llvm-project/llvm/test/CodeGen/X86/recip-fastmath2.ll

1198 lines
55 KiB
LLVM
Raw Normal View History

; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
; RUN: llc < %s -mtriple=x86_64-unknown-unknown -mattr=+sse2 -print-schedule | FileCheck %s --check-prefix=CHECK --check-prefix=SSE --check-prefix=SSE-RECIP
; RUN: llc < %s -mtriple=x86_64-unknown-unknown -mattr=+avx -print-schedule | FileCheck %s --check-prefix=CHECK --check-prefix=AVX --check-prefix=AVX-RECIP
; RUN: llc < %s -mtriple=x86_64-unknown-unknown -mattr=+avx,+fma -print-schedule | FileCheck %s --check-prefix=CHECK --check-prefix=AVX --check-prefix=FMA-RECIP
; RUN: llc < %s -mtriple=x86_64-unknown-unknown -mcpu=btver2 -print-schedule | FileCheck %s --check-prefix=CHECK --check-prefix=AVX --check-prefix=BTVER2
; RUN: llc < %s -mtriple=x86_64-unknown-unknown -mcpu=sandybridge -print-schedule | FileCheck %s --check-prefix=CHECK --check-prefix=AVX --check-prefix=SANDY
; RUN: llc < %s -mtriple=x86_64-unknown-unknown -mcpu=haswell -print-schedule | FileCheck %s --check-prefix=CHECK --check-prefix=AVX --check-prefix=HASWELL
; RUN: llc < %s -mtriple=x86_64-unknown-unknown -mcpu=haswell -print-schedule -mattr=-fma | FileCheck %s --check-prefix=CHECK --check-prefix=AVX --check-prefix=HASWELL-NO-FMA
; RUN: llc < %s -mtriple=x86_64-unknown-unknown -mcpu=knl -print-schedule | FileCheck %s --check-prefix=CHECK --check-prefix=AVX --check-prefix=AVX512 --check-prefix=KNL
; RUN: llc < %s -mtriple=x86_64-unknown-unknown -mcpu=skx -print-schedule | FileCheck %s --check-prefix=CHECK --check-prefix=AVX --check-prefix=AVX512 --check-prefix=SKX
; It's the extra tests coverage for recip as discussed on D26855.
define float @f32_no_step_2(float %x) #3 {
; SSE-LABEL: f32_no_step_2:
; SSE: # %bb.0:
; SSE-NEXT: rcpss %xmm0, %xmm0
; SSE-NEXT: mulss {{.*}}(%rip), %xmm0
; SSE-NEXT: retq
;
; AVX-RECIP-LABEL: f32_no_step_2:
; AVX-RECIP: # %bb.0:
; AVX-RECIP-NEXT: vrcpss %xmm0, %xmm0, %xmm0
; AVX-RECIP-NEXT: vmulss {{.*}}(%rip), %xmm0, %xmm0
; AVX-RECIP-NEXT: retq
;
; FMA-RECIP-LABEL: f32_no_step_2:
; FMA-RECIP: # %bb.0:
; FMA-RECIP-NEXT: vrcpss %xmm0, %xmm0, %xmm0
; FMA-RECIP-NEXT: vmulss {{.*}}(%rip), %xmm0, %xmm0
; FMA-RECIP-NEXT: retq
;
; BTVER2-LABEL: f32_no_step_2:
; BTVER2: # %bb.0:
; BTVER2-NEXT: vrcpss %xmm0, %xmm0, %xmm0 # sched: [2:1.00]
; BTVER2-NEXT: vmulss {{.*}}(%rip), %xmm0, %xmm0 # sched: [7:1.00]
; BTVER2-NEXT: retq # sched: [4:1.00]
;
; SANDY-LABEL: f32_no_step_2:
; SANDY: # %bb.0:
; SANDY-NEXT: vrcpss %xmm0, %xmm0, %xmm0 # sched: [5:1.00]
This patch completely replaces the scheduling information for the SandyBridge architecture target by modifying the file X86SchedSandyBridge.td located under the X86 Target. The SandyBridge architects have provided us with a more accurate information about each instruction latency, number of uOPs and used ports and I used it to replace the existing estimated SNB instructions scheduling and to add missing scheduling information. Please note that the patch extensively affects the X86 MC instr scheduling for SNB. Also note that this patch will be followed by additional patches for the remaining target architectures HSW, IVB, BDW, SKL and SKX. The updated and extended information about each instruction includes the following details: •static latency of the instruction •number of uOps from which the instruction consists of •all ports used by the instruction's' uOPs For example, the following code dictates that instructions, ADC64mr, ADC8mr, SBB64mr, SBB8mr have a static latency of 9 cycles. Each of these instructions is decoded into 6 micro operations which use ports 4, ports 2 or 3 and port 0 and ports 0 or 1 or 5: def SBWriteResGroup94 : SchedWriteRes<[SBPort4,SBPort23,SBPort0,SBPort015]> { let Latency = 9; let NumMicroOps = 6; let ResourceCycles = [1,2,2,1]; } def: InstRW<[SBWriteResGroup94], (instregex "ADC64mr")>; def: InstRW<[SBWriteResGroup94], (instregex "ADC8mr")>; def: InstRW<[SBWriteResGroup94], (instregex "SBB64mr")>; def: InstRW<[SBWriteResGroup94], (instregex "SBB8mr")>; Note that apart for the header, most of the X86SchedSandyBridge.td file was generated by a script. Reviewers: zvi, chandlerc, RKSimon, m_zuckerman, craig.topper, igorb Differential Revision: https://reviews.llvm.org/D35019#inline-304691 llvm-svn: 307529
2017-07-10 17:53:16 +08:00
; SANDY-NEXT: vmulss {{.*}}(%rip), %xmm0, %xmm0 # sched: [11:1.00]
; SANDY-NEXT: retq # sched: [1:1.00]
;
; HASWELL-LABEL: f32_no_step_2:
; HASWELL: # %bb.0:
; HASWELL-NEXT: vrcpss %xmm0, %xmm0, %xmm0 # sched: [5:1.00]
; HASWELL-NEXT: vmulss {{.*}}(%rip), %xmm0, %xmm0 # sched: [10:0.50]
; HASWELL-NEXT: retq # sched: [7:1.00]
;
; HASWELL-NO-FMA-LABEL: f32_no_step_2:
; HASWELL-NO-FMA: # %bb.0:
; HASWELL-NO-FMA-NEXT: vrcpss %xmm0, %xmm0, %xmm0 # sched: [5:1.00]
; HASWELL-NO-FMA-NEXT: vmulss {{.*}}(%rip), %xmm0, %xmm0 # sched: [10:0.50]
; HASWELL-NO-FMA-NEXT: retq # sched: [7:1.00]
;
; KNL-LABEL: f32_no_step_2:
; KNL: # %bb.0:
; KNL-NEXT: vrcpss %xmm0, %xmm0, %xmm0 # sched: [5:1.00]
; KNL-NEXT: vmulss {{.*}}(%rip), %xmm0, %xmm0 # sched: [10:0.50]
; KNL-NEXT: retq # sched: [7:1.00]
;
; SKX-LABEL: f32_no_step_2:
; SKX: # %bb.0:
; SKX-NEXT: vrcpss %xmm0, %xmm0, %xmm0 # sched: [4:1.00]
; SKX-NEXT: vmulss {{.*}}(%rip), %xmm0, %xmm0 # sched: [9:0.50]
; SKX-NEXT: retq # sched: [7:1.00]
%div = fdiv fast float 1234.0, %x
ret float %div
}
define float @f32_one_step_2(float %x) #1 {
; SSE-LABEL: f32_one_step_2:
; SSE: # %bb.0:
; SSE-NEXT: rcpss %xmm0, %xmm2
; SSE-NEXT: mulss %xmm2, %xmm0
; SSE-NEXT: movss {{.*#+}} xmm1 = mem[0],zero,zero,zero
; SSE-NEXT: subss %xmm0, %xmm1
; SSE-NEXT: mulss %xmm2, %xmm1
; SSE-NEXT: addss %xmm2, %xmm1
; SSE-NEXT: mulss {{.*}}(%rip), %xmm1
; SSE-NEXT: movaps %xmm1, %xmm0
; SSE-NEXT: retq
;
; AVX-RECIP-LABEL: f32_one_step_2:
; AVX-RECIP: # %bb.0:
; AVX-RECIP-NEXT: vrcpss %xmm0, %xmm0, %xmm1
; AVX-RECIP-NEXT: vmulss %xmm1, %xmm0, %xmm0
; AVX-RECIP-NEXT: vmovss {{.*#+}} xmm2 = mem[0],zero,zero,zero
; AVX-RECIP-NEXT: vsubss %xmm0, %xmm2, %xmm0
; AVX-RECIP-NEXT: vmulss %xmm0, %xmm1, %xmm0
; AVX-RECIP-NEXT: vaddss %xmm0, %xmm1, %xmm0
; AVX-RECIP-NEXT: vmulss {{.*}}(%rip), %xmm0, %xmm0
; AVX-RECIP-NEXT: retq
;
; FMA-RECIP-LABEL: f32_one_step_2:
; FMA-RECIP: # %bb.0:
; FMA-RECIP-NEXT: vrcpss %xmm0, %xmm0, %xmm1
; FMA-RECIP-NEXT: vfnmadd213ss {{.*}}(%rip), %xmm1, %xmm0
; FMA-RECIP-NEXT: vfmadd132ss %xmm1, %xmm1, %xmm0
; FMA-RECIP-NEXT: vmulss {{.*}}(%rip), %xmm0, %xmm0
; FMA-RECIP-NEXT: retq
;
; BTVER2-LABEL: f32_one_step_2:
; BTVER2: # %bb.0:
; BTVER2-NEXT: vmovss {{.*#+}} xmm2 = mem[0],zero,zero,zero sched: [5:1.00]
; BTVER2-NEXT: vrcpss %xmm0, %xmm0, %xmm1 # sched: [2:1.00]
; BTVER2-NEXT: vmulss %xmm1, %xmm0, %xmm0 # sched: [2:1.00]
; BTVER2-NEXT: vsubss %xmm0, %xmm2, %xmm0 # sched: [3:1.00]
; BTVER2-NEXT: vmulss %xmm0, %xmm1, %xmm0 # sched: [2:1.00]
; BTVER2-NEXT: vaddss %xmm0, %xmm1, %xmm0 # sched: [3:1.00]
; BTVER2-NEXT: vmulss {{.*}}(%rip), %xmm0, %xmm0 # sched: [7:1.00]
; BTVER2-NEXT: retq # sched: [4:1.00]
;
; SANDY-LABEL: f32_one_step_2:
; SANDY: # %bb.0:
; SANDY-NEXT: vrcpss %xmm0, %xmm0, %xmm1 # sched: [5:1.00]
; SANDY-NEXT: vmulss %xmm1, %xmm0, %xmm0 # sched: [5:1.00]
This patch completely replaces the scheduling information for the SandyBridge architecture target by modifying the file X86SchedSandyBridge.td located under the X86 Target. The SandyBridge architects have provided us with a more accurate information about each instruction latency, number of uOPs and used ports and I used it to replace the existing estimated SNB instructions scheduling and to add missing scheduling information. Please note that the patch extensively affects the X86 MC instr scheduling for SNB. Also note that this patch will be followed by additional patches for the remaining target architectures HSW, IVB, BDW, SKL and SKX. The updated and extended information about each instruction includes the following details: •static latency of the instruction •number of uOps from which the instruction consists of •all ports used by the instruction's' uOPs For example, the following code dictates that instructions, ADC64mr, ADC8mr, SBB64mr, SBB8mr have a static latency of 9 cycles. Each of these instructions is decoded into 6 micro operations which use ports 4, ports 2 or 3 and port 0 and ports 0 or 1 or 5: def SBWriteResGroup94 : SchedWriteRes<[SBPort4,SBPort23,SBPort0,SBPort015]> { let Latency = 9; let NumMicroOps = 6; let ResourceCycles = [1,2,2,1]; } def: InstRW<[SBWriteResGroup94], (instregex "ADC64mr")>; def: InstRW<[SBWriteResGroup94], (instregex "ADC8mr")>; def: InstRW<[SBWriteResGroup94], (instregex "SBB64mr")>; def: InstRW<[SBWriteResGroup94], (instregex "SBB8mr")>; Note that apart for the header, most of the X86SchedSandyBridge.td file was generated by a script. Reviewers: zvi, chandlerc, RKSimon, m_zuckerman, craig.topper, igorb Differential Revision: https://reviews.llvm.org/D35019#inline-304691 llvm-svn: 307529
2017-07-10 17:53:16 +08:00
; SANDY-NEXT: vmovss {{.*#+}} xmm2 = mem[0],zero,zero,zero sched: [6:0.50]
; SANDY-NEXT: vsubss %xmm0, %xmm2, %xmm0 # sched: [3:1.00]
; SANDY-NEXT: vmulss %xmm0, %xmm1, %xmm0 # sched: [5:1.00]
; SANDY-NEXT: vaddss %xmm0, %xmm1, %xmm0 # sched: [3:1.00]
This patch completely replaces the scheduling information for the SandyBridge architecture target by modifying the file X86SchedSandyBridge.td located under the X86 Target. The SandyBridge architects have provided us with a more accurate information about each instruction latency, number of uOPs and used ports and I used it to replace the existing estimated SNB instructions scheduling and to add missing scheduling information. Please note that the patch extensively affects the X86 MC instr scheduling for SNB. Also note that this patch will be followed by additional patches for the remaining target architectures HSW, IVB, BDW, SKL and SKX. The updated and extended information about each instruction includes the following details: •static latency of the instruction •number of uOps from which the instruction consists of •all ports used by the instruction's' uOPs For example, the following code dictates that instructions, ADC64mr, ADC8mr, SBB64mr, SBB8mr have a static latency of 9 cycles. Each of these instructions is decoded into 6 micro operations which use ports 4, ports 2 or 3 and port 0 and ports 0 or 1 or 5: def SBWriteResGroup94 : SchedWriteRes<[SBPort4,SBPort23,SBPort0,SBPort015]> { let Latency = 9; let NumMicroOps = 6; let ResourceCycles = [1,2,2,1]; } def: InstRW<[SBWriteResGroup94], (instregex "ADC64mr")>; def: InstRW<[SBWriteResGroup94], (instregex "ADC8mr")>; def: InstRW<[SBWriteResGroup94], (instregex "SBB64mr")>; def: InstRW<[SBWriteResGroup94], (instregex "SBB8mr")>; Note that apart for the header, most of the X86SchedSandyBridge.td file was generated by a script. Reviewers: zvi, chandlerc, RKSimon, m_zuckerman, craig.topper, igorb Differential Revision: https://reviews.llvm.org/D35019#inline-304691 llvm-svn: 307529
2017-07-10 17:53:16 +08:00
; SANDY-NEXT: vmulss {{.*}}(%rip), %xmm0, %xmm0 # sched: [11:1.00]
; SANDY-NEXT: retq # sched: [1:1.00]
;
; HASWELL-LABEL: f32_one_step_2:
; HASWELL: # %bb.0:
; HASWELL-NEXT: vrcpss %xmm0, %xmm0, %xmm1 # sched: [5:1.00]
; HASWELL-NEXT: vfnmadd213ss {{.*}}(%rip), %xmm1, %xmm0 # sched: [10:0.50]
; HASWELL-NEXT: vfmadd132ss %xmm1, %xmm1, %xmm0 # sched: [5:0.50]
; HASWELL-NEXT: vmulss {{.*}}(%rip), %xmm0, %xmm0 # sched: [10:0.50]
; HASWELL-NEXT: retq # sched: [7:1.00]
;
; HASWELL-NO-FMA-LABEL: f32_one_step_2:
; HASWELL-NO-FMA: # %bb.0:
; HASWELL-NO-FMA-NEXT: vrcpss %xmm0, %xmm0, %xmm1 # sched: [5:1.00]
; HASWELL-NO-FMA-NEXT: vmulss %xmm1, %xmm0, %xmm0 # sched: [5:0.50]
; HASWELL-NO-FMA-NEXT: vmovss {{.*#+}} xmm2 = mem[0],zero,zero,zero sched: [5:0.50]
; HASWELL-NO-FMA-NEXT: vsubss %xmm0, %xmm2, %xmm0 # sched: [3:1.00]
; HASWELL-NO-FMA-NEXT: vmulss %xmm0, %xmm1, %xmm0 # sched: [5:0.50]
; HASWELL-NO-FMA-NEXT: vaddss %xmm0, %xmm1, %xmm0 # sched: [3:1.00]
; HASWELL-NO-FMA-NEXT: vmulss {{.*}}(%rip), %xmm0, %xmm0 # sched: [10:0.50]
; HASWELL-NO-FMA-NEXT: retq # sched: [7:1.00]
;
; KNL-LABEL: f32_one_step_2:
; KNL: # %bb.0:
; KNL-NEXT: vrcpss %xmm0, %xmm0, %xmm1 # sched: [5:1.00]
; KNL-NEXT: vfnmadd213ss {{.*}}(%rip), %xmm1, %xmm0 # sched: [10:0.50]
; KNL-NEXT: vfmadd132ss %xmm1, %xmm1, %xmm0 # sched: [5:0.50]
; KNL-NEXT: vmulss {{.*}}(%rip), %xmm0, %xmm0 # sched: [10:0.50]
; KNL-NEXT: retq # sched: [7:1.00]
;
; SKX-LABEL: f32_one_step_2:
; SKX: # %bb.0:
; SKX-NEXT: vrcpss %xmm0, %xmm0, %xmm1 # sched: [4:1.00]
; SKX-NEXT: vfnmadd213ss {{.*}}(%rip), %xmm1, %xmm0 # sched: [9:0.50]
; SKX-NEXT: vfmadd132ss %xmm1, %xmm1, %xmm0 # sched: [4:0.33]
; SKX-NEXT: vmulss {{.*}}(%rip), %xmm0, %xmm0 # sched: [9:0.50]
; SKX-NEXT: retq # sched: [7:1.00]
%div = fdiv fast float 3456.0, %x
ret float %div
}
define float @f32_one_step_2_divs(float %x) #1 {
; SSE-LABEL: f32_one_step_2_divs:
; SSE: # %bb.0:
; SSE-NEXT: rcpss %xmm0, %xmm1
; SSE-NEXT: mulss %xmm1, %xmm0
; SSE-NEXT: movss {{.*#+}} xmm2 = mem[0],zero,zero,zero
; SSE-NEXT: subss %xmm0, %xmm2
; SSE-NEXT: mulss %xmm1, %xmm2
; SSE-NEXT: addss %xmm1, %xmm2
; SSE-NEXT: movss {{.*#+}} xmm0 = mem[0],zero,zero,zero
; SSE-NEXT: mulss %xmm2, %xmm0
; SSE-NEXT: mulss %xmm2, %xmm0
; SSE-NEXT: retq
;
; AVX-RECIP-LABEL: f32_one_step_2_divs:
; AVX-RECIP: # %bb.0:
; AVX-RECIP-NEXT: vrcpss %xmm0, %xmm0, %xmm1
; AVX-RECIP-NEXT: vmulss %xmm1, %xmm0, %xmm0
; AVX-RECIP-NEXT: vmovss {{.*#+}} xmm2 = mem[0],zero,zero,zero
; AVX-RECIP-NEXT: vsubss %xmm0, %xmm2, %xmm0
; AVX-RECIP-NEXT: vmulss %xmm0, %xmm1, %xmm0
; AVX-RECIP-NEXT: vaddss %xmm0, %xmm1, %xmm0
; AVX-RECIP-NEXT: vmulss {{.*}}(%rip), %xmm0, %xmm1
; AVX-RECIP-NEXT: vmulss %xmm0, %xmm1, %xmm0
; AVX-RECIP-NEXT: retq
;
; FMA-RECIP-LABEL: f32_one_step_2_divs:
; FMA-RECIP: # %bb.0:
; FMA-RECIP-NEXT: vrcpss %xmm0, %xmm0, %xmm1
; FMA-RECIP-NEXT: vfnmadd213ss {{.*}}(%rip), %xmm1, %xmm0
; FMA-RECIP-NEXT: vfmadd132ss %xmm1, %xmm1, %xmm0
; FMA-RECIP-NEXT: vmulss {{.*}}(%rip), %xmm0, %xmm1
; FMA-RECIP-NEXT: vmulss %xmm0, %xmm1, %xmm0
; FMA-RECIP-NEXT: retq
;
; BTVER2-LABEL: f32_one_step_2_divs:
; BTVER2: # %bb.0:
; BTVER2-NEXT: vmovss {{.*#+}} xmm2 = mem[0],zero,zero,zero sched: [5:1.00]
; BTVER2-NEXT: vrcpss %xmm0, %xmm0, %xmm1 # sched: [2:1.00]
; BTVER2-NEXT: vmulss %xmm1, %xmm0, %xmm0 # sched: [2:1.00]
; BTVER2-NEXT: vsubss %xmm0, %xmm2, %xmm0 # sched: [3:1.00]
; BTVER2-NEXT: vmulss %xmm0, %xmm1, %xmm0 # sched: [2:1.00]
; BTVER2-NEXT: vaddss %xmm0, %xmm1, %xmm0 # sched: [3:1.00]
; BTVER2-NEXT: vmulss {{.*}}(%rip), %xmm0, %xmm1 # sched: [7:1.00]
; BTVER2-NEXT: vmulss %xmm0, %xmm1, %xmm0 # sched: [2:1.00]
; BTVER2-NEXT: retq # sched: [4:1.00]
;
; SANDY-LABEL: f32_one_step_2_divs:
; SANDY: # %bb.0:
; SANDY-NEXT: vrcpss %xmm0, %xmm0, %xmm1 # sched: [5:1.00]
; SANDY-NEXT: vmulss %xmm1, %xmm0, %xmm0 # sched: [5:1.00]
This patch completely replaces the scheduling information for the SandyBridge architecture target by modifying the file X86SchedSandyBridge.td located under the X86 Target. The SandyBridge architects have provided us with a more accurate information about each instruction latency, number of uOPs and used ports and I used it to replace the existing estimated SNB instructions scheduling and to add missing scheduling information. Please note that the patch extensively affects the X86 MC instr scheduling for SNB. Also note that this patch will be followed by additional patches for the remaining target architectures HSW, IVB, BDW, SKL and SKX. The updated and extended information about each instruction includes the following details: •static latency of the instruction •number of uOps from which the instruction consists of •all ports used by the instruction's' uOPs For example, the following code dictates that instructions, ADC64mr, ADC8mr, SBB64mr, SBB8mr have a static latency of 9 cycles. Each of these instructions is decoded into 6 micro operations which use ports 4, ports 2 or 3 and port 0 and ports 0 or 1 or 5: def SBWriteResGroup94 : SchedWriteRes<[SBPort4,SBPort23,SBPort0,SBPort015]> { let Latency = 9; let NumMicroOps = 6; let ResourceCycles = [1,2,2,1]; } def: InstRW<[SBWriteResGroup94], (instregex "ADC64mr")>; def: InstRW<[SBWriteResGroup94], (instregex "ADC8mr")>; def: InstRW<[SBWriteResGroup94], (instregex "SBB64mr")>; def: InstRW<[SBWriteResGroup94], (instregex "SBB8mr")>; Note that apart for the header, most of the X86SchedSandyBridge.td file was generated by a script. Reviewers: zvi, chandlerc, RKSimon, m_zuckerman, craig.topper, igorb Differential Revision: https://reviews.llvm.org/D35019#inline-304691 llvm-svn: 307529
2017-07-10 17:53:16 +08:00
; SANDY-NEXT: vmovss {{.*#+}} xmm2 = mem[0],zero,zero,zero sched: [6:0.50]
; SANDY-NEXT: vsubss %xmm0, %xmm2, %xmm0 # sched: [3:1.00]
; SANDY-NEXT: vmulss %xmm0, %xmm1, %xmm0 # sched: [5:1.00]
; SANDY-NEXT: vaddss %xmm0, %xmm1, %xmm0 # sched: [3:1.00]
This patch completely replaces the scheduling information for the SandyBridge architecture target by modifying the file X86SchedSandyBridge.td located under the X86 Target. The SandyBridge architects have provided us with a more accurate information about each instruction latency, number of uOPs and used ports and I used it to replace the existing estimated SNB instructions scheduling and to add missing scheduling information. Please note that the patch extensively affects the X86 MC instr scheduling for SNB. Also note that this patch will be followed by additional patches for the remaining target architectures HSW, IVB, BDW, SKL and SKX. The updated and extended information about each instruction includes the following details: •static latency of the instruction •number of uOps from which the instruction consists of •all ports used by the instruction's' uOPs For example, the following code dictates that instructions, ADC64mr, ADC8mr, SBB64mr, SBB8mr have a static latency of 9 cycles. Each of these instructions is decoded into 6 micro operations which use ports 4, ports 2 or 3 and port 0 and ports 0 or 1 or 5: def SBWriteResGroup94 : SchedWriteRes<[SBPort4,SBPort23,SBPort0,SBPort015]> { let Latency = 9; let NumMicroOps = 6; let ResourceCycles = [1,2,2,1]; } def: InstRW<[SBWriteResGroup94], (instregex "ADC64mr")>; def: InstRW<[SBWriteResGroup94], (instregex "ADC8mr")>; def: InstRW<[SBWriteResGroup94], (instregex "SBB64mr")>; def: InstRW<[SBWriteResGroup94], (instregex "SBB8mr")>; Note that apart for the header, most of the X86SchedSandyBridge.td file was generated by a script. Reviewers: zvi, chandlerc, RKSimon, m_zuckerman, craig.topper, igorb Differential Revision: https://reviews.llvm.org/D35019#inline-304691 llvm-svn: 307529
2017-07-10 17:53:16 +08:00
; SANDY-NEXT: vmulss {{.*}}(%rip), %xmm0, %xmm1 # sched: [11:1.00]
; SANDY-NEXT: vmulss %xmm0, %xmm1, %xmm0 # sched: [5:1.00]
This patch completely replaces the scheduling information for the SandyBridge architecture target by modifying the file X86SchedSandyBridge.td located under the X86 Target. The SandyBridge architects have provided us with a more accurate information about each instruction latency, number of uOPs and used ports and I used it to replace the existing estimated SNB instructions scheduling and to add missing scheduling information. Please note that the patch extensively affects the X86 MC instr scheduling for SNB. Also note that this patch will be followed by additional patches for the remaining target architectures HSW, IVB, BDW, SKL and SKX. The updated and extended information about each instruction includes the following details: •static latency of the instruction •number of uOps from which the instruction consists of •all ports used by the instruction's' uOPs For example, the following code dictates that instructions, ADC64mr, ADC8mr, SBB64mr, SBB8mr have a static latency of 9 cycles. Each of these instructions is decoded into 6 micro operations which use ports 4, ports 2 or 3 and port 0 and ports 0 or 1 or 5: def SBWriteResGroup94 : SchedWriteRes<[SBPort4,SBPort23,SBPort0,SBPort015]> { let Latency = 9; let NumMicroOps = 6; let ResourceCycles = [1,2,2,1]; } def: InstRW<[SBWriteResGroup94], (instregex "ADC64mr")>; def: InstRW<[SBWriteResGroup94], (instregex "ADC8mr")>; def: InstRW<[SBWriteResGroup94], (instregex "SBB64mr")>; def: InstRW<[SBWriteResGroup94], (instregex "SBB8mr")>; Note that apart for the header, most of the X86SchedSandyBridge.td file was generated by a script. Reviewers: zvi, chandlerc, RKSimon, m_zuckerman, craig.topper, igorb Differential Revision: https://reviews.llvm.org/D35019#inline-304691 llvm-svn: 307529
2017-07-10 17:53:16 +08:00
; SANDY-NEXT: retq # sched: [1:1.00]
;
; HASWELL-LABEL: f32_one_step_2_divs:
; HASWELL: # %bb.0:
; HASWELL-NEXT: vrcpss %xmm0, %xmm0, %xmm1 # sched: [5:1.00]
; HASWELL-NEXT: vfnmadd213ss {{.*}}(%rip), %xmm1, %xmm0 # sched: [10:0.50]
; HASWELL-NEXT: vfmadd132ss %xmm1, %xmm1, %xmm0 # sched: [5:0.50]
; HASWELL-NEXT: vmulss {{.*}}(%rip), %xmm0, %xmm1 # sched: [10:0.50]
; HASWELL-NEXT: vmulss %xmm0, %xmm1, %xmm0 # sched: [5:0.50]
; HASWELL-NEXT: retq # sched: [7:1.00]
;
; HASWELL-NO-FMA-LABEL: f32_one_step_2_divs:
; HASWELL-NO-FMA: # %bb.0:
; HASWELL-NO-FMA-NEXT: vrcpss %xmm0, %xmm0, %xmm1 # sched: [5:1.00]
; HASWELL-NO-FMA-NEXT: vmulss %xmm1, %xmm0, %xmm0 # sched: [5:0.50]
; HASWELL-NO-FMA-NEXT: vmovss {{.*#+}} xmm2 = mem[0],zero,zero,zero sched: [5:0.50]
; HASWELL-NO-FMA-NEXT: vsubss %xmm0, %xmm2, %xmm0 # sched: [3:1.00]
; HASWELL-NO-FMA-NEXT: vmulss %xmm0, %xmm1, %xmm0 # sched: [5:0.50]
; HASWELL-NO-FMA-NEXT: vaddss %xmm0, %xmm1, %xmm0 # sched: [3:1.00]
; HASWELL-NO-FMA-NEXT: vmulss {{.*}}(%rip), %xmm0, %xmm1 # sched: [10:0.50]
; HASWELL-NO-FMA-NEXT: vmulss %xmm0, %xmm1, %xmm0 # sched: [5:0.50]
; HASWELL-NO-FMA-NEXT: retq # sched: [7:1.00]
;
; KNL-LABEL: f32_one_step_2_divs:
; KNL: # %bb.0:
; KNL-NEXT: vrcpss %xmm0, %xmm0, %xmm1 # sched: [5:1.00]
; KNL-NEXT: vfnmadd213ss {{.*}}(%rip), %xmm1, %xmm0 # sched: [10:0.50]
; KNL-NEXT: vfmadd132ss %xmm1, %xmm1, %xmm0 # sched: [5:0.50]
; KNL-NEXT: vmulss {{.*}}(%rip), %xmm0, %xmm1 # sched: [10:0.50]
; KNL-NEXT: vmulss %xmm0, %xmm1, %xmm0 # sched: [5:0.50]
; KNL-NEXT: retq # sched: [7:1.00]
;
; SKX-LABEL: f32_one_step_2_divs:
; SKX: # %bb.0:
; SKX-NEXT: vrcpss %xmm0, %xmm0, %xmm1 # sched: [4:1.00]
; SKX-NEXT: vfnmadd213ss {{.*}}(%rip), %xmm1, %xmm0 # sched: [9:0.50]
; SKX-NEXT: vfmadd132ss %xmm1, %xmm1, %xmm0 # sched: [4:0.33]
; SKX-NEXT: vmulss {{.*}}(%rip), %xmm0, %xmm1 # sched: [9:0.50]
; SKX-NEXT: vmulss %xmm0, %xmm1, %xmm0 # sched: [4:0.33]
; SKX-NEXT: retq # sched: [7:1.00]
%div = fdiv fast float 3456.0, %x
%div2 = fdiv fast float %div, %x
ret float %div2
}
define float @f32_two_step_2(float %x) #2 {
; SSE-LABEL: f32_two_step_2:
; SSE: # %bb.0:
; SSE-NEXT: rcpss %xmm0, %xmm2
; SSE-NEXT: movaps %xmm0, %xmm3
; SSE-NEXT: mulss %xmm2, %xmm3
; SSE-NEXT: movss {{.*#+}} xmm1 = mem[0],zero,zero,zero
; SSE-NEXT: movaps %xmm1, %xmm4
; SSE-NEXT: subss %xmm3, %xmm4
; SSE-NEXT: mulss %xmm2, %xmm4
; SSE-NEXT: addss %xmm2, %xmm4
; SSE-NEXT: mulss %xmm4, %xmm0
; SSE-NEXT: subss %xmm0, %xmm1
; SSE-NEXT: mulss %xmm4, %xmm1
; SSE-NEXT: addss %xmm4, %xmm1
; SSE-NEXT: mulss {{.*}}(%rip), %xmm1
; SSE-NEXT: movaps %xmm1, %xmm0
; SSE-NEXT: retq
;
; AVX-RECIP-LABEL: f32_two_step_2:
; AVX-RECIP: # %bb.0:
; AVX-RECIP-NEXT: vrcpss %xmm0, %xmm0, %xmm1
; AVX-RECIP-NEXT: vmulss %xmm1, %xmm0, %xmm2
; AVX-RECIP-NEXT: vmovss {{.*#+}} xmm3 = mem[0],zero,zero,zero
; AVX-RECIP-NEXT: vsubss %xmm2, %xmm3, %xmm2
; AVX-RECIP-NEXT: vmulss %xmm2, %xmm1, %xmm2
; AVX-RECIP-NEXT: vaddss %xmm2, %xmm1, %xmm1
; AVX-RECIP-NEXT: vmulss %xmm1, %xmm0, %xmm0
; AVX-RECIP-NEXT: vsubss %xmm0, %xmm3, %xmm0
; AVX-RECIP-NEXT: vmulss %xmm0, %xmm1, %xmm0
; AVX-RECIP-NEXT: vaddss %xmm0, %xmm1, %xmm0
; AVX-RECIP-NEXT: vmulss {{.*}}(%rip), %xmm0, %xmm0
; AVX-RECIP-NEXT: retq
;
; FMA-RECIP-LABEL: f32_two_step_2:
; FMA-RECIP: # %bb.0:
; FMA-RECIP-NEXT: vrcpss %xmm0, %xmm0, %xmm1
; FMA-RECIP-NEXT: vmovss {{.*#+}} xmm2 = mem[0],zero,zero,zero
; FMA-RECIP-NEXT: vmovaps %xmm1, %xmm3
; FMA-RECIP-NEXT: vfnmadd213ss %xmm2, %xmm0, %xmm3
; FMA-RECIP-NEXT: vfmadd132ss %xmm1, %xmm1, %xmm3
; FMA-RECIP-NEXT: vfnmadd213ss %xmm2, %xmm3, %xmm0
; FMA-RECIP-NEXT: vfmadd132ss %xmm3, %xmm3, %xmm0
; FMA-RECIP-NEXT: vmulss {{.*}}(%rip), %xmm0, %xmm0
; FMA-RECIP-NEXT: retq
;
; BTVER2-LABEL: f32_two_step_2:
; BTVER2: # %bb.0:
; BTVER2-NEXT: vmovss {{.*#+}} xmm3 = mem[0],zero,zero,zero sched: [5:1.00]
; BTVER2-NEXT: vrcpss %xmm0, %xmm0, %xmm1 # sched: [2:1.00]
; BTVER2-NEXT: vmulss %xmm1, %xmm0, %xmm2 # sched: [2:1.00]
; BTVER2-NEXT: vsubss %xmm2, %xmm3, %xmm2 # sched: [3:1.00]
; BTVER2-NEXT: vmulss %xmm2, %xmm1, %xmm2 # sched: [2:1.00]
; BTVER2-NEXT: vaddss %xmm2, %xmm1, %xmm1 # sched: [3:1.00]
; BTVER2-NEXT: vmulss %xmm1, %xmm0, %xmm0 # sched: [2:1.00]
; BTVER2-NEXT: vsubss %xmm0, %xmm3, %xmm0 # sched: [3:1.00]
; BTVER2-NEXT: vmulss %xmm0, %xmm1, %xmm0 # sched: [2:1.00]
; BTVER2-NEXT: vaddss %xmm0, %xmm1, %xmm0 # sched: [3:1.00]
; BTVER2-NEXT: vmulss {{.*}}(%rip), %xmm0, %xmm0 # sched: [7:1.00]
; BTVER2-NEXT: retq # sched: [4:1.00]
;
; SANDY-LABEL: f32_two_step_2:
; SANDY: # %bb.0:
; SANDY-NEXT: vrcpss %xmm0, %xmm0, %xmm1 # sched: [5:1.00]
; SANDY-NEXT: vmulss %xmm1, %xmm0, %xmm2 # sched: [5:1.00]
This patch completely replaces the scheduling information for the SandyBridge architecture target by modifying the file X86SchedSandyBridge.td located under the X86 Target. The SandyBridge architects have provided us with a more accurate information about each instruction latency, number of uOPs and used ports and I used it to replace the existing estimated SNB instructions scheduling and to add missing scheduling information. Please note that the patch extensively affects the X86 MC instr scheduling for SNB. Also note that this patch will be followed by additional patches for the remaining target architectures HSW, IVB, BDW, SKL and SKX. The updated and extended information about each instruction includes the following details: •static latency of the instruction •number of uOps from which the instruction consists of •all ports used by the instruction's' uOPs For example, the following code dictates that instructions, ADC64mr, ADC8mr, SBB64mr, SBB8mr have a static latency of 9 cycles. Each of these instructions is decoded into 6 micro operations which use ports 4, ports 2 or 3 and port 0 and ports 0 or 1 or 5: def SBWriteResGroup94 : SchedWriteRes<[SBPort4,SBPort23,SBPort0,SBPort015]> { let Latency = 9; let NumMicroOps = 6; let ResourceCycles = [1,2,2,1]; } def: InstRW<[SBWriteResGroup94], (instregex "ADC64mr")>; def: InstRW<[SBWriteResGroup94], (instregex "ADC8mr")>; def: InstRW<[SBWriteResGroup94], (instregex "SBB64mr")>; def: InstRW<[SBWriteResGroup94], (instregex "SBB8mr")>; Note that apart for the header, most of the X86SchedSandyBridge.td file was generated by a script. Reviewers: zvi, chandlerc, RKSimon, m_zuckerman, craig.topper, igorb Differential Revision: https://reviews.llvm.org/D35019#inline-304691 llvm-svn: 307529
2017-07-10 17:53:16 +08:00
; SANDY-NEXT: vmovss {{.*#+}} xmm3 = mem[0],zero,zero,zero sched: [6:0.50]
; SANDY-NEXT: vsubss %xmm2, %xmm3, %xmm2 # sched: [3:1.00]
; SANDY-NEXT: vmulss %xmm2, %xmm1, %xmm2 # sched: [5:1.00]
; SANDY-NEXT: vaddss %xmm2, %xmm1, %xmm1 # sched: [3:1.00]
; SANDY-NEXT: vmulss %xmm1, %xmm0, %xmm0 # sched: [5:1.00]
; SANDY-NEXT: vsubss %xmm0, %xmm3, %xmm0 # sched: [3:1.00]
; SANDY-NEXT: vmulss %xmm0, %xmm1, %xmm0 # sched: [5:1.00]
; SANDY-NEXT: vaddss %xmm0, %xmm1, %xmm0 # sched: [3:1.00]
This patch completely replaces the scheduling information for the SandyBridge architecture target by modifying the file X86SchedSandyBridge.td located under the X86 Target. The SandyBridge architects have provided us with a more accurate information about each instruction latency, number of uOPs and used ports and I used it to replace the existing estimated SNB instructions scheduling and to add missing scheduling information. Please note that the patch extensively affects the X86 MC instr scheduling for SNB. Also note that this patch will be followed by additional patches for the remaining target architectures HSW, IVB, BDW, SKL and SKX. The updated and extended information about each instruction includes the following details: •static latency of the instruction •number of uOps from which the instruction consists of •all ports used by the instruction's' uOPs For example, the following code dictates that instructions, ADC64mr, ADC8mr, SBB64mr, SBB8mr have a static latency of 9 cycles. Each of these instructions is decoded into 6 micro operations which use ports 4, ports 2 or 3 and port 0 and ports 0 or 1 or 5: def SBWriteResGroup94 : SchedWriteRes<[SBPort4,SBPort23,SBPort0,SBPort015]> { let Latency = 9; let NumMicroOps = 6; let ResourceCycles = [1,2,2,1]; } def: InstRW<[SBWriteResGroup94], (instregex "ADC64mr")>; def: InstRW<[SBWriteResGroup94], (instregex "ADC8mr")>; def: InstRW<[SBWriteResGroup94], (instregex "SBB64mr")>; def: InstRW<[SBWriteResGroup94], (instregex "SBB8mr")>; Note that apart for the header, most of the X86SchedSandyBridge.td file was generated by a script. Reviewers: zvi, chandlerc, RKSimon, m_zuckerman, craig.topper, igorb Differential Revision: https://reviews.llvm.org/D35019#inline-304691 llvm-svn: 307529
2017-07-10 17:53:16 +08:00
; SANDY-NEXT: vmulss {{.*}}(%rip), %xmm0, %xmm0 # sched: [11:1.00]
; SANDY-NEXT: retq # sched: [1:1.00]
;
; HASWELL-LABEL: f32_two_step_2:
; HASWELL: # %bb.0:
; HASWELL-NEXT: vrcpss %xmm0, %xmm0, %xmm1 # sched: [5:1.00]
; HASWELL-NEXT: vmovss {{.*#+}} xmm2 = mem[0],zero,zero,zero sched: [5:0.50]
; HASWELL-NEXT: vmovaps %xmm1, %xmm3 # sched: [1:1.00]
; HASWELL-NEXT: vfnmadd213ss %xmm2, %xmm0, %xmm3 # sched: [5:0.50]
; HASWELL-NEXT: vfmadd132ss %xmm1, %xmm1, %xmm3 # sched: [5:0.50]
; HASWELL-NEXT: vfnmadd213ss %xmm2, %xmm3, %xmm0 # sched: [5:0.50]
; HASWELL-NEXT: vfmadd132ss %xmm3, %xmm3, %xmm0 # sched: [5:0.50]
; HASWELL-NEXT: vmulss {{.*}}(%rip), %xmm0, %xmm0 # sched: [10:0.50]
; HASWELL-NEXT: retq # sched: [7:1.00]
;
; HASWELL-NO-FMA-LABEL: f32_two_step_2:
; HASWELL-NO-FMA: # %bb.0:
; HASWELL-NO-FMA-NEXT: vrcpss %xmm0, %xmm0, %xmm1 # sched: [5:1.00]
; HASWELL-NO-FMA-NEXT: vmulss %xmm1, %xmm0, %xmm2 # sched: [5:0.50]
; HASWELL-NO-FMA-NEXT: vmovss {{.*#+}} xmm3 = mem[0],zero,zero,zero sched: [5:0.50]
; HASWELL-NO-FMA-NEXT: vsubss %xmm2, %xmm3, %xmm2 # sched: [3:1.00]
; HASWELL-NO-FMA-NEXT: vmulss %xmm2, %xmm1, %xmm2 # sched: [5:0.50]
; HASWELL-NO-FMA-NEXT: vaddss %xmm2, %xmm1, %xmm1 # sched: [3:1.00]
; HASWELL-NO-FMA-NEXT: vmulss %xmm1, %xmm0, %xmm0 # sched: [5:0.50]
; HASWELL-NO-FMA-NEXT: vsubss %xmm0, %xmm3, %xmm0 # sched: [3:1.00]
; HASWELL-NO-FMA-NEXT: vmulss %xmm0, %xmm1, %xmm0 # sched: [5:0.50]
; HASWELL-NO-FMA-NEXT: vaddss %xmm0, %xmm1, %xmm0 # sched: [3:1.00]
; HASWELL-NO-FMA-NEXT: vmulss {{.*}}(%rip), %xmm0, %xmm0 # sched: [10:0.50]
; HASWELL-NO-FMA-NEXT: retq # sched: [7:1.00]
;
; KNL-LABEL: f32_two_step_2:
; KNL: # %bb.0:
; KNL-NEXT: vrcpss %xmm0, %xmm0, %xmm1 # sched: [5:1.00]
; KNL-NEXT: vmovss {{.*#+}} xmm2 = mem[0],zero,zero,zero sched: [5:0.50]
; KNL-NEXT: vmovaps %xmm1, %xmm3 # sched: [1:1.00]
; KNL-NEXT: vfnmadd213ss %xmm2, %xmm0, %xmm3 # sched: [5:0.50]
; KNL-NEXT: vfmadd132ss %xmm1, %xmm1, %xmm3 # sched: [5:0.50]
; KNL-NEXT: vfnmadd213ss %xmm2, %xmm3, %xmm0 # sched: [5:0.50]
; KNL-NEXT: vfmadd132ss %xmm3, %xmm3, %xmm0 # sched: [5:0.50]
; KNL-NEXT: vmulss {{.*}}(%rip), %xmm0, %xmm0 # sched: [10:0.50]
; KNL-NEXT: retq # sched: [7:1.00]
;
; SKX-LABEL: f32_two_step_2:
; SKX: # %bb.0:
; SKX-NEXT: vmovss {{.*#+}} xmm1 = mem[0],zero,zero,zero sched: [5:0.50]
; SKX-NEXT: vrcpss %xmm0, %xmm0, %xmm2 # sched: [4:1.00]
; SKX-NEXT: vmovaps %xmm2, %xmm3 # sched: [1:0.33]
; SKX-NEXT: vfnmadd213ss %xmm1, %xmm0, %xmm3 # sched: [4:0.33]
; SKX-NEXT: vfmadd132ss %xmm2, %xmm2, %xmm3 # sched: [4:0.33]
; SKX-NEXT: vfnmadd213ss %xmm1, %xmm3, %xmm0 # sched: [4:0.33]
; SKX-NEXT: vfmadd132ss %xmm3, %xmm3, %xmm0 # sched: [4:0.33]
; SKX-NEXT: vmulss {{.*}}(%rip), %xmm0, %xmm0 # sched: [9:0.50]
; SKX-NEXT: retq # sched: [7:1.00]
%div = fdiv fast float 6789.0, %x
ret float %div
}
define <4 x float> @v4f32_one_step2(<4 x float> %x) #1 {
; SSE-LABEL: v4f32_one_step2:
; SSE: # %bb.0:
; SSE-NEXT: rcpps %xmm0, %xmm2
; SSE-NEXT: mulps %xmm2, %xmm0
; SSE-NEXT: movaps {{.*#+}} xmm1 = [1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00]
; SSE-NEXT: subps %xmm0, %xmm1
; SSE-NEXT: mulps %xmm2, %xmm1
; SSE-NEXT: addps %xmm2, %xmm1
; SSE-NEXT: mulps {{.*}}(%rip), %xmm1
; SSE-NEXT: movaps %xmm1, %xmm0
; SSE-NEXT: retq
;
; AVX-RECIP-LABEL: v4f32_one_step2:
; AVX-RECIP: # %bb.0:
; AVX-RECIP-NEXT: vrcpps %xmm0, %xmm1
; AVX-RECIP-NEXT: vmulps %xmm1, %xmm0, %xmm0
; AVX-RECIP-NEXT: vmovaps {{.*#+}} xmm2 = [1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00]
; AVX-RECIP-NEXT: vsubps %xmm0, %xmm2, %xmm0
; AVX-RECIP-NEXT: vmulps %xmm0, %xmm1, %xmm0
; AVX-RECIP-NEXT: vaddps %xmm0, %xmm1, %xmm0
; AVX-RECIP-NEXT: vmulps {{.*}}(%rip), %xmm0, %xmm0
; AVX-RECIP-NEXT: retq
;
; FMA-RECIP-LABEL: v4f32_one_step2:
; FMA-RECIP: # %bb.0:
; FMA-RECIP-NEXT: vrcpps %xmm0, %xmm1
; FMA-RECIP-NEXT: vfnmadd213ps {{.*}}(%rip), %xmm1, %xmm0
; FMA-RECIP-NEXT: vfmadd132ps %xmm1, %xmm1, %xmm0
; FMA-RECIP-NEXT: vmulps {{.*}}(%rip), %xmm0, %xmm0
; FMA-RECIP-NEXT: retq
;
; BTVER2-LABEL: v4f32_one_step2:
; BTVER2: # %bb.0:
; BTVER2-NEXT: vmovaps {{.*#+}} xmm2 = [1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00] sched: [5:1.00]
; BTVER2-NEXT: vrcpps %xmm0, %xmm1 # sched: [2:1.00]
; BTVER2-NEXT: vmulps %xmm1, %xmm0, %xmm0 # sched: [2:1.00]
; BTVER2-NEXT: vsubps %xmm0, %xmm2, %xmm0 # sched: [3:1.00]
; BTVER2-NEXT: vmulps %xmm0, %xmm1, %xmm0 # sched: [2:1.00]
; BTVER2-NEXT: vaddps %xmm0, %xmm1, %xmm0 # sched: [3:1.00]
; BTVER2-NEXT: vmulps {{.*}}(%rip), %xmm0, %xmm0 # sched: [7:1.00]
; BTVER2-NEXT: retq # sched: [4:1.00]
;
; SANDY-LABEL: v4f32_one_step2:
; SANDY: # %bb.0:
; SANDY-NEXT: vrcpps %xmm0, %xmm1 # sched: [5:1.00]
; SANDY-NEXT: vmulps %xmm1, %xmm0, %xmm0 # sched: [5:1.00]
This patch completely replaces the scheduling information for the SandyBridge architecture target by modifying the file X86SchedSandyBridge.td located under the X86 Target. The SandyBridge architects have provided us with a more accurate information about each instruction latency, number of uOPs and used ports and I used it to replace the existing estimated SNB instructions scheduling and to add missing scheduling information. Please note that the patch extensively affects the X86 MC instr scheduling for SNB. Also note that this patch will be followed by additional patches for the remaining target architectures HSW, IVB, BDW, SKL and SKX. The updated and extended information about each instruction includes the following details: •static latency of the instruction •number of uOps from which the instruction consists of •all ports used by the instruction's' uOPs For example, the following code dictates that instructions, ADC64mr, ADC8mr, SBB64mr, SBB8mr have a static latency of 9 cycles. Each of these instructions is decoded into 6 micro operations which use ports 4, ports 2 or 3 and port 0 and ports 0 or 1 or 5: def SBWriteResGroup94 : SchedWriteRes<[SBPort4,SBPort23,SBPort0,SBPort015]> { let Latency = 9; let NumMicroOps = 6; let ResourceCycles = [1,2,2,1]; } def: InstRW<[SBWriteResGroup94], (instregex "ADC64mr")>; def: InstRW<[SBWriteResGroup94], (instregex "ADC8mr")>; def: InstRW<[SBWriteResGroup94], (instregex "SBB64mr")>; def: InstRW<[SBWriteResGroup94], (instregex "SBB8mr")>; Note that apart for the header, most of the X86SchedSandyBridge.td file was generated by a script. Reviewers: zvi, chandlerc, RKSimon, m_zuckerman, craig.topper, igorb Differential Revision: https://reviews.llvm.org/D35019#inline-304691 llvm-svn: 307529
2017-07-10 17:53:16 +08:00
; SANDY-NEXT: vmovaps {{.*#+}} xmm2 = [1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00] sched: [6:0.50]
; SANDY-NEXT: vsubps %xmm0, %xmm2, %xmm0 # sched: [3:1.00]
; SANDY-NEXT: vmulps %xmm0, %xmm1, %xmm0 # sched: [5:1.00]
; SANDY-NEXT: vaddps %xmm0, %xmm1, %xmm0 # sched: [3:1.00]
This patch completely replaces the scheduling information for the SandyBridge architecture target by modifying the file X86SchedSandyBridge.td located under the X86 Target. The SandyBridge architects have provided us with a more accurate information about each instruction latency, number of uOPs and used ports and I used it to replace the existing estimated SNB instructions scheduling and to add missing scheduling information. Please note that the patch extensively affects the X86 MC instr scheduling for SNB. Also note that this patch will be followed by additional patches for the remaining target architectures HSW, IVB, BDW, SKL and SKX. The updated and extended information about each instruction includes the following details: •static latency of the instruction •number of uOps from which the instruction consists of •all ports used by the instruction's' uOPs For example, the following code dictates that instructions, ADC64mr, ADC8mr, SBB64mr, SBB8mr have a static latency of 9 cycles. Each of these instructions is decoded into 6 micro operations which use ports 4, ports 2 or 3 and port 0 and ports 0 or 1 or 5: def SBWriteResGroup94 : SchedWriteRes<[SBPort4,SBPort23,SBPort0,SBPort015]> { let Latency = 9; let NumMicroOps = 6; let ResourceCycles = [1,2,2,1]; } def: InstRW<[SBWriteResGroup94], (instregex "ADC64mr")>; def: InstRW<[SBWriteResGroup94], (instregex "ADC8mr")>; def: InstRW<[SBWriteResGroup94], (instregex "SBB64mr")>; def: InstRW<[SBWriteResGroup94], (instregex "SBB8mr")>; Note that apart for the header, most of the X86SchedSandyBridge.td file was generated by a script. Reviewers: zvi, chandlerc, RKSimon, m_zuckerman, craig.topper, igorb Differential Revision: https://reviews.llvm.org/D35019#inline-304691 llvm-svn: 307529
2017-07-10 17:53:16 +08:00
; SANDY-NEXT: vmulps {{.*}}(%rip), %xmm0, %xmm0 # sched: [11:1.00]
; SANDY-NEXT: retq # sched: [1:1.00]
;
; HASWELL-LABEL: v4f32_one_step2:
; HASWELL: # %bb.0:
; HASWELL-NEXT: vrcpps %xmm0, %xmm1 # sched: [5:1.00]
; HASWELL-NEXT: vbroadcastss {{.*#+}} xmm2 = [1,1,1,1] sched: [6:0.50]
; HASWELL-NEXT: vfnmadd213ps %xmm2, %xmm1, %xmm0 # sched: [5:0.50]
; HASWELL-NEXT: vfmadd132ps %xmm1, %xmm1, %xmm0 # sched: [5:0.50]
; HASWELL-NEXT: vmulps {{.*}}(%rip), %xmm0, %xmm0 # sched: [11:0.50]
; HASWELL-NEXT: retq # sched: [7:1.00]
;
; HASWELL-NO-FMA-LABEL: v4f32_one_step2:
; HASWELL-NO-FMA: # %bb.0:
; HASWELL-NO-FMA-NEXT: vrcpps %xmm0, %xmm1 # sched: [5:1.00]
; HASWELL-NO-FMA-NEXT: vmulps %xmm1, %xmm0, %xmm0 # sched: [5:0.50]
; HASWELL-NO-FMA-NEXT: vbroadcastss {{.*#+}} xmm2 = [1,1,1,1] sched: [6:0.50]
; HASWELL-NO-FMA-NEXT: vsubps %xmm0, %xmm2, %xmm0 # sched: [3:1.00]
; HASWELL-NO-FMA-NEXT: vmulps %xmm0, %xmm1, %xmm0 # sched: [5:0.50]
; HASWELL-NO-FMA-NEXT: vaddps %xmm0, %xmm1, %xmm0 # sched: [3:1.00]
; HASWELL-NO-FMA-NEXT: vmulps {{.*}}(%rip), %xmm0, %xmm0 # sched: [11:0.50]
; HASWELL-NO-FMA-NEXT: retq # sched: [7:1.00]
;
; KNL-LABEL: v4f32_one_step2:
; KNL: # %bb.0:
; KNL-NEXT: vrcpps %xmm0, %xmm1 # sched: [5:1.00]
; KNL-NEXT: vbroadcastss {{.*#+}} xmm2 = [1,1,1,1] sched: [6:0.50]
; KNL-NEXT: vfnmadd213ps %xmm2, %xmm1, %xmm0 # sched: [5:0.50]
; KNL-NEXT: vfmadd132ps %xmm1, %xmm1, %xmm0 # sched: [5:0.50]
; KNL-NEXT: vmulps {{.*}}(%rip), %xmm0, %xmm0 # sched: [11:0.50]
; KNL-NEXT: retq # sched: [7:1.00]
;
; SKX-LABEL: v4f32_one_step2:
; SKX: # %bb.0:
[X86] Don't use RCP14 and RSQRT14 for reciprocal estimations or for legacy SSE rcp/rsqrt intrinsics when AVX512 features are enabled. Summary: AVX512 added RCP14 and RSQRT instructions which improve accuracy over the legacy RCP and RSQRT instruction, but not enough accuracy to remove the need for a Newton Raphson refinement. Currently we use these new instructions for the legacy packed SSE instrinics, but not the scalar instrinsics. And we use it for fast math optimization of division and reciprocal sqrt. I think switching the legacy instrinsics maybe surprising to the user since it changes the answer based on which processor you're using regardless of any fastmath settings. It's also weird that we did something different between scalar and packed. As far at the reciprocal estimation, I think it creates unnecessary deltas in our output behavior (and prevents EVEX->VEX). A little playing around with gcc and icc and godbolt suggest they don't change which instructions they use here. This patch adds new X86ISD nodes for the RCP14/RSQRT14 and uses those for the new intrinsics. Leaving the old intrinsics to use the old instructions. Going forward I think our focus should be on -Supporting 512-bit vectors, which will have to use the RCP14/RSQRT14. -Using RSQRT28/RCP28 to remove the Newton Raphson step on processors with AVX512ER -Supporting double precision. Reviewers: zvi, DavidKreitzer, RKSimon Reviewed By: RKSimon Subscribers: llvm-commits Differential Revision: https://reviews.llvm.org/D39583 llvm-svn: 317413
2017-11-05 02:26:41 +08:00
; SKX-NEXT: vrcpps %xmm0, %xmm1 # sched: [4:1.00]
; SKX-NEXT: vfnmadd213ps {{.*}}(%rip){1to4}, %xmm1, %xmm0 # sched: [10:0.50]
; SKX-NEXT: vfmadd132ps %xmm1, %xmm1, %xmm0 # sched: [4:0.33]
; SKX-NEXT: vmulps {{.*}}(%rip), %xmm0, %xmm0 # sched: [10:0.50]
; SKX-NEXT: retq # sched: [7:1.00]
%div = fdiv fast <4 x float> <float 1.0, float 2.0, float 3.0, float 4.0>, %x
ret <4 x float> %div
}
define <4 x float> @v4f32_one_step_2_divs(<4 x float> %x) #1 {
; SSE-LABEL: v4f32_one_step_2_divs:
; SSE: # %bb.0:
; SSE-NEXT: rcpps %xmm0, %xmm1
; SSE-NEXT: mulps %xmm1, %xmm0
; SSE-NEXT: movaps {{.*#+}} xmm2 = [1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00]
; SSE-NEXT: subps %xmm0, %xmm2
; SSE-NEXT: mulps %xmm1, %xmm2
; SSE-NEXT: addps %xmm1, %xmm2
; SSE-NEXT: movaps {{.*#+}} xmm0 = [1.000000e+00,2.000000e+00,3.000000e+00,4.000000e+00]
; SSE-NEXT: mulps %xmm2, %xmm0
; SSE-NEXT: mulps %xmm2, %xmm0
; SSE-NEXT: retq
;
; AVX-RECIP-LABEL: v4f32_one_step_2_divs:
; AVX-RECIP: # %bb.0:
; AVX-RECIP-NEXT: vrcpps %xmm0, %xmm1
; AVX-RECIP-NEXT: vmulps %xmm1, %xmm0, %xmm0
; AVX-RECIP-NEXT: vmovaps {{.*#+}} xmm2 = [1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00]
; AVX-RECIP-NEXT: vsubps %xmm0, %xmm2, %xmm0
; AVX-RECIP-NEXT: vmulps %xmm0, %xmm1, %xmm0
; AVX-RECIP-NEXT: vaddps %xmm0, %xmm1, %xmm0
; AVX-RECIP-NEXT: vmulps {{.*}}(%rip), %xmm0, %xmm1
; AVX-RECIP-NEXT: vmulps %xmm0, %xmm1, %xmm0
; AVX-RECIP-NEXT: retq
;
; FMA-RECIP-LABEL: v4f32_one_step_2_divs:
; FMA-RECIP: # %bb.0:
; FMA-RECIP-NEXT: vrcpps %xmm0, %xmm1
; FMA-RECIP-NEXT: vfnmadd213ps {{.*}}(%rip), %xmm1, %xmm0
; FMA-RECIP-NEXT: vfmadd132ps %xmm1, %xmm1, %xmm0
; FMA-RECIP-NEXT: vmulps {{.*}}(%rip), %xmm0, %xmm1
; FMA-RECIP-NEXT: vmulps %xmm0, %xmm1, %xmm0
; FMA-RECIP-NEXT: retq
;
; BTVER2-LABEL: v4f32_one_step_2_divs:
; BTVER2: # %bb.0:
; BTVER2-NEXT: vmovaps {{.*#+}} xmm2 = [1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00] sched: [5:1.00]
; BTVER2-NEXT: vrcpps %xmm0, %xmm1 # sched: [2:1.00]
; BTVER2-NEXT: vmulps %xmm1, %xmm0, %xmm0 # sched: [2:1.00]
; BTVER2-NEXT: vsubps %xmm0, %xmm2, %xmm0 # sched: [3:1.00]
; BTVER2-NEXT: vmulps %xmm0, %xmm1, %xmm0 # sched: [2:1.00]
; BTVER2-NEXT: vaddps %xmm0, %xmm1, %xmm0 # sched: [3:1.00]
; BTVER2-NEXT: vmulps {{.*}}(%rip), %xmm0, %xmm1 # sched: [7:1.00]
; BTVER2-NEXT: vmulps %xmm0, %xmm1, %xmm0 # sched: [2:1.00]
; BTVER2-NEXT: retq # sched: [4:1.00]
;
; SANDY-LABEL: v4f32_one_step_2_divs:
; SANDY: # %bb.0:
; SANDY-NEXT: vrcpps %xmm0, %xmm1 # sched: [5:1.00]
; SANDY-NEXT: vmulps %xmm1, %xmm0, %xmm0 # sched: [5:1.00]
This patch completely replaces the scheduling information for the SandyBridge architecture target by modifying the file X86SchedSandyBridge.td located under the X86 Target. The SandyBridge architects have provided us with a more accurate information about each instruction latency, number of uOPs and used ports and I used it to replace the existing estimated SNB instructions scheduling and to add missing scheduling information. Please note that the patch extensively affects the X86 MC instr scheduling for SNB. Also note that this patch will be followed by additional patches for the remaining target architectures HSW, IVB, BDW, SKL and SKX. The updated and extended information about each instruction includes the following details: •static latency of the instruction •number of uOps from which the instruction consists of •all ports used by the instruction's' uOPs For example, the following code dictates that instructions, ADC64mr, ADC8mr, SBB64mr, SBB8mr have a static latency of 9 cycles. Each of these instructions is decoded into 6 micro operations which use ports 4, ports 2 or 3 and port 0 and ports 0 or 1 or 5: def SBWriteResGroup94 : SchedWriteRes<[SBPort4,SBPort23,SBPort0,SBPort015]> { let Latency = 9; let NumMicroOps = 6; let ResourceCycles = [1,2,2,1]; } def: InstRW<[SBWriteResGroup94], (instregex "ADC64mr")>; def: InstRW<[SBWriteResGroup94], (instregex "ADC8mr")>; def: InstRW<[SBWriteResGroup94], (instregex "SBB64mr")>; def: InstRW<[SBWriteResGroup94], (instregex "SBB8mr")>; Note that apart for the header, most of the X86SchedSandyBridge.td file was generated by a script. Reviewers: zvi, chandlerc, RKSimon, m_zuckerman, craig.topper, igorb Differential Revision: https://reviews.llvm.org/D35019#inline-304691 llvm-svn: 307529
2017-07-10 17:53:16 +08:00
; SANDY-NEXT: vmovaps {{.*#+}} xmm2 = [1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00] sched: [6:0.50]
; SANDY-NEXT: vsubps %xmm0, %xmm2, %xmm0 # sched: [3:1.00]
; SANDY-NEXT: vmulps %xmm0, %xmm1, %xmm0 # sched: [5:1.00]
; SANDY-NEXT: vaddps %xmm0, %xmm1, %xmm0 # sched: [3:1.00]
This patch completely replaces the scheduling information for the SandyBridge architecture target by modifying the file X86SchedSandyBridge.td located under the X86 Target. The SandyBridge architects have provided us with a more accurate information about each instruction latency, number of uOPs and used ports and I used it to replace the existing estimated SNB instructions scheduling and to add missing scheduling information. Please note that the patch extensively affects the X86 MC instr scheduling for SNB. Also note that this patch will be followed by additional patches for the remaining target architectures HSW, IVB, BDW, SKL and SKX. The updated and extended information about each instruction includes the following details: •static latency of the instruction •number of uOps from which the instruction consists of •all ports used by the instruction's' uOPs For example, the following code dictates that instructions, ADC64mr, ADC8mr, SBB64mr, SBB8mr have a static latency of 9 cycles. Each of these instructions is decoded into 6 micro operations which use ports 4, ports 2 or 3 and port 0 and ports 0 or 1 or 5: def SBWriteResGroup94 : SchedWriteRes<[SBPort4,SBPort23,SBPort0,SBPort015]> { let Latency = 9; let NumMicroOps = 6; let ResourceCycles = [1,2,2,1]; } def: InstRW<[SBWriteResGroup94], (instregex "ADC64mr")>; def: InstRW<[SBWriteResGroup94], (instregex "ADC8mr")>; def: InstRW<[SBWriteResGroup94], (instregex "SBB64mr")>; def: InstRW<[SBWriteResGroup94], (instregex "SBB8mr")>; Note that apart for the header, most of the X86SchedSandyBridge.td file was generated by a script. Reviewers: zvi, chandlerc, RKSimon, m_zuckerman, craig.topper, igorb Differential Revision: https://reviews.llvm.org/D35019#inline-304691 llvm-svn: 307529
2017-07-10 17:53:16 +08:00
; SANDY-NEXT: vmulps {{.*}}(%rip), %xmm0, %xmm1 # sched: [11:1.00]
; SANDY-NEXT: vmulps %xmm0, %xmm1, %xmm0 # sched: [5:1.00]
This patch completely replaces the scheduling information for the SandyBridge architecture target by modifying the file X86SchedSandyBridge.td located under the X86 Target. The SandyBridge architects have provided us with a more accurate information about each instruction latency, number of uOPs and used ports and I used it to replace the existing estimated SNB instructions scheduling and to add missing scheduling information. Please note that the patch extensively affects the X86 MC instr scheduling for SNB. Also note that this patch will be followed by additional patches for the remaining target architectures HSW, IVB, BDW, SKL and SKX. The updated and extended information about each instruction includes the following details: •static latency of the instruction •number of uOps from which the instruction consists of •all ports used by the instruction's' uOPs For example, the following code dictates that instructions, ADC64mr, ADC8mr, SBB64mr, SBB8mr have a static latency of 9 cycles. Each of these instructions is decoded into 6 micro operations which use ports 4, ports 2 or 3 and port 0 and ports 0 or 1 or 5: def SBWriteResGroup94 : SchedWriteRes<[SBPort4,SBPort23,SBPort0,SBPort015]> { let Latency = 9; let NumMicroOps = 6; let ResourceCycles = [1,2,2,1]; } def: InstRW<[SBWriteResGroup94], (instregex "ADC64mr")>; def: InstRW<[SBWriteResGroup94], (instregex "ADC8mr")>; def: InstRW<[SBWriteResGroup94], (instregex "SBB64mr")>; def: InstRW<[SBWriteResGroup94], (instregex "SBB8mr")>; Note that apart for the header, most of the X86SchedSandyBridge.td file was generated by a script. Reviewers: zvi, chandlerc, RKSimon, m_zuckerman, craig.topper, igorb Differential Revision: https://reviews.llvm.org/D35019#inline-304691 llvm-svn: 307529
2017-07-10 17:53:16 +08:00
; SANDY-NEXT: retq # sched: [1:1.00]
;
; HASWELL-LABEL: v4f32_one_step_2_divs:
; HASWELL: # %bb.0:
; HASWELL-NEXT: vrcpps %xmm0, %xmm1 # sched: [5:1.00]
; HASWELL-NEXT: vbroadcastss {{.*#+}} xmm2 = [1,1,1,1] sched: [6:0.50]
; HASWELL-NEXT: vfnmadd213ps %xmm2, %xmm1, %xmm0 # sched: [5:0.50]
; HASWELL-NEXT: vfmadd132ps %xmm1, %xmm1, %xmm0 # sched: [5:0.50]
; HASWELL-NEXT: vmulps {{.*}}(%rip), %xmm0, %xmm1 # sched: [11:0.50]
; HASWELL-NEXT: vmulps %xmm0, %xmm1, %xmm0 # sched: [5:0.50]
; HASWELL-NEXT: retq # sched: [7:1.00]
;
; HASWELL-NO-FMA-LABEL: v4f32_one_step_2_divs:
; HASWELL-NO-FMA: # %bb.0:
; HASWELL-NO-FMA-NEXT: vrcpps %xmm0, %xmm1 # sched: [5:1.00]
; HASWELL-NO-FMA-NEXT: vmulps %xmm1, %xmm0, %xmm0 # sched: [5:0.50]
; HASWELL-NO-FMA-NEXT: vbroadcastss {{.*#+}} xmm2 = [1,1,1,1] sched: [6:0.50]
; HASWELL-NO-FMA-NEXT: vsubps %xmm0, %xmm2, %xmm0 # sched: [3:1.00]
; HASWELL-NO-FMA-NEXT: vmulps %xmm0, %xmm1, %xmm0 # sched: [5:0.50]
; HASWELL-NO-FMA-NEXT: vaddps %xmm0, %xmm1, %xmm0 # sched: [3:1.00]
; HASWELL-NO-FMA-NEXT: vmulps {{.*}}(%rip), %xmm0, %xmm1 # sched: [11:0.50]
; HASWELL-NO-FMA-NEXT: vmulps %xmm0, %xmm1, %xmm0 # sched: [5:0.50]
; HASWELL-NO-FMA-NEXT: retq # sched: [7:1.00]
;
; KNL-LABEL: v4f32_one_step_2_divs:
; KNL: # %bb.0:
; KNL-NEXT: vrcpps %xmm0, %xmm1 # sched: [5:1.00]
; KNL-NEXT: vbroadcastss {{.*#+}} xmm2 = [1,1,1,1] sched: [6:0.50]
; KNL-NEXT: vfnmadd213ps %xmm2, %xmm1, %xmm0 # sched: [5:0.50]
; KNL-NEXT: vfmadd132ps %xmm1, %xmm1, %xmm0 # sched: [5:0.50]
; KNL-NEXT: vmulps {{.*}}(%rip), %xmm0, %xmm1 # sched: [11:0.50]
; KNL-NEXT: vmulps %xmm0, %xmm1, %xmm0 # sched: [5:0.50]
; KNL-NEXT: retq # sched: [7:1.00]
;
; SKX-LABEL: v4f32_one_step_2_divs:
; SKX: # %bb.0:
[X86] Don't use RCP14 and RSQRT14 for reciprocal estimations or for legacy SSE rcp/rsqrt intrinsics when AVX512 features are enabled. Summary: AVX512 added RCP14 and RSQRT instructions which improve accuracy over the legacy RCP and RSQRT instruction, but not enough accuracy to remove the need for a Newton Raphson refinement. Currently we use these new instructions for the legacy packed SSE instrinics, but not the scalar instrinsics. And we use it for fast math optimization of division and reciprocal sqrt. I think switching the legacy instrinsics maybe surprising to the user since it changes the answer based on which processor you're using regardless of any fastmath settings. It's also weird that we did something different between scalar and packed. As far at the reciprocal estimation, I think it creates unnecessary deltas in our output behavior (and prevents EVEX->VEX). A little playing around with gcc and icc and godbolt suggest they don't change which instructions they use here. This patch adds new X86ISD nodes for the RCP14/RSQRT14 and uses those for the new intrinsics. Leaving the old intrinsics to use the old instructions. Going forward I think our focus should be on -Supporting 512-bit vectors, which will have to use the RCP14/RSQRT14. -Using RSQRT28/RCP28 to remove the Newton Raphson step on processors with AVX512ER -Supporting double precision. Reviewers: zvi, DavidKreitzer, RKSimon Reviewed By: RKSimon Subscribers: llvm-commits Differential Revision: https://reviews.llvm.org/D39583 llvm-svn: 317413
2017-11-05 02:26:41 +08:00
; SKX-NEXT: vrcpps %xmm0, %xmm1 # sched: [4:1.00]
; SKX-NEXT: vfnmadd213ps {{.*}}(%rip){1to4}, %xmm1, %xmm0 # sched: [10:0.50]
; SKX-NEXT: vfmadd132ps %xmm1, %xmm1, %xmm0 # sched: [4:0.33]
; SKX-NEXT: vmulps {{.*}}(%rip), %xmm0, %xmm1 # sched: [10:0.50]
; SKX-NEXT: vmulps %xmm0, %xmm1, %xmm0 # sched: [4:0.33]
; SKX-NEXT: retq # sched: [7:1.00]
%div = fdiv fast <4 x float> <float 1.0, float 2.0, float 3.0, float 4.0>, %x
%div2 = fdiv fast <4 x float> %div, %x
ret <4 x float> %div2
}
define <4 x float> @v4f32_two_step2(<4 x float> %x) #2 {
; SSE-LABEL: v4f32_two_step2:
; SSE: # %bb.0:
; SSE-NEXT: rcpps %xmm0, %xmm2
; SSE-NEXT: movaps %xmm0, %xmm3
; SSE-NEXT: mulps %xmm2, %xmm3
; SSE-NEXT: movaps {{.*#+}} xmm1 = [1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00]
; SSE-NEXT: movaps %xmm1, %xmm4
; SSE-NEXT: subps %xmm3, %xmm4
; SSE-NEXT: mulps %xmm2, %xmm4
; SSE-NEXT: addps %xmm2, %xmm4
; SSE-NEXT: mulps %xmm4, %xmm0
; SSE-NEXT: subps %xmm0, %xmm1
; SSE-NEXT: mulps %xmm4, %xmm1
; SSE-NEXT: addps %xmm4, %xmm1
; SSE-NEXT: mulps {{.*}}(%rip), %xmm1
; SSE-NEXT: movaps %xmm1, %xmm0
; SSE-NEXT: retq
;
; AVX-RECIP-LABEL: v4f32_two_step2:
; AVX-RECIP: # %bb.0:
; AVX-RECIP-NEXT: vrcpps %xmm0, %xmm1
; AVX-RECIP-NEXT: vmulps %xmm1, %xmm0, %xmm2
; AVX-RECIP-NEXT: vmovaps {{.*#+}} xmm3 = [1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00]
; AVX-RECIP-NEXT: vsubps %xmm2, %xmm3, %xmm2
; AVX-RECIP-NEXT: vmulps %xmm2, %xmm1, %xmm2
; AVX-RECIP-NEXT: vaddps %xmm2, %xmm1, %xmm1
; AVX-RECIP-NEXT: vmulps %xmm1, %xmm0, %xmm0
; AVX-RECIP-NEXT: vsubps %xmm0, %xmm3, %xmm0
; AVX-RECIP-NEXT: vmulps %xmm0, %xmm1, %xmm0
; AVX-RECIP-NEXT: vaddps %xmm0, %xmm1, %xmm0
; AVX-RECIP-NEXT: vmulps {{.*}}(%rip), %xmm0, %xmm0
; AVX-RECIP-NEXT: retq
;
; FMA-RECIP-LABEL: v4f32_two_step2:
; FMA-RECIP: # %bb.0:
; FMA-RECIP-NEXT: vrcpps %xmm0, %xmm1
; FMA-RECIP-NEXT: vmovaps {{.*#+}} xmm2 = [1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00]
; FMA-RECIP-NEXT: vmovaps %xmm1, %xmm3
; FMA-RECIP-NEXT: vfnmadd213ps %xmm2, %xmm0, %xmm3
; FMA-RECIP-NEXT: vfmadd132ps %xmm1, %xmm1, %xmm3
; FMA-RECIP-NEXT: vfnmadd213ps %xmm2, %xmm3, %xmm0
; FMA-RECIP-NEXT: vfmadd132ps %xmm3, %xmm3, %xmm0
; FMA-RECIP-NEXT: vmulps {{.*}}(%rip), %xmm0, %xmm0
; FMA-RECIP-NEXT: retq
;
; BTVER2-LABEL: v4f32_two_step2:
; BTVER2: # %bb.0:
; BTVER2-NEXT: vmovaps {{.*#+}} xmm3 = [1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00] sched: [5:1.00]
; BTVER2-NEXT: vrcpps %xmm0, %xmm1 # sched: [2:1.00]
; BTVER2-NEXT: vmulps %xmm1, %xmm0, %xmm2 # sched: [2:1.00]
; BTVER2-NEXT: vsubps %xmm2, %xmm3, %xmm2 # sched: [3:1.00]
; BTVER2-NEXT: vmulps %xmm2, %xmm1, %xmm2 # sched: [2:1.00]
; BTVER2-NEXT: vaddps %xmm2, %xmm1, %xmm1 # sched: [3:1.00]
; BTVER2-NEXT: vmulps %xmm1, %xmm0, %xmm0 # sched: [2:1.00]
; BTVER2-NEXT: vsubps %xmm0, %xmm3, %xmm0 # sched: [3:1.00]
; BTVER2-NEXT: vmulps %xmm0, %xmm1, %xmm0 # sched: [2:1.00]
; BTVER2-NEXT: vaddps %xmm0, %xmm1, %xmm0 # sched: [3:1.00]
; BTVER2-NEXT: vmulps {{.*}}(%rip), %xmm0, %xmm0 # sched: [7:1.00]
; BTVER2-NEXT: retq # sched: [4:1.00]
;
; SANDY-LABEL: v4f32_two_step2:
; SANDY: # %bb.0:
; SANDY-NEXT: vrcpps %xmm0, %xmm1 # sched: [5:1.00]
; SANDY-NEXT: vmulps %xmm1, %xmm0, %xmm2 # sched: [5:1.00]
This patch completely replaces the scheduling information for the SandyBridge architecture target by modifying the file X86SchedSandyBridge.td located under the X86 Target. The SandyBridge architects have provided us with a more accurate information about each instruction latency, number of uOPs and used ports and I used it to replace the existing estimated SNB instructions scheduling and to add missing scheduling information. Please note that the patch extensively affects the X86 MC instr scheduling for SNB. Also note that this patch will be followed by additional patches for the remaining target architectures HSW, IVB, BDW, SKL and SKX. The updated and extended information about each instruction includes the following details: •static latency of the instruction •number of uOps from which the instruction consists of •all ports used by the instruction's' uOPs For example, the following code dictates that instructions, ADC64mr, ADC8mr, SBB64mr, SBB8mr have a static latency of 9 cycles. Each of these instructions is decoded into 6 micro operations which use ports 4, ports 2 or 3 and port 0 and ports 0 or 1 or 5: def SBWriteResGroup94 : SchedWriteRes<[SBPort4,SBPort23,SBPort0,SBPort015]> { let Latency = 9; let NumMicroOps = 6; let ResourceCycles = [1,2,2,1]; } def: InstRW<[SBWriteResGroup94], (instregex "ADC64mr")>; def: InstRW<[SBWriteResGroup94], (instregex "ADC8mr")>; def: InstRW<[SBWriteResGroup94], (instregex "SBB64mr")>; def: InstRW<[SBWriteResGroup94], (instregex "SBB8mr")>; Note that apart for the header, most of the X86SchedSandyBridge.td file was generated by a script. Reviewers: zvi, chandlerc, RKSimon, m_zuckerman, craig.topper, igorb Differential Revision: https://reviews.llvm.org/D35019#inline-304691 llvm-svn: 307529
2017-07-10 17:53:16 +08:00
; SANDY-NEXT: vmovaps {{.*#+}} xmm3 = [1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00] sched: [6:0.50]
; SANDY-NEXT: vsubps %xmm2, %xmm3, %xmm2 # sched: [3:1.00]
; SANDY-NEXT: vmulps %xmm2, %xmm1, %xmm2 # sched: [5:1.00]
; SANDY-NEXT: vaddps %xmm2, %xmm1, %xmm1 # sched: [3:1.00]
; SANDY-NEXT: vmulps %xmm1, %xmm0, %xmm0 # sched: [5:1.00]
; SANDY-NEXT: vsubps %xmm0, %xmm3, %xmm0 # sched: [3:1.00]
; SANDY-NEXT: vmulps %xmm0, %xmm1, %xmm0 # sched: [5:1.00]
; SANDY-NEXT: vaddps %xmm0, %xmm1, %xmm0 # sched: [3:1.00]
This patch completely replaces the scheduling information for the SandyBridge architecture target by modifying the file X86SchedSandyBridge.td located under the X86 Target. The SandyBridge architects have provided us with a more accurate information about each instruction latency, number of uOPs and used ports and I used it to replace the existing estimated SNB instructions scheduling and to add missing scheduling information. Please note that the patch extensively affects the X86 MC instr scheduling for SNB. Also note that this patch will be followed by additional patches for the remaining target architectures HSW, IVB, BDW, SKL and SKX. The updated and extended information about each instruction includes the following details: •static latency of the instruction •number of uOps from which the instruction consists of •all ports used by the instruction's' uOPs For example, the following code dictates that instructions, ADC64mr, ADC8mr, SBB64mr, SBB8mr have a static latency of 9 cycles. Each of these instructions is decoded into 6 micro operations which use ports 4, ports 2 or 3 and port 0 and ports 0 or 1 or 5: def SBWriteResGroup94 : SchedWriteRes<[SBPort4,SBPort23,SBPort0,SBPort015]> { let Latency = 9; let NumMicroOps = 6; let ResourceCycles = [1,2,2,1]; } def: InstRW<[SBWriteResGroup94], (instregex "ADC64mr")>; def: InstRW<[SBWriteResGroup94], (instregex "ADC8mr")>; def: InstRW<[SBWriteResGroup94], (instregex "SBB64mr")>; def: InstRW<[SBWriteResGroup94], (instregex "SBB8mr")>; Note that apart for the header, most of the X86SchedSandyBridge.td file was generated by a script. Reviewers: zvi, chandlerc, RKSimon, m_zuckerman, craig.topper, igorb Differential Revision: https://reviews.llvm.org/D35019#inline-304691 llvm-svn: 307529
2017-07-10 17:53:16 +08:00
; SANDY-NEXT: vmulps {{.*}}(%rip), %xmm0, %xmm0 # sched: [11:1.00]
; SANDY-NEXT: retq # sched: [1:1.00]
;
; HASWELL-LABEL: v4f32_two_step2:
; HASWELL: # %bb.0:
; HASWELL-NEXT: vrcpps %xmm0, %xmm1 # sched: [5:1.00]
; HASWELL-NEXT: vbroadcastss {{.*#+}} xmm2 = [1,1,1,1] sched: [6:0.50]
; HASWELL-NEXT: vmovaps %xmm1, %xmm3 # sched: [1:1.00]
; HASWELL-NEXT: vfnmadd213ps %xmm2, %xmm0, %xmm3 # sched: [5:0.50]
; HASWELL-NEXT: vfmadd132ps %xmm1, %xmm1, %xmm3 # sched: [5:0.50]
; HASWELL-NEXT: vfnmadd213ps %xmm2, %xmm3, %xmm0 # sched: [5:0.50]
; HASWELL-NEXT: vfmadd132ps %xmm3, %xmm3, %xmm0 # sched: [5:0.50]
; HASWELL-NEXT: vmulps {{.*}}(%rip), %xmm0, %xmm0 # sched: [11:0.50]
; HASWELL-NEXT: retq # sched: [7:1.00]
;
; HASWELL-NO-FMA-LABEL: v4f32_two_step2:
; HASWELL-NO-FMA: # %bb.0:
; HASWELL-NO-FMA-NEXT: vrcpps %xmm0, %xmm1 # sched: [5:1.00]
; HASWELL-NO-FMA-NEXT: vmulps %xmm1, %xmm0, %xmm2 # sched: [5:0.50]
; HASWELL-NO-FMA-NEXT: vbroadcastss {{.*#+}} xmm3 = [1,1,1,1] sched: [6:0.50]
; HASWELL-NO-FMA-NEXT: vsubps %xmm2, %xmm3, %xmm2 # sched: [3:1.00]
; HASWELL-NO-FMA-NEXT: vmulps %xmm2, %xmm1, %xmm2 # sched: [5:0.50]
; HASWELL-NO-FMA-NEXT: vaddps %xmm2, %xmm1, %xmm1 # sched: [3:1.00]
; HASWELL-NO-FMA-NEXT: vmulps %xmm1, %xmm0, %xmm0 # sched: [5:0.50]
; HASWELL-NO-FMA-NEXT: vsubps %xmm0, %xmm3, %xmm0 # sched: [3:1.00]
; HASWELL-NO-FMA-NEXT: vmulps %xmm0, %xmm1, %xmm0 # sched: [5:0.50]
; HASWELL-NO-FMA-NEXT: vaddps %xmm0, %xmm1, %xmm0 # sched: [3:1.00]
; HASWELL-NO-FMA-NEXT: vmulps {{.*}}(%rip), %xmm0, %xmm0 # sched: [11:0.50]
; HASWELL-NO-FMA-NEXT: retq # sched: [7:1.00]
;
; KNL-LABEL: v4f32_two_step2:
; KNL: # %bb.0:
; KNL-NEXT: vrcpps %xmm0, %xmm1 # sched: [5:1.00]
; KNL-NEXT: vbroadcastss {{.*#+}} xmm2 = [1,1,1,1] sched: [6:0.50]
; KNL-NEXT: vmovaps %xmm1, %xmm3 # sched: [1:1.00]
; KNL-NEXT: vfnmadd213ps %xmm2, %xmm0, %xmm3 # sched: [5:0.50]
; KNL-NEXT: vfmadd132ps %xmm1, %xmm1, %xmm3 # sched: [5:0.50]
; KNL-NEXT: vfnmadd213ps %xmm2, %xmm3, %xmm0 # sched: [5:0.50]
; KNL-NEXT: vfmadd132ps %xmm3, %xmm3, %xmm0 # sched: [5:0.50]
; KNL-NEXT: vmulps {{.*}}(%rip), %xmm0, %xmm0 # sched: [11:0.50]
; KNL-NEXT: retq # sched: [7:1.00]
;
; SKX-LABEL: v4f32_two_step2:
; SKX: # %bb.0:
[X86] Don't use RCP14 and RSQRT14 for reciprocal estimations or for legacy SSE rcp/rsqrt intrinsics when AVX512 features are enabled. Summary: AVX512 added RCP14 and RSQRT instructions which improve accuracy over the legacy RCP and RSQRT instruction, but not enough accuracy to remove the need for a Newton Raphson refinement. Currently we use these new instructions for the legacy packed SSE instrinics, but not the scalar instrinsics. And we use it for fast math optimization of division and reciprocal sqrt. I think switching the legacy instrinsics maybe surprising to the user since it changes the answer based on which processor you're using regardless of any fastmath settings. It's also weird that we did something different between scalar and packed. As far at the reciprocal estimation, I think it creates unnecessary deltas in our output behavior (and prevents EVEX->VEX). A little playing around with gcc and icc and godbolt suggest they don't change which instructions they use here. This patch adds new X86ISD nodes for the RCP14/RSQRT14 and uses those for the new intrinsics. Leaving the old intrinsics to use the old instructions. Going forward I think our focus should be on -Supporting 512-bit vectors, which will have to use the RCP14/RSQRT14. -Using RSQRT28/RCP28 to remove the Newton Raphson step on processors with AVX512ER -Supporting double precision. Reviewers: zvi, DavidKreitzer, RKSimon Reviewed By: RKSimon Subscribers: llvm-commits Differential Revision: https://reviews.llvm.org/D39583 llvm-svn: 317413
2017-11-05 02:26:41 +08:00
; SKX-NEXT: vrcpps %xmm0, %xmm1 # sched: [4:1.00]
; SKX-NEXT: vbroadcastss {{.*#+}} xmm2 = [1,1,1,1] sched: [6:0.50]
; SKX-NEXT: vmovaps %xmm1, %xmm3 # sched: [1:0.33]
; SKX-NEXT: vfnmadd213ps %xmm2, %xmm0, %xmm3 # sched: [4:0.33]
; SKX-NEXT: vfmadd132ps %xmm1, %xmm1, %xmm3 # sched: [4:0.33]
; SKX-NEXT: vfnmadd213ps %xmm2, %xmm3, %xmm0 # sched: [4:0.33]
; SKX-NEXT: vfmadd132ps %xmm3, %xmm3, %xmm0 # sched: [4:0.33]
; SKX-NEXT: vmulps {{.*}}(%rip), %xmm0, %xmm0 # sched: [10:0.50]
; SKX-NEXT: retq # sched: [7:1.00]
%div = fdiv fast <4 x float> <float 1.0, float 2.0, float 3.0, float 4.0>, %x
ret <4 x float> %div
}
define <8 x float> @v8f32_one_step2(<8 x float> %x) #1 {
; SSE-LABEL: v8f32_one_step2:
; SSE: # %bb.0:
; SSE-NEXT: rcpps %xmm1, %xmm4
; SSE-NEXT: mulps %xmm4, %xmm1
; SSE-NEXT: movaps {{.*#+}} xmm2 = [1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00]
; SSE-NEXT: movaps %xmm2, %xmm3
; SSE-NEXT: subps %xmm1, %xmm3
; SSE-NEXT: mulps %xmm4, %xmm3
; SSE-NEXT: addps %xmm4, %xmm3
; SSE-NEXT: rcpps %xmm0, %xmm1
; SSE-NEXT: mulps %xmm1, %xmm0
; SSE-NEXT: subps %xmm0, %xmm2
; SSE-NEXT: mulps %xmm1, %xmm2
; SSE-NEXT: addps %xmm1, %xmm2
; SSE-NEXT: mulps {{.*}}(%rip), %xmm2
; SSE-NEXT: mulps {{.*}}(%rip), %xmm3
; SSE-NEXT: movaps %xmm2, %xmm0
; SSE-NEXT: movaps %xmm3, %xmm1
; SSE-NEXT: retq
;
; AVX-RECIP-LABEL: v8f32_one_step2:
; AVX-RECIP: # %bb.0:
; AVX-RECIP-NEXT: vrcpps %ymm0, %ymm1
; AVX-RECIP-NEXT: vmulps %ymm1, %ymm0, %ymm0
; AVX-RECIP-NEXT: vmovaps {{.*#+}} ymm2 = [1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00]
; AVX-RECIP-NEXT: vsubps %ymm0, %ymm2, %ymm0
; AVX-RECIP-NEXT: vmulps %ymm0, %ymm1, %ymm0
; AVX-RECIP-NEXT: vaddps %ymm0, %ymm1, %ymm0
; AVX-RECIP-NEXT: vmulps {{.*}}(%rip), %ymm0, %ymm0
; AVX-RECIP-NEXT: retq
;
; FMA-RECIP-LABEL: v8f32_one_step2:
; FMA-RECIP: # %bb.0:
; FMA-RECIP-NEXT: vrcpps %ymm0, %ymm1
; FMA-RECIP-NEXT: vfnmadd213ps {{.*}}(%rip), %ymm1, %ymm0
; FMA-RECIP-NEXT: vfmadd132ps %ymm1, %ymm1, %ymm0
; FMA-RECIP-NEXT: vmulps {{.*}}(%rip), %ymm0, %ymm0
; FMA-RECIP-NEXT: retq
;
; BTVER2-LABEL: v8f32_one_step2:
; BTVER2: # %bb.0:
; BTVER2-NEXT: vmovaps {{.*#+}} ymm2 = [1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00] sched: [5:1.00]
; BTVER2-NEXT: vrcpps %ymm0, %ymm1 # sched: [2:2.00]
; BTVER2-NEXT: vmulps %ymm1, %ymm0, %ymm0 # sched: [2:2.00]
; BTVER2-NEXT: vsubps %ymm0, %ymm2, %ymm0 # sched: [3:2.00]
; BTVER2-NEXT: vmulps %ymm0, %ymm1, %ymm0 # sched: [2:2.00]
; BTVER2-NEXT: vaddps %ymm0, %ymm1, %ymm0 # sched: [3:2.00]
; BTVER2-NEXT: vmulps {{.*}}(%rip), %ymm0, %ymm0 # sched: [7:2.00]
; BTVER2-NEXT: retq # sched: [4:1.00]
;
; SANDY-LABEL: v8f32_one_step2:
; SANDY: # %bb.0:
; SANDY-NEXT: vrcpps %ymm0, %ymm1 # sched: [7:2.00]
; SANDY-NEXT: vmulps %ymm1, %ymm0, %ymm0 # sched: [5:1.00]
This patch completely replaces the scheduling information for the SandyBridge architecture target by modifying the file X86SchedSandyBridge.td located under the X86 Target. The SandyBridge architects have provided us with a more accurate information about each instruction latency, number of uOPs and used ports and I used it to replace the existing estimated SNB instructions scheduling and to add missing scheduling information. Please note that the patch extensively affects the X86 MC instr scheduling for SNB. Also note that this patch will be followed by additional patches for the remaining target architectures HSW, IVB, BDW, SKL and SKX. The updated and extended information about each instruction includes the following details: •static latency of the instruction •number of uOps from which the instruction consists of •all ports used by the instruction's' uOPs For example, the following code dictates that instructions, ADC64mr, ADC8mr, SBB64mr, SBB8mr have a static latency of 9 cycles. Each of these instructions is decoded into 6 micro operations which use ports 4, ports 2 or 3 and port 0 and ports 0 or 1 or 5: def SBWriteResGroup94 : SchedWriteRes<[SBPort4,SBPort23,SBPort0,SBPort015]> { let Latency = 9; let NumMicroOps = 6; let ResourceCycles = [1,2,2,1]; } def: InstRW<[SBWriteResGroup94], (instregex "ADC64mr")>; def: InstRW<[SBWriteResGroup94], (instregex "ADC8mr")>; def: InstRW<[SBWriteResGroup94], (instregex "SBB64mr")>; def: InstRW<[SBWriteResGroup94], (instregex "SBB8mr")>; Note that apart for the header, most of the X86SchedSandyBridge.td file was generated by a script. Reviewers: zvi, chandlerc, RKSimon, m_zuckerman, craig.topper, igorb Differential Revision: https://reviews.llvm.org/D35019#inline-304691 llvm-svn: 307529
2017-07-10 17:53:16 +08:00
; SANDY-NEXT: vmovaps {{.*#+}} ymm2 = [1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00] sched: [7:0.50]
; SANDY-NEXT: vsubps %ymm0, %ymm2, %ymm0 # sched: [3:1.00]
; SANDY-NEXT: vmulps %ymm0, %ymm1, %ymm0 # sched: [5:1.00]
; SANDY-NEXT: vaddps %ymm0, %ymm1, %ymm0 # sched: [3:1.00]
This patch completely replaces the scheduling information for the SandyBridge architecture target by modifying the file X86SchedSandyBridge.td located under the X86 Target. The SandyBridge architects have provided us with a more accurate information about each instruction latency, number of uOPs and used ports and I used it to replace the existing estimated SNB instructions scheduling and to add missing scheduling information. Please note that the patch extensively affects the X86 MC instr scheduling for SNB. Also note that this patch will be followed by additional patches for the remaining target architectures HSW, IVB, BDW, SKL and SKX. The updated and extended information about each instruction includes the following details: •static latency of the instruction •number of uOps from which the instruction consists of •all ports used by the instruction's' uOPs For example, the following code dictates that instructions, ADC64mr, ADC8mr, SBB64mr, SBB8mr have a static latency of 9 cycles. Each of these instructions is decoded into 6 micro operations which use ports 4, ports 2 or 3 and port 0 and ports 0 or 1 or 5: def SBWriteResGroup94 : SchedWriteRes<[SBPort4,SBPort23,SBPort0,SBPort015]> { let Latency = 9; let NumMicroOps = 6; let ResourceCycles = [1,2,2,1]; } def: InstRW<[SBWriteResGroup94], (instregex "ADC64mr")>; def: InstRW<[SBWriteResGroup94], (instregex "ADC8mr")>; def: InstRW<[SBWriteResGroup94], (instregex "SBB64mr")>; def: InstRW<[SBWriteResGroup94], (instregex "SBB8mr")>; Note that apart for the header, most of the X86SchedSandyBridge.td file was generated by a script. Reviewers: zvi, chandlerc, RKSimon, m_zuckerman, craig.topper, igorb Differential Revision: https://reviews.llvm.org/D35019#inline-304691 llvm-svn: 307529
2017-07-10 17:53:16 +08:00
; SANDY-NEXT: vmulps {{.*}}(%rip), %ymm0, %ymm0 # sched: [12:1.00]
; SANDY-NEXT: retq # sched: [1:1.00]
;
; HASWELL-LABEL: v8f32_one_step2:
; HASWELL: # %bb.0:
; HASWELL-NEXT: vrcpps %ymm0, %ymm1 # sched: [11:2.00]
; HASWELL-NEXT: vbroadcastss {{.*#+}} ymm2 = [1,1,1,1,1,1,1,1] sched: [7:0.50]
; HASWELL-NEXT: vfnmadd213ps %ymm2, %ymm1, %ymm0 # sched: [5:0.50]
; HASWELL-NEXT: vfmadd132ps %ymm1, %ymm1, %ymm0 # sched: [5:0.50]
; HASWELL-NEXT: vmulps {{.*}}(%rip), %ymm0, %ymm0 # sched: [12:0.50]
; HASWELL-NEXT: retq # sched: [7:1.00]
;
; HASWELL-NO-FMA-LABEL: v8f32_one_step2:
; HASWELL-NO-FMA: # %bb.0:
; HASWELL-NO-FMA-NEXT: vrcpps %ymm0, %ymm1 # sched: [11:2.00]
; HASWELL-NO-FMA-NEXT: vmulps %ymm1, %ymm0, %ymm0 # sched: [5:0.50]
; HASWELL-NO-FMA-NEXT: vbroadcastss {{.*#+}} ymm2 = [1,1,1,1,1,1,1,1] sched: [7:0.50]
; HASWELL-NO-FMA-NEXT: vsubps %ymm0, %ymm2, %ymm0 # sched: [3:1.00]
; HASWELL-NO-FMA-NEXT: vmulps %ymm0, %ymm1, %ymm0 # sched: [5:0.50]
; HASWELL-NO-FMA-NEXT: vaddps %ymm0, %ymm1, %ymm0 # sched: [3:1.00]
; HASWELL-NO-FMA-NEXT: vmulps {{.*}}(%rip), %ymm0, %ymm0 # sched: [12:0.50]
; HASWELL-NO-FMA-NEXT: retq # sched: [7:1.00]
;
; KNL-LABEL: v8f32_one_step2:
; KNL: # %bb.0:
; KNL-NEXT: vrcpps %ymm0, %ymm1 # sched: [11:2.00]
; KNL-NEXT: vbroadcastss {{.*#+}} ymm2 = [1,1,1,1,1,1,1,1] sched: [7:0.50]
; KNL-NEXT: vfnmadd213ps %ymm2, %ymm1, %ymm0 # sched: [5:0.50]
; KNL-NEXT: vfmadd132ps %ymm1, %ymm1, %ymm0 # sched: [5:0.50]
; KNL-NEXT: vmulps {{.*}}(%rip), %ymm0, %ymm0 # sched: [12:0.50]
; KNL-NEXT: retq # sched: [7:1.00]
;
; SKX-LABEL: v8f32_one_step2:
; SKX: # %bb.0:
[X86] Don't use RCP14 and RSQRT14 for reciprocal estimations or for legacy SSE rcp/rsqrt intrinsics when AVX512 features are enabled. Summary: AVX512 added RCP14 and RSQRT instructions which improve accuracy over the legacy RCP and RSQRT instruction, but not enough accuracy to remove the need for a Newton Raphson refinement. Currently we use these new instructions for the legacy packed SSE instrinics, but not the scalar instrinsics. And we use it for fast math optimization of division and reciprocal sqrt. I think switching the legacy instrinsics maybe surprising to the user since it changes the answer based on which processor you're using regardless of any fastmath settings. It's also weird that we did something different between scalar and packed. As far at the reciprocal estimation, I think it creates unnecessary deltas in our output behavior (and prevents EVEX->VEX). A little playing around with gcc and icc and godbolt suggest they don't change which instructions they use here. This patch adds new X86ISD nodes for the RCP14/RSQRT14 and uses those for the new intrinsics. Leaving the old intrinsics to use the old instructions. Going forward I think our focus should be on -Supporting 512-bit vectors, which will have to use the RCP14/RSQRT14. -Using RSQRT28/RCP28 to remove the Newton Raphson step on processors with AVX512ER -Supporting double precision. Reviewers: zvi, DavidKreitzer, RKSimon Reviewed By: RKSimon Subscribers: llvm-commits Differential Revision: https://reviews.llvm.org/D39583 llvm-svn: 317413
2017-11-05 02:26:41 +08:00
; SKX-NEXT: vrcpps %ymm0, %ymm1 # sched: [4:1.00]
; SKX-NEXT: vfnmadd213ps {{.*}}(%rip){1to8}, %ymm1, %ymm0 # sched: [11:0.50]
; SKX-NEXT: vfmadd132ps %ymm1, %ymm1, %ymm0 # sched: [4:0.33]
; SKX-NEXT: vmulps {{.*}}(%rip), %ymm0, %ymm0 # sched: [11:0.50]
; SKX-NEXT: retq # sched: [7:1.00]
%div = fdiv fast <8 x float> <float 1.0, float 2.0, float 3.0, float 4.0, float 5.0, float 6.0, float 7.0, float 8.0>, %x
ret <8 x float> %div
}
define <8 x float> @v8f32_one_step_2_divs(<8 x float> %x) #1 {
; SSE-LABEL: v8f32_one_step_2_divs:
; SSE: # %bb.0:
; SSE-NEXT: rcpps %xmm0, %xmm2
; SSE-NEXT: mulps %xmm2, %xmm0
; SSE-NEXT: movaps {{.*#+}} xmm3 = [1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00]
; SSE-NEXT: movaps %xmm3, %xmm4
; SSE-NEXT: subps %xmm0, %xmm4
; SSE-NEXT: mulps %xmm2, %xmm4
; SSE-NEXT: addps %xmm2, %xmm4
; SSE-NEXT: rcpps %xmm1, %xmm0
; SSE-NEXT: mulps %xmm0, %xmm1
; SSE-NEXT: subps %xmm1, %xmm3
; SSE-NEXT: mulps %xmm0, %xmm3
; SSE-NEXT: addps %xmm0, %xmm3
; SSE-NEXT: movaps {{.*#+}} xmm1 = [5.000000e+00,6.000000e+00,7.000000e+00,8.000000e+00]
; SSE-NEXT: mulps %xmm3, %xmm1
; SSE-NEXT: movaps {{.*#+}} xmm0 = [1.000000e+00,2.000000e+00,3.000000e+00,4.000000e+00]
; SSE-NEXT: mulps %xmm4, %xmm0
; SSE-NEXT: mulps %xmm4, %xmm0
; SSE-NEXT: mulps %xmm3, %xmm1
; SSE-NEXT: retq
;
; AVX-RECIP-LABEL: v8f32_one_step_2_divs:
; AVX-RECIP: # %bb.0:
; AVX-RECIP-NEXT: vrcpps %ymm0, %ymm1
; AVX-RECIP-NEXT: vmulps %ymm1, %ymm0, %ymm0
; AVX-RECIP-NEXT: vmovaps {{.*#+}} ymm2 = [1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00]
; AVX-RECIP-NEXT: vsubps %ymm0, %ymm2, %ymm0
; AVX-RECIP-NEXT: vmulps %ymm0, %ymm1, %ymm0
; AVX-RECIP-NEXT: vaddps %ymm0, %ymm1, %ymm0
; AVX-RECIP-NEXT: vmulps {{.*}}(%rip), %ymm0, %ymm1
; AVX-RECIP-NEXT: vmulps %ymm0, %ymm1, %ymm0
; AVX-RECIP-NEXT: retq
;
; FMA-RECIP-LABEL: v8f32_one_step_2_divs:
; FMA-RECIP: # %bb.0:
; FMA-RECIP-NEXT: vrcpps %ymm0, %ymm1
; FMA-RECIP-NEXT: vfnmadd213ps {{.*}}(%rip), %ymm1, %ymm0
; FMA-RECIP-NEXT: vfmadd132ps %ymm1, %ymm1, %ymm0
; FMA-RECIP-NEXT: vmulps {{.*}}(%rip), %ymm0, %ymm1
; FMA-RECIP-NEXT: vmulps %ymm0, %ymm1, %ymm0
; FMA-RECIP-NEXT: retq
;
; BTVER2-LABEL: v8f32_one_step_2_divs:
; BTVER2: # %bb.0:
; BTVER2-NEXT: vmovaps {{.*#+}} ymm2 = [1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00] sched: [5:1.00]
; BTVER2-NEXT: vrcpps %ymm0, %ymm1 # sched: [2:2.00]
; BTVER2-NEXT: vmulps %ymm1, %ymm0, %ymm0 # sched: [2:2.00]
; BTVER2-NEXT: vsubps %ymm0, %ymm2, %ymm0 # sched: [3:2.00]
; BTVER2-NEXT: vmulps %ymm0, %ymm1, %ymm0 # sched: [2:2.00]
; BTVER2-NEXT: vaddps %ymm0, %ymm1, %ymm0 # sched: [3:2.00]
; BTVER2-NEXT: vmulps {{.*}}(%rip), %ymm0, %ymm1 # sched: [7:2.00]
; BTVER2-NEXT: vmulps %ymm0, %ymm1, %ymm0 # sched: [2:2.00]
; BTVER2-NEXT: retq # sched: [4:1.00]
;
; SANDY-LABEL: v8f32_one_step_2_divs:
; SANDY: # %bb.0:
; SANDY-NEXT: vrcpps %ymm0, %ymm1 # sched: [7:2.00]
; SANDY-NEXT: vmulps %ymm1, %ymm0, %ymm0 # sched: [5:1.00]
This patch completely replaces the scheduling information for the SandyBridge architecture target by modifying the file X86SchedSandyBridge.td located under the X86 Target. The SandyBridge architects have provided us with a more accurate information about each instruction latency, number of uOPs and used ports and I used it to replace the existing estimated SNB instructions scheduling and to add missing scheduling information. Please note that the patch extensively affects the X86 MC instr scheduling for SNB. Also note that this patch will be followed by additional patches for the remaining target architectures HSW, IVB, BDW, SKL and SKX. The updated and extended information about each instruction includes the following details: •static latency of the instruction •number of uOps from which the instruction consists of •all ports used by the instruction's' uOPs For example, the following code dictates that instructions, ADC64mr, ADC8mr, SBB64mr, SBB8mr have a static latency of 9 cycles. Each of these instructions is decoded into 6 micro operations which use ports 4, ports 2 or 3 and port 0 and ports 0 or 1 or 5: def SBWriteResGroup94 : SchedWriteRes<[SBPort4,SBPort23,SBPort0,SBPort015]> { let Latency = 9; let NumMicroOps = 6; let ResourceCycles = [1,2,2,1]; } def: InstRW<[SBWriteResGroup94], (instregex "ADC64mr")>; def: InstRW<[SBWriteResGroup94], (instregex "ADC8mr")>; def: InstRW<[SBWriteResGroup94], (instregex "SBB64mr")>; def: InstRW<[SBWriteResGroup94], (instregex "SBB8mr")>; Note that apart for the header, most of the X86SchedSandyBridge.td file was generated by a script. Reviewers: zvi, chandlerc, RKSimon, m_zuckerman, craig.topper, igorb Differential Revision: https://reviews.llvm.org/D35019#inline-304691 llvm-svn: 307529
2017-07-10 17:53:16 +08:00
; SANDY-NEXT: vmovaps {{.*#+}} ymm2 = [1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00] sched: [7:0.50]
; SANDY-NEXT: vsubps %ymm0, %ymm2, %ymm0 # sched: [3:1.00]
; SANDY-NEXT: vmulps %ymm0, %ymm1, %ymm0 # sched: [5:1.00]
; SANDY-NEXT: vaddps %ymm0, %ymm1, %ymm0 # sched: [3:1.00]
This patch completely replaces the scheduling information for the SandyBridge architecture target by modifying the file X86SchedSandyBridge.td located under the X86 Target. The SandyBridge architects have provided us with a more accurate information about each instruction latency, number of uOPs and used ports and I used it to replace the existing estimated SNB instructions scheduling and to add missing scheduling information. Please note that the patch extensively affects the X86 MC instr scheduling for SNB. Also note that this patch will be followed by additional patches for the remaining target architectures HSW, IVB, BDW, SKL and SKX. The updated and extended information about each instruction includes the following details: •static latency of the instruction •number of uOps from which the instruction consists of •all ports used by the instruction's' uOPs For example, the following code dictates that instructions, ADC64mr, ADC8mr, SBB64mr, SBB8mr have a static latency of 9 cycles. Each of these instructions is decoded into 6 micro operations which use ports 4, ports 2 or 3 and port 0 and ports 0 or 1 or 5: def SBWriteResGroup94 : SchedWriteRes<[SBPort4,SBPort23,SBPort0,SBPort015]> { let Latency = 9; let NumMicroOps = 6; let ResourceCycles = [1,2,2,1]; } def: InstRW<[SBWriteResGroup94], (instregex "ADC64mr")>; def: InstRW<[SBWriteResGroup94], (instregex "ADC8mr")>; def: InstRW<[SBWriteResGroup94], (instregex "SBB64mr")>; def: InstRW<[SBWriteResGroup94], (instregex "SBB8mr")>; Note that apart for the header, most of the X86SchedSandyBridge.td file was generated by a script. Reviewers: zvi, chandlerc, RKSimon, m_zuckerman, craig.topper, igorb Differential Revision: https://reviews.llvm.org/D35019#inline-304691 llvm-svn: 307529
2017-07-10 17:53:16 +08:00
; SANDY-NEXT: vmulps {{.*}}(%rip), %ymm0, %ymm1 # sched: [12:1.00]
; SANDY-NEXT: vmulps %ymm0, %ymm1, %ymm0 # sched: [5:1.00]
This patch completely replaces the scheduling information for the SandyBridge architecture target by modifying the file X86SchedSandyBridge.td located under the X86 Target. The SandyBridge architects have provided us with a more accurate information about each instruction latency, number of uOPs and used ports and I used it to replace the existing estimated SNB instructions scheduling and to add missing scheduling information. Please note that the patch extensively affects the X86 MC instr scheduling for SNB. Also note that this patch will be followed by additional patches for the remaining target architectures HSW, IVB, BDW, SKL and SKX. The updated and extended information about each instruction includes the following details: •static latency of the instruction •number of uOps from which the instruction consists of •all ports used by the instruction's' uOPs For example, the following code dictates that instructions, ADC64mr, ADC8mr, SBB64mr, SBB8mr have a static latency of 9 cycles. Each of these instructions is decoded into 6 micro operations which use ports 4, ports 2 or 3 and port 0 and ports 0 or 1 or 5: def SBWriteResGroup94 : SchedWriteRes<[SBPort4,SBPort23,SBPort0,SBPort015]> { let Latency = 9; let NumMicroOps = 6; let ResourceCycles = [1,2,2,1]; } def: InstRW<[SBWriteResGroup94], (instregex "ADC64mr")>; def: InstRW<[SBWriteResGroup94], (instregex "ADC8mr")>; def: InstRW<[SBWriteResGroup94], (instregex "SBB64mr")>; def: InstRW<[SBWriteResGroup94], (instregex "SBB8mr")>; Note that apart for the header, most of the X86SchedSandyBridge.td file was generated by a script. Reviewers: zvi, chandlerc, RKSimon, m_zuckerman, craig.topper, igorb Differential Revision: https://reviews.llvm.org/D35019#inline-304691 llvm-svn: 307529
2017-07-10 17:53:16 +08:00
; SANDY-NEXT: retq # sched: [1:1.00]
;
; HASWELL-LABEL: v8f32_one_step_2_divs:
; HASWELL: # %bb.0:
; HASWELL-NEXT: vrcpps %ymm0, %ymm1 # sched: [11:2.00]
; HASWELL-NEXT: vbroadcastss {{.*#+}} ymm2 = [1,1,1,1,1,1,1,1] sched: [7:0.50]
; HASWELL-NEXT: vfnmadd213ps %ymm2, %ymm1, %ymm0 # sched: [5:0.50]
; HASWELL-NEXT: vfmadd132ps %ymm1, %ymm1, %ymm0 # sched: [5:0.50]
; HASWELL-NEXT: vmulps {{.*}}(%rip), %ymm0, %ymm1 # sched: [12:0.50]
; HASWELL-NEXT: vmulps %ymm0, %ymm1, %ymm0 # sched: [5:0.50]
; HASWELL-NEXT: retq # sched: [7:1.00]
;
; HASWELL-NO-FMA-LABEL: v8f32_one_step_2_divs:
; HASWELL-NO-FMA: # %bb.0:
; HASWELL-NO-FMA-NEXT: vrcpps %ymm0, %ymm1 # sched: [11:2.00]
; HASWELL-NO-FMA-NEXT: vmulps %ymm1, %ymm0, %ymm0 # sched: [5:0.50]
; HASWELL-NO-FMA-NEXT: vbroadcastss {{.*#+}} ymm2 = [1,1,1,1,1,1,1,1] sched: [7:0.50]
; HASWELL-NO-FMA-NEXT: vsubps %ymm0, %ymm2, %ymm0 # sched: [3:1.00]
; HASWELL-NO-FMA-NEXT: vmulps %ymm0, %ymm1, %ymm0 # sched: [5:0.50]
; HASWELL-NO-FMA-NEXT: vaddps %ymm0, %ymm1, %ymm0 # sched: [3:1.00]
; HASWELL-NO-FMA-NEXT: vmulps {{.*}}(%rip), %ymm0, %ymm1 # sched: [12:0.50]
; HASWELL-NO-FMA-NEXT: vmulps %ymm0, %ymm1, %ymm0 # sched: [5:0.50]
; HASWELL-NO-FMA-NEXT: retq # sched: [7:1.00]
;
; KNL-LABEL: v8f32_one_step_2_divs:
; KNL: # %bb.0:
; KNL-NEXT: vrcpps %ymm0, %ymm1 # sched: [11:2.00]
; KNL-NEXT: vbroadcastss {{.*#+}} ymm2 = [1,1,1,1,1,1,1,1] sched: [7:0.50]
; KNL-NEXT: vfnmadd213ps %ymm2, %ymm1, %ymm0 # sched: [5:0.50]
; KNL-NEXT: vfmadd132ps %ymm1, %ymm1, %ymm0 # sched: [5:0.50]
; KNL-NEXT: vmulps {{.*}}(%rip), %ymm0, %ymm1 # sched: [12:0.50]
; KNL-NEXT: vmulps %ymm0, %ymm1, %ymm0 # sched: [5:0.50]
; KNL-NEXT: retq # sched: [7:1.00]
;
; SKX-LABEL: v8f32_one_step_2_divs:
; SKX: # %bb.0:
[X86] Don't use RCP14 and RSQRT14 for reciprocal estimations or for legacy SSE rcp/rsqrt intrinsics when AVX512 features are enabled. Summary: AVX512 added RCP14 and RSQRT instructions which improve accuracy over the legacy RCP and RSQRT instruction, but not enough accuracy to remove the need for a Newton Raphson refinement. Currently we use these new instructions for the legacy packed SSE instrinics, but not the scalar instrinsics. And we use it for fast math optimization of division and reciprocal sqrt. I think switching the legacy instrinsics maybe surprising to the user since it changes the answer based on which processor you're using regardless of any fastmath settings. It's also weird that we did something different between scalar and packed. As far at the reciprocal estimation, I think it creates unnecessary deltas in our output behavior (and prevents EVEX->VEX). A little playing around with gcc and icc and godbolt suggest they don't change which instructions they use here. This patch adds new X86ISD nodes for the RCP14/RSQRT14 and uses those for the new intrinsics. Leaving the old intrinsics to use the old instructions. Going forward I think our focus should be on -Supporting 512-bit vectors, which will have to use the RCP14/RSQRT14. -Using RSQRT28/RCP28 to remove the Newton Raphson step on processors with AVX512ER -Supporting double precision. Reviewers: zvi, DavidKreitzer, RKSimon Reviewed By: RKSimon Subscribers: llvm-commits Differential Revision: https://reviews.llvm.org/D39583 llvm-svn: 317413
2017-11-05 02:26:41 +08:00
; SKX-NEXT: vrcpps %ymm0, %ymm1 # sched: [4:1.00]
; SKX-NEXT: vfnmadd213ps {{.*}}(%rip){1to8}, %ymm1, %ymm0 # sched: [11:0.50]
; SKX-NEXT: vfmadd132ps %ymm1, %ymm1, %ymm0 # sched: [4:0.33]
; SKX-NEXT: vmulps {{.*}}(%rip), %ymm0, %ymm1 # sched: [11:0.50]
; SKX-NEXT: vmulps %ymm0, %ymm1, %ymm0 # sched: [4:0.33]
; SKX-NEXT: retq # sched: [7:1.00]
%div = fdiv fast <8 x float> <float 1.0, float 2.0, float 3.0, float 4.0, float 5.0, float 6.0, float 7.0, float 8.0>, %x
%div2 = fdiv fast <8 x float> %div, %x
ret <8 x float> %div2
}
define <8 x float> @v8f32_two_step2(<8 x float> %x) #2 {
; SSE-LABEL: v8f32_two_step2:
; SSE: # %bb.0:
; SSE-NEXT: movaps %xmm0, %xmm2
; SSE-NEXT: rcpps %xmm1, %xmm3
; SSE-NEXT: movaps %xmm1, %xmm4
; SSE-NEXT: mulps %xmm3, %xmm4
; SSE-NEXT: movaps {{.*#+}} xmm0 = [1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00]
; SSE-NEXT: movaps %xmm0, %xmm5
; SSE-NEXT: subps %xmm4, %xmm5
; SSE-NEXT: mulps %xmm3, %xmm5
; SSE-NEXT: addps %xmm3, %xmm5
; SSE-NEXT: mulps %xmm5, %xmm1
; SSE-NEXT: movaps %xmm0, %xmm3
; SSE-NEXT: subps %xmm1, %xmm3
; SSE-NEXT: mulps %xmm5, %xmm3
; SSE-NEXT: addps %xmm5, %xmm3
; SSE-NEXT: rcpps %xmm2, %xmm1
; SSE-NEXT: movaps %xmm2, %xmm4
; SSE-NEXT: mulps %xmm1, %xmm4
; SSE-NEXT: movaps %xmm0, %xmm5
; SSE-NEXT: subps %xmm4, %xmm5
; SSE-NEXT: mulps %xmm1, %xmm5
; SSE-NEXT: addps %xmm1, %xmm5
; SSE-NEXT: mulps %xmm5, %xmm2
; SSE-NEXT: subps %xmm2, %xmm0
; SSE-NEXT: mulps %xmm5, %xmm0
; SSE-NEXT: addps %xmm5, %xmm0
; SSE-NEXT: mulps {{.*}}(%rip), %xmm0
; SSE-NEXT: mulps {{.*}}(%rip), %xmm3
; SSE-NEXT: movaps %xmm3, %xmm1
; SSE-NEXT: retq
;
; AVX-RECIP-LABEL: v8f32_two_step2:
; AVX-RECIP: # %bb.0:
; AVX-RECIP-NEXT: vrcpps %ymm0, %ymm1
; AVX-RECIP-NEXT: vmulps %ymm1, %ymm0, %ymm2
; AVX-RECIP-NEXT: vmovaps {{.*#+}} ymm3 = [1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00]
; AVX-RECIP-NEXT: vsubps %ymm2, %ymm3, %ymm2
; AVX-RECIP-NEXT: vmulps %ymm2, %ymm1, %ymm2
; AVX-RECIP-NEXT: vaddps %ymm2, %ymm1, %ymm1
; AVX-RECIP-NEXT: vmulps %ymm1, %ymm0, %ymm0
; AVX-RECIP-NEXT: vsubps %ymm0, %ymm3, %ymm0
; AVX-RECIP-NEXT: vmulps %ymm0, %ymm1, %ymm0
; AVX-RECIP-NEXT: vaddps %ymm0, %ymm1, %ymm0
; AVX-RECIP-NEXT: vmulps {{.*}}(%rip), %ymm0, %ymm0
; AVX-RECIP-NEXT: retq
;
; FMA-RECIP-LABEL: v8f32_two_step2:
; FMA-RECIP: # %bb.0:
; FMA-RECIP-NEXT: vrcpps %ymm0, %ymm1
; FMA-RECIP-NEXT: vmovaps {{.*#+}} ymm2 = [1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00]
; FMA-RECIP-NEXT: vmovaps %ymm1, %ymm3
; FMA-RECIP-NEXT: vfnmadd213ps %ymm2, %ymm0, %ymm3
; FMA-RECIP-NEXT: vfmadd132ps %ymm1, %ymm1, %ymm3
; FMA-RECIP-NEXT: vfnmadd213ps %ymm2, %ymm3, %ymm0
; FMA-RECIP-NEXT: vfmadd132ps %ymm3, %ymm3, %ymm0
; FMA-RECIP-NEXT: vmulps {{.*}}(%rip), %ymm0, %ymm0
; FMA-RECIP-NEXT: retq
;
; BTVER2-LABEL: v8f32_two_step2:
; BTVER2: # %bb.0:
; BTVER2-NEXT: vmovaps {{.*#+}} ymm3 = [1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00] sched: [5:1.00]
; BTVER2-NEXT: vrcpps %ymm0, %ymm1 # sched: [2:2.00]
; BTVER2-NEXT: vmulps %ymm1, %ymm0, %ymm2 # sched: [2:2.00]
; BTVER2-NEXT: vsubps %ymm2, %ymm3, %ymm2 # sched: [3:2.00]
; BTVER2-NEXT: vmulps %ymm2, %ymm1, %ymm2 # sched: [2:2.00]
; BTVER2-NEXT: vaddps %ymm2, %ymm1, %ymm1 # sched: [3:2.00]
; BTVER2-NEXT: vmulps %ymm1, %ymm0, %ymm0 # sched: [2:2.00]
; BTVER2-NEXT: vsubps %ymm0, %ymm3, %ymm0 # sched: [3:2.00]
; BTVER2-NEXT: vmulps %ymm0, %ymm1, %ymm0 # sched: [2:2.00]
; BTVER2-NEXT: vaddps %ymm0, %ymm1, %ymm0 # sched: [3:2.00]
; BTVER2-NEXT: vmulps {{.*}}(%rip), %ymm0, %ymm0 # sched: [7:2.00]
; BTVER2-NEXT: retq # sched: [4:1.00]
;
; SANDY-LABEL: v8f32_two_step2:
; SANDY: # %bb.0:
; SANDY-NEXT: vrcpps %ymm0, %ymm1 # sched: [7:2.00]
; SANDY-NEXT: vmulps %ymm1, %ymm0, %ymm2 # sched: [5:1.00]
This patch completely replaces the scheduling information for the SandyBridge architecture target by modifying the file X86SchedSandyBridge.td located under the X86 Target. The SandyBridge architects have provided us with a more accurate information about each instruction latency, number of uOPs and used ports and I used it to replace the existing estimated SNB instructions scheduling and to add missing scheduling information. Please note that the patch extensively affects the X86 MC instr scheduling for SNB. Also note that this patch will be followed by additional patches for the remaining target architectures HSW, IVB, BDW, SKL and SKX. The updated and extended information about each instruction includes the following details: •static latency of the instruction •number of uOps from which the instruction consists of •all ports used by the instruction's' uOPs For example, the following code dictates that instructions, ADC64mr, ADC8mr, SBB64mr, SBB8mr have a static latency of 9 cycles. Each of these instructions is decoded into 6 micro operations which use ports 4, ports 2 or 3 and port 0 and ports 0 or 1 or 5: def SBWriteResGroup94 : SchedWriteRes<[SBPort4,SBPort23,SBPort0,SBPort015]> { let Latency = 9; let NumMicroOps = 6; let ResourceCycles = [1,2,2,1]; } def: InstRW<[SBWriteResGroup94], (instregex "ADC64mr")>; def: InstRW<[SBWriteResGroup94], (instregex "ADC8mr")>; def: InstRW<[SBWriteResGroup94], (instregex "SBB64mr")>; def: InstRW<[SBWriteResGroup94], (instregex "SBB8mr")>; Note that apart for the header, most of the X86SchedSandyBridge.td file was generated by a script. Reviewers: zvi, chandlerc, RKSimon, m_zuckerman, craig.topper, igorb Differential Revision: https://reviews.llvm.org/D35019#inline-304691 llvm-svn: 307529
2017-07-10 17:53:16 +08:00
; SANDY-NEXT: vmovaps {{.*#+}} ymm3 = [1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00,1.000000e+00] sched: [7:0.50]
; SANDY-NEXT: vsubps %ymm2, %ymm3, %ymm2 # sched: [3:1.00]
; SANDY-NEXT: vmulps %ymm2, %ymm1, %ymm2 # sched: [5:1.00]
; SANDY-NEXT: vaddps %ymm2, %ymm1, %ymm1 # sched: [3:1.00]
; SANDY-NEXT: vmulps %ymm1, %ymm0, %ymm0 # sched: [5:1.00]
; SANDY-NEXT: vsubps %ymm0, %ymm3, %ymm0 # sched: [3:1.00]
; SANDY-NEXT: vmulps %ymm0, %ymm1, %ymm0 # sched: [5:1.00]
; SANDY-NEXT: vaddps %ymm0, %ymm1, %ymm0 # sched: [3:1.00]
This patch completely replaces the scheduling information for the SandyBridge architecture target by modifying the file X86SchedSandyBridge.td located under the X86 Target. The SandyBridge architects have provided us with a more accurate information about each instruction latency, number of uOPs and used ports and I used it to replace the existing estimated SNB instructions scheduling and to add missing scheduling information. Please note that the patch extensively affects the X86 MC instr scheduling for SNB. Also note that this patch will be followed by additional patches for the remaining target architectures HSW, IVB, BDW, SKL and SKX. The updated and extended information about each instruction includes the following details: •static latency of the instruction •number of uOps from which the instruction consists of •all ports used by the instruction's' uOPs For example, the following code dictates that instructions, ADC64mr, ADC8mr, SBB64mr, SBB8mr have a static latency of 9 cycles. Each of these instructions is decoded into 6 micro operations which use ports 4, ports 2 or 3 and port 0 and ports 0 or 1 or 5: def SBWriteResGroup94 : SchedWriteRes<[SBPort4,SBPort23,SBPort0,SBPort015]> { let Latency = 9; let NumMicroOps = 6; let ResourceCycles = [1,2,2,1]; } def: InstRW<[SBWriteResGroup94], (instregex "ADC64mr")>; def: InstRW<[SBWriteResGroup94], (instregex "ADC8mr")>; def: InstRW<[SBWriteResGroup94], (instregex "SBB64mr")>; def: InstRW<[SBWriteResGroup94], (instregex "SBB8mr")>; Note that apart for the header, most of the X86SchedSandyBridge.td file was generated by a script. Reviewers: zvi, chandlerc, RKSimon, m_zuckerman, craig.topper, igorb Differential Revision: https://reviews.llvm.org/D35019#inline-304691 llvm-svn: 307529
2017-07-10 17:53:16 +08:00
; SANDY-NEXT: vmulps {{.*}}(%rip), %ymm0, %ymm0 # sched: [12:1.00]
; SANDY-NEXT: retq # sched: [1:1.00]
;
; HASWELL-LABEL: v8f32_two_step2:
; HASWELL: # %bb.0:
; HASWELL-NEXT: vrcpps %ymm0, %ymm1 # sched: [11:2.00]
; HASWELL-NEXT: vbroadcastss {{.*#+}} ymm2 = [1,1,1,1,1,1,1,1] sched: [7:0.50]
; HASWELL-NEXT: vmovaps %ymm1, %ymm3 # sched: [1:1.00]
; HASWELL-NEXT: vfnmadd213ps %ymm2, %ymm0, %ymm3 # sched: [5:0.50]
; HASWELL-NEXT: vfmadd132ps %ymm1, %ymm1, %ymm3 # sched: [5:0.50]
; HASWELL-NEXT: vfnmadd213ps %ymm2, %ymm3, %ymm0 # sched: [5:0.50]
; HASWELL-NEXT: vfmadd132ps %ymm3, %ymm3, %ymm0 # sched: [5:0.50]
; HASWELL-NEXT: vmulps {{.*}}(%rip), %ymm0, %ymm0 # sched: [12:0.50]
; HASWELL-NEXT: retq # sched: [7:1.00]
;
; HASWELL-NO-FMA-LABEL: v8f32_two_step2:
; HASWELL-NO-FMA: # %bb.0:
; HASWELL-NO-FMA-NEXT: vrcpps %ymm0, %ymm1 # sched: [11:2.00]
; HASWELL-NO-FMA-NEXT: vmulps %ymm1, %ymm0, %ymm2 # sched: [5:0.50]
; HASWELL-NO-FMA-NEXT: vbroadcastss {{.*#+}} ymm3 = [1,1,1,1,1,1,1,1] sched: [7:0.50]
; HASWELL-NO-FMA-NEXT: vsubps %ymm2, %ymm3, %ymm2 # sched: [3:1.00]
; HASWELL-NO-FMA-NEXT: vmulps %ymm2, %ymm1, %ymm2 # sched: [5:0.50]
; HASWELL-NO-FMA-NEXT: vaddps %ymm2, %ymm1, %ymm1 # sched: [3:1.00]
; HASWELL-NO-FMA-NEXT: vmulps %ymm1, %ymm0, %ymm0 # sched: [5:0.50]
; HASWELL-NO-FMA-NEXT: vsubps %ymm0, %ymm3, %ymm0 # sched: [3:1.00]
; HASWELL-NO-FMA-NEXT: vmulps %ymm0, %ymm1, %ymm0 # sched: [5:0.50]
; HASWELL-NO-FMA-NEXT: vaddps %ymm0, %ymm1, %ymm0 # sched: [3:1.00]
; HASWELL-NO-FMA-NEXT: vmulps {{.*}}(%rip), %ymm0, %ymm0 # sched: [12:0.50]
; HASWELL-NO-FMA-NEXT: retq # sched: [7:1.00]
;
; KNL-LABEL: v8f32_two_step2:
; KNL: # %bb.0:
; KNL-NEXT: vrcpps %ymm0, %ymm1 # sched: [11:2.00]
; KNL-NEXT: vbroadcastss {{.*#+}} ymm2 = [1,1,1,1,1,1,1,1] sched: [7:0.50]
; KNL-NEXT: vmovaps %ymm1, %ymm3 # sched: [1:1.00]
; KNL-NEXT: vfnmadd213ps %ymm2, %ymm0, %ymm3 # sched: [5:0.50]
; KNL-NEXT: vfmadd132ps %ymm1, %ymm1, %ymm3 # sched: [5:0.50]
; KNL-NEXT: vfnmadd213ps %ymm2, %ymm3, %ymm0 # sched: [5:0.50]
; KNL-NEXT: vfmadd132ps %ymm3, %ymm3, %ymm0 # sched: [5:0.50]
; KNL-NEXT: vmulps {{.*}}(%rip), %ymm0, %ymm0 # sched: [12:0.50]
; KNL-NEXT: retq # sched: [7:1.00]
;
; SKX-LABEL: v8f32_two_step2:
; SKX: # %bb.0:
[X86] Don't use RCP14 and RSQRT14 for reciprocal estimations or for legacy SSE rcp/rsqrt intrinsics when AVX512 features are enabled. Summary: AVX512 added RCP14 and RSQRT instructions which improve accuracy over the legacy RCP and RSQRT instruction, but not enough accuracy to remove the need for a Newton Raphson refinement. Currently we use these new instructions for the legacy packed SSE instrinics, but not the scalar instrinsics. And we use it for fast math optimization of division and reciprocal sqrt. I think switching the legacy instrinsics maybe surprising to the user since it changes the answer based on which processor you're using regardless of any fastmath settings. It's also weird that we did something different between scalar and packed. As far at the reciprocal estimation, I think it creates unnecessary deltas in our output behavior (and prevents EVEX->VEX). A little playing around with gcc and icc and godbolt suggest they don't change which instructions they use here. This patch adds new X86ISD nodes for the RCP14/RSQRT14 and uses those for the new intrinsics. Leaving the old intrinsics to use the old instructions. Going forward I think our focus should be on -Supporting 512-bit vectors, which will have to use the RCP14/RSQRT14. -Using RSQRT28/RCP28 to remove the Newton Raphson step on processors with AVX512ER -Supporting double precision. Reviewers: zvi, DavidKreitzer, RKSimon Reviewed By: RKSimon Subscribers: llvm-commits Differential Revision: https://reviews.llvm.org/D39583 llvm-svn: 317413
2017-11-05 02:26:41 +08:00
; SKX-NEXT: vrcpps %ymm0, %ymm1 # sched: [4:1.00]
; SKX-NEXT: vbroadcastss {{.*#+}} ymm2 = [1,1,1,1,1,1,1,1] sched: [7:0.50]
; SKX-NEXT: vmovaps %ymm1, %ymm3 # sched: [1:0.33]
; SKX-NEXT: vfnmadd213ps %ymm2, %ymm0, %ymm3 # sched: [4:0.33]
; SKX-NEXT: vfmadd132ps %ymm1, %ymm1, %ymm3 # sched: [4:0.33]
; SKX-NEXT: vfnmadd213ps %ymm2, %ymm3, %ymm0 # sched: [4:0.33]
; SKX-NEXT: vfmadd132ps %ymm3, %ymm3, %ymm0 # sched: [4:0.33]
; SKX-NEXT: vmulps {{.*}}(%rip), %ymm0, %ymm0 # sched: [11:0.50]
; SKX-NEXT: retq # sched: [7:1.00]
%div = fdiv fast <8 x float> <float 1.0, float 2.0, float 3.0, float 4.0, float 5.0, float 6.0, float 7.0, float 8.0>, %x
ret <8 x float> %div
}
define <8 x float> @v8f32_no_step(<8 x float> %x) #3 {
; SSE-LABEL: v8f32_no_step:
; SSE: # %bb.0:
; SSE-NEXT: rcpps %xmm0, %xmm0
; SSE-NEXT: rcpps %xmm1, %xmm1
; SSE-NEXT: retq
;
; AVX-RECIP-LABEL: v8f32_no_step:
; AVX-RECIP: # %bb.0:
; AVX-RECIP-NEXT: vrcpps %ymm0, %ymm0
; AVX-RECIP-NEXT: retq
;
; FMA-RECIP-LABEL: v8f32_no_step:
; FMA-RECIP: # %bb.0:
; FMA-RECIP-NEXT: vrcpps %ymm0, %ymm0
; FMA-RECIP-NEXT: retq
;
; BTVER2-LABEL: v8f32_no_step:
; BTVER2: # %bb.0:
; BTVER2-NEXT: vrcpps %ymm0, %ymm0 # sched: [2:2.00]
; BTVER2-NEXT: retq # sched: [4:1.00]
;
; SANDY-LABEL: v8f32_no_step:
; SANDY: # %bb.0:
; SANDY-NEXT: vrcpps %ymm0, %ymm0 # sched: [7:2.00]
This patch completely replaces the scheduling information for the SandyBridge architecture target by modifying the file X86SchedSandyBridge.td located under the X86 Target. The SandyBridge architects have provided us with a more accurate information about each instruction latency, number of uOPs and used ports and I used it to replace the existing estimated SNB instructions scheduling and to add missing scheduling information. Please note that the patch extensively affects the X86 MC instr scheduling for SNB. Also note that this patch will be followed by additional patches for the remaining target architectures HSW, IVB, BDW, SKL and SKX. The updated and extended information about each instruction includes the following details: •static latency of the instruction •number of uOps from which the instruction consists of •all ports used by the instruction's' uOPs For example, the following code dictates that instructions, ADC64mr, ADC8mr, SBB64mr, SBB8mr have a static latency of 9 cycles. Each of these instructions is decoded into 6 micro operations which use ports 4, ports 2 or 3 and port 0 and ports 0 or 1 or 5: def SBWriteResGroup94 : SchedWriteRes<[SBPort4,SBPort23,SBPort0,SBPort015]> { let Latency = 9; let NumMicroOps = 6; let ResourceCycles = [1,2,2,1]; } def: InstRW<[SBWriteResGroup94], (instregex "ADC64mr")>; def: InstRW<[SBWriteResGroup94], (instregex "ADC8mr")>; def: InstRW<[SBWriteResGroup94], (instregex "SBB64mr")>; def: InstRW<[SBWriteResGroup94], (instregex "SBB8mr")>; Note that apart for the header, most of the X86SchedSandyBridge.td file was generated by a script. Reviewers: zvi, chandlerc, RKSimon, m_zuckerman, craig.topper, igorb Differential Revision: https://reviews.llvm.org/D35019#inline-304691 llvm-svn: 307529
2017-07-10 17:53:16 +08:00
; SANDY-NEXT: retq # sched: [1:1.00]
;
; HASWELL-LABEL: v8f32_no_step:
; HASWELL: # %bb.0:
; HASWELL-NEXT: vrcpps %ymm0, %ymm0 # sched: [11:2.00]
; HASWELL-NEXT: retq # sched: [7:1.00]
;
; HASWELL-NO-FMA-LABEL: v8f32_no_step:
; HASWELL-NO-FMA: # %bb.0:
; HASWELL-NO-FMA-NEXT: vrcpps %ymm0, %ymm0 # sched: [11:2.00]
; HASWELL-NO-FMA-NEXT: retq # sched: [7:1.00]
;
; KNL-LABEL: v8f32_no_step:
; KNL: # %bb.0:
; KNL-NEXT: vrcpps %ymm0, %ymm0 # sched: [11:2.00]
; KNL-NEXT: retq # sched: [7:1.00]
;
; SKX-LABEL: v8f32_no_step:
; SKX: # %bb.0:
[X86] Don't use RCP14 and RSQRT14 for reciprocal estimations or for legacy SSE rcp/rsqrt intrinsics when AVX512 features are enabled. Summary: AVX512 added RCP14 and RSQRT instructions which improve accuracy over the legacy RCP and RSQRT instruction, but not enough accuracy to remove the need for a Newton Raphson refinement. Currently we use these new instructions for the legacy packed SSE instrinics, but not the scalar instrinsics. And we use it for fast math optimization of division and reciprocal sqrt. I think switching the legacy instrinsics maybe surprising to the user since it changes the answer based on which processor you're using regardless of any fastmath settings. It's also weird that we did something different between scalar and packed. As far at the reciprocal estimation, I think it creates unnecessary deltas in our output behavior (and prevents EVEX->VEX). A little playing around with gcc and icc and godbolt suggest they don't change which instructions they use here. This patch adds new X86ISD nodes for the RCP14/RSQRT14 and uses those for the new intrinsics. Leaving the old intrinsics to use the old instructions. Going forward I think our focus should be on -Supporting 512-bit vectors, which will have to use the RCP14/RSQRT14. -Using RSQRT28/RCP28 to remove the Newton Raphson step on processors with AVX512ER -Supporting double precision. Reviewers: zvi, DavidKreitzer, RKSimon Reviewed By: RKSimon Subscribers: llvm-commits Differential Revision: https://reviews.llvm.org/D39583 llvm-svn: 317413
2017-11-05 02:26:41 +08:00
; SKX-NEXT: vrcpps %ymm0, %ymm0 # sched: [4:1.00]
; SKX-NEXT: retq # sched: [7:1.00]
%div = fdiv fast <8 x float> <float 1.0, float 1.0, float 1.0, float 1.0, float 1.0, float 1.0, float 1.0, float 1.0>, %x
ret <8 x float> %div
}
define <8 x float> @v8f32_no_step2(<8 x float> %x) #3 {
; SSE-LABEL: v8f32_no_step2:
; SSE: # %bb.0:
; SSE-NEXT: rcpps %xmm1, %xmm1
; SSE-NEXT: rcpps %xmm0, %xmm0
; SSE-NEXT: mulps {{.*}}(%rip), %xmm0
; SSE-NEXT: mulps {{.*}}(%rip), %xmm1
; SSE-NEXT: retq
;
; AVX-RECIP-LABEL: v8f32_no_step2:
; AVX-RECIP: # %bb.0:
; AVX-RECIP-NEXT: vrcpps %ymm0, %ymm0
; AVX-RECIP-NEXT: vmulps {{.*}}(%rip), %ymm0, %ymm0
; AVX-RECIP-NEXT: retq
;
; FMA-RECIP-LABEL: v8f32_no_step2:
; FMA-RECIP: # %bb.0:
; FMA-RECIP-NEXT: vrcpps %ymm0, %ymm0
; FMA-RECIP-NEXT: vmulps {{.*}}(%rip), %ymm0, %ymm0
; FMA-RECIP-NEXT: retq
;
; BTVER2-LABEL: v8f32_no_step2:
; BTVER2: # %bb.0:
; BTVER2-NEXT: vrcpps %ymm0, %ymm0 # sched: [2:2.00]
; BTVER2-NEXT: vmulps {{.*}}(%rip), %ymm0, %ymm0 # sched: [7:2.00]
; BTVER2-NEXT: retq # sched: [4:1.00]
;
; SANDY-LABEL: v8f32_no_step2:
; SANDY: # %bb.0:
; SANDY-NEXT: vrcpps %ymm0, %ymm0 # sched: [7:2.00]
This patch completely replaces the scheduling information for the SandyBridge architecture target by modifying the file X86SchedSandyBridge.td located under the X86 Target. The SandyBridge architects have provided us with a more accurate information about each instruction latency, number of uOPs and used ports and I used it to replace the existing estimated SNB instructions scheduling and to add missing scheduling information. Please note that the patch extensively affects the X86 MC instr scheduling for SNB. Also note that this patch will be followed by additional patches for the remaining target architectures HSW, IVB, BDW, SKL and SKX. The updated and extended information about each instruction includes the following details: •static latency of the instruction •number of uOps from which the instruction consists of •all ports used by the instruction's' uOPs For example, the following code dictates that instructions, ADC64mr, ADC8mr, SBB64mr, SBB8mr have a static latency of 9 cycles. Each of these instructions is decoded into 6 micro operations which use ports 4, ports 2 or 3 and port 0 and ports 0 or 1 or 5: def SBWriteResGroup94 : SchedWriteRes<[SBPort4,SBPort23,SBPort0,SBPort015]> { let Latency = 9; let NumMicroOps = 6; let ResourceCycles = [1,2,2,1]; } def: InstRW<[SBWriteResGroup94], (instregex "ADC64mr")>; def: InstRW<[SBWriteResGroup94], (instregex "ADC8mr")>; def: InstRW<[SBWriteResGroup94], (instregex "SBB64mr")>; def: InstRW<[SBWriteResGroup94], (instregex "SBB8mr")>; Note that apart for the header, most of the X86SchedSandyBridge.td file was generated by a script. Reviewers: zvi, chandlerc, RKSimon, m_zuckerman, craig.topper, igorb Differential Revision: https://reviews.llvm.org/D35019#inline-304691 llvm-svn: 307529
2017-07-10 17:53:16 +08:00
; SANDY-NEXT: vmulps {{.*}}(%rip), %ymm0, %ymm0 # sched: [12:1.00]
; SANDY-NEXT: retq # sched: [1:1.00]
;
; HASWELL-LABEL: v8f32_no_step2:
; HASWELL: # %bb.0:
; HASWELL-NEXT: vrcpps %ymm0, %ymm0 # sched: [11:2.00]
; HASWELL-NEXT: vmulps {{.*}}(%rip), %ymm0, %ymm0 # sched: [12:0.50]
; HASWELL-NEXT: retq # sched: [7:1.00]
;
; HASWELL-NO-FMA-LABEL: v8f32_no_step2:
; HASWELL-NO-FMA: # %bb.0:
; HASWELL-NO-FMA-NEXT: vrcpps %ymm0, %ymm0 # sched: [11:2.00]
; HASWELL-NO-FMA-NEXT: vmulps {{.*}}(%rip), %ymm0, %ymm0 # sched: [12:0.50]
; HASWELL-NO-FMA-NEXT: retq # sched: [7:1.00]
;
; KNL-LABEL: v8f32_no_step2:
; KNL: # %bb.0:
; KNL-NEXT: vrcpps %ymm0, %ymm0 # sched: [11:2.00]
; KNL-NEXT: vmulps {{.*}}(%rip), %ymm0, %ymm0 # sched: [12:0.50]
; KNL-NEXT: retq # sched: [7:1.00]
;
; SKX-LABEL: v8f32_no_step2:
; SKX: # %bb.0:
[X86] Don't use RCP14 and RSQRT14 for reciprocal estimations or for legacy SSE rcp/rsqrt intrinsics when AVX512 features are enabled. Summary: AVX512 added RCP14 and RSQRT instructions which improve accuracy over the legacy RCP and RSQRT instruction, but not enough accuracy to remove the need for a Newton Raphson refinement. Currently we use these new instructions for the legacy packed SSE instrinics, but not the scalar instrinsics. And we use it for fast math optimization of division and reciprocal sqrt. I think switching the legacy instrinsics maybe surprising to the user since it changes the answer based on which processor you're using regardless of any fastmath settings. It's also weird that we did something different between scalar and packed. As far at the reciprocal estimation, I think it creates unnecessary deltas in our output behavior (and prevents EVEX->VEX). A little playing around with gcc and icc and godbolt suggest they don't change which instructions they use here. This patch adds new X86ISD nodes for the RCP14/RSQRT14 and uses those for the new intrinsics. Leaving the old intrinsics to use the old instructions. Going forward I think our focus should be on -Supporting 512-bit vectors, which will have to use the RCP14/RSQRT14. -Using RSQRT28/RCP28 to remove the Newton Raphson step on processors with AVX512ER -Supporting double precision. Reviewers: zvi, DavidKreitzer, RKSimon Reviewed By: RKSimon Subscribers: llvm-commits Differential Revision: https://reviews.llvm.org/D39583 llvm-svn: 317413
2017-11-05 02:26:41 +08:00
; SKX-NEXT: vrcpps %ymm0, %ymm0 # sched: [4:1.00]
; SKX-NEXT: vmulps {{.*}}(%rip), %ymm0, %ymm0 # sched: [11:0.50]
; SKX-NEXT: retq # sched: [7:1.00]
%div = fdiv fast <8 x float> <float 1.0, float 2.0, float 3.0, float 4.0, float 5.0, float 6.0, float 7.0, float 8.0>, %x
ret <8 x float> %div
}
attributes #0 = { "unsafe-fp-math"="true" "reciprocal-estimates"="!divf,!vec-divf" }
attributes #1 = { "unsafe-fp-math"="true" "reciprocal-estimates"="divf,vec-divf" }
attributes #2 = { "unsafe-fp-math"="true" "reciprocal-estimates"="divf:2,vec-divf:2" }
attributes #3 = { "unsafe-fp-math"="true" "reciprocal-estimates"="divf:0,vec-divf:0" }