::GetGroupName (uint32_t gid); The user and group names are cached locally so that remote platforms can avoid sending packets multiple times to resolve this information. Added the parent process ID to the ProcessInfo class. Added a new ProcessInfoMatch class which helps us to match processes up and changed the Host layer over to using this new class. The new class allows us to search for processs: 1 - by name (equal to, starts with, ends with, contains, and regex) 2 - by pid 3 - And further check for parent pid == value, uid == value, gid == value, euid == value, egid == value, arch == value, parent == value. This is all hookup up to the "platform process list" command which required adding dumping routines to dump process information. If the Host class implements the process lookup routines, you can now lists processes on your local machine: machine1.foo.com % lldb (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari 94727 244 username usergroup username usergroup x86_64-apple-darwin Xcode 92742 92710 username usergroup username usergroup i386-apple-darwin debugserver This of course also works remotely with the lldb-platform: machine1.foo.com % lldb-platform --listen 1234 machine2.foo.com % lldb (lldb) platform create remote-macosx Platform: remote-macosx Connected: no (lldb) platform connect connect://localhost:1444 Platform: remote-macosx Triple: x86_64-apple-darwin OS Version: 10.6.7 (10J869) Kernel: Darwin Kernel Version 10.7.0: Sat Jan 29 15:17:16 PST 2011; root:xnu-1504.9.37~1/RELEASE_I386 Hostname: machine1.foo.com Connected: yes (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99556 244 username usergroup username usergroup x86_64-apple-darwin trustevaluation 99548 65539 username usergroup username usergroup x86_64-apple-darwin lldb 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari The lldb-platform implements everything with the Host:: layer, so this should "just work" for linux. I will probably be adding more stuff to the Host layer for launching processes and attaching to processes so that this support should eventually just work as well. Modified the target to be able to be created with an architecture that differs from the main executable. This is needed for iOS debugging since we can have an "armv6" binary which can run on an "armv7" machine, so we want to be able to do: % lldb (lldb) platform create remote-ios (lldb) file --arch armv7 a.out Where "a.out" is an armv6 executable. The platform then can correctly decide to open all "armv7" images for all dependent shared libraries. Modified the disassembly to show the current PC value. Example output: (lldb) disassemble --frame a.out`main: 0x1eb7: pushl %ebp 0x1eb8: movl %esp, %ebp 0x1eba: pushl %ebx 0x1ebb: subl $20, %esp 0x1ebe: calll 0x1ec3 ; main + 12 at test.c:18 0x1ec3: popl %ebx -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf 0x1edb: leal 213(%ebx), %eax 0x1ee1: movl %eax, (%esp) 0x1ee4: calll 0x1f1e ; puts 0x1ee9: calll 0x1f0c ; getchar 0x1eee: movl $20, (%esp) 0x1ef5: calll 0x1e6a ; sleep_loop at test.c:6 0x1efa: movl $12, %eax 0x1eff: addl $20, %esp 0x1f02: popl %ebx 0x1f03: leave 0x1f04: ret This can be handy when dealing with the new --line options that was recently added: (lldb) disassemble --line a.out`main + 13 at test.c:19 18 { -> 19 printf("Process: %i\n\n", getpid()); 20 puts("Press any key to continue..."); getchar(); -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf Modified the ModuleList to have a lookup based solely on a UUID. Since the UUID is typically the MD5 checksum of a binary image, there is no need to give the path and architecture when searching for a pre-existing image in an image list. Now that we support remote debugging a bit better, our lldb_private::Module needs to be able to track what the original path for file was as the platform knows it, as well as where the file is locally. The module has the two following functions to retrieve both paths: const FileSpec &Module::GetFileSpec () const; const FileSpec &Module::GetPlatformFileSpec () const; llvm-svn: 128563
2011-03-31 02:16:51 +08:00
strm.Printf(" Kernel: %s\n", s.c_str());
if (IsHost())
{
Many improvements to the Platform base class and subclasses. The base Platform class now implements the Host functionality for a lot of things that make sense by default so that subclasses can check: int PlatformSubclass::Foo () { if (IsHost()) return Platform::Foo (); // Let the platform base class do the host specific stuff // Platform subclass specific code... int result = ... return result; } Added new functions to the platform: virtual const char *Platform::GetUserName (uint32_t uid); virtual const char *Platform::GetGroupName (uint32_t gid); The user and group names are cached locally so that remote platforms can avoid sending packets multiple times to resolve this information. Added the parent process ID to the ProcessInfo class. Added a new ProcessInfoMatch class which helps us to match processes up and changed the Host layer over to using this new class. The new class allows us to search for processs: 1 - by name (equal to, starts with, ends with, contains, and regex) 2 - by pid 3 - And further check for parent pid == value, uid == value, gid == value, euid == value, egid == value, arch == value, parent == value. This is all hookup up to the "platform process list" command which required adding dumping routines to dump process information. If the Host class implements the process lookup routines, you can now lists processes on your local machine: machine1.foo.com % lldb (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari 94727 244 username usergroup username usergroup x86_64-apple-darwin Xcode 92742 92710 username usergroup username usergroup i386-apple-darwin debugserver This of course also works remotely with the lldb-platform: machine1.foo.com % lldb-platform --listen 1234 machine2.foo.com % lldb (lldb) platform create remote-macosx Platform: remote-macosx Connected: no (lldb) platform connect connect://localhost:1444 Platform: remote-macosx Triple: x86_64-apple-darwin OS Version: 10.6.7 (10J869) Kernel: Darwin Kernel Version 10.7.0: Sat Jan 29 15:17:16 PST 2011; root:xnu-1504.9.37~1/RELEASE_I386 Hostname: machine1.foo.com Connected: yes (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99556 244 username usergroup username usergroup x86_64-apple-darwin trustevaluation 99548 65539 username usergroup username usergroup x86_64-apple-darwin lldb 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari The lldb-platform implements everything with the Host:: layer, so this should "just work" for linux. I will probably be adding more stuff to the Host layer for launching processes and attaching to processes so that this support should eventually just work as well. Modified the target to be able to be created with an architecture that differs from the main executable. This is needed for iOS debugging since we can have an "armv6" binary which can run on an "armv7" machine, so we want to be able to do: % lldb (lldb) platform create remote-ios (lldb) file --arch armv7 a.out Where "a.out" is an armv6 executable. The platform then can correctly decide to open all "armv7" images for all dependent shared libraries. Modified the disassembly to show the current PC value. Example output: (lldb) disassemble --frame a.out`main: 0x1eb7: pushl %ebp 0x1eb8: movl %esp, %ebp 0x1eba: pushl %ebx 0x1ebb: subl $20, %esp 0x1ebe: calll 0x1ec3 ; main + 12 at test.c:18 0x1ec3: popl %ebx -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf 0x1edb: leal 213(%ebx), %eax 0x1ee1: movl %eax, (%esp) 0x1ee4: calll 0x1f1e ; puts 0x1ee9: calll 0x1f0c ; getchar 0x1eee: movl $20, (%esp) 0x1ef5: calll 0x1e6a ; sleep_loop at test.c:6 0x1efa: movl $12, %eax 0x1eff: addl $20, %esp 0x1f02: popl %ebx 0x1f03: leave 0x1f04: ret This can be handy when dealing with the new --line options that was recently added: (lldb) disassemble --line a.out`main + 13 at test.c:19 18 { -> 19 printf("Process: %i\n\n", getpid()); 20 puts("Press any key to continue..."); getchar(); -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf Modified the ModuleList to have a lookup based solely on a UUID. Since the UUID is typically the MD5 checksum of a binary image, there is no need to give the path and architecture when searching for a pre-existing image in an image list. Now that we support remote debugging a bit better, our lldb_private::Module needs to be able to track what the original path for file was as the platform knows it, as well as where the file is locally. The module has the two following functions to retrieve both paths: const FileSpec &Module::GetFileSpec () const; const FileSpec &Module::GetPlatformFileSpec () const; llvm-svn: 128563
2011-03-31 02:16:51 +08:00
strm.Printf(" Hostname: %s\n", GetHostname());
}
else
{
Many improvements to the Platform base class and subclasses. The base Platform class now implements the Host functionality for a lot of things that make sense by default so that subclasses can check: int PlatformSubclass::Foo () { if (IsHost()) return Platform::Foo (); // Let the platform base class do the host specific stuff // Platform subclass specific code... int result = ... return result; } Added new functions to the platform: virtual const char *Platform::GetUserName (uint32_t uid); virtual const char *Platform::GetGroupName (uint32_t gid); The user and group names are cached locally so that remote platforms can avoid sending packets multiple times to resolve this information. Added the parent process ID to the ProcessInfo class. Added a new ProcessInfoMatch class which helps us to match processes up and changed the Host layer over to using this new class. The new class allows us to search for processs: 1 - by name (equal to, starts with, ends with, contains, and regex) 2 - by pid 3 - And further check for parent pid == value, uid == value, gid == value, euid == value, egid == value, arch == value, parent == value. This is all hookup up to the "platform process list" command which required adding dumping routines to dump process information. If the Host class implements the process lookup routines, you can now lists processes on your local machine: machine1.foo.com % lldb (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari 94727 244 username usergroup username usergroup x86_64-apple-darwin Xcode 92742 92710 username usergroup username usergroup i386-apple-darwin debugserver This of course also works remotely with the lldb-platform: machine1.foo.com % lldb-platform --listen 1234 machine2.foo.com % lldb (lldb) platform create remote-macosx Platform: remote-macosx Connected: no (lldb) platform connect connect://localhost:1444 Platform: remote-macosx Triple: x86_64-apple-darwin OS Version: 10.6.7 (10J869) Kernel: Darwin Kernel Version 10.7.0: Sat Jan 29 15:17:16 PST 2011; root:xnu-1504.9.37~1/RELEASE_I386 Hostname: machine1.foo.com Connected: yes (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99556 244 username usergroup username usergroup x86_64-apple-darwin trustevaluation 99548 65539 username usergroup username usergroup x86_64-apple-darwin lldb 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari The lldb-platform implements everything with the Host:: layer, so this should "just work" for linux. I will probably be adding more stuff to the Host layer for launching processes and attaching to processes so that this support should eventually just work as well. Modified the target to be able to be created with an architecture that differs from the main executable. This is needed for iOS debugging since we can have an "armv6" binary which can run on an "armv7" machine, so we want to be able to do: % lldb (lldb) platform create remote-ios (lldb) file --arch armv7 a.out Where "a.out" is an armv6 executable. The platform then can correctly decide to open all "armv7" images for all dependent shared libraries. Modified the disassembly to show the current PC value. Example output: (lldb) disassemble --frame a.out`main: 0x1eb7: pushl %ebp 0x1eb8: movl %esp, %ebp 0x1eba: pushl %ebx 0x1ebb: subl $20, %esp 0x1ebe: calll 0x1ec3 ; main + 12 at test.c:18 0x1ec3: popl %ebx -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf 0x1edb: leal 213(%ebx), %eax 0x1ee1: movl %eax, (%esp) 0x1ee4: calll 0x1f1e ; puts 0x1ee9: calll 0x1f0c ; getchar 0x1eee: movl $20, (%esp) 0x1ef5: calll 0x1e6a ; sleep_loop at test.c:6 0x1efa: movl $12, %eax 0x1eff: addl $20, %esp 0x1f02: popl %ebx 0x1f03: leave 0x1f04: ret This can be handy when dealing with the new --line options that was recently added: (lldb) disassemble --line a.out`main + 13 at test.c:19 18 { -> 19 printf("Process: %i\n\n", getpid()); 20 puts("Press any key to continue..."); getchar(); -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf Modified the ModuleList to have a lookup based solely on a UUID. Since the UUID is typically the MD5 checksum of a binary image, there is no need to give the path and architecture when searching for a pre-existing image in an image list. Now that we support remote debugging a bit better, our lldb_private::Module needs to be able to track what the original path for file was as the platform knows it, as well as where the file is locally. The module has the two following functions to retrieve both paths: const FileSpec &Module::GetFileSpec () const; const FileSpec &Module::GetPlatformFileSpec () const; llvm-svn: 128563
2011-03-31 02:16:51 +08:00
const bool is_connected = IsConnected();
if (is_connected)
strm.Printf(" Hostname: %s\n", GetHostname());
strm.Printf(" Connected: %s\n", is_connected ? "yes" : "no");
}
}
Added more platform support. There are now some new commands: platform status -- gets status information for the selected platform platform create <platform-name> -- creates a new instance of a remote platform platform list -- list all available platforms platform select -- select a platform instance as the current platform (not working yet) When using "platform create" it will create a remote platform and make it the selected platform. For instances for iPhone OS debugging on Mac OS X one can do: (lldb) platform create remote-ios --sdk-version=4.0 Remote platform: iOS platform SDK version: 4.0 SDK path: "/Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0" Not connected to a remote device. (lldb) file ~/Documents/a.out Current executable set to '~/Documents/a.out' (armv6). (lldb) image list [ 0] /Volumes/work/gclayton/Documents/devb/attach/a.out [ 1] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/dyld [ 2] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/libSystem.B.dylib Note that this is all happening prior to running _or_ connecting to a remote platform. Once connected to a remote platform the OS version might change which means we will need to update our dependecies. Also once we run, we will need to match up the actualy binaries with the actualy UUID's to files in the SDK, or download and cache them locally. This is just the start of the remote platforms, but this modification is the first iteration in getting the platforms really doing something. llvm-svn: 127934
2011-03-19 09:12:21 +08:00
bool
Platform::GetOSVersion (uint32_t &major,
uint32_t &minor,
uint32_t &update)
{
bool success = m_major_os_version != UINT32_MAX;
if (IsHost())
{
if (!success)
{
// We have a local host platform
success = Host::GetOSVersion (m_major_os_version,
m_minor_os_version,
m_update_os_version);
m_os_version_set_while_connected = success;
}
}
else
{
// We have a remote platform. We can only fetch the remote
// OS version if we are connected, and we don't want to do it
// more than once.
const bool is_connected = IsConnected();
bool fetch = false;
Added more platform support. There are now some new commands: platform status -- gets status information for the selected platform platform create <platform-name> -- creates a new instance of a remote platform platform list -- list all available platforms platform select -- select a platform instance as the current platform (not working yet) When using "platform create" it will create a remote platform and make it the selected platform. For instances for iPhone OS debugging on Mac OS X one can do: (lldb) platform create remote-ios --sdk-version=4.0 Remote platform: iOS platform SDK version: 4.0 SDK path: "/Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0" Not connected to a remote device. (lldb) file ~/Documents/a.out Current executable set to '~/Documents/a.out' (armv6). (lldb) image list [ 0] /Volumes/work/gclayton/Documents/devb/attach/a.out [ 1] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/dyld [ 2] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/libSystem.B.dylib Note that this is all happening prior to running _or_ connecting to a remote platform. Once connected to a remote platform the OS version might change which means we will need to update our dependecies. Also once we run, we will need to match up the actualy binaries with the actualy UUID's to files in the SDK, or download and cache them locally. This is just the start of the remote platforms, but this modification is the first iteration in getting the platforms really doing something. llvm-svn: 127934
2011-03-19 09:12:21 +08:00
if (success)
{
// We have valid OS version info, check to make sure it wasn't
// manually set prior to connecting. If it was manually set prior
// to connecting, then lets fetch the actual OS version info
// if we are now connected.
if (is_connected && !m_os_version_set_while_connected)
fetch = true;
Added more platform support. There are now some new commands: platform status -- gets status information for the selected platform platform create <platform-name> -- creates a new instance of a remote platform platform list -- list all available platforms platform select -- select a platform instance as the current platform (not working yet) When using "platform create" it will create a remote platform and make it the selected platform. For instances for iPhone OS debugging on Mac OS X one can do: (lldb) platform create remote-ios --sdk-version=4.0 Remote platform: iOS platform SDK version: 4.0 SDK path: "/Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0" Not connected to a remote device. (lldb) file ~/Documents/a.out Current executable set to '~/Documents/a.out' (armv6). (lldb) image list [ 0] /Volumes/work/gclayton/Documents/devb/attach/a.out [ 1] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/dyld [ 2] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/libSystem.B.dylib Note that this is all happening prior to running _or_ connecting to a remote platform. Once connected to a remote platform the OS version might change which means we will need to update our dependecies. Also once we run, we will need to match up the actualy binaries with the actualy UUID's to files in the SDK, or download and cache them locally. This is just the start of the remote platforms, but this modification is the first iteration in getting the platforms really doing something. llvm-svn: 127934
2011-03-19 09:12:21 +08:00
}
else
{
// We don't have valid OS version info, fetch it if we are connected
fetch = is_connected;
Added more platform support. There are now some new commands: platform status -- gets status information for the selected platform platform create <platform-name> -- creates a new instance of a remote platform platform list -- list all available platforms platform select -- select a platform instance as the current platform (not working yet) When using "platform create" it will create a remote platform and make it the selected platform. For instances for iPhone OS debugging on Mac OS X one can do: (lldb) platform create remote-ios --sdk-version=4.0 Remote platform: iOS platform SDK version: 4.0 SDK path: "/Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0" Not connected to a remote device. (lldb) file ~/Documents/a.out Current executable set to '~/Documents/a.out' (armv6). (lldb) image list [ 0] /Volumes/work/gclayton/Documents/devb/attach/a.out [ 1] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/dyld [ 2] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/libSystem.B.dylib Note that this is all happening prior to running _or_ connecting to a remote platform. Once connected to a remote platform the OS version might change which means we will need to update our dependecies. Also once we run, we will need to match up the actualy binaries with the actualy UUID's to files in the SDK, or download and cache them locally. This is just the start of the remote platforms, but this modification is the first iteration in getting the platforms really doing something. llvm-svn: 127934
2011-03-19 09:12:21 +08:00
}
if (fetch)
Added more platform support. There are now some new commands: platform status -- gets status information for the selected platform platform create <platform-name> -- creates a new instance of a remote platform platform list -- list all available platforms platform select -- select a platform instance as the current platform (not working yet) When using "platform create" it will create a remote platform and make it the selected platform. For instances for iPhone OS debugging on Mac OS X one can do: (lldb) platform create remote-ios --sdk-version=4.0 Remote platform: iOS platform SDK version: 4.0 SDK path: "/Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0" Not connected to a remote device. (lldb) file ~/Documents/a.out Current executable set to '~/Documents/a.out' (armv6). (lldb) image list [ 0] /Volumes/work/gclayton/Documents/devb/attach/a.out [ 1] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/dyld [ 2] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/libSystem.B.dylib Note that this is all happening prior to running _or_ connecting to a remote platform. Once connected to a remote platform the OS version might change which means we will need to update our dependecies. Also once we run, we will need to match up the actualy binaries with the actualy UUID's to files in the SDK, or download and cache them locally. This is just the start of the remote platforms, but this modification is the first iteration in getting the platforms really doing something. llvm-svn: 127934
2011-03-19 09:12:21 +08:00
{
success = GetRemoteOSVersion ();
Added more platform support. There are now some new commands: platform status -- gets status information for the selected platform platform create <platform-name> -- creates a new instance of a remote platform platform list -- list all available platforms platform select -- select a platform instance as the current platform (not working yet) When using "platform create" it will create a remote platform and make it the selected platform. For instances for iPhone OS debugging on Mac OS X one can do: (lldb) platform create remote-ios --sdk-version=4.0 Remote platform: iOS platform SDK version: 4.0 SDK path: "/Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0" Not connected to a remote device. (lldb) file ~/Documents/a.out Current executable set to '~/Documents/a.out' (armv6). (lldb) image list [ 0] /Volumes/work/gclayton/Documents/devb/attach/a.out [ 1] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/dyld [ 2] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/libSystem.B.dylib Note that this is all happening prior to running _or_ connecting to a remote platform. Once connected to a remote platform the OS version might change which means we will need to update our dependecies. Also once we run, we will need to match up the actualy binaries with the actualy UUID's to files in the SDK, or download and cache them locally. This is just the start of the remote platforms, but this modification is the first iteration in getting the platforms really doing something. llvm-svn: 127934
2011-03-19 09:12:21 +08:00
m_os_version_set_while_connected = success;
}
}
if (success)
{
major = m_major_os_version;
minor = m_minor_os_version;
update = m_update_os_version;
}
return success;
}
bool
Platform::GetOSBuildString (std::string &s)
{
if (IsHost())
return Host::GetOSBuildString (s);
else
return GetRemoteOSBuildString (s);
}
bool
Platform::GetOSKernelDescription (std::string &s)
{
if (IsHost())
return Host::GetOSKernelDescription (s);
else
return GetRemoteOSKernelDescription (s);
}
Moved the execution context that was in the Debugger into the CommandInterpreter where it was always being used. Make sure that Modules can track their object file offsets correctly to allow opening of sub object files (like the "__commpage" on darwin). Modified the Platforms to be able to launch processes. The first part of this move is the platform soon will become the entity that launches your program and when it does, it uses a new ProcessLaunchInfo class which encapsulates all process launching settings. This simplifies the internal APIs needed for launching. I want to slowly phase out process launching from the process classes, so for now we can still launch just as we used to, but eventually the platform is the object that should do the launching. Modified the Host::LaunchProcess in the MacOSX Host.mm to correctly be able to launch processes with all of the new eLaunchFlag settings. Modified any code that was manually launching processes to use the Host::LaunchProcess functions. Fixed an issue where lldb_private::Args had implicitly defined copy constructors that could do the wrong thing. This has now been fixed by adding an appropriate copy constructor and assignment operator. Make sure we don't add empty ModuleSP entries to a module list. Fixed the commpage module creation on MacOSX, but we still need to train the MacOSX dynamic loader to not get rid of it when it doesn't have an entry in the all image infos. Abstracted many more calls from in ProcessGDBRemote down into the GDBRemoteCommunicationClient subclass to make the classes cleaner and more efficient. Fixed the default iOS ARM register context to be correct and also added support for targets that don't support the qThreadStopInfo packet by selecting the current thread (only if needed) and then sending a stop reply packet. Debugserver can now start up with a --unix-socket (-u for short) and can then bind to port zero and send the port it bound to to a listening process on the other end. This allows the GDB remote platform to spawn new GDB server instances (debugserver) to allow platform debugging. llvm-svn: 129351
2011-04-12 13:54:46 +08:00
const char *
Platform::GetName ()
{
const char *name = GetHostname();
if (name == NULL || name[0] == '\0')
name = GetShortPluginName();
return name;
}
const char *
Platform::GetHostname ()
{
if (IsHost())
return "localhost";
Many improvements to the Platform base class and subclasses. The base Platform class now implements the Host functionality for a lot of things that make sense by default so that subclasses can check: int PlatformSubclass::Foo () { if (IsHost()) return Platform::Foo (); // Let the platform base class do the host specific stuff // Platform subclass specific code... int result = ... return result; } Added new functions to the platform: virtual const char *Platform::GetUserName (uint32_t uid); virtual const char *Platform::GetGroupName (uint32_t gid); The user and group names are cached locally so that remote platforms can avoid sending packets multiple times to resolve this information. Added the parent process ID to the ProcessInfo class. Added a new ProcessInfoMatch class which helps us to match processes up and changed the Host layer over to using this new class. The new class allows us to search for processs: 1 - by name (equal to, starts with, ends with, contains, and regex) 2 - by pid 3 - And further check for parent pid == value, uid == value, gid == value, euid == value, egid == value, arch == value, parent == value. This is all hookup up to the "platform process list" command which required adding dumping routines to dump process information. If the Host class implements the process lookup routines, you can now lists processes on your local machine: machine1.foo.com % lldb (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari 94727 244 username usergroup username usergroup x86_64-apple-darwin Xcode 92742 92710 username usergroup username usergroup i386-apple-darwin debugserver This of course also works remotely with the lldb-platform: machine1.foo.com % lldb-platform --listen 1234 machine2.foo.com % lldb (lldb) platform create remote-macosx Platform: remote-macosx Connected: no (lldb) platform connect connect://localhost:1444 Platform: remote-macosx Triple: x86_64-apple-darwin OS Version: 10.6.7 (10J869) Kernel: Darwin Kernel Version 10.7.0: Sat Jan 29 15:17:16 PST 2011; root:xnu-1504.9.37~1/RELEASE_I386 Hostname: machine1.foo.com Connected: yes (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99556 244 username usergroup username usergroup x86_64-apple-darwin trustevaluation 99548 65539 username usergroup username usergroup x86_64-apple-darwin lldb 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari The lldb-platform implements everything with the Host:: layer, so this should "just work" for linux. I will probably be adding more stuff to the Host layer for launching processes and attaching to processes so that this support should eventually just work as well. Modified the target to be able to be created with an architecture that differs from the main executable. This is needed for iOS debugging since we can have an "armv6" binary which can run on an "armv7" machine, so we want to be able to do: % lldb (lldb) platform create remote-ios (lldb) file --arch armv7 a.out Where "a.out" is an armv6 executable. The platform then can correctly decide to open all "armv7" images for all dependent shared libraries. Modified the disassembly to show the current PC value. Example output: (lldb) disassemble --frame a.out`main: 0x1eb7: pushl %ebp 0x1eb8: movl %esp, %ebp 0x1eba: pushl %ebx 0x1ebb: subl $20, %esp 0x1ebe: calll 0x1ec3 ; main + 12 at test.c:18 0x1ec3: popl %ebx -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf 0x1edb: leal 213(%ebx), %eax 0x1ee1: movl %eax, (%esp) 0x1ee4: calll 0x1f1e ; puts 0x1ee9: calll 0x1f0c ; getchar 0x1eee: movl $20, (%esp) 0x1ef5: calll 0x1e6a ; sleep_loop at test.c:6 0x1efa: movl $12, %eax 0x1eff: addl $20, %esp 0x1f02: popl %ebx 0x1f03: leave 0x1f04: ret This can be handy when dealing with the new --line options that was recently added: (lldb) disassemble --line a.out`main + 13 at test.c:19 18 { -> 19 printf("Process: %i\n\n", getpid()); 20 puts("Press any key to continue..."); getchar(); -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf Modified the ModuleList to have a lookup based solely on a UUID. Since the UUID is typically the MD5 checksum of a binary image, there is no need to give the path and architecture when searching for a pre-existing image in an image list. Now that we support remote debugging a bit better, our lldb_private::Module needs to be able to track what the original path for file was as the platform knows it, as well as where the file is locally. The module has the two following functions to retrieve both paths: const FileSpec &Module::GetFileSpec () const; const FileSpec &Module::GetPlatformFileSpec () const; llvm-svn: 128563
2011-03-31 02:16:51 +08:00
if (m_name.empty())
return NULL;
return m_name.c_str();
}
Many improvements to the Platform base class and subclasses. The base Platform class now implements the Host functionality for a lot of things that make sense by default so that subclasses can check: int PlatformSubclass::Foo () { if (IsHost()) return Platform::Foo (); // Let the platform base class do the host specific stuff // Platform subclass specific code... int result = ... return result; } Added new functions to the platform: virtual const char *Platform::GetUserName (uint32_t uid); virtual const char *Platform::GetGroupName (uint32_t gid); The user and group names are cached locally so that remote platforms can avoid sending packets multiple times to resolve this information. Added the parent process ID to the ProcessInfo class. Added a new ProcessInfoMatch class which helps us to match processes up and changed the Host layer over to using this new class. The new class allows us to search for processs: 1 - by name (equal to, starts with, ends with, contains, and regex) 2 - by pid 3 - And further check for parent pid == value, uid == value, gid == value, euid == value, egid == value, arch == value, parent == value. This is all hookup up to the "platform process list" command which required adding dumping routines to dump process information. If the Host class implements the process lookup routines, you can now lists processes on your local machine: machine1.foo.com % lldb (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari 94727 244 username usergroup username usergroup x86_64-apple-darwin Xcode 92742 92710 username usergroup username usergroup i386-apple-darwin debugserver This of course also works remotely with the lldb-platform: machine1.foo.com % lldb-platform --listen 1234 machine2.foo.com % lldb (lldb) platform create remote-macosx Platform: remote-macosx Connected: no (lldb) platform connect connect://localhost:1444 Platform: remote-macosx Triple: x86_64-apple-darwin OS Version: 10.6.7 (10J869) Kernel: Darwin Kernel Version 10.7.0: Sat Jan 29 15:17:16 PST 2011; root:xnu-1504.9.37~1/RELEASE_I386 Hostname: machine1.foo.com Connected: yes (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99556 244 username usergroup username usergroup x86_64-apple-darwin trustevaluation 99548 65539 username usergroup username usergroup x86_64-apple-darwin lldb 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari The lldb-platform implements everything with the Host:: layer, so this should "just work" for linux. I will probably be adding more stuff to the Host layer for launching processes and attaching to processes so that this support should eventually just work as well. Modified the target to be able to be created with an architecture that differs from the main executable. This is needed for iOS debugging since we can have an "armv6" binary which can run on an "armv7" machine, so we want to be able to do: % lldb (lldb) platform create remote-ios (lldb) file --arch armv7 a.out Where "a.out" is an armv6 executable. The platform then can correctly decide to open all "armv7" images for all dependent shared libraries. Modified the disassembly to show the current PC value. Example output: (lldb) disassemble --frame a.out`main: 0x1eb7: pushl %ebp 0x1eb8: movl %esp, %ebp 0x1eba: pushl %ebx 0x1ebb: subl $20, %esp 0x1ebe: calll 0x1ec3 ; main + 12 at test.c:18 0x1ec3: popl %ebx -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf 0x1edb: leal 213(%ebx), %eax 0x1ee1: movl %eax, (%esp) 0x1ee4: calll 0x1f1e ; puts 0x1ee9: calll 0x1f0c ; getchar 0x1eee: movl $20, (%esp) 0x1ef5: calll 0x1e6a ; sleep_loop at test.c:6 0x1efa: movl $12, %eax 0x1eff: addl $20, %esp 0x1f02: popl %ebx 0x1f03: leave 0x1f04: ret This can be handy when dealing with the new --line options that was recently added: (lldb) disassemble --line a.out`main + 13 at test.c:19 18 { -> 19 printf("Process: %i\n\n", getpid()); 20 puts("Press any key to continue..."); getchar(); -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf Modified the ModuleList to have a lookup based solely on a UUID. Since the UUID is typically the MD5 checksum of a binary image, there is no need to give the path and architecture when searching for a pre-existing image in an image list. Now that we support remote debugging a bit better, our lldb_private::Module needs to be able to track what the original path for file was as the platform knows it, as well as where the file is locally. The module has the two following functions to retrieve both paths: const FileSpec &Module::GetFileSpec () const; const FileSpec &Module::GetPlatformFileSpec () const; llvm-svn: 128563
2011-03-31 02:16:51 +08:00
const char *
Platform::GetUserName (uint32_t uid)
{
const char *user_name = GetCachedUserName(uid);
if (user_name)
return user_name;
if (IsHost())
{
std::string name;
if (Host::GetUserName(uid, name))
return SetCachedUserName (uid, name.c_str(), name.size());
}
return NULL;
}
Many improvements to the Platform base class and subclasses. The base Platform class now implements the Host functionality for a lot of things that make sense by default so that subclasses can check: int PlatformSubclass::Foo () { if (IsHost()) return Platform::Foo (); // Let the platform base class do the host specific stuff // Platform subclass specific code... int result = ... return result; } Added new functions to the platform: virtual const char *Platform::GetUserName (uint32_t uid); virtual const char *Platform::GetGroupName (uint32_t gid); The user and group names are cached locally so that remote platforms can avoid sending packets multiple times to resolve this information. Added the parent process ID to the ProcessInfo class. Added a new ProcessInfoMatch class which helps us to match processes up and changed the Host layer over to using this new class. The new class allows us to search for processs: 1 - by name (equal to, starts with, ends with, contains, and regex) 2 - by pid 3 - And further check for parent pid == value, uid == value, gid == value, euid == value, egid == value, arch == value, parent == value. This is all hookup up to the "platform process list" command which required adding dumping routines to dump process information. If the Host class implements the process lookup routines, you can now lists processes on your local machine: machine1.foo.com % lldb (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari 94727 244 username usergroup username usergroup x86_64-apple-darwin Xcode 92742 92710 username usergroup username usergroup i386-apple-darwin debugserver This of course also works remotely with the lldb-platform: machine1.foo.com % lldb-platform --listen 1234 machine2.foo.com % lldb (lldb) platform create remote-macosx Platform: remote-macosx Connected: no (lldb) platform connect connect://localhost:1444 Platform: remote-macosx Triple: x86_64-apple-darwin OS Version: 10.6.7 (10J869) Kernel: Darwin Kernel Version 10.7.0: Sat Jan 29 15:17:16 PST 2011; root:xnu-1504.9.37~1/RELEASE_I386 Hostname: machine1.foo.com Connected: yes (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99556 244 username usergroup username usergroup x86_64-apple-darwin trustevaluation 99548 65539 username usergroup username usergroup x86_64-apple-darwin lldb 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari The lldb-platform implements everything with the Host:: layer, so this should "just work" for linux. I will probably be adding more stuff to the Host layer for launching processes and attaching to processes so that this support should eventually just work as well. Modified the target to be able to be created with an architecture that differs from the main executable. This is needed for iOS debugging since we can have an "armv6" binary which can run on an "armv7" machine, so we want to be able to do: % lldb (lldb) platform create remote-ios (lldb) file --arch armv7 a.out Where "a.out" is an armv6 executable. The platform then can correctly decide to open all "armv7" images for all dependent shared libraries. Modified the disassembly to show the current PC value. Example output: (lldb) disassemble --frame a.out`main: 0x1eb7: pushl %ebp 0x1eb8: movl %esp, %ebp 0x1eba: pushl %ebx 0x1ebb: subl $20, %esp 0x1ebe: calll 0x1ec3 ; main + 12 at test.c:18 0x1ec3: popl %ebx -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf 0x1edb: leal 213(%ebx), %eax 0x1ee1: movl %eax, (%esp) 0x1ee4: calll 0x1f1e ; puts 0x1ee9: calll 0x1f0c ; getchar 0x1eee: movl $20, (%esp) 0x1ef5: calll 0x1e6a ; sleep_loop at test.c:6 0x1efa: movl $12, %eax 0x1eff: addl $20, %esp 0x1f02: popl %ebx 0x1f03: leave 0x1f04: ret This can be handy when dealing with the new --line options that was recently added: (lldb) disassemble --line a.out`main + 13 at test.c:19 18 { -> 19 printf("Process: %i\n\n", getpid()); 20 puts("Press any key to continue..."); getchar(); -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf Modified the ModuleList to have a lookup based solely on a UUID. Since the UUID is typically the MD5 checksum of a binary image, there is no need to give the path and architecture when searching for a pre-existing image in an image list. Now that we support remote debugging a bit better, our lldb_private::Module needs to be able to track what the original path for file was as the platform knows it, as well as where the file is locally. The module has the two following functions to retrieve both paths: const FileSpec &Module::GetFileSpec () const; const FileSpec &Module::GetPlatformFileSpec () const; llvm-svn: 128563
2011-03-31 02:16:51 +08:00
const char *
Platform::GetGroupName (uint32_t gid)
{
const char *group_name = GetCachedGroupName(gid);
if (group_name)
return group_name;
if (IsHost())
{
std::string name;
if (Host::GetGroupName(gid, name))
return SetCachedGroupName (gid, name.c_str(), name.size());
}
return NULL;
}
Added more platform support. There are now some new commands: platform status -- gets status information for the selected platform platform create <platform-name> -- creates a new instance of a remote platform platform list -- list all available platforms platform select -- select a platform instance as the current platform (not working yet) When using "platform create" it will create a remote platform and make it the selected platform. For instances for iPhone OS debugging on Mac OS X one can do: (lldb) platform create remote-ios --sdk-version=4.0 Remote platform: iOS platform SDK version: 4.0 SDK path: "/Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0" Not connected to a remote device. (lldb) file ~/Documents/a.out Current executable set to '~/Documents/a.out' (armv6). (lldb) image list [ 0] /Volumes/work/gclayton/Documents/devb/attach/a.out [ 1] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/dyld [ 2] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/libSystem.B.dylib Note that this is all happening prior to running _or_ connecting to a remote platform. Once connected to a remote platform the OS version might change which means we will need to update our dependecies. Also once we run, we will need to match up the actualy binaries with the actualy UUID's to files in the SDK, or download and cache them locally. This is just the start of the remote platforms, but this modification is the first iteration in getting the platforms really doing something. llvm-svn: 127934
2011-03-19 09:12:21 +08:00
bool
Platform::SetOSVersion (uint32_t major,
uint32_t minor,
uint32_t update)
{
if (IsHost())
{
// We don't need anyone setting the OS version for the host platform,
// we should be able to figure it out by calling Host::GetOSVersion(...).
return false;
}
else
{
// We have a remote platform, allow setting the target OS version if
// we aren't connected, since if we are connected, we should be able to
// request the remote OS version from the connected platform.
if (IsConnected())
return false;
else
{
// We aren't connected and we might want to set the OS version
// ahead of time before we connect so we can peruse files and
// use a local SDK or PDK cache of support files to disassemble
// or do other things.
m_major_os_version = major;
m_minor_os_version = minor;
m_update_os_version = update;
return true;
}
}
return false;
}
LLDB now has "Platform" plug-ins. Platform plug-ins are plug-ins that provide an interface to a local or remote debugging platform. By default each host OS that supports LLDB should be registering a "default" platform that will be used unless a new platform is selected. Platforms are responsible for things such as: - getting process information by name or by processs ID - finding platform files. This is useful for remote debugging where there is an SDK with files that might already or need to be cached for debug access. - getting a list of platform supported architectures in the exact order they should be selected. This helps the native x86 platform on MacOSX select the correct x86_64/i386 slice from universal binaries. - Connect to remote platforms for remote debugging - Resolving an executable including finding an executable inside platform specific bundles (macosx uses .app bundles that contain files) and also selecting the appropriate slice of universal files for a given platform. So by default there is always a local platform, but remote platforms can be connected to. I will soon be adding a new "platform" command that will support the following commands: (lldb) platform connect --name machine1 macosx connect://host:port Connected to "machine1" platform. (lldb) platform disconnect macosx This allows LLDB to be well setup to do remote debugging and also once connected process listing and finding for things like: (lldb) process attach --name x<TAB> The currently selected platform plug-in can now auto complete any available processes that start with "x". The responsibilities for the platform plug-in will soon grow and expand. llvm-svn: 127286
2011-03-09 06:40:15 +08:00
Error
Platform::ResolveExecutable (const FileSpec &exe_file,
const ArchSpec &exe_arch,
lldb::ModuleSP &exe_module_sp,
const FileSpecList *module_search_paths_ptr)
LLDB now has "Platform" plug-ins. Platform plug-ins are plug-ins that provide an interface to a local or remote debugging platform. By default each host OS that supports LLDB should be registering a "default" platform that will be used unless a new platform is selected. Platforms are responsible for things such as: - getting process information by name or by processs ID - finding platform files. This is useful for remote debugging where there is an SDK with files that might already or need to be cached for debug access. - getting a list of platform supported architectures in the exact order they should be selected. This helps the native x86 platform on MacOSX select the correct x86_64/i386 slice from universal binaries. - Connect to remote platforms for remote debugging - Resolving an executable including finding an executable inside platform specific bundles (macosx uses .app bundles that contain files) and also selecting the appropriate slice of universal files for a given platform. So by default there is always a local platform, but remote platforms can be connected to. I will soon be adding a new "platform" command that will support the following commands: (lldb) platform connect --name machine1 macosx connect://host:port Connected to "machine1" platform. (lldb) platform disconnect macosx This allows LLDB to be well setup to do remote debugging and also once connected process listing and finding for things like: (lldb) process attach --name x<TAB> The currently selected platform plug-in can now auto complete any available processes that start with "x". The responsibilities for the platform plug-in will soon grow and expand. llvm-svn: 127286
2011-03-09 06:40:15 +08:00
{
Error error;
if (exe_file.Exists())
{
ModuleSpec module_spec (exe_file, exe_arch);
if (module_spec.GetArchitecture().IsValid())
LLDB now has "Platform" plug-ins. Platform plug-ins are plug-ins that provide an interface to a local or remote debugging platform. By default each host OS that supports LLDB should be registering a "default" platform that will be used unless a new platform is selected. Platforms are responsible for things such as: - getting process information by name or by processs ID - finding platform files. This is useful for remote debugging where there is an SDK with files that might already or need to be cached for debug access. - getting a list of platform supported architectures in the exact order they should be selected. This helps the native x86 platform on MacOSX select the correct x86_64/i386 slice from universal binaries. - Connect to remote platforms for remote debugging - Resolving an executable including finding an executable inside platform specific bundles (macosx uses .app bundles that contain files) and also selecting the appropriate slice of universal files for a given platform. So by default there is always a local platform, but remote platforms can be connected to. I will soon be adding a new "platform" command that will support the following commands: (lldb) platform connect --name machine1 macosx connect://host:port Connected to "machine1" platform. (lldb) platform disconnect macosx This allows LLDB to be well setup to do remote debugging and also once connected process listing and finding for things like: (lldb) process attach --name x<TAB> The currently selected platform plug-in can now auto complete any available processes that start with "x". The responsibilities for the platform plug-in will soon grow and expand. llvm-svn: 127286
2011-03-09 06:40:15 +08:00
{
error = ModuleList::GetSharedModule (module_spec,
LLDB now has "Platform" plug-ins. Platform plug-ins are plug-ins that provide an interface to a local or remote debugging platform. By default each host OS that supports LLDB should be registering a "default" platform that will be used unless a new platform is selected. Platforms are responsible for things such as: - getting process information by name or by processs ID - finding platform files. This is useful for remote debugging where there is an SDK with files that might already or need to be cached for debug access. - getting a list of platform supported architectures in the exact order they should be selected. This helps the native x86 platform on MacOSX select the correct x86_64/i386 slice from universal binaries. - Connect to remote platforms for remote debugging - Resolving an executable including finding an executable inside platform specific bundles (macosx uses .app bundles that contain files) and also selecting the appropriate slice of universal files for a given platform. So by default there is always a local platform, but remote platforms can be connected to. I will soon be adding a new "platform" command that will support the following commands: (lldb) platform connect --name machine1 macosx connect://host:port Connected to "machine1" platform. (lldb) platform disconnect macosx This allows LLDB to be well setup to do remote debugging and also once connected process listing and finding for things like: (lldb) process attach --name x<TAB> The currently selected platform plug-in can now auto complete any available processes that start with "x". The responsibilities for the platform plug-in will soon grow and expand. llvm-svn: 127286
2011-03-09 06:40:15 +08:00
exe_module_sp,
module_search_paths_ptr,
LLDB now has "Platform" plug-ins. Platform plug-ins are plug-ins that provide an interface to a local or remote debugging platform. By default each host OS that supports LLDB should be registering a "default" platform that will be used unless a new platform is selected. Platforms are responsible for things such as: - getting process information by name or by processs ID - finding platform files. This is useful for remote debugging where there is an SDK with files that might already or need to be cached for debug access. - getting a list of platform supported architectures in the exact order they should be selected. This helps the native x86 platform on MacOSX select the correct x86_64/i386 slice from universal binaries. - Connect to remote platforms for remote debugging - Resolving an executable including finding an executable inside platform specific bundles (macosx uses .app bundles that contain files) and also selecting the appropriate slice of universal files for a given platform. So by default there is always a local platform, but remote platforms can be connected to. I will soon be adding a new "platform" command that will support the following commands: (lldb) platform connect --name machine1 macosx connect://host:port Connected to "machine1" platform. (lldb) platform disconnect macosx This allows LLDB to be well setup to do remote debugging and also once connected process listing and finding for things like: (lldb) process attach --name x<TAB> The currently selected platform plug-in can now auto complete any available processes that start with "x". The responsibilities for the platform plug-in will soon grow and expand. llvm-svn: 127286
2011-03-09 06:40:15 +08:00
NULL,
NULL);
}
else
{
// No valid architecture was specified, ask the platform for
// the architectures that we should be using (in the correct order)
// and see if we can find a match that way
for (uint32_t idx = 0; GetSupportedArchitectureAtIndex (idx, module_spec.GetArchitecture()); ++idx)
LLDB now has "Platform" plug-ins. Platform plug-ins are plug-ins that provide an interface to a local or remote debugging platform. By default each host OS that supports LLDB should be registering a "default" platform that will be used unless a new platform is selected. Platforms are responsible for things such as: - getting process information by name or by processs ID - finding platform files. This is useful for remote debugging where there is an SDK with files that might already or need to be cached for debug access. - getting a list of platform supported architectures in the exact order they should be selected. This helps the native x86 platform on MacOSX select the correct x86_64/i386 slice from universal binaries. - Connect to remote platforms for remote debugging - Resolving an executable including finding an executable inside platform specific bundles (macosx uses .app bundles that contain files) and also selecting the appropriate slice of universal files for a given platform. So by default there is always a local platform, but remote platforms can be connected to. I will soon be adding a new "platform" command that will support the following commands: (lldb) platform connect --name machine1 macosx connect://host:port Connected to "machine1" platform. (lldb) platform disconnect macosx This allows LLDB to be well setup to do remote debugging and also once connected process listing and finding for things like: (lldb) process attach --name x<TAB> The currently selected platform plug-in can now auto complete any available processes that start with "x". The responsibilities for the platform plug-in will soon grow and expand. llvm-svn: 127286
2011-03-09 06:40:15 +08:00
{
error = ModuleList::GetSharedModule (module_spec,
LLDB now has "Platform" plug-ins. Platform plug-ins are plug-ins that provide an interface to a local or remote debugging platform. By default each host OS that supports LLDB should be registering a "default" platform that will be used unless a new platform is selected. Platforms are responsible for things such as: - getting process information by name or by processs ID - finding platform files. This is useful for remote debugging where there is an SDK with files that might already or need to be cached for debug access. - getting a list of platform supported architectures in the exact order they should be selected. This helps the native x86 platform on MacOSX select the correct x86_64/i386 slice from universal binaries. - Connect to remote platforms for remote debugging - Resolving an executable including finding an executable inside platform specific bundles (macosx uses .app bundles that contain files) and also selecting the appropriate slice of universal files for a given platform. So by default there is always a local platform, but remote platforms can be connected to. I will soon be adding a new "platform" command that will support the following commands: (lldb) platform connect --name machine1 macosx connect://host:port Connected to "machine1" platform. (lldb) platform disconnect macosx This allows LLDB to be well setup to do remote debugging and also once connected process listing and finding for things like: (lldb) process attach --name x<TAB> The currently selected platform plug-in can now auto complete any available processes that start with "x". The responsibilities for the platform plug-in will soon grow and expand. llvm-svn: 127286
2011-03-09 06:40:15 +08:00
exe_module_sp,
module_search_paths_ptr,
LLDB now has "Platform" plug-ins. Platform plug-ins are plug-ins that provide an interface to a local or remote debugging platform. By default each host OS that supports LLDB should be registering a "default" platform that will be used unless a new platform is selected. Platforms are responsible for things such as: - getting process information by name or by processs ID - finding platform files. This is useful for remote debugging where there is an SDK with files that might already or need to be cached for debug access. - getting a list of platform supported architectures in the exact order they should be selected. This helps the native x86 platform on MacOSX select the correct x86_64/i386 slice from universal binaries. - Connect to remote platforms for remote debugging - Resolving an executable including finding an executable inside platform specific bundles (macosx uses .app bundles that contain files) and also selecting the appropriate slice of universal files for a given platform. So by default there is always a local platform, but remote platforms can be connected to. I will soon be adding a new "platform" command that will support the following commands: (lldb) platform connect --name machine1 macosx connect://host:port Connected to "machine1" platform. (lldb) platform disconnect macosx This allows LLDB to be well setup to do remote debugging and also once connected process listing and finding for things like: (lldb) process attach --name x<TAB> The currently selected platform plug-in can now auto complete any available processes that start with "x". The responsibilities for the platform plug-in will soon grow and expand. llvm-svn: 127286
2011-03-09 06:40:15 +08:00
NULL,
NULL);
// Did we find an executable using one of the
if (error.Success() && exe_module_sp)
break;
}
}
}
else
{
error.SetErrorStringWithFormat ("'%s%s%s' does not exist",
exe_file.GetDirectory().AsCString(""),
exe_file.GetDirectory() ? "/" : "",
exe_file.GetFilename().AsCString(""));
}
return error;
}
bool
Platform::ResolveRemotePath (const FileSpec &platform_path,
FileSpec &resolved_platform_path)
{
resolved_platform_path = platform_path;
return resolved_platform_path.ResolvePath();
}
Added more platform support. There are now some new commands: platform status -- gets status information for the selected platform platform create <platform-name> -- creates a new instance of a remote platform platform list -- list all available platforms platform select -- select a platform instance as the current platform (not working yet) When using "platform create" it will create a remote platform and make it the selected platform. For instances for iPhone OS debugging on Mac OS X one can do: (lldb) platform create remote-ios --sdk-version=4.0 Remote platform: iOS platform SDK version: 4.0 SDK path: "/Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0" Not connected to a remote device. (lldb) file ~/Documents/a.out Current executable set to '~/Documents/a.out' (armv6). (lldb) image list [ 0] /Volumes/work/gclayton/Documents/devb/attach/a.out [ 1] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/dyld [ 2] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/libSystem.B.dylib Note that this is all happening prior to running _or_ connecting to a remote platform. Once connected to a remote platform the OS version might change which means we will need to update our dependecies. Also once we run, we will need to match up the actualy binaries with the actualy UUID's to files in the SDK, or download and cache them locally. This is just the start of the remote platforms, but this modification is the first iteration in getting the platforms really doing something. llvm-svn: 127934
2011-03-19 09:12:21 +08:00
const ArchSpec &
Platform::GetSystemArchitecture()
{
if (IsHost())
{
if (!m_system_arch.IsValid())
{
// We have a local host platform
m_system_arch = Host::GetArchitecture();
m_system_arch_set_while_connected = m_system_arch.IsValid();
}
}
else
{
// We have a remote platform. We can only fetch the remote
// system architecture if we are connected, and we don't want to do it
// more than once.
const bool is_connected = IsConnected();
bool fetch = false;
if (m_system_arch.IsValid())
{
// We have valid OS version info, check to make sure it wasn't
// manually set prior to connecting. If it was manually set prior
// to connecting, then lets fetch the actual OS version info
// if we are now connected.
if (is_connected && !m_system_arch_set_while_connected)
fetch = true;
}
else
{
// We don't have valid OS version info, fetch it if we are connected
fetch = is_connected;
}
if (fetch)
{
m_system_arch = GetRemoteSystemArchitecture ();
Added more platform support. There are now some new commands: platform status -- gets status information for the selected platform platform create <platform-name> -- creates a new instance of a remote platform platform list -- list all available platforms platform select -- select a platform instance as the current platform (not working yet) When using "platform create" it will create a remote platform and make it the selected platform. For instances for iPhone OS debugging on Mac OS X one can do: (lldb) platform create remote-ios --sdk-version=4.0 Remote platform: iOS platform SDK version: 4.0 SDK path: "/Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0" Not connected to a remote device. (lldb) file ~/Documents/a.out Current executable set to '~/Documents/a.out' (armv6). (lldb) image list [ 0] /Volumes/work/gclayton/Documents/devb/attach/a.out [ 1] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/dyld [ 2] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/libSystem.B.dylib Note that this is all happening prior to running _or_ connecting to a remote platform. Once connected to a remote platform the OS version might change which means we will need to update our dependecies. Also once we run, we will need to match up the actualy binaries with the actualy UUID's to files in the SDK, or download and cache them locally. This is just the start of the remote platforms, but this modification is the first iteration in getting the platforms really doing something. llvm-svn: 127934
2011-03-19 09:12:21 +08:00
m_system_arch_set_while_connected = m_system_arch.IsValid();
}
}
return m_system_arch;
}
LLDB now has "Platform" plug-ins. Platform plug-ins are plug-ins that provide an interface to a local or remote debugging platform. By default each host OS that supports LLDB should be registering a "default" platform that will be used unless a new platform is selected. Platforms are responsible for things such as: - getting process information by name or by processs ID - finding platform files. This is useful for remote debugging where there is an SDK with files that might already or need to be cached for debug access. - getting a list of platform supported architectures in the exact order they should be selected. This helps the native x86 platform on MacOSX select the correct x86_64/i386 slice from universal binaries. - Connect to remote platforms for remote debugging - Resolving an executable including finding an executable inside platform specific bundles (macosx uses .app bundles that contain files) and also selecting the appropriate slice of universal files for a given platform. So by default there is always a local platform, but remote platforms can be connected to. I will soon be adding a new "platform" command that will support the following commands: (lldb) platform connect --name machine1 macosx connect://host:port Connected to "machine1" platform. (lldb) platform disconnect macosx This allows LLDB to be well setup to do remote debugging and also once connected process listing and finding for things like: (lldb) process attach --name x<TAB> The currently selected platform plug-in can now auto complete any available processes that start with "x". The responsibilities for the platform plug-in will soon grow and expand. llvm-svn: 127286
2011-03-09 06:40:15 +08:00
Error
Platform::ConnectRemote (Args& args)
LLDB now has "Platform" plug-ins. Platform plug-ins are plug-ins that provide an interface to a local or remote debugging platform. By default each host OS that supports LLDB should be registering a "default" platform that will be used unless a new platform is selected. Platforms are responsible for things such as: - getting process information by name or by processs ID - finding platform files. This is useful for remote debugging where there is an SDK with files that might already or need to be cached for debug access. - getting a list of platform supported architectures in the exact order they should be selected. This helps the native x86 platform on MacOSX select the correct x86_64/i386 slice from universal binaries. - Connect to remote platforms for remote debugging - Resolving an executable including finding an executable inside platform specific bundles (macosx uses .app bundles that contain files) and also selecting the appropriate slice of universal files for a given platform. So by default there is always a local platform, but remote platforms can be connected to. I will soon be adding a new "platform" command that will support the following commands: (lldb) platform connect --name machine1 macosx connect://host:port Connected to "machine1" platform. (lldb) platform disconnect macosx This allows LLDB to be well setup to do remote debugging and also once connected process listing and finding for things like: (lldb) process attach --name x<TAB> The currently selected platform plug-in can now auto complete any available processes that start with "x". The responsibilities for the platform plug-in will soon grow and expand. llvm-svn: 127286
2011-03-09 06:40:15 +08:00
{
Error error;
if (IsHost())
error.SetErrorStringWithFormat ("The currently selected platform (%s) is the host platform and is always connected.", GetShortPluginName());
else
error.SetErrorStringWithFormat ("Platform::ConnectRemote() is not supported by %s", GetShortPluginName());
LLDB now has "Platform" plug-ins. Platform plug-ins are plug-ins that provide an interface to a local or remote debugging platform. By default each host OS that supports LLDB should be registering a "default" platform that will be used unless a new platform is selected. Platforms are responsible for things such as: - getting process information by name or by processs ID - finding platform files. This is useful for remote debugging where there is an SDK with files that might already or need to be cached for debug access. - getting a list of platform supported architectures in the exact order they should be selected. This helps the native x86 platform on MacOSX select the correct x86_64/i386 slice from universal binaries. - Connect to remote platforms for remote debugging - Resolving an executable including finding an executable inside platform specific bundles (macosx uses .app bundles that contain files) and also selecting the appropriate slice of universal files for a given platform. So by default there is always a local platform, but remote platforms can be connected to. I will soon be adding a new "platform" command that will support the following commands: (lldb) platform connect --name machine1 macosx connect://host:port Connected to "machine1" platform. (lldb) platform disconnect macosx This allows LLDB to be well setup to do remote debugging and also once connected process listing and finding for things like: (lldb) process attach --name x<TAB> The currently selected platform plug-in can now auto complete any available processes that start with "x". The responsibilities for the platform plug-in will soon grow and expand. llvm-svn: 127286
2011-03-09 06:40:15 +08:00
return error;
}
Error
Platform::DisconnectRemote ()
LLDB now has "Platform" plug-ins. Platform plug-ins are plug-ins that provide an interface to a local or remote debugging platform. By default each host OS that supports LLDB should be registering a "default" platform that will be used unless a new platform is selected. Platforms are responsible for things such as: - getting process information by name or by processs ID - finding platform files. This is useful for remote debugging where there is an SDK with files that might already or need to be cached for debug access. - getting a list of platform supported architectures in the exact order they should be selected. This helps the native x86 platform on MacOSX select the correct x86_64/i386 slice from universal binaries. - Connect to remote platforms for remote debugging - Resolving an executable including finding an executable inside platform specific bundles (macosx uses .app bundles that contain files) and also selecting the appropriate slice of universal files for a given platform. So by default there is always a local platform, but remote platforms can be connected to. I will soon be adding a new "platform" command that will support the following commands: (lldb) platform connect --name machine1 macosx connect://host:port Connected to "machine1" platform. (lldb) platform disconnect macosx This allows LLDB to be well setup to do remote debugging and also once connected process listing and finding for things like: (lldb) process attach --name x<TAB> The currently selected platform plug-in can now auto complete any available processes that start with "x". The responsibilities for the platform plug-in will soon grow and expand. llvm-svn: 127286
2011-03-09 06:40:15 +08:00
{
Error error;
if (IsHost())
error.SetErrorStringWithFormat ("The currently selected platform (%s) is the host platform and is always connected.", GetShortPluginName());
else
error.SetErrorStringWithFormat ("Platform::DisconnectRemote() is not supported by %s", GetShortPluginName());
LLDB now has "Platform" plug-ins. Platform plug-ins are plug-ins that provide an interface to a local or remote debugging platform. By default each host OS that supports LLDB should be registering a "default" platform that will be used unless a new platform is selected. Platforms are responsible for things such as: - getting process information by name or by processs ID - finding platform files. This is useful for remote debugging where there is an SDK with files that might already or need to be cached for debug access. - getting a list of platform supported architectures in the exact order they should be selected. This helps the native x86 platform on MacOSX select the correct x86_64/i386 slice from universal binaries. - Connect to remote platforms for remote debugging - Resolving an executable including finding an executable inside platform specific bundles (macosx uses .app bundles that contain files) and also selecting the appropriate slice of universal files for a given platform. So by default there is always a local platform, but remote platforms can be connected to. I will soon be adding a new "platform" command that will support the following commands: (lldb) platform connect --name machine1 macosx connect://host:port Connected to "machine1" platform. (lldb) platform disconnect macosx This allows LLDB to be well setup to do remote debugging and also once connected process listing and finding for things like: (lldb) process attach --name x<TAB> The currently selected platform plug-in can now auto complete any available processes that start with "x". The responsibilities for the platform plug-in will soon grow and expand. llvm-svn: 127286
2011-03-09 06:40:15 +08:00
return error;
}
Many improvements to the Platform base class and subclasses. The base Platform class now implements the Host functionality for a lot of things that make sense by default so that subclasses can check: int PlatformSubclass::Foo () { if (IsHost()) return Platform::Foo (); // Let the platform base class do the host specific stuff // Platform subclass specific code... int result = ... return result; } Added new functions to the platform: virtual const char *Platform::GetUserName (uint32_t uid); virtual const char *Platform::GetGroupName (uint32_t gid); The user and group names are cached locally so that remote platforms can avoid sending packets multiple times to resolve this information. Added the parent process ID to the ProcessInfo class. Added a new ProcessInfoMatch class which helps us to match processes up and changed the Host layer over to using this new class. The new class allows us to search for processs: 1 - by name (equal to, starts with, ends with, contains, and regex) 2 - by pid 3 - And further check for parent pid == value, uid == value, gid == value, euid == value, egid == value, arch == value, parent == value. This is all hookup up to the "platform process list" command which required adding dumping routines to dump process information. If the Host class implements the process lookup routines, you can now lists processes on your local machine: machine1.foo.com % lldb (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari 94727 244 username usergroup username usergroup x86_64-apple-darwin Xcode 92742 92710 username usergroup username usergroup i386-apple-darwin debugserver This of course also works remotely with the lldb-platform: machine1.foo.com % lldb-platform --listen 1234 machine2.foo.com % lldb (lldb) platform create remote-macosx Platform: remote-macosx Connected: no (lldb) platform connect connect://localhost:1444 Platform: remote-macosx Triple: x86_64-apple-darwin OS Version: 10.6.7 (10J869) Kernel: Darwin Kernel Version 10.7.0: Sat Jan 29 15:17:16 PST 2011; root:xnu-1504.9.37~1/RELEASE_I386 Hostname: machine1.foo.com Connected: yes (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99556 244 username usergroup username usergroup x86_64-apple-darwin trustevaluation 99548 65539 username usergroup username usergroup x86_64-apple-darwin lldb 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari The lldb-platform implements everything with the Host:: layer, so this should "just work" for linux. I will probably be adding more stuff to the Host layer for launching processes and attaching to processes so that this support should eventually just work as well. Modified the target to be able to be created with an architecture that differs from the main executable. This is needed for iOS debugging since we can have an "armv6" binary which can run on an "armv7" machine, so we want to be able to do: % lldb (lldb) platform create remote-ios (lldb) file --arch armv7 a.out Where "a.out" is an armv6 executable. The platform then can correctly decide to open all "armv7" images for all dependent shared libraries. Modified the disassembly to show the current PC value. Example output: (lldb) disassemble --frame a.out`main: 0x1eb7: pushl %ebp 0x1eb8: movl %esp, %ebp 0x1eba: pushl %ebx 0x1ebb: subl $20, %esp 0x1ebe: calll 0x1ec3 ; main + 12 at test.c:18 0x1ec3: popl %ebx -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf 0x1edb: leal 213(%ebx), %eax 0x1ee1: movl %eax, (%esp) 0x1ee4: calll 0x1f1e ; puts 0x1ee9: calll 0x1f0c ; getchar 0x1eee: movl $20, (%esp) 0x1ef5: calll 0x1e6a ; sleep_loop at test.c:6 0x1efa: movl $12, %eax 0x1eff: addl $20, %esp 0x1f02: popl %ebx 0x1f03: leave 0x1f04: ret This can be handy when dealing with the new --line options that was recently added: (lldb) disassemble --line a.out`main + 13 at test.c:19 18 { -> 19 printf("Process: %i\n\n", getpid()); 20 puts("Press any key to continue..."); getchar(); -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf Modified the ModuleList to have a lookup based solely on a UUID. Since the UUID is typically the MD5 checksum of a binary image, there is no need to give the path and architecture when searching for a pre-existing image in an image list. Now that we support remote debugging a bit better, our lldb_private::Module needs to be able to track what the original path for file was as the platform knows it, as well as where the file is locally. The module has the two following functions to retrieve both paths: const FileSpec &Module::GetFileSpec () const; const FileSpec &Module::GetPlatformFileSpec () const; llvm-svn: 128563
2011-03-31 02:16:51 +08:00
bool
Moved the execution context that was in the Debugger into the CommandInterpreter where it was always being used. Make sure that Modules can track their object file offsets correctly to allow opening of sub object files (like the "__commpage" on darwin). Modified the Platforms to be able to launch processes. The first part of this move is the platform soon will become the entity that launches your program and when it does, it uses a new ProcessLaunchInfo class which encapsulates all process launching settings. This simplifies the internal APIs needed for launching. I want to slowly phase out process launching from the process classes, so for now we can still launch just as we used to, but eventually the platform is the object that should do the launching. Modified the Host::LaunchProcess in the MacOSX Host.mm to correctly be able to launch processes with all of the new eLaunchFlag settings. Modified any code that was manually launching processes to use the Host::LaunchProcess functions. Fixed an issue where lldb_private::Args had implicitly defined copy constructors that could do the wrong thing. This has now been fixed by adding an appropriate copy constructor and assignment operator. Make sure we don't add empty ModuleSP entries to a module list. Fixed the commpage module creation on MacOSX, but we still need to train the MacOSX dynamic loader to not get rid of it when it doesn't have an entry in the all image infos. Abstracted many more calls from in ProcessGDBRemote down into the GDBRemoteCommunicationClient subclass to make the classes cleaner and more efficient. Fixed the default iOS ARM register context to be correct and also added support for targets that don't support the qThreadStopInfo packet by selecting the current thread (only if needed) and then sending a stop reply packet. Debugserver can now start up with a --unix-socket (-u for short) and can then bind to port zero and send the port it bound to to a listening process on the other end. This allows the GDB remote platform to spawn new GDB server instances (debugserver) to allow platform debugging. llvm-svn: 129351
2011-04-12 13:54:46 +08:00
Platform::GetProcessInfo (lldb::pid_t pid, ProcessInstanceInfo &process_info)
Many improvements to the Platform base class and subclasses. The base Platform class now implements the Host functionality for a lot of things that make sense by default so that subclasses can check: int PlatformSubclass::Foo () { if (IsHost()) return Platform::Foo (); // Let the platform base class do the host specific stuff // Platform subclass specific code... int result = ... return result; } Added new functions to the platform: virtual const char *Platform::GetUserName (uint32_t uid); virtual const char *Platform::GetGroupName (uint32_t gid); The user and group names are cached locally so that remote platforms can avoid sending packets multiple times to resolve this information. Added the parent process ID to the ProcessInfo class. Added a new ProcessInfoMatch class which helps us to match processes up and changed the Host layer over to using this new class. The new class allows us to search for processs: 1 - by name (equal to, starts with, ends with, contains, and regex) 2 - by pid 3 - And further check for parent pid == value, uid == value, gid == value, euid == value, egid == value, arch == value, parent == value. This is all hookup up to the "platform process list" command which required adding dumping routines to dump process information. If the Host class implements the process lookup routines, you can now lists processes on your local machine: machine1.foo.com % lldb (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari 94727 244 username usergroup username usergroup x86_64-apple-darwin Xcode 92742 92710 username usergroup username usergroup i386-apple-darwin debugserver This of course also works remotely with the lldb-platform: machine1.foo.com % lldb-platform --listen 1234 machine2.foo.com % lldb (lldb) platform create remote-macosx Platform: remote-macosx Connected: no (lldb) platform connect connect://localhost:1444 Platform: remote-macosx Triple: x86_64-apple-darwin OS Version: 10.6.7 (10J869) Kernel: Darwin Kernel Version 10.7.0: Sat Jan 29 15:17:16 PST 2011; root:xnu-1504.9.37~1/RELEASE_I386 Hostname: machine1.foo.com Connected: yes (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99556 244 username usergroup username usergroup x86_64-apple-darwin trustevaluation 99548 65539 username usergroup username usergroup x86_64-apple-darwin lldb 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari The lldb-platform implements everything with the Host:: layer, so this should "just work" for linux. I will probably be adding more stuff to the Host layer for launching processes and attaching to processes so that this support should eventually just work as well. Modified the target to be able to be created with an architecture that differs from the main executable. This is needed for iOS debugging since we can have an "armv6" binary which can run on an "armv7" machine, so we want to be able to do: % lldb (lldb) platform create remote-ios (lldb) file --arch armv7 a.out Where "a.out" is an armv6 executable. The platform then can correctly decide to open all "armv7" images for all dependent shared libraries. Modified the disassembly to show the current PC value. Example output: (lldb) disassemble --frame a.out`main: 0x1eb7: pushl %ebp 0x1eb8: movl %esp, %ebp 0x1eba: pushl %ebx 0x1ebb: subl $20, %esp 0x1ebe: calll 0x1ec3 ; main + 12 at test.c:18 0x1ec3: popl %ebx -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf 0x1edb: leal 213(%ebx), %eax 0x1ee1: movl %eax, (%esp) 0x1ee4: calll 0x1f1e ; puts 0x1ee9: calll 0x1f0c ; getchar 0x1eee: movl $20, (%esp) 0x1ef5: calll 0x1e6a ; sleep_loop at test.c:6 0x1efa: movl $12, %eax 0x1eff: addl $20, %esp 0x1f02: popl %ebx 0x1f03: leave 0x1f04: ret This can be handy when dealing with the new --line options that was recently added: (lldb) disassemble --line a.out`main + 13 at test.c:19 18 { -> 19 printf("Process: %i\n\n", getpid()); 20 puts("Press any key to continue..."); getchar(); -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf Modified the ModuleList to have a lookup based solely on a UUID. Since the UUID is typically the MD5 checksum of a binary image, there is no need to give the path and architecture when searching for a pre-existing image in an image list. Now that we support remote debugging a bit better, our lldb_private::Module needs to be able to track what the original path for file was as the platform knows it, as well as where the file is locally. The module has the two following functions to retrieve both paths: const FileSpec &Module::GetFileSpec () const; const FileSpec &Module::GetPlatformFileSpec () const; llvm-svn: 128563
2011-03-31 02:16:51 +08:00
{
// Take care of the host case so that each subclass can just
Moved the execution context that was in the Debugger into the CommandInterpreter where it was always being used. Make sure that Modules can track their object file offsets correctly to allow opening of sub object files (like the "__commpage" on darwin). Modified the Platforms to be able to launch processes. The first part of this move is the platform soon will become the entity that launches your program and when it does, it uses a new ProcessLaunchInfo class which encapsulates all process launching settings. This simplifies the internal APIs needed for launching. I want to slowly phase out process launching from the process classes, so for now we can still launch just as we used to, but eventually the platform is the object that should do the launching. Modified the Host::LaunchProcess in the MacOSX Host.mm to correctly be able to launch processes with all of the new eLaunchFlag settings. Modified any code that was manually launching processes to use the Host::LaunchProcess functions. Fixed an issue where lldb_private::Args had implicitly defined copy constructors that could do the wrong thing. This has now been fixed by adding an appropriate copy constructor and assignment operator. Make sure we don't add empty ModuleSP entries to a module list. Fixed the commpage module creation on MacOSX, but we still need to train the MacOSX dynamic loader to not get rid of it when it doesn't have an entry in the all image infos. Abstracted many more calls from in ProcessGDBRemote down into the GDBRemoteCommunicationClient subclass to make the classes cleaner and more efficient. Fixed the default iOS ARM register context to be correct and also added support for targets that don't support the qThreadStopInfo packet by selecting the current thread (only if needed) and then sending a stop reply packet. Debugserver can now start up with a --unix-socket (-u for short) and can then bind to port zero and send the port it bound to to a listening process on the other end. This allows the GDB remote platform to spawn new GDB server instances (debugserver) to allow platform debugging. llvm-svn: 129351
2011-04-12 13:54:46 +08:00
// call this function to get the host functionality.
Many improvements to the Platform base class and subclasses. The base Platform class now implements the Host functionality for a lot of things that make sense by default so that subclasses can check: int PlatformSubclass::Foo () { if (IsHost()) return Platform::Foo (); // Let the platform base class do the host specific stuff // Platform subclass specific code... int result = ... return result; } Added new functions to the platform: virtual const char *Platform::GetUserName (uint32_t uid); virtual const char *Platform::GetGroupName (uint32_t gid); The user and group names are cached locally so that remote platforms can avoid sending packets multiple times to resolve this information. Added the parent process ID to the ProcessInfo class. Added a new ProcessInfoMatch class which helps us to match processes up and changed the Host layer over to using this new class. The new class allows us to search for processs: 1 - by name (equal to, starts with, ends with, contains, and regex) 2 - by pid 3 - And further check for parent pid == value, uid == value, gid == value, euid == value, egid == value, arch == value, parent == value. This is all hookup up to the "platform process list" command which required adding dumping routines to dump process information. If the Host class implements the process lookup routines, you can now lists processes on your local machine: machine1.foo.com % lldb (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari 94727 244 username usergroup username usergroup x86_64-apple-darwin Xcode 92742 92710 username usergroup username usergroup i386-apple-darwin debugserver This of course also works remotely with the lldb-platform: machine1.foo.com % lldb-platform --listen 1234 machine2.foo.com % lldb (lldb) platform create remote-macosx Platform: remote-macosx Connected: no (lldb) platform connect connect://localhost:1444 Platform: remote-macosx Triple: x86_64-apple-darwin OS Version: 10.6.7 (10J869) Kernel: Darwin Kernel Version 10.7.0: Sat Jan 29 15:17:16 PST 2011; root:xnu-1504.9.37~1/RELEASE_I386 Hostname: machine1.foo.com Connected: yes (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99556 244 username usergroup username usergroup x86_64-apple-darwin trustevaluation 99548 65539 username usergroup username usergroup x86_64-apple-darwin lldb 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari The lldb-platform implements everything with the Host:: layer, so this should "just work" for linux. I will probably be adding more stuff to the Host layer for launching processes and attaching to processes so that this support should eventually just work as well. Modified the target to be able to be created with an architecture that differs from the main executable. This is needed for iOS debugging since we can have an "armv6" binary which can run on an "armv7" machine, so we want to be able to do: % lldb (lldb) platform create remote-ios (lldb) file --arch armv7 a.out Where "a.out" is an armv6 executable. The platform then can correctly decide to open all "armv7" images for all dependent shared libraries. Modified the disassembly to show the current PC value. Example output: (lldb) disassemble --frame a.out`main: 0x1eb7: pushl %ebp 0x1eb8: movl %esp, %ebp 0x1eba: pushl %ebx 0x1ebb: subl $20, %esp 0x1ebe: calll 0x1ec3 ; main + 12 at test.c:18 0x1ec3: popl %ebx -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf 0x1edb: leal 213(%ebx), %eax 0x1ee1: movl %eax, (%esp) 0x1ee4: calll 0x1f1e ; puts 0x1ee9: calll 0x1f0c ; getchar 0x1eee: movl $20, (%esp) 0x1ef5: calll 0x1e6a ; sleep_loop at test.c:6 0x1efa: movl $12, %eax 0x1eff: addl $20, %esp 0x1f02: popl %ebx 0x1f03: leave 0x1f04: ret This can be handy when dealing with the new --line options that was recently added: (lldb) disassemble --line a.out`main + 13 at test.c:19 18 { -> 19 printf("Process: %i\n\n", getpid()); 20 puts("Press any key to continue..."); getchar(); -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf Modified the ModuleList to have a lookup based solely on a UUID. Since the UUID is typically the MD5 checksum of a binary image, there is no need to give the path and architecture when searching for a pre-existing image in an image list. Now that we support remote debugging a bit better, our lldb_private::Module needs to be able to track what the original path for file was as the platform knows it, as well as where the file is locally. The module has the two following functions to retrieve both paths: const FileSpec &Module::GetFileSpec () const; const FileSpec &Module::GetPlatformFileSpec () const; llvm-svn: 128563
2011-03-31 02:16:51 +08:00
if (IsHost())
return Host::GetProcessInfo (pid, process_info);
return false;
}
uint32_t
Moved the execution context that was in the Debugger into the CommandInterpreter where it was always being used. Make sure that Modules can track their object file offsets correctly to allow opening of sub object files (like the "__commpage" on darwin). Modified the Platforms to be able to launch processes. The first part of this move is the platform soon will become the entity that launches your program and when it does, it uses a new ProcessLaunchInfo class which encapsulates all process launching settings. This simplifies the internal APIs needed for launching. I want to slowly phase out process launching from the process classes, so for now we can still launch just as we used to, but eventually the platform is the object that should do the launching. Modified the Host::LaunchProcess in the MacOSX Host.mm to correctly be able to launch processes with all of the new eLaunchFlag settings. Modified any code that was manually launching processes to use the Host::LaunchProcess functions. Fixed an issue where lldb_private::Args had implicitly defined copy constructors that could do the wrong thing. This has now been fixed by adding an appropriate copy constructor and assignment operator. Make sure we don't add empty ModuleSP entries to a module list. Fixed the commpage module creation on MacOSX, but we still need to train the MacOSX dynamic loader to not get rid of it when it doesn't have an entry in the all image infos. Abstracted many more calls from in ProcessGDBRemote down into the GDBRemoteCommunicationClient subclass to make the classes cleaner and more efficient. Fixed the default iOS ARM register context to be correct and also added support for targets that don't support the qThreadStopInfo packet by selecting the current thread (only if needed) and then sending a stop reply packet. Debugserver can now start up with a --unix-socket (-u for short) and can then bind to port zero and send the port it bound to to a listening process on the other end. This allows the GDB remote platform to spawn new GDB server instances (debugserver) to allow platform debugging. llvm-svn: 129351
2011-04-12 13:54:46 +08:00
Platform::FindProcesses (const ProcessInstanceInfoMatch &match_info,
ProcessInstanceInfoList &process_infos)
Many improvements to the Platform base class and subclasses. The base Platform class now implements the Host functionality for a lot of things that make sense by default so that subclasses can check: int PlatformSubclass::Foo () { if (IsHost()) return Platform::Foo (); // Let the platform base class do the host specific stuff // Platform subclass specific code... int result = ... return result; } Added new functions to the platform: virtual const char *Platform::GetUserName (uint32_t uid); virtual const char *Platform::GetGroupName (uint32_t gid); The user and group names are cached locally so that remote platforms can avoid sending packets multiple times to resolve this information. Added the parent process ID to the ProcessInfo class. Added a new ProcessInfoMatch class which helps us to match processes up and changed the Host layer over to using this new class. The new class allows us to search for processs: 1 - by name (equal to, starts with, ends with, contains, and regex) 2 - by pid 3 - And further check for parent pid == value, uid == value, gid == value, euid == value, egid == value, arch == value, parent == value. This is all hookup up to the "platform process list" command which required adding dumping routines to dump process information. If the Host class implements the process lookup routines, you can now lists processes on your local machine: machine1.foo.com % lldb (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari 94727 244 username usergroup username usergroup x86_64-apple-darwin Xcode 92742 92710 username usergroup username usergroup i386-apple-darwin debugserver This of course also works remotely with the lldb-platform: machine1.foo.com % lldb-platform --listen 1234 machine2.foo.com % lldb (lldb) platform create remote-macosx Platform: remote-macosx Connected: no (lldb) platform connect connect://localhost:1444 Platform: remote-macosx Triple: x86_64-apple-darwin OS Version: 10.6.7 (10J869) Kernel: Darwin Kernel Version 10.7.0: Sat Jan 29 15:17:16 PST 2011; root:xnu-1504.9.37~1/RELEASE_I386 Hostname: machine1.foo.com Connected: yes (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99556 244 username usergroup username usergroup x86_64-apple-darwin trustevaluation 99548 65539 username usergroup username usergroup x86_64-apple-darwin lldb 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari The lldb-platform implements everything with the Host:: layer, so this should "just work" for linux. I will probably be adding more stuff to the Host layer for launching processes and attaching to processes so that this support should eventually just work as well. Modified the target to be able to be created with an architecture that differs from the main executable. This is needed for iOS debugging since we can have an "armv6" binary which can run on an "armv7" machine, so we want to be able to do: % lldb (lldb) platform create remote-ios (lldb) file --arch armv7 a.out Where "a.out" is an armv6 executable. The platform then can correctly decide to open all "armv7" images for all dependent shared libraries. Modified the disassembly to show the current PC value. Example output: (lldb) disassemble --frame a.out`main: 0x1eb7: pushl %ebp 0x1eb8: movl %esp, %ebp 0x1eba: pushl %ebx 0x1ebb: subl $20, %esp 0x1ebe: calll 0x1ec3 ; main + 12 at test.c:18 0x1ec3: popl %ebx -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf 0x1edb: leal 213(%ebx), %eax 0x1ee1: movl %eax, (%esp) 0x1ee4: calll 0x1f1e ; puts 0x1ee9: calll 0x1f0c ; getchar 0x1eee: movl $20, (%esp) 0x1ef5: calll 0x1e6a ; sleep_loop at test.c:6 0x1efa: movl $12, %eax 0x1eff: addl $20, %esp 0x1f02: popl %ebx 0x1f03: leave 0x1f04: ret This can be handy when dealing with the new --line options that was recently added: (lldb) disassemble --line a.out`main + 13 at test.c:19 18 { -> 19 printf("Process: %i\n\n", getpid()); 20 puts("Press any key to continue..."); getchar(); -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf Modified the ModuleList to have a lookup based solely on a UUID. Since the UUID is typically the MD5 checksum of a binary image, there is no need to give the path and architecture when searching for a pre-existing image in an image list. Now that we support remote debugging a bit better, our lldb_private::Module needs to be able to track what the original path for file was as the platform knows it, as well as where the file is locally. The module has the two following functions to retrieve both paths: const FileSpec &Module::GetFileSpec () const; const FileSpec &Module::GetPlatformFileSpec () const; llvm-svn: 128563
2011-03-31 02:16:51 +08:00
{
Moved the execution context that was in the Debugger into the CommandInterpreter where it was always being used. Make sure that Modules can track their object file offsets correctly to allow opening of sub object files (like the "__commpage" on darwin). Modified the Platforms to be able to launch processes. The first part of this move is the platform soon will become the entity that launches your program and when it does, it uses a new ProcessLaunchInfo class which encapsulates all process launching settings. This simplifies the internal APIs needed for launching. I want to slowly phase out process launching from the process classes, so for now we can still launch just as we used to, but eventually the platform is the object that should do the launching. Modified the Host::LaunchProcess in the MacOSX Host.mm to correctly be able to launch processes with all of the new eLaunchFlag settings. Modified any code that was manually launching processes to use the Host::LaunchProcess functions. Fixed an issue where lldb_private::Args had implicitly defined copy constructors that could do the wrong thing. This has now been fixed by adding an appropriate copy constructor and assignment operator. Make sure we don't add empty ModuleSP entries to a module list. Fixed the commpage module creation on MacOSX, but we still need to train the MacOSX dynamic loader to not get rid of it when it doesn't have an entry in the all image infos. Abstracted many more calls from in ProcessGDBRemote down into the GDBRemoteCommunicationClient subclass to make the classes cleaner and more efficient. Fixed the default iOS ARM register context to be correct and also added support for targets that don't support the qThreadStopInfo packet by selecting the current thread (only if needed) and then sending a stop reply packet. Debugserver can now start up with a --unix-socket (-u for short) and can then bind to port zero and send the port it bound to to a listening process on the other end. This allows the GDB remote platform to spawn new GDB server instances (debugserver) to allow platform debugging. llvm-svn: 129351
2011-04-12 13:54:46 +08:00
// Take care of the host case so that each subclass can just
// call this function to get the host functionality.
Many improvements to the Platform base class and subclasses. The base Platform class now implements the Host functionality for a lot of things that make sense by default so that subclasses can check: int PlatformSubclass::Foo () { if (IsHost()) return Platform::Foo (); // Let the platform base class do the host specific stuff // Platform subclass specific code... int result = ... return result; } Added new functions to the platform: virtual const char *Platform::GetUserName (uint32_t uid); virtual const char *Platform::GetGroupName (uint32_t gid); The user and group names are cached locally so that remote platforms can avoid sending packets multiple times to resolve this information. Added the parent process ID to the ProcessInfo class. Added a new ProcessInfoMatch class which helps us to match processes up and changed the Host layer over to using this new class. The new class allows us to search for processs: 1 - by name (equal to, starts with, ends with, contains, and regex) 2 - by pid 3 - And further check for parent pid == value, uid == value, gid == value, euid == value, egid == value, arch == value, parent == value. This is all hookup up to the "platform process list" command which required adding dumping routines to dump process information. If the Host class implements the process lookup routines, you can now lists processes on your local machine: machine1.foo.com % lldb (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari 94727 244 username usergroup username usergroup x86_64-apple-darwin Xcode 92742 92710 username usergroup username usergroup i386-apple-darwin debugserver This of course also works remotely with the lldb-platform: machine1.foo.com % lldb-platform --listen 1234 machine2.foo.com % lldb (lldb) platform create remote-macosx Platform: remote-macosx Connected: no (lldb) platform connect connect://localhost:1444 Platform: remote-macosx Triple: x86_64-apple-darwin OS Version: 10.6.7 (10J869) Kernel: Darwin Kernel Version 10.7.0: Sat Jan 29 15:17:16 PST 2011; root:xnu-1504.9.37~1/RELEASE_I386 Hostname: machine1.foo.com Connected: yes (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99556 244 username usergroup username usergroup x86_64-apple-darwin trustevaluation 99548 65539 username usergroup username usergroup x86_64-apple-darwin lldb 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari The lldb-platform implements everything with the Host:: layer, so this should "just work" for linux. I will probably be adding more stuff to the Host layer for launching processes and attaching to processes so that this support should eventually just work as well. Modified the target to be able to be created with an architecture that differs from the main executable. This is needed for iOS debugging since we can have an "armv6" binary which can run on an "armv7" machine, so we want to be able to do: % lldb (lldb) platform create remote-ios (lldb) file --arch armv7 a.out Where "a.out" is an armv6 executable. The platform then can correctly decide to open all "armv7" images for all dependent shared libraries. Modified the disassembly to show the current PC value. Example output: (lldb) disassemble --frame a.out`main: 0x1eb7: pushl %ebp 0x1eb8: movl %esp, %ebp 0x1eba: pushl %ebx 0x1ebb: subl $20, %esp 0x1ebe: calll 0x1ec3 ; main + 12 at test.c:18 0x1ec3: popl %ebx -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf 0x1edb: leal 213(%ebx), %eax 0x1ee1: movl %eax, (%esp) 0x1ee4: calll 0x1f1e ; puts 0x1ee9: calll 0x1f0c ; getchar 0x1eee: movl $20, (%esp) 0x1ef5: calll 0x1e6a ; sleep_loop at test.c:6 0x1efa: movl $12, %eax 0x1eff: addl $20, %esp 0x1f02: popl %ebx 0x1f03: leave 0x1f04: ret This can be handy when dealing with the new --line options that was recently added: (lldb) disassemble --line a.out`main + 13 at test.c:19 18 { -> 19 printf("Process: %i\n\n", getpid()); 20 puts("Press any key to continue..."); getchar(); -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf Modified the ModuleList to have a lookup based solely on a UUID. Since the UUID is typically the MD5 checksum of a binary image, there is no need to give the path and architecture when searching for a pre-existing image in an image list. Now that we support remote debugging a bit better, our lldb_private::Module needs to be able to track what the original path for file was as the platform knows it, as well as where the file is locally. The module has the two following functions to retrieve both paths: const FileSpec &Module::GetFileSpec () const; const FileSpec &Module::GetPlatformFileSpec () const; llvm-svn: 128563
2011-03-31 02:16:51 +08:00
uint32_t match_count = 0;
if (IsHost())
match_count = Host::FindProcesses (match_info, process_infos);
return match_count;
}
Moved the execution context that was in the Debugger into the CommandInterpreter where it was always being used. Make sure that Modules can track their object file offsets correctly to allow opening of sub object files (like the "__commpage" on darwin). Modified the Platforms to be able to launch processes. The first part of this move is the platform soon will become the entity that launches your program and when it does, it uses a new ProcessLaunchInfo class which encapsulates all process launching settings. This simplifies the internal APIs needed for launching. I want to slowly phase out process launching from the process classes, so for now we can still launch just as we used to, but eventually the platform is the object that should do the launching. Modified the Host::LaunchProcess in the MacOSX Host.mm to correctly be able to launch processes with all of the new eLaunchFlag settings. Modified any code that was manually launching processes to use the Host::LaunchProcess functions. Fixed an issue where lldb_private::Args had implicitly defined copy constructors that could do the wrong thing. This has now been fixed by adding an appropriate copy constructor and assignment operator. Make sure we don't add empty ModuleSP entries to a module list. Fixed the commpage module creation on MacOSX, but we still need to train the MacOSX dynamic loader to not get rid of it when it doesn't have an entry in the all image infos. Abstracted many more calls from in ProcessGDBRemote down into the GDBRemoteCommunicationClient subclass to make the classes cleaner and more efficient. Fixed the default iOS ARM register context to be correct and also added support for targets that don't support the qThreadStopInfo packet by selecting the current thread (only if needed) and then sending a stop reply packet. Debugserver can now start up with a --unix-socket (-u for short) and can then bind to port zero and send the port it bound to to a listening process on the other end. This allows the GDB remote platform to spawn new GDB server instances (debugserver) to allow platform debugging. llvm-svn: 129351
2011-04-12 13:54:46 +08:00
Error
Platform::LaunchProcess (ProcessLaunchInfo &launch_info)
{
Error error;
// Take care of the host case so that each subclass can just
// call this function to get the host functionality.
if (IsHost())
{
if (::getenv ("LLDB_LAUNCH_FLAG_LAUNCH_IN_TTY"))
launch_info.GetFlags().Set (eLaunchFlagLaunchInTTY);
if (launch_info.GetFlags().Test (eLaunchFlagLaunchInShell))
{
const bool is_localhost = true;
const bool will_debug = launch_info.GetFlags().Test(eLaunchFlagDebug);
const bool first_arg_is_full_shell_command = false;
if (!launch_info.ConvertArgumentsForLaunchingInShell (error,
is_localhost,
will_debug,
first_arg_is_full_shell_command))
return error;
}
Moved the execution context that was in the Debugger into the CommandInterpreter where it was always being used. Make sure that Modules can track their object file offsets correctly to allow opening of sub object files (like the "__commpage" on darwin). Modified the Platforms to be able to launch processes. The first part of this move is the platform soon will become the entity that launches your program and when it does, it uses a new ProcessLaunchInfo class which encapsulates all process launching settings. This simplifies the internal APIs needed for launching. I want to slowly phase out process launching from the process classes, so for now we can still launch just as we used to, but eventually the platform is the object that should do the launching. Modified the Host::LaunchProcess in the MacOSX Host.mm to correctly be able to launch processes with all of the new eLaunchFlag settings. Modified any code that was manually launching processes to use the Host::LaunchProcess functions. Fixed an issue where lldb_private::Args had implicitly defined copy constructors that could do the wrong thing. This has now been fixed by adding an appropriate copy constructor and assignment operator. Make sure we don't add empty ModuleSP entries to a module list. Fixed the commpage module creation on MacOSX, but we still need to train the MacOSX dynamic loader to not get rid of it when it doesn't have an entry in the all image infos. Abstracted many more calls from in ProcessGDBRemote down into the GDBRemoteCommunicationClient subclass to make the classes cleaner and more efficient. Fixed the default iOS ARM register context to be correct and also added support for targets that don't support the qThreadStopInfo packet by selecting the current thread (only if needed) and then sending a stop reply packet. Debugserver can now start up with a --unix-socket (-u for short) and can then bind to port zero and send the port it bound to to a listening process on the other end. This allows the GDB remote platform to spawn new GDB server instances (debugserver) to allow platform debugging. llvm-svn: 129351
2011-04-12 13:54:46 +08:00
error = Host::LaunchProcess (launch_info);
}
Moved the execution context that was in the Debugger into the CommandInterpreter where it was always being used. Make sure that Modules can track their object file offsets correctly to allow opening of sub object files (like the "__commpage" on darwin). Modified the Platforms to be able to launch processes. The first part of this move is the platform soon will become the entity that launches your program and when it does, it uses a new ProcessLaunchInfo class which encapsulates all process launching settings. This simplifies the internal APIs needed for launching. I want to slowly phase out process launching from the process classes, so for now we can still launch just as we used to, but eventually the platform is the object that should do the launching. Modified the Host::LaunchProcess in the MacOSX Host.mm to correctly be able to launch processes with all of the new eLaunchFlag settings. Modified any code that was manually launching processes to use the Host::LaunchProcess functions. Fixed an issue where lldb_private::Args had implicitly defined copy constructors that could do the wrong thing. This has now been fixed by adding an appropriate copy constructor and assignment operator. Make sure we don't add empty ModuleSP entries to a module list. Fixed the commpage module creation on MacOSX, but we still need to train the MacOSX dynamic loader to not get rid of it when it doesn't have an entry in the all image infos. Abstracted many more calls from in ProcessGDBRemote down into the GDBRemoteCommunicationClient subclass to make the classes cleaner and more efficient. Fixed the default iOS ARM register context to be correct and also added support for targets that don't support the qThreadStopInfo packet by selecting the current thread (only if needed) and then sending a stop reply packet. Debugserver can now start up with a --unix-socket (-u for short) and can then bind to port zero and send the port it bound to to a listening process on the other end. This allows the GDB remote platform to spawn new GDB server instances (debugserver) to allow platform debugging. llvm-svn: 129351
2011-04-12 13:54:46 +08:00
else
error.SetErrorString ("base lldb_private::Platform class can't launch remote processes");
return error;
}
lldb::ProcessSP
Platform::DebugProcess (ProcessLaunchInfo &launch_info,
Debugger &debugger,
Target *target, // Can be NULL, if NULL create a new target, else use existing one
Listener &listener,
Error &error)
{
ProcessSP process_sp;
// Make sure we stop at the entry point
launch_info.GetFlags ().Set (eLaunchFlagDebug);
// We always launch the process we are going to debug in a separate process
// group, since then we can handle ^C interrupts ourselves w/o having to worry
// about the target getting them as well.
launch_info.SetLaunchInSeparateProcessGroup(true);
Moved the execution context that was in the Debugger into the CommandInterpreter where it was always being used. Make sure that Modules can track their object file offsets correctly to allow opening of sub object files (like the "__commpage" on darwin). Modified the Platforms to be able to launch processes. The first part of this move is the platform soon will become the entity that launches your program and when it does, it uses a new ProcessLaunchInfo class which encapsulates all process launching settings. This simplifies the internal APIs needed for launching. I want to slowly phase out process launching from the process classes, so for now we can still launch just as we used to, but eventually the platform is the object that should do the launching. Modified the Host::LaunchProcess in the MacOSX Host.mm to correctly be able to launch processes with all of the new eLaunchFlag settings. Modified any code that was manually launching processes to use the Host::LaunchProcess functions. Fixed an issue where lldb_private::Args had implicitly defined copy constructors that could do the wrong thing. This has now been fixed by adding an appropriate copy constructor and assignment operator. Make sure we don't add empty ModuleSP entries to a module list. Fixed the commpage module creation on MacOSX, but we still need to train the MacOSX dynamic loader to not get rid of it when it doesn't have an entry in the all image infos. Abstracted many more calls from in ProcessGDBRemote down into the GDBRemoteCommunicationClient subclass to make the classes cleaner and more efficient. Fixed the default iOS ARM register context to be correct and also added support for targets that don't support the qThreadStopInfo packet by selecting the current thread (only if needed) and then sending a stop reply packet. Debugserver can now start up with a --unix-socket (-u for short) and can then bind to port zero and send the port it bound to to a listening process on the other end. This allows the GDB remote platform to spawn new GDB server instances (debugserver) to allow platform debugging. llvm-svn: 129351
2011-04-12 13:54:46 +08:00
error = LaunchProcess (launch_info);
if (error.Success())
{
if (launch_info.GetProcessID() != LLDB_INVALID_PROCESS_ID)
Moved the execution context that was in the Debugger into the CommandInterpreter where it was always being used. Make sure that Modules can track their object file offsets correctly to allow opening of sub object files (like the "__commpage" on darwin). Modified the Platforms to be able to launch processes. The first part of this move is the platform soon will become the entity that launches your program and when it does, it uses a new ProcessLaunchInfo class which encapsulates all process launching settings. This simplifies the internal APIs needed for launching. I want to slowly phase out process launching from the process classes, so for now we can still launch just as we used to, but eventually the platform is the object that should do the launching. Modified the Host::LaunchProcess in the MacOSX Host.mm to correctly be able to launch processes with all of the new eLaunchFlag settings. Modified any code that was manually launching processes to use the Host::LaunchProcess functions. Fixed an issue where lldb_private::Args had implicitly defined copy constructors that could do the wrong thing. This has now been fixed by adding an appropriate copy constructor and assignment operator. Make sure we don't add empty ModuleSP entries to a module list. Fixed the commpage module creation on MacOSX, but we still need to train the MacOSX dynamic loader to not get rid of it when it doesn't have an entry in the all image infos. Abstracted many more calls from in ProcessGDBRemote down into the GDBRemoteCommunicationClient subclass to make the classes cleaner and more efficient. Fixed the default iOS ARM register context to be correct and also added support for targets that don't support the qThreadStopInfo packet by selecting the current thread (only if needed) and then sending a stop reply packet. Debugserver can now start up with a --unix-socket (-u for short) and can then bind to port zero and send the port it bound to to a listening process on the other end. This allows the GDB remote platform to spawn new GDB server instances (debugserver) to allow platform debugging. llvm-svn: 129351
2011-04-12 13:54:46 +08:00
{
ProcessAttachInfo attach_info (launch_info);
process_sp = Attach (attach_info, debugger, target, listener, error);
if (process_sp)
{
// Since we attached to the process, it will think it needs to detach
// if the process object just goes away without an explicit call to
// Process::Kill() or Process::Detach(), so let it know to kill the
// process if this happens.
process_sp->SetShouldDetach (false);
// If we didn't have any file actions, the pseudo terminal might
// have been used where the slave side was given as the file to
// open for stdin/out/err after we have already opened the master
// so we can read/write stdin/out/err.
int pty_fd = launch_info.GetPTY().ReleaseMasterFileDescriptor();
if (pty_fd != lldb_utility::PseudoTerminal::invalid_fd)
{
process_sp->SetSTDIOFileDescriptor(pty_fd);
}
}
Moved the execution context that was in the Debugger into the CommandInterpreter where it was always being used. Make sure that Modules can track their object file offsets correctly to allow opening of sub object files (like the "__commpage" on darwin). Modified the Platforms to be able to launch processes. The first part of this move is the platform soon will become the entity that launches your program and when it does, it uses a new ProcessLaunchInfo class which encapsulates all process launching settings. This simplifies the internal APIs needed for launching. I want to slowly phase out process launching from the process classes, so for now we can still launch just as we used to, but eventually the platform is the object that should do the launching. Modified the Host::LaunchProcess in the MacOSX Host.mm to correctly be able to launch processes with all of the new eLaunchFlag settings. Modified any code that was manually launching processes to use the Host::LaunchProcess functions. Fixed an issue where lldb_private::Args had implicitly defined copy constructors that could do the wrong thing. This has now been fixed by adding an appropriate copy constructor and assignment operator. Make sure we don't add empty ModuleSP entries to a module list. Fixed the commpage module creation on MacOSX, but we still need to train the MacOSX dynamic loader to not get rid of it when it doesn't have an entry in the all image infos. Abstracted many more calls from in ProcessGDBRemote down into the GDBRemoteCommunicationClient subclass to make the classes cleaner and more efficient. Fixed the default iOS ARM register context to be correct and also added support for targets that don't support the qThreadStopInfo packet by selecting the current thread (only if needed) and then sending a stop reply packet. Debugserver can now start up with a --unix-socket (-u for short) and can then bind to port zero and send the port it bound to to a listening process on the other end. This allows the GDB remote platform to spawn new GDB server instances (debugserver) to allow platform debugging. llvm-svn: 129351
2011-04-12 13:54:46 +08:00
}
}
return process_sp;
}
lldb::PlatformSP
Platform::GetPlatformForArchitecture (const ArchSpec &arch, ArchSpec *platform_arch_ptr)
{
lldb::PlatformSP platform_sp;
Error error;
if (arch.IsValid())
platform_sp = Platform::Create (arch, platform_arch_ptr, error);
return platform_sp;
}
//------------------------------------------------------------------
/// Lets a platform answer if it is compatible with a given
/// architecture and the target triple contained within.
//------------------------------------------------------------------
bool
Platform::IsCompatibleArchitecture (const ArchSpec &arch, ArchSpec *compatible_arch_ptr)
{
// If the architecture is invalid, we must answer true...
if (arch.IsValid())
{
ArchSpec platform_arch;
for (uint32_t arch_idx=0; GetSupportedArchitectureAtIndex (arch_idx, platform_arch); ++arch_idx)
{
if (arch == platform_arch)
{
if (compatible_arch_ptr)
*compatible_arch_ptr = platform_arch;
return true;
}
}
}
if (compatible_arch_ptr)
compatible_arch_ptr->Clear();
return false;
}
lldb::BreakpointSP
Platform::SetThreadCreationBreakpoint (lldb_private::Target &target)
{
return lldb::BreakpointSP();
}
size_t
Platform::GetEnvironment (StringList &environment)
{
environment.Clear();
return false;
}