llvm-project/mlir/lib/AffineOps/AffineOps.cpp

1333 lines
50 KiB
C++
Raw Normal View History

//===- AffineOps.cpp - MLIR Affine Operations -----------------------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
#include "mlir/AffineOps/AffineOps.h"
#include "mlir/IR/Block.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/StandardOps/Ops.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/Support/Debug.h"
using namespace mlir;
using llvm::dbgs;
#define DEBUG_TYPE "affine-analysis"
//===----------------------------------------------------------------------===//
// AffineOpsDialect
//===----------------------------------------------------------------------===//
AffineOpsDialect::AffineOpsDialect(MLIRContext *context)
: Dialect(/*name=*/"affine", context) {
addOperations<AffineApplyOp, AffineForOp, AffineIfOp, AffineTerminatorOp>();
}
/// A utility function to check if a value is defined at the top level of a
/// function. A value defined at the top level is always a valid symbol.
bool mlir::isTopLevelSymbol(Value *value) {
if (auto *arg = dyn_cast<BlockArgument>(value))
return arg->getOwner()->getParent()->getContainingFunction();
return value->getDefiningOp()->getParentOp() == nullptr;
}
// Value can be used as a dimension id if it is valid as a symbol, or
// it is an induction variable, or it is a result of affine apply operation
// with dimension id arguments.
bool mlir::isValidDim(Value *value) {
// The value must be an index type.
if (!value->getType().isIndex())
return false;
if (auto *op = value->getDefiningOp()) {
// Top level operation or constant operation is ok.
if (op->getParentOp() == nullptr || op->isa<ConstantOp>())
return true;
// Affine apply operation is ok if all of its operands are ok.
if (auto applyOp = op->dyn_cast<AffineApplyOp>())
return applyOp.isValidDim();
// The dim op is okay if its operand memref/tensor is defined at the top
// level.
if (auto dimOp = op->dyn_cast<DimOp>())
return isTopLevelSymbol(dimOp.getOperand());
return false;
}
// This value is a block argument (which also includes 'affine.for' loop IVs).
return true;
}
// Value can be used as a symbol if it is a constant, or it is defined at
// the top level, or it is a result of affine apply operation with symbol
// arguments.
bool mlir::isValidSymbol(Value *value) {
// The value must be an index type.
if (!value->getType().isIndex())
return false;
if (auto *op = value->getDefiningOp()) {
// Top level operation or constant operation is ok.
if (op->getParentOp() == nullptr || op->isa<ConstantOp>())
return true;
// Affine apply operation is ok if all of its operands are ok.
if (auto applyOp = op->dyn_cast<AffineApplyOp>())
return applyOp.isValidSymbol();
// The dim op is okay if its operand memref/tensor is defined at the top
// level.
if (auto dimOp = op->dyn_cast<DimOp>())
return isTopLevelSymbol(dimOp.getOperand());
return false;
}
// Otherwise, the only valid symbol is a top level block argument.
auto *arg = cast<BlockArgument>(value);
return arg->getOwner()->getParent()->getContainingFunction();
}
/// Utility function to verify that a set of operands are valid dimension and
/// symbol identifiers. The operands should be layed out such that the dimension
/// operands are before the symbol operands. This function returns failure if
/// there was an invalid operand. An operation is provided to emit any necessary
/// errors.
template <typename OpTy>
static LogicalResult
verifyDimAndSymbolIdentifiers(OpTy &op, Operation::operand_range operands,
unsigned numDims) {
unsigned opIt = 0;
for (auto *operand : operands) {
if (opIt++ < numDims) {
if (!isValidDim(operand))
return op.emitOpError("operand cannot be used as a dimension id");
} else if (!isValidSymbol(operand)) {
return op.emitOpError("operand cannot be used as a symbol");
}
}
return success();
}
//===----------------------------------------------------------------------===//
// AffineApplyOp
//===----------------------------------------------------------------------===//
void AffineApplyOp::build(Builder *builder, OperationState *result,
AffineMap map, ArrayRef<Value *> operands) {
result->addOperands(operands);
result->types.append(map.getNumResults(), builder->getIndexType());
result->addAttribute("map", builder->getAffineMapAttr(map));
}
bool AffineApplyOp::parse(OpAsmParser *parser, OperationState *result) {
auto &builder = parser->getBuilder();
auto affineIntTy = builder.getIndexType();
AffineMapAttr mapAttr;
unsigned numDims;
if (parser->parseAttribute(mapAttr, "map", result->attributes) ||
parseDimAndSymbolList(parser, result->operands, numDims) ||
parser->parseOptionalAttributeDict(result->attributes))
return true;
auto map = mapAttr.getValue();
if (map.getNumDims() != numDims ||
numDims + map.getNumSymbols() != result->operands.size()) {
return parser->emitError(parser->getNameLoc(),
"dimension or symbol index mismatch");
}
result->types.append(map.getNumResults(), affineIntTy);
return false;
}
void AffineApplyOp::print(OpAsmPrinter *p) {
auto map = getAffineMap();
*p << "affine.apply " << map;
printDimAndSymbolList(operand_begin(), operand_end(), map.getNumDims(), p);
p->printOptionalAttrDict(getAttrs(), /*elidedAttrs=*/{"map"});
}
LogicalResult AffineApplyOp::verify() {
// Check that affine map attribute was specified.
auto affineMapAttr = getAttrOfType<AffineMapAttr>("map");
if (!affineMapAttr)
return emitOpError("requires an affine map");
// Check input and output dimensions match.
auto map = affineMapAttr.getValue();
// Verify that operand count matches affine map dimension and symbol count.
if (getNumOperands() != map.getNumDims() + map.getNumSymbols())
return emitOpError(
"operand count and affine map dimension and symbol count must match");
// Verify that the operands are valid dimension and symbol identifiers.
if (failed(verifyDimAndSymbolIdentifiers(*this, getOperands(),
map.getNumDims())))
return failure();
// Verify that the map only produces one result.
if (map.getNumResults() != 1)
return emitOpError("mapping must produce one value");
return success();
}
// The result of the affine apply operation can be used as a dimension id if it
// is a CFG value or if it is an Value, and all the operands are valid
// dimension ids.
bool AffineApplyOp::isValidDim() {
return llvm::all_of(getOperands(),
[](Value *op) { return mlir::isValidDim(op); });
}
// The result of the affine apply operation can be used as a symbol if it is
// a CFG value or if it is an Value, and all the operands are symbols.
bool AffineApplyOp::isValidSymbol() {
return llvm::all_of(getOperands(),
[](Value *op) { return mlir::isValidSymbol(op); });
}
Attribute AffineApplyOp::constantFold(ArrayRef<Attribute> operands,
MLIRContext *context) {
auto map = getAffineMap();
SmallVector<Attribute, 1> result;
if (failed(map.constantFold(operands, result)))
return Attribute();
return result[0];
}
namespace {
/// An `AffineApplyNormalizer` is a helper class that is not visible to the user
/// and supports renumbering operands of AffineApplyOp. This acts as a
/// reindexing map of Value* to positional dims or symbols and allows
/// simplifications such as:
///
/// ```mlir
/// %1 = affine.apply (d0, d1) -> (d0 - d1) (%0, %0)
/// ```
///
/// into:
///
/// ```mlir
/// %1 = affine.apply () -> (0)
/// ```
struct AffineApplyNormalizer {
AffineApplyNormalizer(AffineMap map, ArrayRef<Value *> operands);
/// Returns the AffineMap resulting from normalization.
AffineMap getAffineMap() { return affineMap; }
SmallVector<Value *, 8> getOperands() {
SmallVector<Value *, 8> res(reorderedDims);
res.append(concatenatedSymbols.begin(), concatenatedSymbols.end());
return res;
}
private:
/// Helper function to insert `v` into the coordinate system of the current
/// AffineApplyNormalizer. Returns the AffineDimExpr with the corresponding
/// renumbered position.
AffineDimExpr renumberOneDim(Value *v);
/// Given an `other` normalizer, this rewrites `other.affineMap` in the
/// coordinate system of the current AffineApplyNormalizer.
/// Returns the rewritten AffineMap and updates the dims and symbols of
/// `this`.
AffineMap renumber(const AffineApplyNormalizer &other);
/// Maps of Value* to position in `affineMap`.
DenseMap<Value *, unsigned> dimValueToPosition;
/// Ordered dims and symbols matching positional dims and symbols in
/// `affineMap`.
SmallVector<Value *, 8> reorderedDims;
SmallVector<Value *, 8> concatenatedSymbols;
AffineMap affineMap;
/// Used with RAII to control the depth at which AffineApply are composed
/// recursively. Only accepts depth 1 for now to allow a behavior where a
/// newly composed AffineApplyOp does not increase the length of the chain of
/// AffineApplyOps. Full composition is implemented iteratively on top of
/// this behavior.
static unsigned &affineApplyDepth() {
static thread_local unsigned depth = 0;
return depth;
}
static constexpr unsigned kMaxAffineApplyDepth = 1;
AffineApplyNormalizer() { affineApplyDepth()++; }
public:
~AffineApplyNormalizer() { affineApplyDepth()--; }
};
} // end anonymous namespace.
AffineDimExpr AffineApplyNormalizer::renumberOneDim(Value *v) {
DenseMap<Value *, unsigned>::iterator iterPos;
bool inserted = false;
std::tie(iterPos, inserted) =
dimValueToPosition.insert(std::make_pair(v, dimValueToPosition.size()));
if (inserted) {
reorderedDims.push_back(v);
}
return getAffineDimExpr(iterPos->second, v->getFunction()->getContext())
.cast<AffineDimExpr>();
}
AffineMap AffineApplyNormalizer::renumber(const AffineApplyNormalizer &other) {
SmallVector<AffineExpr, 8> dimRemapping;
for (auto *v : other.reorderedDims) {
auto kvp = other.dimValueToPosition.find(v);
if (dimRemapping.size() <= kvp->second)
dimRemapping.resize(kvp->second + 1);
dimRemapping[kvp->second] = renumberOneDim(kvp->first);
}
unsigned numSymbols = concatenatedSymbols.size();
unsigned numOtherSymbols = other.concatenatedSymbols.size();
SmallVector<AffineExpr, 8> symRemapping(numOtherSymbols);
for (unsigned idx = 0; idx < numOtherSymbols; ++idx) {
symRemapping[idx] =
getAffineSymbolExpr(idx + numSymbols, other.affineMap.getContext());
}
concatenatedSymbols.insert(concatenatedSymbols.end(),
other.concatenatedSymbols.begin(),
other.concatenatedSymbols.end());
auto map = other.affineMap;
return map.replaceDimsAndSymbols(dimRemapping, symRemapping,
dimRemapping.size(), symRemapping.size());
}
// Gather the positions of the operands that are produced by an AffineApplyOp.
static llvm::SetVector<unsigned>
indicesFromAffineApplyOp(ArrayRef<Value *> operands) {
llvm::SetVector<unsigned> res;
for (auto en : llvm::enumerate(operands))
if (isa_nonnull<AffineApplyOp>(en.value()->getDefiningOp()))
res.insert(en.index());
return res;
}
// Support the special case of a symbol coming from an AffineApplyOp that needs
// to be composed into the current AffineApplyOp.
// This case is handled by rewriting all such symbols into dims for the purpose
// of allowing mathematical AffineMap composition.
// Returns an AffineMap where symbols that come from an AffineApplyOp have been
// rewritten as dims and are ordered after the original dims.
// TODO(andydavis,ntv): This promotion makes AffineMap lose track of which
// symbols are represented as dims. This loss is static but can still be
// recovered dynamically (with `isValidSymbol`). Still this is annoying for the
// semi-affine map case. A dynamic canonicalization of all dims that are valid
// symbols (a.k.a `canonicalizePromotedSymbols`) into symbols helps and even
// results in better simplifications and foldings. But we should evaluate
// whether this behavior is what we really want after using more.
static AffineMap promoteComposedSymbolsAsDims(AffineMap map,
ArrayRef<Value *> symbols) {
if (symbols.empty()) {
return map;
}
// Sanity check on symbols.
for (auto *sym : symbols) {
assert(isValidSymbol(sym) && "Expected only valid symbols");
(void)sym;
}
// Extract the symbol positions that come from an AffineApplyOp and
// needs to be rewritten as dims.
auto symPositions = indicesFromAffineApplyOp(symbols);
if (symPositions.empty()) {
return map;
}
// Create the new map by replacing each symbol at pos by the next new dim.
unsigned numDims = map.getNumDims();
unsigned numSymbols = map.getNumSymbols();
unsigned numNewDims = 0;
unsigned numNewSymbols = 0;
SmallVector<AffineExpr, 8> symReplacements(numSymbols);
for (unsigned i = 0; i < numSymbols; ++i) {
symReplacements[i] =
symPositions.count(i) > 0
? getAffineDimExpr(numDims + numNewDims++, map.getContext())
: getAffineSymbolExpr(numNewSymbols++, map.getContext());
}
assert(numSymbols >= numNewDims);
AffineMap newMap = map.replaceDimsAndSymbols(
{}, symReplacements, numDims + numNewDims, numNewSymbols);
return newMap;
}
/// The AffineNormalizer composes AffineApplyOp recursively. Its purpose is to
/// keep a correspondence between the mathematical `map` and the `operands` of
/// a given AffineApplyOp. This correspondence is maintained by iterating over
/// the operands and forming an `auxiliaryMap` that can be composed
/// mathematically with `map`. To keep this correspondence in cases where
/// symbols are produced by affine.apply operations, we perform a local rewrite
/// of symbols as dims.
///
/// Rationale for locally rewriting symbols as dims:
/// ================================================
/// The mathematical composition of AffineMap must always concatenate symbols
/// because it does not have enough information to do otherwise. For example,
/// composing `(d0)[s0] -> (d0 + s0)` with itself must produce
/// `(d0)[s0, s1] -> (d0 + s0 + s1)`.
///
/// The result is only equivalent to `(d0)[s0] -> (d0 + 2 * s0)` when
/// applied to the same mlir::Value* for both s0 and s1.
/// As a consequence mathematical composition of AffineMap always concatenates
/// symbols.
///
/// When AffineMaps are used in AffineApplyOp however, they may specify
/// composition via symbols, which is ambiguous mathematically. This corner case
/// is handled by locally rewriting such symbols that come from AffineApplyOp
/// into dims and composing through dims.
/// TODO(andydavis, ntv): Composition via symbols comes at a significant code
/// complexity. Alternatively we should investigate whether we want to
/// explicitly disallow symbols coming from affine.apply and instead force the
/// user to compose symbols beforehand. The annoyances may be small (i.e. 1 or 2
/// extra API calls for such uses, which haven't popped up until now) and the
/// benefit potentially big: simpler and more maintainable code for a
/// non-trivial, recursive, procedure.
AffineApplyNormalizer::AffineApplyNormalizer(AffineMap map,
ArrayRef<Value *> operands)
: AffineApplyNormalizer() {
static_assert(kMaxAffineApplyDepth > 0, "kMaxAffineApplyDepth must be > 0");
assert(map.getRangeSizes().empty() && "Unbounded map expected");
assert(map.getNumInputs() == operands.size() &&
"number of operands does not match the number of map inputs");
LLVM_DEBUG(map.print(dbgs() << "\nInput map: "));
// Promote symbols that come from an AffineApplyOp to dims by rewriting the
// map to always refer to:
// (dims, symbols coming from AffineApplyOp, other symbols).
// The order of operands can remain unchanged.
// This is a simplification that relies on 2 ordering properties:
// 1. rewritten symbols always appear after the original dims in the map;
// 2. operands are traversed in order and either dispatched to:
// a. auxiliaryExprs (dims and symbols rewritten as dims);
// b. concatenatedSymbols (all other symbols)
// This allows operand order to remain unchanged.
unsigned numDimsBeforeRewrite = map.getNumDims();
map = promoteComposedSymbolsAsDims(map,
operands.take_back(map.getNumSymbols()));
LLVM_DEBUG(map.print(dbgs() << "\nRewritten map: "));
SmallVector<AffineExpr, 8> auxiliaryExprs;
bool furtherCompose = (affineApplyDepth() <= kMaxAffineApplyDepth);
// We fully spell out the 2 cases below. In this particular instance a little
// code duplication greatly improves readability.
// Note that the first branch would disappear if we only supported full
// composition (i.e. infinite kMaxAffineApplyDepth).
if (!furtherCompose) {
// 1. Only dispatch dims or symbols.
for (auto en : llvm::enumerate(operands)) {
auto *t = en.value();
assert(t->getType().isIndex());
bool isDim = (en.index() < map.getNumDims());
if (isDim) {
// a. The mathematical composition of AffineMap composes dims.
auxiliaryExprs.push_back(renumberOneDim(t));
} else {
// b. The mathematical composition of AffineMap concatenates symbols.
// We do the same for symbol operands.
concatenatedSymbols.push_back(t);
}
}
} else {
assert(numDimsBeforeRewrite <= operands.size());
// 2. Compose AffineApplyOps and dispatch dims or symbols.
for (unsigned i = 0, e = operands.size(); i < e; ++i) {
auto *t = operands[i];
auto affineApply = dyn_cast_or_null<AffineApplyOp>(t->getDefiningOp());
if (affineApply) {
// a. Compose affine.apply operations.
LLVM_DEBUG(affineApply.getOperation()->print(
dbgs() << "\nCompose AffineApplyOp recursively: "));
AffineMap affineApplyMap = affineApply.getAffineMap();
SmallVector<Value *, 8> affineApplyOperands(
affineApply.getOperands().begin(), affineApply.getOperands().end());
AffineApplyNormalizer normalizer(affineApplyMap, affineApplyOperands);
LLVM_DEBUG(normalizer.affineMap.print(
dbgs() << "\nRenumber into current normalizer: "));
auto renumberedMap = renumber(normalizer);
LLVM_DEBUG(
renumberedMap.print(dbgs() << "\nRecursive composition yields: "));
auxiliaryExprs.push_back(renumberedMap.getResult(0));
} else {
if (i < numDimsBeforeRewrite) {
// b. The mathematical composition of AffineMap composes dims.
auxiliaryExprs.push_back(renumberOneDim(t));
} else {
// c. The mathematical composition of AffineMap concatenates symbols.
// We do the same for symbol operands.
concatenatedSymbols.push_back(t);
}
}
}
}
// Early exit if `map` is already composed.
if (auxiliaryExprs.empty()) {
affineMap = map;
return;
}
assert(concatenatedSymbols.size() >= map.getNumSymbols() &&
"Unexpected number of concatenated symbols");
auto numDims = dimValueToPosition.size();
auto numSymbols = concatenatedSymbols.size() - map.getNumSymbols();
auto auxiliaryMap = AffineMap::get(numDims, numSymbols, auxiliaryExprs, {});
LLVM_DEBUG(map.print(dbgs() << "\nCompose map: "));
LLVM_DEBUG(auxiliaryMap.print(dbgs() << "\nWith map: "));
LLVM_DEBUG(map.compose(auxiliaryMap).print(dbgs() << "\nResult: "));
// TODO(andydavis,ntv): Disabling simplification results in major speed gains.
// Another option is to cache the results as it is expected a lot of redundant
// work is performed in practice.
affineMap = simplifyAffineMap(map.compose(auxiliaryMap));
LLVM_DEBUG(affineMap.print(dbgs() << "\nSimplified result: "));
LLVM_DEBUG(dbgs() << "\n");
}
/// Implements `map` and `operands` composition and simplification to support
/// `makeComposedAffineApply`. This can be called to achieve the same effects
/// on `map` and `operands` without creating an AffineApplyOp that needs to be
/// immediately deleted.
static void composeAffineMapAndOperands(AffineMap *map,
SmallVectorImpl<Value *> *operands) {
AffineApplyNormalizer normalizer(*map, *operands);
auto normalizedMap = normalizer.getAffineMap();
auto normalizedOperands = normalizer.getOperands();
canonicalizeMapAndOperands(&normalizedMap, &normalizedOperands);
*map = normalizedMap;
*operands = normalizedOperands;
assert(*map);
}
void mlir::fullyComposeAffineMapAndOperands(
AffineMap *map, SmallVectorImpl<Value *> *operands) {
while (llvm::any_of(*operands, [](Value *v) {
return isa_nonnull<AffineApplyOp>(v->getDefiningOp());
})) {
composeAffineMapAndOperands(map, operands);
}
}
AffineApplyOp mlir::makeComposedAffineApply(FuncBuilder *b, Location loc,
AffineMap map,
ArrayRef<Value *> operands) {
AffineMap normalizedMap = map;
SmallVector<Value *, 8> normalizedOperands(operands.begin(), operands.end());
composeAffineMapAndOperands(&normalizedMap, &normalizedOperands);
assert(normalizedMap);
return b->create<AffineApplyOp>(loc, normalizedMap, normalizedOperands);
}
// A symbol may appear as a dim in affine.apply operations. This function
// canonicalizes dims that are valid symbols into actual symbols.
static void
canonicalizePromotedSymbols(AffineMap *map,
llvm::SmallVectorImpl<Value *> *operands) {
if (!map || operands->empty())
return;
assert(map->getNumInputs() == operands->size() &&
"map inputs must match number of operands");
auto *context = map->getContext();
SmallVector<Value *, 8> resultOperands;
resultOperands.reserve(operands->size());
SmallVector<Value *, 8> remappedSymbols;
remappedSymbols.reserve(operands->size());
unsigned nextDim = 0;
unsigned nextSym = 0;
unsigned oldNumSyms = map->getNumSymbols();
SmallVector<AffineExpr, 8> dimRemapping(map->getNumDims());
for (unsigned i = 0, e = map->getNumInputs(); i != e; ++i) {
if (i < map->getNumDims()) {
if (isValidSymbol((*operands)[i])) {
// This is a valid symbols that appears as a dim, canonicalize it.
dimRemapping[i] = getAffineSymbolExpr(oldNumSyms + nextSym++, context);
remappedSymbols.push_back((*operands)[i]);
} else {
dimRemapping[i] = getAffineDimExpr(nextDim++, context);
resultOperands.push_back((*operands)[i]);
}
} else {
resultOperands.push_back((*operands)[i]);
}
}
resultOperands.append(remappedSymbols.begin(), remappedSymbols.end());
*operands = resultOperands;
*map = map->replaceDimsAndSymbols(dimRemapping, {}, nextDim,
oldNumSyms + nextSym);
assert(map->getNumInputs() == operands->size() &&
"map inputs must match number of operands");
}
void mlir::canonicalizeMapAndOperands(
AffineMap *map, llvm::SmallVectorImpl<Value *> *operands) {
if (!map || operands->empty())
return;
assert(map->getNumInputs() == operands->size() &&
"map inputs must match number of operands");
canonicalizePromotedSymbols(map, operands);
// Check to see what dims are used.
llvm::SmallBitVector usedDims(map->getNumDims());
llvm::SmallBitVector usedSyms(map->getNumSymbols());
map->walkExprs([&](AffineExpr expr) {
if (auto dimExpr = expr.dyn_cast<AffineDimExpr>())
usedDims[dimExpr.getPosition()] = true;
else if (auto symExpr = expr.dyn_cast<AffineSymbolExpr>())
usedSyms[symExpr.getPosition()] = true;
});
auto *context = map->getContext();
SmallVector<Value *, 8> resultOperands;
resultOperands.reserve(operands->size());
llvm::SmallDenseMap<Value *, AffineExpr, 8> seenDims;
SmallVector<AffineExpr, 8> dimRemapping(map->getNumDims());
unsigned nextDim = 0;
for (unsigned i = 0, e = map->getNumDims(); i != e; ++i) {
if (usedDims[i]) {
auto it = seenDims.find((*operands)[i]);
if (it == seenDims.end()) {
dimRemapping[i] = getAffineDimExpr(nextDim++, context);
resultOperands.push_back((*operands)[i]);
seenDims.insert(std::make_pair((*operands)[i], dimRemapping[i]));
} else {
dimRemapping[i] = it->second;
}
}
}
llvm::SmallDenseMap<Value *, AffineExpr, 8> seenSymbols;
SmallVector<AffineExpr, 8> symRemapping(map->getNumSymbols());
unsigned nextSym = 0;
for (unsigned i = 0, e = map->getNumSymbols(); i != e; ++i) {
if (usedSyms[i]) {
auto it = seenSymbols.find((*operands)[i + map->getNumDims()]);
if (it == seenSymbols.end()) {
symRemapping[i] = getAffineSymbolExpr(nextSym++, context);
resultOperands.push_back((*operands)[i + map->getNumDims()]);
seenSymbols.insert(std::make_pair((*operands)[i + map->getNumDims()],
symRemapping[i]));
} else {
symRemapping[i] = it->second;
}
}
}
*map =
map->replaceDimsAndSymbols(dimRemapping, symRemapping, nextDim, nextSym);
*operands = resultOperands;
}
namespace {
/// Simplify AffineApply operations.
///
struct SimplifyAffineApply : public RewritePattern {
SimplifyAffineApply(MLIRContext *context)
: RewritePattern(AffineApplyOp::getOperationName(), 1, context) {}
PatternMatchResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
auto apply = op->cast<AffineApplyOp>();
auto map = apply.getAffineMap();
AffineMap oldMap = map;
SmallVector<Value *, 8> resultOperands(apply.getOperands());
composeAffineMapAndOperands(&map, &resultOperands);
if (map != oldMap) {
rewriter.replaceOpWithNewOp<AffineApplyOp>(op, map, resultOperands);
return matchSuccess();
}
return matchFailure();
}
};
} // end anonymous namespace.
void AffineApplyOp::getCanonicalizationPatterns(
OwningRewritePatternList &results, MLIRContext *context) {
results.push_back(llvm::make_unique<SimplifyAffineApply>(context));
}
//===----------------------------------------------------------------------===//
// AffineForOp
//===----------------------------------------------------------------------===//
// Check that if a "block" has a terminator, it is an `AffineTerminatorOp`.
static LogicalResult checkHasAffineTerminator(OpState &op, Block &block) {
if (block.empty() || block.back().isa<AffineTerminatorOp>())
return success();
op.emitOpError("expects regions to end with '" +
AffineTerminatorOp::getOperationName() + "'");
op.emitNote("in custom textual format, the absence of terminator implies '" +
AffineTerminatorOp::getOperationName() + "'");
return failure();
}
// Insert `affine.terminator` at the end of the region's only block if it does
// not have a terminator already. If the region is empty, insert a new block
// first.
static void ensureAffineTerminator(Region &region, Builder &builder,
Location loc) {
if (region.empty())
region.push_back(new Block);
Block &block = region.back();
if (!block.empty() && block.back().isKnownTerminator())
return;
OperationState terminatorState(builder.getContext(), loc,
AffineTerminatorOp::getOperationName());
AffineTerminatorOp::build(&builder, &terminatorState);
block.push_back(Operation::create(terminatorState));
}
void AffineForOp::build(Builder *builder, OperationState *result,
ArrayRef<Value *> lbOperands, AffineMap lbMap,
ArrayRef<Value *> ubOperands, AffineMap ubMap,
int64_t step) {
assert(((!lbMap && lbOperands.empty()) ||
lbOperands.size() == lbMap.getNumInputs()) &&
"lower bound operand count does not match the affine map");
assert(((!ubMap && ubOperands.empty()) ||
ubOperands.size() == ubMap.getNumInputs()) &&
"upper bound operand count does not match the affine map");
assert(step > 0 && "step has to be a positive integer constant");
// Add an attribute for the step.
result->addAttribute(getStepAttrName(),
builder->getIntegerAttr(builder->getIndexType(), step));
// Add the lower bound.
result->addAttribute(getLowerBoundAttrName(),
builder->getAffineMapAttr(lbMap));
result->addOperands(lbOperands);
// Add the upper bound.
result->addAttribute(getUpperBoundAttrName(),
builder->getAffineMapAttr(ubMap));
result->addOperands(ubOperands);
// Create a region and a block for the body. The argument of the region is
// the loop induction variable.
Region *bodyRegion = result->addRegion();
Block *body = new Block();
body->addArgument(IndexType::get(builder->getContext()));
bodyRegion->push_back(body);
ensureAffineTerminator(*bodyRegion, *builder, result->location);
// Set the operands list as resizable so that we can freely modify the bounds.
result->setOperandListToResizable();
}
void AffineForOp::build(Builder *builder, OperationState *result, int64_t lb,
int64_t ub, int64_t step) {
auto lbMap = AffineMap::getConstantMap(lb, builder->getContext());
auto ubMap = AffineMap::getConstantMap(ub, builder->getContext());
return build(builder, result, {}, lbMap, {}, ubMap, step);
}
LogicalResult AffineForOp::verify() {
auto &bodyRegion = getOperation()->getRegion(0);
// The body region must contain a single basic block.
if (bodyRegion.empty() || std::next(bodyRegion.begin()) != bodyRegion.end())
return emitOpError("expected body region to have a single block");
// Check that the body defines as single block argument for the induction
// variable.
auto *body = getBody();
if (body->getNumArguments() != 1 ||
!body->getArgument(0)->getType().isIndex())
return emitOpError("expected body to have a single index argument for the "
"induction variable");
if (failed(checkHasAffineTerminator(*this, *body)))
return failure();
// Verify that there are enough operands for the bounds.
AffineMap lowerBoundMap = getLowerBoundMap(),
upperBoundMap = getUpperBoundMap();
if (getNumOperands() !=
(lowerBoundMap.getNumInputs() + upperBoundMap.getNumInputs()))
return emitOpError(
"operand count must match with affine map dimension and symbol count");
// Verify that the bound operands are valid dimension/symbols.
/// Lower bound.
if (failed(verifyDimAndSymbolIdentifiers(*this, getLowerBoundOperands(),
getLowerBoundMap().getNumDims())))
return failure();
/// Upper bound.
if (failed(verifyDimAndSymbolIdentifiers(*this, getUpperBoundOperands(),
getUpperBoundMap().getNumDims())))
return failure();
return success();
}
/// Parse a for operation loop bounds.
static bool parseBound(bool isLower, OperationState *result, OpAsmParser *p) {
// 'min' / 'max' prefixes are generally syntactic sugar, but are required if
// the map has multiple results.
bool failedToParsedMinMax = p->parseOptionalKeyword(isLower ? "max" : "min");
auto &builder = p->getBuilder();
auto boundAttrName = isLower ? AffineForOp::getLowerBoundAttrName()
: AffineForOp::getUpperBoundAttrName();
// Parse ssa-id as identity map.
SmallVector<OpAsmParser::OperandType, 1> boundOpInfos;
if (p->parseOperandList(boundOpInfos))
return true;
if (!boundOpInfos.empty()) {
// Check that only one operand was parsed.
if (boundOpInfos.size() > 1)
return p->emitError(p->getNameLoc(),
"expected only one loop bound operand");
// TODO: improve error message when SSA value is not an affine integer.
// Currently it is 'use of value ... expects different type than prior uses'
if (p->resolveOperand(boundOpInfos.front(), builder.getIndexType(),
result->operands))
return true;
// Create an identity map using symbol id. This representation is optimized
// for storage. Analysis passes may expand it into a multi-dimensional map
// if desired.
AffineMap map = builder.getSymbolIdentityMap();
result->addAttribute(boundAttrName, builder.getAffineMapAttr(map));
return false;
}
// Get the attribute location.
llvm::SMLoc attrLoc;
p->getCurrentLocation(&attrLoc);
Attribute boundAttr;
if (p->parseAttribute(boundAttr, builder.getIndexType(), boundAttrName,
result->attributes))
return true;
// Parse full form - affine map followed by dim and symbol list.
if (auto affineMapAttr = boundAttr.dyn_cast<AffineMapAttr>()) {
unsigned currentNumOperands = result->operands.size();
unsigned numDims;
if (parseDimAndSymbolList(p, result->operands, numDims))
return true;
auto map = affineMapAttr.getValue();
if (map.getNumDims() != numDims)
return p->emitError(
p->getNameLoc(),
"dim operand count and integer set dim count must match");
unsigned numDimAndSymbolOperands =
result->operands.size() - currentNumOperands;
if (numDims + map.getNumSymbols() != numDimAndSymbolOperands)
return p->emitError(
p->getNameLoc(),
"symbol operand count and integer set symbol count must match");
// If the map has multiple results, make sure that we parsed the min/max
// prefix.
if (map.getNumResults() > 1 && failedToParsedMinMax) {
if (isLower) {
return p->emitError(attrLoc, "lower loop bound affine map with "
"multiple results requires 'max' prefix");
}
return p->emitError(attrLoc, "upper loop bound affine map with multiple "
"results requires 'min' prefix");
}
return false;
}
// Parse custom assembly form.
if (auto integerAttr = boundAttr.dyn_cast<IntegerAttr>()) {
result->attributes.pop_back();
result->addAttribute(
boundAttrName, builder.getAffineMapAttr(
builder.getConstantAffineMap(integerAttr.getInt())));
return false;
}
return p->emitError(
p->getNameLoc(),
"expected valid affine map representation for loop bounds");
}
bool AffineForOp::parse(OpAsmParser *parser, OperationState *result) {
auto &builder = parser->getBuilder();
// Parse the induction variable followed by '='.
if (parser->parseRegionEntryBlockArgument(builder.getIndexType()) ||
parser->parseEqual())
return true;
// Parse loop bounds.
if (parseBound(/*isLower=*/true, result, parser) ||
parser->parseKeyword("to", " between bounds") ||
parseBound(/*isLower=*/false, result, parser))
return true;
// Parse the optional loop step, we default to 1 if one is not present.
if (parser->parseOptionalKeyword("step")) {
result->addAttribute(
getStepAttrName(),
builder.getIntegerAttr(builder.getIndexType(), /*value=*/1));
} else {
llvm::SMLoc stepLoc;
IntegerAttr stepAttr;
if (parser->getCurrentLocation(&stepLoc) ||
parser->parseAttribute(stepAttr, builder.getIndexType(),
getStepAttrName().data(), result->attributes))
return true;
if (stepAttr.getValue().getSExtValue() < 0)
return parser->emitError(
stepLoc,
"expected step to be representable as a positive signed integer");
}
// Parse the body region.
Allow creating standalone Regions Currently, regions can only be constructed by passing in a `Function` or an `Instruction` pointer referencing the parent object, unlike `Function`s or `Instruction`s themselves that can be created without a parent. It leads to a rather complex flow in operation construction where one has to create the operation first before being able to work with its regions. It may be necessary to work with the regions before the operation is created. In particular, in `build` and `parse` functions that are executed _before_ the operation is created in cases where boilerplate region manipulation is required (for example, inserting the hypothetical default terminator in affine regions). Allow creating standalone regions. Such regions are meant to own a list of blocks and transfer them to other regions on demand. Each instruction stores a fixed number of regions as trailing objects and has ownership of them. This decreases the size of the Instruction object for the common case of instructions without regions. Keep this behavior intact. To allow some flexibility in construction, make OperationState store an owning vector of regions. When the Builder creates an Instruction from OperationState, the bodies of the regions are transferred into the instruction-owned regions to minimize copying. Thus, it becomes possible to fill standalone regions with blocks and move them to an operation when it is constructed, or move blocks from a region to an operation region, e.g., for inlining. PiperOrigin-RevId: 240368183
2019-03-27 00:55:06 +08:00
Region *body = result->addRegion();
if (parser->parseRegion(*body))
return true;
ensureAffineTerminator(*body, builder, result->location);
// Parse the optional attribute list.
if (parser->parseOptionalAttributeDict(result->attributes))
return true;
// Set the operands list as resizable so that we can freely modify the bounds.
result->setOperandListToResizable();
return false;
}
static void printBound(AffineBound bound, const char *prefix, OpAsmPrinter *p) {
AffineMap map = bound.getMap();
// Check if this bound should be printed using custom assembly form.
// The decision to restrict printing custom assembly form to trivial cases
// comes from the will to roundtrip MLIR binary -> text -> binary in a
// lossless way.
// Therefore, custom assembly form parsing and printing is only supported for
// zero-operand constant maps and single symbol operand identity maps.
if (map.getNumResults() == 1) {
AffineExpr expr = map.getResult(0);
// Print constant bound.
if (map.getNumDims() == 0 && map.getNumSymbols() == 0) {
if (auto constExpr = expr.dyn_cast<AffineConstantExpr>()) {
*p << constExpr.getValue();
return;
}
}
// Print bound that consists of a single SSA symbol if the map is over a
// single symbol.
if (map.getNumDims() == 0 && map.getNumSymbols() == 1) {
if (auto symExpr = expr.dyn_cast<AffineSymbolExpr>()) {
p->printOperand(bound.getOperand(0));
return;
}
}
} else {
// Map has multiple results. Print 'min' or 'max' prefix.
*p << prefix << ' ';
}
// Print the map and its operands.
p->printAffineMap(map);
printDimAndSymbolList(bound.operand_begin(), bound.operand_end(),
map.getNumDims(), p);
}
void AffineForOp::print(OpAsmPrinter *p) {
*p << "affine.for ";
p->printOperand(getBody()->getArgument(0));
*p << " = ";
printBound(getLowerBound(), "max", p);
*p << " to ";
printBound(getUpperBound(), "min", p);
if (getStep() != 1)
*p << " step " << getStep();
p->printRegion(getRegion(),
/*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/false);
p->printOptionalAttrDict(getAttrs(),
/*elidedAttrs=*/{getLowerBoundAttrName(),
getUpperBoundAttrName(),
getStepAttrName()});
}
namespace {
/// This is a pattern to fold constant loop bounds.
struct AffineForLoopBoundFolder : public RewritePattern {
/// The rootOpName is the name of the root operation to match against.
AffineForLoopBoundFolder(MLIRContext *context)
: RewritePattern(AffineForOp::getOperationName(), 1, context) {}
PatternMatchResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
auto forOp = op->cast<AffineForOp>();
auto foldLowerOrUpperBound = [&forOp](bool lower) {
// Check to see if each of the operands is the result of a constant. If
// so, get the value. If not, ignore it.
SmallVector<Attribute, 8> operandConstants;
auto boundOperands =
lower ? forOp.getLowerBoundOperands() : forOp.getUpperBoundOperands();
for (auto *operand : boundOperands) {
Attribute operandCst;
matchPattern(operand, m_Constant(&operandCst));
operandConstants.push_back(operandCst);
}
AffineMap boundMap =
lower ? forOp.getLowerBoundMap() : forOp.getUpperBoundMap();
assert(boundMap.getNumResults() >= 1 &&
"bound maps should have at least one result");
SmallVector<Attribute, 4> foldedResults;
if (failed(boundMap.constantFold(operandConstants, foldedResults)))
return failure();
// Compute the max or min as applicable over the results.
assert(!foldedResults.empty() &&
"bounds should have at least one result");
auto maxOrMin = foldedResults[0].cast<IntegerAttr>().getValue();
for (unsigned i = 1, e = foldedResults.size(); i < e; i++) {
auto foldedResult = foldedResults[i].cast<IntegerAttr>().getValue();
maxOrMin = lower ? llvm::APIntOps::smax(maxOrMin, foldedResult)
: llvm::APIntOps::smin(maxOrMin, foldedResult);
}
lower ? forOp.setConstantLowerBound(maxOrMin.getSExtValue())
: forOp.setConstantUpperBound(maxOrMin.getSExtValue());
return success();
};
// Try to fold the lower bound.
bool folded = false;
if (!forOp.hasConstantLowerBound())
folded |= succeeded(foldLowerOrUpperBound(/*lower=*/true));
// Try to fold the upper bound.
if (!forOp.hasConstantUpperBound())
folded |= succeeded(foldLowerOrUpperBound(/*lower=*/false));
// If any of the bounds were folded we return success.
if (!folded)
return matchFailure();
rewriter.updatedRootInPlace(op);
return matchSuccess();
}
};
} // end anonymous namespace
void AffineForOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
MLIRContext *context) {
results.push_back(llvm::make_unique<AffineForLoopBoundFolder>(context));
}
FuncBuilder AffineForOp::getBodyBuilder() {
Block *body = getBody();
return FuncBuilder(body, std::prev(body->end()));
}
AffineBound AffineForOp::getLowerBound() {
auto lbMap = getLowerBoundMap();
return AffineBound(AffineForOp(*this), 0, lbMap.getNumInputs(), lbMap);
}
AffineBound AffineForOp::getUpperBound() {
auto lbMap = getLowerBoundMap();
auto ubMap = getUpperBoundMap();
return AffineBound(AffineForOp(*this), lbMap.getNumInputs(), getNumOperands(),
ubMap);
}
void AffineForOp::setLowerBound(ArrayRef<Value *> lbOperands, AffineMap map) {
assert(lbOperands.size() == map.getNumInputs());
assert(map.getNumResults() >= 1 && "bound map has at least one result");
SmallVector<Value *, 4> newOperands(lbOperands.begin(), lbOperands.end());
auto ubOperands = getUpperBoundOperands();
newOperands.append(ubOperands.begin(), ubOperands.end());
getOperation()->setOperands(newOperands);
setAttr(getLowerBoundAttrName(), AffineMapAttr::get(map));
}
void AffineForOp::setUpperBound(ArrayRef<Value *> ubOperands, AffineMap map) {
assert(ubOperands.size() == map.getNumInputs());
assert(map.getNumResults() >= 1 && "bound map has at least one result");
SmallVector<Value *, 4> newOperands(getLowerBoundOperands());
newOperands.append(ubOperands.begin(), ubOperands.end());
getOperation()->setOperands(newOperands);
setAttr(getUpperBoundAttrName(), AffineMapAttr::get(map));
}
void AffineForOp::setLowerBoundMap(AffineMap map) {
auto lbMap = getLowerBoundMap();
assert(lbMap.getNumDims() == map.getNumDims() &&
lbMap.getNumSymbols() == map.getNumSymbols());
assert(map.getNumResults() >= 1 && "bound map has at least one result");
(void)lbMap;
setAttr(getLowerBoundAttrName(), AffineMapAttr::get(map));
}
void AffineForOp::setUpperBoundMap(AffineMap map) {
auto ubMap = getUpperBoundMap();
assert(ubMap.getNumDims() == map.getNumDims() &&
ubMap.getNumSymbols() == map.getNumSymbols());
assert(map.getNumResults() >= 1 && "bound map has at least one result");
(void)ubMap;
setAttr(getUpperBoundAttrName(), AffineMapAttr::get(map));
}
bool AffineForOp::hasConstantLowerBound() {
return getLowerBoundMap().isSingleConstant();
}
bool AffineForOp::hasConstantUpperBound() {
return getUpperBoundMap().isSingleConstant();
}
int64_t AffineForOp::getConstantLowerBound() {
return getLowerBoundMap().getSingleConstantResult();
}
int64_t AffineForOp::getConstantUpperBound() {
return getUpperBoundMap().getSingleConstantResult();
}
void AffineForOp::setConstantLowerBound(int64_t value) {
setLowerBound({}, AffineMap::getConstantMap(value, getContext()));
}
void AffineForOp::setConstantUpperBound(int64_t value) {
setUpperBound({}, AffineMap::getConstantMap(value, getContext()));
}
AffineForOp::operand_range AffineForOp::getLowerBoundOperands() {
return {operand_begin(), operand_begin() + getLowerBoundMap().getNumInputs()};
}
AffineForOp::operand_range AffineForOp::getUpperBoundOperands() {
return {operand_begin() + getLowerBoundMap().getNumInputs(), operand_end()};
}
bool AffineForOp::matchingBoundOperandList() {
auto lbMap = getLowerBoundMap();
auto ubMap = getUpperBoundMap();
if (lbMap.getNumDims() != ubMap.getNumDims() ||
lbMap.getNumSymbols() != ubMap.getNumSymbols())
return false;
unsigned numOperands = lbMap.getNumInputs();
for (unsigned i = 0, e = lbMap.getNumInputs(); i < e; i++) {
// Compare Value *'s.
if (getOperand(i) != getOperand(numOperands + i))
return false;
}
return true;
}
/// Returns the induction variable for this loop.
Value *AffineForOp::getInductionVar() { return getBody()->getArgument(0); }
/// Returns if the provided value is the induction variable of a AffineForOp.
bool mlir::isForInductionVar(Value *val) {
return getForInductionVarOwner(val) != AffineForOp();
}
/// Returns the loop parent of an induction variable. If the provided value is
/// not an induction variable, then return nullptr.
AffineForOp mlir::getForInductionVarOwner(Value *val) {
auto *ivArg = dyn_cast<BlockArgument>(val);
if (!ivArg || !ivArg->getOwner())
return AffineForOp();
auto *containingInst = ivArg->getOwner()->getParent()->getContainingOp();
return dyn_cast_or_null<AffineForOp>(containingInst);
}
/// Extracts the induction variables from a list of AffineForOps and returns
/// them.
void mlir::extractForInductionVars(ArrayRef<AffineForOp> forInsts,
SmallVectorImpl<Value *> *ivs) {
ivs->reserve(forInsts.size());
for (auto forInst : forInsts)
ivs->push_back(forInst.getInductionVar());
}
//===----------------------------------------------------------------------===//
// AffineIfOp
//===----------------------------------------------------------------------===//
void AffineIfOp::build(Builder *builder, OperationState *result,
IntegerSet condition,
ArrayRef<Value *> conditionOperands) {
result->addAttribute(getConditionAttrName(), IntegerSetAttr::get(condition));
result->addOperands(conditionOperands);
// Reserve 2 regions, one for the 'then' and one for the 'else' regions.
Allow creating standalone Regions Currently, regions can only be constructed by passing in a `Function` or an `Instruction` pointer referencing the parent object, unlike `Function`s or `Instruction`s themselves that can be created without a parent. It leads to a rather complex flow in operation construction where one has to create the operation first before being able to work with its regions. It may be necessary to work with the regions before the operation is created. In particular, in `build` and `parse` functions that are executed _before_ the operation is created in cases where boilerplate region manipulation is required (for example, inserting the hypothetical default terminator in affine regions). Allow creating standalone regions. Such regions are meant to own a list of blocks and transfer them to other regions on demand. Each instruction stores a fixed number of regions as trailing objects and has ownership of them. This decreases the size of the Instruction object for the common case of instructions without regions. Keep this behavior intact. To allow some flexibility in construction, make OperationState store an owning vector of regions. When the Builder creates an Instruction from OperationState, the bodies of the regions are transferred into the instruction-owned regions to minimize copying. Thus, it becomes possible to fill standalone regions with blocks and move them to an operation when it is constructed, or move blocks from a region to an operation region, e.g., for inlining. PiperOrigin-RevId: 240368183
2019-03-27 00:55:06 +08:00
result->regions.reserve(2);
result->addRegion(nullptr);
result->addRegion(nullptr);
}
LogicalResult AffineIfOp::verify() {
// Verify that we have a condition attribute.
auto conditionAttr = getAttrOfType<IntegerSetAttr>(getConditionAttrName());
if (!conditionAttr)
return emitOpError("requires an integer set attribute named 'condition'");
// Verify that there are enough operands for the condition.
IntegerSet condition = conditionAttr.getValue();
if (getNumOperands() != condition.getNumOperands())
return emitOpError("operand count and condition integer set dimension and "
"symbol count must match");
// Verify that the operands are valid dimension/symbols.
if (failed(verifyDimAndSymbolIdentifiers(*this, getOperands(),
condition.getNumDims())))
return failure();
// Verify that the entry of each child region does not have arguments.
for (auto &region : getOperation()->getRegions()) {
if (region.empty())
continue;
// TODO(riverriddle) We currently do not allow multiple blocks in child
// regions.
if (std::next(region.begin()) != region.end())
return emitOpError("expects only one block per 'then' or 'else' regions");
if (failed(checkHasAffineTerminator(*this, region.front())))
return failure();
for (auto &b : region)
if (b.getNumArguments() != 0)
return emitOpError(
"requires that child entry blocks have no arguments");
}
return success();
}
bool AffineIfOp::parse(OpAsmParser *parser, OperationState *result) {
// Parse the condition attribute set.
IntegerSetAttr conditionAttr;
unsigned numDims;
if (parser->parseAttribute(conditionAttr, getConditionAttrName(),
result->attributes) ||
parseDimAndSymbolList(parser, result->operands, numDims))
return true;
// Verify the condition operands.
auto set = conditionAttr.getValue();
if (set.getNumDims() != numDims)
return parser->emitError(
parser->getNameLoc(),
"dim operand count and integer set dim count must match");
if (numDims + set.getNumSymbols() != result->operands.size())
return parser->emitError(
parser->getNameLoc(),
"symbol operand count and integer set symbol count must match");
Allow creating standalone Regions Currently, regions can only be constructed by passing in a `Function` or an `Instruction` pointer referencing the parent object, unlike `Function`s or `Instruction`s themselves that can be created without a parent. It leads to a rather complex flow in operation construction where one has to create the operation first before being able to work with its regions. It may be necessary to work with the regions before the operation is created. In particular, in `build` and `parse` functions that are executed _before_ the operation is created in cases where boilerplate region manipulation is required (for example, inserting the hypothetical default terminator in affine regions). Allow creating standalone regions. Such regions are meant to own a list of blocks and transfer them to other regions on demand. Each instruction stores a fixed number of regions as trailing objects and has ownership of them. This decreases the size of the Instruction object for the common case of instructions without regions. Keep this behavior intact. To allow some flexibility in construction, make OperationState store an owning vector of regions. When the Builder creates an Instruction from OperationState, the bodies of the regions are transferred into the instruction-owned regions to minimize copying. Thus, it becomes possible to fill standalone regions with blocks and move them to an operation when it is constructed, or move blocks from a region to an operation region, e.g., for inlining. PiperOrigin-RevId: 240368183
2019-03-27 00:55:06 +08:00
// Create the regions for 'then' and 'else'. The latter must be created even
// if it remains empty for the validity of the operation.
result->regions.reserve(2);
Region *thenRegion = result->addRegion();
Region *elseRegion = result->addRegion();
// Parse the 'then' region.
Allow creating standalone Regions Currently, regions can only be constructed by passing in a `Function` or an `Instruction` pointer referencing the parent object, unlike `Function`s or `Instruction`s themselves that can be created without a parent. It leads to a rather complex flow in operation construction where one has to create the operation first before being able to work with its regions. It may be necessary to work with the regions before the operation is created. In particular, in `build` and `parse` functions that are executed _before_ the operation is created in cases where boilerplate region manipulation is required (for example, inserting the hypothetical default terminator in affine regions). Allow creating standalone regions. Such regions are meant to own a list of blocks and transfer them to other regions on demand. Each instruction stores a fixed number of regions as trailing objects and has ownership of them. This decreases the size of the Instruction object for the common case of instructions without regions. Keep this behavior intact. To allow some flexibility in construction, make OperationState store an owning vector of regions. When the Builder creates an Instruction from OperationState, the bodies of the regions are transferred into the instruction-owned regions to minimize copying. Thus, it becomes possible to fill standalone regions with blocks and move them to an operation when it is constructed, or move blocks from a region to an operation region, e.g., for inlining. PiperOrigin-RevId: 240368183
2019-03-27 00:55:06 +08:00
if (parser->parseRegion(*thenRegion))
return true;
ensureAffineTerminator(*thenRegion, parser->getBuilder(), result->location);
// If we find an 'else' keyword then parse the 'else' region.
if (!parser->parseOptionalKeyword("else")) {
Allow creating standalone Regions Currently, regions can only be constructed by passing in a `Function` or an `Instruction` pointer referencing the parent object, unlike `Function`s or `Instruction`s themselves that can be created without a parent. It leads to a rather complex flow in operation construction where one has to create the operation first before being able to work with its regions. It may be necessary to work with the regions before the operation is created. In particular, in `build` and `parse` functions that are executed _before_ the operation is created in cases where boilerplate region manipulation is required (for example, inserting the hypothetical default terminator in affine regions). Allow creating standalone regions. Such regions are meant to own a list of blocks and transfer them to other regions on demand. Each instruction stores a fixed number of regions as trailing objects and has ownership of them. This decreases the size of the Instruction object for the common case of instructions without regions. Keep this behavior intact. To allow some flexibility in construction, make OperationState store an owning vector of regions. When the Builder creates an Instruction from OperationState, the bodies of the regions are transferred into the instruction-owned regions to minimize copying. Thus, it becomes possible to fill standalone regions with blocks and move them to an operation when it is constructed, or move blocks from a region to an operation region, e.g., for inlining. PiperOrigin-RevId: 240368183
2019-03-27 00:55:06 +08:00
if (parser->parseRegion(*elseRegion))
return true;
ensureAffineTerminator(*elseRegion, parser->getBuilder(), result->location);
}
// Parse the optional attribute list.
if (parser->parseOptionalAttributeDict(result->attributes))
return true;
return false;
}
void AffineIfOp::print(OpAsmPrinter *p) {
auto conditionAttr = getAttrOfType<IntegerSetAttr>(getConditionAttrName());
*p << "affine.if " << conditionAttr;
printDimAndSymbolList(operand_begin(), operand_end(),
conditionAttr.getValue().getNumDims(), p);
p->printRegion(getOperation()->getRegion(0),
/*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/false);
// Print the 'else' regions if it has any blocks.
auto &elseRegion = getOperation()->getRegion(1);
if (!elseRegion.empty()) {
*p << " else";
p->printRegion(elseRegion,
/*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/false);
}
// Print the attribute list.
p->printOptionalAttrDict(getAttrs(),
/*elidedAttrs=*/getConditionAttrName());
}
IntegerSet AffineIfOp::getIntegerSet() {
return getAttrOfType<IntegerSetAttr>(getConditionAttrName()).getValue();
}
void AffineIfOp::setIntegerSet(IntegerSet newSet) {
setAttr(getConditionAttrName(), IntegerSetAttr::get(newSet));
}
/// Returns the list of 'then' blocks.
Region &AffineIfOp::getThenBlocks() { return getOperation()->getRegion(0); }
/// Returns the list of 'else' blocks.
Region &AffineIfOp::getElseBlocks() { return getOperation()->getRegion(1); }