llvm-project/llvm/lib/CodeGen/AsmPrinter/AsmPrinter.cpp

2204 lines
79 KiB
C++
Raw Normal View History

//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the AsmPrinter class.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "asm-printer"
#include "llvm/CodeGen/AsmPrinter.h"
#include "DwarfDebug.h"
#include "DwarfException.h"
#include "llvm/Module.h"
#include "llvm/CodeGen/GCMetadataPrinter.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/DebugInfo.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCSection.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Target/Mangler.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Timer.h"
using namespace llvm;
static const char *DWARFGroupName = "DWARF Emission";
static const char *DbgTimerName = "DWARF Debug Writer";
static const char *EHTimerName = "DWARF Exception Writer";
STATISTIC(EmittedInsts, "Number of machine instrs printed");
2007-05-03 09:11:54 +08:00
char AsmPrinter::ID = 0;
typedef DenseMap<GCStrategy*,GCMetadataPrinter*> gcp_map_type;
static gcp_map_type &getGCMap(void *&P) {
if (P == 0)
P = new gcp_map_type();
return *(gcp_map_type*)P;
}
/// getGVAlignmentLog2 - Return the alignment to use for the specified global
/// value in log2 form. This rounds up to the preferred alignment if possible
/// and legal.
static unsigned getGVAlignmentLog2(const GlobalValue *GV, const TargetData &TD,
unsigned InBits = 0) {
unsigned NumBits = 0;
if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
NumBits = TD.getPreferredAlignmentLog(GVar);
// If InBits is specified, round it to it.
if (InBits > NumBits)
NumBits = InBits;
// If the GV has a specified alignment, take it into account.
if (GV->getAlignment() == 0)
return NumBits;
unsigned GVAlign = Log2_32(GV->getAlignment());
// If the GVAlign is larger than NumBits, or if we are required to obey
// NumBits because the GV has an assigned section, obey it.
if (GVAlign > NumBits || GV->hasSection())
NumBits = GVAlign;
return NumBits;
}
AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer)
: MachineFunctionPass(ID),
TM(tm), MAI(tm.getMCAsmInfo()),
OutContext(Streamer.getContext()),
OutStreamer(Streamer),
LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) {
DD = 0; DE = 0; MMI = 0; LI = 0;
GCMetadataPrinters = 0;
VerboseAsm = Streamer.isVerboseAsm();
}
AsmPrinter::~AsmPrinter() {
assert(DD == 0 && DE == 0 && "Debug/EH info didn't get finalized");
if (GCMetadataPrinters != 0) {
gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
for (gcp_map_type::iterator I = GCMap.begin(), E = GCMap.end(); I != E; ++I)
delete I->second;
delete &GCMap;
GCMetadataPrinters = 0;
}
delete &OutStreamer;
}
/// getFunctionNumber - Return a unique ID for the current function.
///
unsigned AsmPrinter::getFunctionNumber() const {
return MF->getFunctionNumber();
}
const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
return TM.getTargetLowering()->getObjFileLowering();
}
/// getTargetData - Return information about data layout.
const TargetData &AsmPrinter::getTargetData() const {
return *TM.getTargetData();
}
/// getCurrentSection() - Return the current section we are emitting to.
const MCSection *AsmPrinter::getCurrentSection() const {
return OutStreamer.getCurrentSection();
}
void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
MachineFunctionPass::getAnalysisUsage(AU);
AU.addRequired<MachineModuleInfo>();
AU.addRequired<GCModuleInfo>();
if (isVerbose())
AU.addRequired<MachineLoopInfo>();
}
bool AsmPrinter::doInitialization(Module &M) {
2010-04-04 13:09:10 +08:00
MMI = getAnalysisIfAvailable<MachineModuleInfo>();
MMI->AnalyzeModule(M);
// Initialize TargetLoweringObjectFile.
const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
.Initialize(OutContext, TM);
Mang = new Mangler(OutContext, *TM.getTargetData());
// Allow the target to emit any magic that it wants at the start of the file.
EmitStartOfAsmFile(M);
// Very minimal debug info. It is ignored if we emit actual debug info. If we
// don't, this at least helps the user find where a global came from.
if (MAI->hasSingleParameterDotFile()) {
// .file "foo.c"
OutStreamer.EmitFileDirective(M.getModuleIdentifier());
}
GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
assert(MI && "AsmPrinter didn't require GCModuleInfo?");
for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
MP->beginAssembly(*this);
// Emit module-level inline asm if it exists.
if (!M.getModuleInlineAsm().empty()) {
OutStreamer.AddComment("Start of file scope inline assembly");
OutStreamer.AddBlankLine();
EmitInlineAsm(M.getModuleInlineAsm()+"\n");
OutStreamer.AddComment("End of file scope inline assembly");
OutStreamer.AddBlankLine();
}
if (MAI->doesSupportDebugInformation())
DD = new DwarfDebug(this, &M);
switch (MAI->getExceptionHandlingType()) {
case ExceptionHandling::None:
return false;
case ExceptionHandling::SjLj:
case ExceptionHandling::DwarfCFI:
DE = new DwarfCFIException(this);
return false;
case ExceptionHandling::ARM:
DE = new ARMException(this);
return false;
case ExceptionHandling::Win64:
DE = new Win64Exception(this);
return false;
}
llvm_unreachable("Unknown exception type.");
}
void AsmPrinter::EmitLinkage(unsigned Linkage, MCSymbol *GVSym) const {
switch ((GlobalValue::LinkageTypes)Linkage) {
case GlobalValue::CommonLinkage:
case GlobalValue::LinkOnceAnyLinkage:
case GlobalValue::LinkOnceODRLinkage:
case GlobalValue::WeakAnyLinkage:
case GlobalValue::WeakODRLinkage:
case GlobalValue::LinkerPrivateWeakLinkage:
case GlobalValue::LinkerPrivateWeakDefAutoLinkage:
if (MAI->getWeakDefDirective() != 0) {
// .globl _foo
OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
if ((GlobalValue::LinkageTypes)Linkage !=
GlobalValue::LinkerPrivateWeakDefAutoLinkage)
// .weak_definition _foo
OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
else
OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
} else if (MAI->getLinkOnceDirective() != 0) {
// .globl _foo
OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
//NOTE: linkonce is handled by the section the symbol was assigned to.
} else {
// .weak _foo
OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak);
}
break;
case GlobalValue::DLLExportLinkage:
case GlobalValue::AppendingLinkage:
// FIXME: appending linkage variables should go into a section of
// their name or something. For now, just emit them as external.
case GlobalValue::ExternalLinkage:
// If external or appending, declare as a global symbol.
// .globl _foo
OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
break;
case GlobalValue::PrivateLinkage:
case GlobalValue::InternalLinkage:
case GlobalValue::LinkerPrivateLinkage:
break;
default:
llvm_unreachable("Unknown linkage type!");
}
}
/// EmitGlobalVariable - Emit the specified global variable to the .s file.
void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
if (GV->hasInitializer()) {
// Check to see if this is a special global used by LLVM, if so, emit it.
if (EmitSpecialLLVMGlobal(GV))
return;
if (isVerbose()) {
WriteAsOperand(OutStreamer.GetCommentOS(), GV,
/*PrintType=*/false, GV->getParent());
OutStreamer.GetCommentOS() << '\n';
}
}
MCSymbol *GVSym = Mang->getSymbol(GV);
EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration());
if (!GV->hasInitializer()) // External globals require no extra code.
return;
if (MAI->hasDotTypeDotSizeDirective())
OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject);
SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
const TargetData *TD = TM.getTargetData();
uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType());
// If the alignment is specified, we *must* obey it. Overaligning a global
// with a specified alignment is a prompt way to break globals emitted to
// sections and expected to be contiguous (e.g. ObjC metadata).
unsigned AlignLog = getGVAlignmentLog2(GV, *TD);
// Handle common and BSS local symbols (.lcomm).
if (GVKind.isCommon() || GVKind.isBSSLocal()) {
if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it.
unsigned Align = 1 << AlignLog;
// Handle common symbols.
if (GVKind.isCommon()) {
if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
Align = 0;
// .comm _foo, 42, 4
OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
return;
}
// Handle local BSS symbols.
if (MAI->hasMachoZeroFillDirective()) {
const MCSection *TheSection =
getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
// .zerofill __DATA, __bss, _foo, 400, 5
OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align);
return;
}
if (MAI->getLCOMMDirectiveType() != LCOMM::None &&
(MAI->getLCOMMDirectiveType() != LCOMM::NoAlignment || Align == 1)) {
// .lcomm _foo, 42
OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align);
return;
}
if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
Align = 0;
// .local _foo
OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local);
// .comm _foo, 42, 4
OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
return;
}
const MCSection *TheSection =
getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
// Handle the zerofill directive on darwin, which is a special form of BSS
// emission.
if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) {
if (Size == 0) Size = 1; // zerofill of 0 bytes is undefined.
// .globl _foo
OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
// .zerofill __DATA, __common, _foo, 400, 5
OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog);
return;
}
// Handle thread local data for mach-o which requires us to output an
// additional structure of data and mangle the original symbol so that we
// can reference it later.
//
// TODO: This should become an "emit thread local global" method on TLOF.
// All of this macho specific stuff should be sunk down into TLOFMachO and
// stuff like "TLSExtraDataSection" should no longer be part of the parent
// TLOF class. This will also make it more obvious that stuff like
// MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
// specific code.
if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
// Emit the .tbss symbol
MCSymbol *MangSym =
OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
if (GVKind.isThreadBSS())
OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
else if (GVKind.isThreadData()) {
OutStreamer.SwitchSection(TheSection);
EmitAlignment(AlignLog, GV);
OutStreamer.EmitLabel(MangSym);
EmitGlobalConstant(GV->getInitializer());
}
OutStreamer.AddBlankLine();
// Emit the variable struct for the runtime.
const MCSection *TLVSect
= getObjFileLowering().getTLSExtraDataSection();
OutStreamer.SwitchSection(TLVSect);
// Emit the linkage here.
EmitLinkage(GV->getLinkage(), GVSym);
OutStreamer.EmitLabel(GVSym);
// Three pointers in size:
// - __tlv_bootstrap - used to make sure support exists
// - spare pointer, used when mapped by the runtime
// - pointer to mangled symbol above with initializer
unsigned PtrSize = TD->getPointerSizeInBits()/8;
OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
PtrSize, 0);
OutStreamer.EmitIntValue(0, PtrSize, 0);
OutStreamer.EmitSymbolValue(MangSym, PtrSize, 0);
OutStreamer.AddBlankLine();
return;
}
OutStreamer.SwitchSection(TheSection);
EmitLinkage(GV->getLinkage(), GVSym);
EmitAlignment(AlignLog, GV);
OutStreamer.EmitLabel(GVSym);
EmitGlobalConstant(GV->getInitializer());
if (MAI->hasDotTypeDotSizeDirective())
2010-01-25 15:53:05 +08:00
// .size foo, 42
OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext));
OutStreamer.AddBlankLine();
}
/// EmitFunctionHeader - This method emits the header for the current
/// function.
void AsmPrinter::EmitFunctionHeader() {
// Print out constants referenced by the function
EmitConstantPool();
// Print the 'header' of function.
const Function *F = MF->getFunction();
OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
EmitVisibility(CurrentFnSym, F->getVisibility());
EmitLinkage(F->getLinkage(), CurrentFnSym);
EmitAlignment(MF->getAlignment(), F);
if (MAI->hasDotTypeDotSizeDirective())
OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
if (isVerbose()) {
WriteAsOperand(OutStreamer.GetCommentOS(), F,
/*PrintType=*/false, F->getParent());
OutStreamer.GetCommentOS() << '\n';
}
// Emit the CurrentFnSym. This is a virtual function to allow targets to
// do their wild and crazy things as required.
EmitFunctionEntryLabel();
// If the function had address-taken blocks that got deleted, then we have
// references to the dangling symbols. Emit them at the start of the function
// so that we don't get references to undefined symbols.
std::vector<MCSymbol*> DeadBlockSyms;
MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
OutStreamer.AddComment("Address taken block that was later removed");
OutStreamer.EmitLabel(DeadBlockSyms[i]);
}
// Add some workaround for linkonce linkage on Cygwin\MinGW.
if (MAI->getLinkOnceDirective() != 0 &&
(F->hasLinkOnceLinkage() || F->hasWeakLinkage())) {
// FIXME: What is this?
MCSymbol *FakeStub =
OutContext.GetOrCreateSymbol(Twine("Lllvm$workaround$fake$stub$")+
CurrentFnSym->getName());
OutStreamer.EmitLabel(FakeStub);
}
// Emit pre-function debug and/or EH information.
if (DE) {
NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
DE->BeginFunction(MF);
}
if (DD) {
NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
DD->beginFunction(MF);
}
}
/// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
/// function. This can be overridden by targets as required to do custom stuff.
void AsmPrinter::EmitFunctionEntryLabel() {
// The function label could have already been emitted if two symbols end up
// conflicting due to asm renaming. Detect this and emit an error.
if (CurrentFnSym->isUndefined()) {
OutStreamer.ForceCodeRegion();
return OutStreamer.EmitLabel(CurrentFnSym);
}
report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
"' label emitted multiple times to assembly file");
}
/// EmitComments - Pretty-print comments for instructions.
static void EmitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
const MachineFunction *MF = MI.getParent()->getParent();
const TargetMachine &TM = MF->getTarget();
// Check for spills and reloads
int FI;
const MachineFrameInfo *FrameInfo = MF->getFrameInfo();
// We assume a single instruction only has a spill or reload, not
// both.
const MachineMemOperand *MMO;
if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) {
if (FrameInfo->isSpillSlotObjectIndex(FI)) {
MMO = *MI.memoperands_begin();
CommentOS << MMO->getSize() << "-byte Reload\n";
}
} else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) {
if (FrameInfo->isSpillSlotObjectIndex(FI))
CommentOS << MMO->getSize() << "-byte Folded Reload\n";
} else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) {
if (FrameInfo->isSpillSlotObjectIndex(FI)) {
MMO = *MI.memoperands_begin();
CommentOS << MMO->getSize() << "-byte Spill\n";
}
} else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) {
if (FrameInfo->isSpillSlotObjectIndex(FI))
CommentOS << MMO->getSize() << "-byte Folded Spill\n";
}
// Check for spill-induced copies
if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
CommentOS << " Reload Reuse\n";
}
/// EmitImplicitDef - This method emits the specified machine instruction
/// that is an implicit def.
static void EmitImplicitDef(const MachineInstr *MI, AsmPrinter &AP) {
unsigned RegNo = MI->getOperand(0).getReg();
AP.OutStreamer.AddComment(Twine("implicit-def: ") +
AP.TM.getRegisterInfo()->getName(RegNo));
AP.OutStreamer.AddBlankLine();
}
static void EmitKill(const MachineInstr *MI, AsmPrinter &AP) {
std::string Str = "kill:";
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &Op = MI->getOperand(i);
assert(Op.isReg() && "KILL instruction must have only register operands");
Str += ' ';
Str += AP.TM.getRegisterInfo()->getName(Op.getReg());
Str += (Op.isDef() ? "<def>" : "<kill>");
}
AP.OutStreamer.AddComment(Str);
AP.OutStreamer.AddBlankLine();
}
/// EmitDebugValueComment - This method handles the target-independent form
/// of DBG_VALUE, returning true if it was able to do so. A false return
/// means the target will need to handle MI in EmitInstruction.
static bool EmitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
// This code handles only the 3-operand target-independent form.
if (MI->getNumOperands() != 3)
return false;
2010-04-07 17:26:51 +08:00
SmallString<128> Str;
raw_svector_ostream OS(Str);
OS << '\t' << AP.MAI->getCommentString() << "DEBUG_VALUE: ";
// cast away const; DIetc do not take const operands for some reason.
2010-04-08 06:29:10 +08:00
DIVariable V(const_cast<MDNode*>(MI->getOperand(2).getMetadata()));
if (V.getContext().isSubprogram())
OS << DISubprogram(V.getContext()).getDisplayName() << ":";
2010-04-07 17:26:51 +08:00
OS << V.getName() << " <- ";
// Register or immediate value. Register 0 means undef.
if (MI->getOperand(0).isFPImm()) {
APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
2010-04-07 17:26:51 +08:00
OS << (double)APF.convertToFloat();
} else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
2010-04-07 17:26:51 +08:00
OS << APF.convertToDouble();
} else {
// There is no good way to print long double. Convert a copy to
// double. Ah well, it's only a comment.
bool ignored;
APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
&ignored);
2010-04-07 17:26:51 +08:00
OS << "(long double) " << APF.convertToDouble();
}
} else if (MI->getOperand(0).isImm()) {
2010-04-07 17:26:51 +08:00
OS << MI->getOperand(0).getImm();
} else if (MI->getOperand(0).isCImm()) {
MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
2010-04-08 06:29:10 +08:00
} else {
assert(MI->getOperand(0).isReg() && "Unknown operand type");
if (MI->getOperand(0).getReg() == 0) {
// Suppress offset, it is not meaningful here.
2010-04-07 17:26:51 +08:00
OS << "undef";
// NOTE: Want this comment at start of line, don't emit with AddComment.
2010-04-07 17:26:51 +08:00
AP.OutStreamer.EmitRawText(OS.str());
return true;
}
2010-04-07 17:26:51 +08:00
OS << AP.TM.getRegisterInfo()->getName(MI->getOperand(0).getReg());
2010-04-08 06:29:10 +08:00
}
2010-04-07 17:26:51 +08:00
OS << '+' << MI->getOperand(1).getImm();
// NOTE: Want this comment at start of line, don't emit with AddComment.
2010-04-07 17:26:51 +08:00
AP.OutStreamer.EmitRawText(OS.str());
return true;
}
AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() {
if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
MF->getFunction()->needsUnwindTableEntry())
return CFI_M_EH;
if (MMI->hasDebugInfo())
return CFI_M_Debug;
return CFI_M_None;
}
bool AsmPrinter::needsSEHMoves() {
return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 &&
MF->getFunction()->needsUnwindTableEntry();
}
bool AsmPrinter::needsRelocationsForDwarfStringPool() const {
return MAI->doesDwarfUseRelocationsForStringPool();
}
void AsmPrinter::emitPrologLabel(const MachineInstr &MI) {
MCSymbol *Label = MI.getOperand(0).getMCSymbol();
if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
return;
if (needsCFIMoves() == CFI_M_None)
return;
if (MMI->getCompactUnwindEncoding() != 0)
OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding());
MachineModuleInfo &MMI = MF->getMMI();
std::vector<MachineMove> &Moves = MMI.getFrameMoves();
bool FoundOne = false;
(void)FoundOne;
for (std::vector<MachineMove>::iterator I = Moves.begin(),
E = Moves.end(); I != E; ++I) {
if (I->getLabel() == Label) {
EmitCFIFrameMove(*I);
FoundOne = true;
}
}
assert(FoundOne);
}
/// EmitFunctionBody - This method emits the body and trailer for a
/// function.
void AsmPrinter::EmitFunctionBody() {
// Emit target-specific gunk before the function body.
EmitFunctionBodyStart();
bool ShouldPrintDebugScopes = DD && MMI->hasDebugInfo();
// Print out code for the function.
bool HasAnyRealCode = false;
const MachineInstr *LastMI = 0;
for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
I != E; ++I) {
// Print a label for the basic block.
EmitBasicBlockStart(I);
for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end();
II != IE; ++II) {
LastMI = II;
// Print the assembly for the instruction.
if (!II->isLabel() && !II->isImplicitDef() && !II->isKill() &&
!II->isDebugValue()) {
HasAnyRealCode = true;
++EmittedInsts;
}
if (ShouldPrintDebugScopes) {
NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
DD->beginInstruction(II);
}
if (isVerbose())
EmitComments(*II, OutStreamer.GetCommentOS());
switch (II->getOpcode()) {
case TargetOpcode::PROLOG_LABEL:
emitPrologLabel(*II);
break;
case TargetOpcode::EH_LABEL:
case TargetOpcode::GC_LABEL:
OutStreamer.EmitLabel(II->getOperand(0).getMCSymbol());
break;
case TargetOpcode::INLINEASM:
EmitInlineAsm(II);
break;
case TargetOpcode::DBG_VALUE:
if (isVerbose()) {
if (!EmitDebugValueComment(II, *this))
EmitInstruction(II);
}
break;
case TargetOpcode::IMPLICIT_DEF:
if (isVerbose()) EmitImplicitDef(II, *this);
break;
case TargetOpcode::KILL:
if (isVerbose()) EmitKill(II, *this);
break;
default:
if (!TM.hasMCUseLoc())
MCLineEntry::Make(&OutStreamer, getCurrentSection());
EmitInstruction(II);
break;
}
if (ShouldPrintDebugScopes) {
NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
DD->endInstruction(II);
}
}
}
// If the last instruction was a prolog label, then we have a situation where
// we emitted a prolog but no function body. This results in the ending prolog
// label equaling the end of function label and an invalid "row" in the
// FDE. We need to emit a noop in this situation so that the FDE's rows are
// valid.
bool RequiresNoop = LastMI && LastMI->isPrologLabel();
// If the function is empty and the object file uses .subsections_via_symbols,
// then we need to emit *something* to the function body to prevent the
// labels from collapsing together. Just emit a noop.
if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) {
MCInst Noop;
TM.getInstrInfo()->getNoopForMachoTarget(Noop);
if (Noop.getOpcode()) {
OutStreamer.AddComment("avoids zero-length function");
OutStreamer.EmitInstruction(Noop);
} else // Target not mc-ized yet.
OutStreamer.EmitRawText(StringRef("\tnop\n"));
}
const Function *F = MF->getFunction();
for (Function::const_iterator i = F->begin(), e = F->end(); i != e; ++i) {
const BasicBlock *BB = i;
if (!BB->hasAddressTaken())
continue;
MCSymbol *Sym = GetBlockAddressSymbol(BB);
if (Sym->isDefined())
continue;
OutStreamer.AddComment("Address of block that was removed by CodeGen");
OutStreamer.EmitLabel(Sym);
}
// Emit target-specific gunk after the function body.
EmitFunctionBodyEnd();
// If the target wants a .size directive for the size of the function, emit
// it.
if (MAI->hasDotTypeDotSizeDirective()) {
// Create a symbol for the end of function, so we can get the size as
// difference between the function label and the temp label.
MCSymbol *FnEndLabel = OutContext.CreateTempSymbol();
OutStreamer.EmitLabel(FnEndLabel);
const MCExpr *SizeExp =
MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext),
MCSymbolRefExpr::Create(CurrentFnSym, OutContext),
OutContext);
OutStreamer.EmitELFSize(CurrentFnSym, SizeExp);
}
// Emit post-function debug information.
if (DD) {
NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
DD->endFunction(MF);
}
if (DE) {
NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
DE->EndFunction();
}
MMI->EndFunction();
// Print out jump tables referenced by the function.
EmitJumpTableInfo();
OutStreamer.AddBlankLine();
}
/// getDebugValueLocation - Get location information encoded by DBG_VALUE
/// operands.
MachineLocation AsmPrinter::
getDebugValueLocation(const MachineInstr *MI) const {
// Target specific DBG_VALUE instructions are handled by each target.
return MachineLocation();
}
2011-04-22 05:07:35 +08:00
/// EmitDwarfRegOp - Emit dwarf register operation.
void AsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc) const {
const TargetRegisterInfo *TRI = TM.getRegisterInfo();
int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false);
for (const unsigned *SR = TRI->getSuperRegisters(MLoc.getReg());
*SR && Reg < 0; ++SR) {
Reg = TRI->getDwarfRegNum(*SR, false);
// FIXME: Get the bit range this register uses of the superregister
// so that we can produce a DW_OP_bit_piece
}
// FIXME: Handle cases like a super register being encoded as
// DW_OP_reg 32 DW_OP_piece 4 DW_OP_reg 33
// FIXME: We have no reasonable way of handling errors in here. The
// caller might be in the middle of an dwarf expression. We should
// probably assert that Reg >= 0 once debug info generation is more mature.
2011-04-22 05:07:35 +08:00
if (int Offset = MLoc.getOffset()) {
if (Reg < 32) {
OutStreamer.AddComment(
dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg));
EmitInt8(dwarf::DW_OP_breg0 + Reg);
} else {
OutStreamer.AddComment("DW_OP_bregx");
EmitInt8(dwarf::DW_OP_bregx);
OutStreamer.AddComment(Twine(Reg));
EmitULEB128(Reg);
}
2011-04-22 05:07:35 +08:00
EmitSLEB128(Offset);
} else {
if (Reg < 32) {
OutStreamer.AddComment(
dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg));
EmitInt8(dwarf::DW_OP_reg0 + Reg);
} else {
OutStreamer.AddComment("DW_OP_regx");
2011-04-22 05:07:35 +08:00
EmitInt8(dwarf::DW_OP_regx);
OutStreamer.AddComment(Twine(Reg));
EmitULEB128(Reg);
}
}
// FIXME: Produce a DW_OP_bit_piece if we used a superregister
2011-04-22 05:07:35 +08:00
}
bool AsmPrinter::doFinalization(Module &M) {
// Emit global variables.
for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I)
EmitGlobalVariable(I);
// Emit visibility info for declarations
for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
const Function &F = *I;
if (!F.isDeclaration())
continue;
GlobalValue::VisibilityTypes V = F.getVisibility();
if (V == GlobalValue::DefaultVisibility)
continue;
MCSymbol *Name = Mang->getSymbol(&F);
EmitVisibility(Name, V, false);
}
// Finalize debug and EH information.
if (DE) {
{
NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
DE->EndModule();
}
delete DE; DE = 0;
}
if (DD) {
{
NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
DD->endModule();
}
delete DD; DD = 0;
}
// If the target wants to know about weak references, print them all.
if (MAI->getWeakRefDirective()) {
// FIXME: This is not lazy, it would be nice to only print weak references
// to stuff that is actually used. Note that doing so would require targets
// to notice uses in operands (due to constant exprs etc). This should
// happen with the MC stuff eventually.
// Print out module-level global variables here.
for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I) {
if (!I->hasExternalWeakLinkage()) continue;
OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
}
for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
if (!I->hasExternalWeakLinkage()) continue;
OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
}
}
if (MAI->hasSetDirective()) {
OutStreamer.AddBlankLine();
for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
I != E; ++I) {
MCSymbol *Name = Mang->getSymbol(I);
const GlobalValue *GV = I->getAliasedGlobal();
MCSymbol *Target = Mang->getSymbol(GV);
if (I->hasExternalLinkage() || !MAI->getWeakRefDirective())
OutStreamer.EmitSymbolAttribute(Name, MCSA_Global);
else if (I->hasWeakLinkage())
OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference);
else
assert(I->hasLocalLinkage() && "Invalid alias linkage");
EmitVisibility(Name, I->getVisibility());
// Emit the directives as assignments aka .set:
OutStreamer.EmitAssignment(Name,
MCSymbolRefExpr::Create(Target, OutContext));
}
}
GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
assert(MI && "AsmPrinter didn't require GCModuleInfo?");
for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
MP->finishAssembly(*this);
// If we don't have any trampolines, then we don't require stack memory
// to be executable. Some targets have a directive to declare this.
Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext))
OutStreamer.SwitchSection(S);
// Allow the target to emit any magic that it wants at the end of the file,
// after everything else has gone out.
EmitEndOfAsmFile(M);
delete Mang; Mang = 0;
MMI = 0;
OutStreamer.Finish();
return false;
}
void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
this->MF = &MF;
// Get the function symbol.
CurrentFnSym = Mang->getSymbol(MF.getFunction());
if (isVerbose())
LI = &getAnalysis<MachineLoopInfo>();
}
Fix some significant problems with constant pools that resulted in unnecessary paddings between constant pool entries, larger than necessary alignments (e.g. 8 byte alignment for .literal4 sections), and potentially other issues. 1. ConstantPoolSDNode alignment field is log2 value of the alignment requirement. This is not consistent with other SDNode variants. 2. MachineConstantPool alignment field is also a log2 value. 3. However, some places are creating ConstantPoolSDNode with alignment value rather than log2 values. This creates entries with artificially large alignments, e.g. 256 for SSE vector values. 4. Constant pool entry offsets are computed when they are created. However, asm printer group them by sections. That means the offsets are no longer valid. However, asm printer uses them to determine size of padding between entries. 5. Asm printer uses expensive data structure multimap to track constant pool entries by sections. 6. Asm printer iterate over SmallPtrSet when it's emitting constant pool entries. This is non-deterministic. Solutions: 1. ConstantPoolSDNode alignment field is changed to keep non-log2 value. 2. MachineConstantPool alignment field is also changed to keep non-log2 value. 3. Functions that create ConstantPool nodes are passing in non-log2 alignments. 4. MachineConstantPoolEntry no longer keeps an offset field. It's replaced with an alignment field. Offsets are not computed when constant pool entries are created. They are computed on the fly in asm printer and JIT. 5. Asm printer uses cheaper data structure to group constant pool entries. 6. Asm printer compute entry offsets after grouping is done. 7. Change JIT code to compute entry offsets on the fly. llvm-svn: 66875
2009-03-13 15:51:59 +08:00
namespace {
// SectionCPs - Keep track the alignment, constpool entries per Section.
struct SectionCPs {
const MCSection *S;
Fix some significant problems with constant pools that resulted in unnecessary paddings between constant pool entries, larger than necessary alignments (e.g. 8 byte alignment for .literal4 sections), and potentially other issues. 1. ConstantPoolSDNode alignment field is log2 value of the alignment requirement. This is not consistent with other SDNode variants. 2. MachineConstantPool alignment field is also a log2 value. 3. However, some places are creating ConstantPoolSDNode with alignment value rather than log2 values. This creates entries with artificially large alignments, e.g. 256 for SSE vector values. 4. Constant pool entry offsets are computed when they are created. However, asm printer group them by sections. That means the offsets are no longer valid. However, asm printer uses them to determine size of padding between entries. 5. Asm printer uses expensive data structure multimap to track constant pool entries by sections. 6. Asm printer iterate over SmallPtrSet when it's emitting constant pool entries. This is non-deterministic. Solutions: 1. ConstantPoolSDNode alignment field is changed to keep non-log2 value. 2. MachineConstantPool alignment field is also changed to keep non-log2 value. 3. Functions that create ConstantPool nodes are passing in non-log2 alignments. 4. MachineConstantPoolEntry no longer keeps an offset field. It's replaced with an alignment field. Offsets are not computed when constant pool entries are created. They are computed on the fly in asm printer and JIT. 5. Asm printer uses cheaper data structure to group constant pool entries. 6. Asm printer compute entry offsets after grouping is done. 7. Change JIT code to compute entry offsets on the fly. llvm-svn: 66875
2009-03-13 15:51:59 +08:00
unsigned Alignment;
SmallVector<unsigned, 4> CPEs;
SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {}
Fix some significant problems with constant pools that resulted in unnecessary paddings between constant pool entries, larger than necessary alignments (e.g. 8 byte alignment for .literal4 sections), and potentially other issues. 1. ConstantPoolSDNode alignment field is log2 value of the alignment requirement. This is not consistent with other SDNode variants. 2. MachineConstantPool alignment field is also a log2 value. 3. However, some places are creating ConstantPoolSDNode with alignment value rather than log2 values. This creates entries with artificially large alignments, e.g. 256 for SSE vector values. 4. Constant pool entry offsets are computed when they are created. However, asm printer group them by sections. That means the offsets are no longer valid. However, asm printer uses them to determine size of padding between entries. 5. Asm printer uses expensive data structure multimap to track constant pool entries by sections. 6. Asm printer iterate over SmallPtrSet when it's emitting constant pool entries. This is non-deterministic. Solutions: 1. ConstantPoolSDNode alignment field is changed to keep non-log2 value. 2. MachineConstantPool alignment field is also changed to keep non-log2 value. 3. Functions that create ConstantPool nodes are passing in non-log2 alignments. 4. MachineConstantPoolEntry no longer keeps an offset field. It's replaced with an alignment field. Offsets are not computed when constant pool entries are created. They are computed on the fly in asm printer and JIT. 5. Asm printer uses cheaper data structure to group constant pool entries. 6. Asm printer compute entry offsets after grouping is done. 7. Change JIT code to compute entry offsets on the fly. llvm-svn: 66875
2009-03-13 15:51:59 +08:00
};
}
/// EmitConstantPool - Print to the current output stream assembly
/// representations of the constants in the constant pool MCP. This is
/// used to print out constants which have been "spilled to memory" by
/// the code generator.
///
void AsmPrinter::EmitConstantPool() {
const MachineConstantPool *MCP = MF->getConstantPool();
const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
if (CP.empty()) return;
// Calculate sections for constant pool entries. We collect entries to go into
// the same section together to reduce amount of section switch statements.
Fix some significant problems with constant pools that resulted in unnecessary paddings between constant pool entries, larger than necessary alignments (e.g. 8 byte alignment for .literal4 sections), and potentially other issues. 1. ConstantPoolSDNode alignment field is log2 value of the alignment requirement. This is not consistent with other SDNode variants. 2. MachineConstantPool alignment field is also a log2 value. 3. However, some places are creating ConstantPoolSDNode with alignment value rather than log2 values. This creates entries with artificially large alignments, e.g. 256 for SSE vector values. 4. Constant pool entry offsets are computed when they are created. However, asm printer group them by sections. That means the offsets are no longer valid. However, asm printer uses them to determine size of padding between entries. 5. Asm printer uses expensive data structure multimap to track constant pool entries by sections. 6. Asm printer iterate over SmallPtrSet when it's emitting constant pool entries. This is non-deterministic. Solutions: 1. ConstantPoolSDNode alignment field is changed to keep non-log2 value. 2. MachineConstantPool alignment field is also changed to keep non-log2 value. 3. Functions that create ConstantPool nodes are passing in non-log2 alignments. 4. MachineConstantPoolEntry no longer keeps an offset field. It's replaced with an alignment field. Offsets are not computed when constant pool entries are created. They are computed on the fly in asm printer and JIT. 5. Asm printer uses cheaper data structure to group constant pool entries. 6. Asm printer compute entry offsets after grouping is done. 7. Change JIT code to compute entry offsets on the fly. llvm-svn: 66875
2009-03-13 15:51:59 +08:00
SmallVector<SectionCPs, 4> CPSections;
for (unsigned i = 0, e = CP.size(); i != e; ++i) {
const MachineConstantPoolEntry &CPE = CP[i];
Fix some significant problems with constant pools that resulted in unnecessary paddings between constant pool entries, larger than necessary alignments (e.g. 8 byte alignment for .literal4 sections), and potentially other issues. 1. ConstantPoolSDNode alignment field is log2 value of the alignment requirement. This is not consistent with other SDNode variants. 2. MachineConstantPool alignment field is also a log2 value. 3. However, some places are creating ConstantPoolSDNode with alignment value rather than log2 values. This creates entries with artificially large alignments, e.g. 256 for SSE vector values. 4. Constant pool entry offsets are computed when they are created. However, asm printer group them by sections. That means the offsets are no longer valid. However, asm printer uses them to determine size of padding between entries. 5. Asm printer uses expensive data structure multimap to track constant pool entries by sections. 6. Asm printer iterate over SmallPtrSet when it's emitting constant pool entries. This is non-deterministic. Solutions: 1. ConstantPoolSDNode alignment field is changed to keep non-log2 value. 2. MachineConstantPool alignment field is also changed to keep non-log2 value. 3. Functions that create ConstantPool nodes are passing in non-log2 alignments. 4. MachineConstantPoolEntry no longer keeps an offset field. It's replaced with an alignment field. Offsets are not computed when constant pool entries are created. They are computed on the fly in asm printer and JIT. 5. Asm printer uses cheaper data structure to group constant pool entries. 6. Asm printer compute entry offsets after grouping is done. 7. Change JIT code to compute entry offsets on the fly. llvm-svn: 66875
2009-03-13 15:51:59 +08:00
unsigned Align = CPE.getAlignment();
SectionKind Kind;
switch (CPE.getRelocationInfo()) {
default: llvm_unreachable("Unknown section kind");
case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
case 1:
Kind = SectionKind::getReadOnlyWithRelLocal();
break;
case 0:
switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) {
case 4: Kind = SectionKind::getMergeableConst4(); break;
case 8: Kind = SectionKind::getMergeableConst8(); break;
case 16: Kind = SectionKind::getMergeableConst16();break;
default: Kind = SectionKind::getMergeableConst(); break;
}
}
const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
Fix some significant problems with constant pools that resulted in unnecessary paddings between constant pool entries, larger than necessary alignments (e.g. 8 byte alignment for .literal4 sections), and potentially other issues. 1. ConstantPoolSDNode alignment field is log2 value of the alignment requirement. This is not consistent with other SDNode variants. 2. MachineConstantPool alignment field is also a log2 value. 3. However, some places are creating ConstantPoolSDNode with alignment value rather than log2 values. This creates entries with artificially large alignments, e.g. 256 for SSE vector values. 4. Constant pool entry offsets are computed when they are created. However, asm printer group them by sections. That means the offsets are no longer valid. However, asm printer uses them to determine size of padding between entries. 5. Asm printer uses expensive data structure multimap to track constant pool entries by sections. 6. Asm printer iterate over SmallPtrSet when it's emitting constant pool entries. This is non-deterministic. Solutions: 1. ConstantPoolSDNode alignment field is changed to keep non-log2 value. 2. MachineConstantPool alignment field is also changed to keep non-log2 value. 3. Functions that create ConstantPool nodes are passing in non-log2 alignments. 4. MachineConstantPoolEntry no longer keeps an offset field. It's replaced with an alignment field. Offsets are not computed when constant pool entries are created. They are computed on the fly in asm printer and JIT. 5. Asm printer uses cheaper data structure to group constant pool entries. 6. Asm printer compute entry offsets after grouping is done. 7. Change JIT code to compute entry offsets on the fly. llvm-svn: 66875
2009-03-13 15:51:59 +08:00
// The number of sections are small, just do a linear search from the
// last section to the first.
bool Found = false;
unsigned SecIdx = CPSections.size();
while (SecIdx != 0) {
if (CPSections[--SecIdx].S == S) {
Found = true;
break;
}
}
if (!Found) {
SecIdx = CPSections.size();
CPSections.push_back(SectionCPs(S, Align));
}
if (Align > CPSections[SecIdx].Alignment)
CPSections[SecIdx].Alignment = Align;
CPSections[SecIdx].CPEs.push_back(i);
}
// Now print stuff into the calculated sections.
Fix some significant problems with constant pools that resulted in unnecessary paddings between constant pool entries, larger than necessary alignments (e.g. 8 byte alignment for .literal4 sections), and potentially other issues. 1. ConstantPoolSDNode alignment field is log2 value of the alignment requirement. This is not consistent with other SDNode variants. 2. MachineConstantPool alignment field is also a log2 value. 3. However, some places are creating ConstantPoolSDNode with alignment value rather than log2 values. This creates entries with artificially large alignments, e.g. 256 for SSE vector values. 4. Constant pool entry offsets are computed when they are created. However, asm printer group them by sections. That means the offsets are no longer valid. However, asm printer uses them to determine size of padding between entries. 5. Asm printer uses expensive data structure multimap to track constant pool entries by sections. 6. Asm printer iterate over SmallPtrSet when it's emitting constant pool entries. This is non-deterministic. Solutions: 1. ConstantPoolSDNode alignment field is changed to keep non-log2 value. 2. MachineConstantPool alignment field is also changed to keep non-log2 value. 3. Functions that create ConstantPool nodes are passing in non-log2 alignments. 4. MachineConstantPoolEntry no longer keeps an offset field. It's replaced with an alignment field. Offsets are not computed when constant pool entries are created. They are computed on the fly in asm printer and JIT. 5. Asm printer uses cheaper data structure to group constant pool entries. 6. Asm printer compute entry offsets after grouping is done. 7. Change JIT code to compute entry offsets on the fly. llvm-svn: 66875
2009-03-13 15:51:59 +08:00
for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
OutStreamer.SwitchSection(CPSections[i].S);
Fix some significant problems with constant pools that resulted in unnecessary paddings between constant pool entries, larger than necessary alignments (e.g. 8 byte alignment for .literal4 sections), and potentially other issues. 1. ConstantPoolSDNode alignment field is log2 value of the alignment requirement. This is not consistent with other SDNode variants. 2. MachineConstantPool alignment field is also a log2 value. 3. However, some places are creating ConstantPoolSDNode with alignment value rather than log2 values. This creates entries with artificially large alignments, e.g. 256 for SSE vector values. 4. Constant pool entry offsets are computed when they are created. However, asm printer group them by sections. That means the offsets are no longer valid. However, asm printer uses them to determine size of padding between entries. 5. Asm printer uses expensive data structure multimap to track constant pool entries by sections. 6. Asm printer iterate over SmallPtrSet when it's emitting constant pool entries. This is non-deterministic. Solutions: 1. ConstantPoolSDNode alignment field is changed to keep non-log2 value. 2. MachineConstantPool alignment field is also changed to keep non-log2 value. 3. Functions that create ConstantPool nodes are passing in non-log2 alignments. 4. MachineConstantPoolEntry no longer keeps an offset field. It's replaced with an alignment field. Offsets are not computed when constant pool entries are created. They are computed on the fly in asm printer and JIT. 5. Asm printer uses cheaper data structure to group constant pool entries. 6. Asm printer compute entry offsets after grouping is done. 7. Change JIT code to compute entry offsets on the fly. llvm-svn: 66875
2009-03-13 15:51:59 +08:00
EmitAlignment(Log2_32(CPSections[i].Alignment));
Fix some significant problems with constant pools that resulted in unnecessary paddings between constant pool entries, larger than necessary alignments (e.g. 8 byte alignment for .literal4 sections), and potentially other issues. 1. ConstantPoolSDNode alignment field is log2 value of the alignment requirement. This is not consistent with other SDNode variants. 2. MachineConstantPool alignment field is also a log2 value. 3. However, some places are creating ConstantPoolSDNode with alignment value rather than log2 values. This creates entries with artificially large alignments, e.g. 256 for SSE vector values. 4. Constant pool entry offsets are computed when they are created. However, asm printer group them by sections. That means the offsets are no longer valid. However, asm printer uses them to determine size of padding between entries. 5. Asm printer uses expensive data structure multimap to track constant pool entries by sections. 6. Asm printer iterate over SmallPtrSet when it's emitting constant pool entries. This is non-deterministic. Solutions: 1. ConstantPoolSDNode alignment field is changed to keep non-log2 value. 2. MachineConstantPool alignment field is also changed to keep non-log2 value. 3. Functions that create ConstantPool nodes are passing in non-log2 alignments. 4. MachineConstantPoolEntry no longer keeps an offset field. It's replaced with an alignment field. Offsets are not computed when constant pool entries are created. They are computed on the fly in asm printer and JIT. 5. Asm printer uses cheaper data structure to group constant pool entries. 6. Asm printer compute entry offsets after grouping is done. 7. Change JIT code to compute entry offsets on the fly. llvm-svn: 66875
2009-03-13 15:51:59 +08:00
unsigned Offset = 0;
for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
unsigned CPI = CPSections[i].CPEs[j];
MachineConstantPoolEntry CPE = CP[CPI];
// Emit inter-object padding for alignment.
unsigned AlignMask = CPE.getAlignment() - 1;
unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
OutStreamer.EmitFill(NewOffset - Offset, 0/*fillval*/, 0/*addrspace*/);
Fix some significant problems with constant pools that resulted in unnecessary paddings between constant pool entries, larger than necessary alignments (e.g. 8 byte alignment for .literal4 sections), and potentially other issues. 1. ConstantPoolSDNode alignment field is log2 value of the alignment requirement. This is not consistent with other SDNode variants. 2. MachineConstantPool alignment field is also a log2 value. 3. However, some places are creating ConstantPoolSDNode with alignment value rather than log2 values. This creates entries with artificially large alignments, e.g. 256 for SSE vector values. 4. Constant pool entry offsets are computed when they are created. However, asm printer group them by sections. That means the offsets are no longer valid. However, asm printer uses them to determine size of padding between entries. 5. Asm printer uses expensive data structure multimap to track constant pool entries by sections. 6. Asm printer iterate over SmallPtrSet when it's emitting constant pool entries. This is non-deterministic. Solutions: 1. ConstantPoolSDNode alignment field is changed to keep non-log2 value. 2. MachineConstantPool alignment field is also changed to keep non-log2 value. 3. Functions that create ConstantPool nodes are passing in non-log2 alignments. 4. MachineConstantPoolEntry no longer keeps an offset field. It's replaced with an alignment field. Offsets are not computed when constant pool entries are created. They are computed on the fly in asm printer and JIT. 5. Asm printer uses cheaper data structure to group constant pool entries. 6. Asm printer compute entry offsets after grouping is done. 7. Change JIT code to compute entry offsets on the fly. llvm-svn: 66875
2009-03-13 15:51:59 +08:00
Type *Ty = CPE.getType();
Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty);
OutStreamer.EmitLabel(GetCPISymbol(CPI));
Fix some significant problems with constant pools that resulted in unnecessary paddings between constant pool entries, larger than necessary alignments (e.g. 8 byte alignment for .literal4 sections), and potentially other issues. 1. ConstantPoolSDNode alignment field is log2 value of the alignment requirement. This is not consistent with other SDNode variants. 2. MachineConstantPool alignment field is also a log2 value. 3. However, some places are creating ConstantPoolSDNode with alignment value rather than log2 values. This creates entries with artificially large alignments, e.g. 256 for SSE vector values. 4. Constant pool entry offsets are computed when they are created. However, asm printer group them by sections. That means the offsets are no longer valid. However, asm printer uses them to determine size of padding between entries. 5. Asm printer uses expensive data structure multimap to track constant pool entries by sections. 6. Asm printer iterate over SmallPtrSet when it's emitting constant pool entries. This is non-deterministic. Solutions: 1. ConstantPoolSDNode alignment field is changed to keep non-log2 value. 2. MachineConstantPool alignment field is also changed to keep non-log2 value. 3. Functions that create ConstantPool nodes are passing in non-log2 alignments. 4. MachineConstantPoolEntry no longer keeps an offset field. It's replaced with an alignment field. Offsets are not computed when constant pool entries are created. They are computed on the fly in asm printer and JIT. 5. Asm printer uses cheaper data structure to group constant pool entries. 6. Asm printer compute entry offsets after grouping is done. 7. Change JIT code to compute entry offsets on the fly. llvm-svn: 66875
2009-03-13 15:51:59 +08:00
if (CPE.isMachineConstantPoolEntry())
EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
else
Fix some significant problems with constant pools that resulted in unnecessary paddings between constant pool entries, larger than necessary alignments (e.g. 8 byte alignment for .literal4 sections), and potentially other issues. 1. ConstantPoolSDNode alignment field is log2 value of the alignment requirement. This is not consistent with other SDNode variants. 2. MachineConstantPool alignment field is also a log2 value. 3. However, some places are creating ConstantPoolSDNode with alignment value rather than log2 values. This creates entries with artificially large alignments, e.g. 256 for SSE vector values. 4. Constant pool entry offsets are computed when they are created. However, asm printer group them by sections. That means the offsets are no longer valid. However, asm printer uses them to determine size of padding between entries. 5. Asm printer uses expensive data structure multimap to track constant pool entries by sections. 6. Asm printer iterate over SmallPtrSet when it's emitting constant pool entries. This is non-deterministic. Solutions: 1. ConstantPoolSDNode alignment field is changed to keep non-log2 value. 2. MachineConstantPool alignment field is also changed to keep non-log2 value. 3. Functions that create ConstantPool nodes are passing in non-log2 alignments. 4. MachineConstantPoolEntry no longer keeps an offset field. It's replaced with an alignment field. Offsets are not computed when constant pool entries are created. They are computed on the fly in asm printer and JIT. 5. Asm printer uses cheaper data structure to group constant pool entries. 6. Asm printer compute entry offsets after grouping is done. 7. Change JIT code to compute entry offsets on the fly. llvm-svn: 66875
2009-03-13 15:51:59 +08:00
EmitGlobalConstant(CPE.Val.ConstVal);
}
}
}
/// EmitJumpTableInfo - Print assembly representations of the jump tables used
/// by the current function to the current output stream.
///
void AsmPrinter::EmitJumpTableInfo() {
const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
if (MJTI == 0) return;
if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
if (JT.empty()) return;
// Pick the directive to use to print the jump table entries, and switch to
// the appropriate section.
const Function *F = MF->getFunction();
bool JTInDiffSection = false;
if (// In PIC mode, we need to emit the jump table to the same section as the
// function body itself, otherwise the label differences won't make sense.
// FIXME: Need a better predicate for this: what about custom entries?
MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 ||
// We should also do if the section name is NULL or function is declared
// in discardable section
// FIXME: this isn't the right predicate, should be based on the MCSection
// for the function.
F->isWeakForLinker()) {
OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F,Mang,TM));
} else {
// Otherwise, drop it in the readonly section.
const MCSection *ReadOnlySection =
getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
OutStreamer.SwitchSection(ReadOnlySection);
JTInDiffSection = true;
}
EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getTargetData())));
// If we know the form of the jump table, go ahead and tag it as such.
if (!JTInDiffSection) {
if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32) {
OutStreamer.EmitJumpTable32Region();
} else {
OutStreamer.EmitDataRegion();
}
}
for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
// If this jump table was deleted, ignore it.
if (JTBBs.empty()) continue;
// For the EK_LabelDifference32 entry, if the target supports .set, emit a
// .set directive for each unique entry. This reduces the number of
// relocations the assembler will generate for the jump table.
if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
MAI->hasSetDirective()) {
SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
const TargetLowering *TLI = TM.getTargetLowering();
const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
const MachineBasicBlock *MBB = JTBBs[ii];
if (!EmittedSets.insert(MBB)) continue;
// .set LJTSet, LBB32-base
const MCExpr *LHS =
MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
MCBinaryExpr::CreateSub(LHS, Base, OutContext));
}
}
// On some targets (e.g. Darwin) we want to emit two consecutive labels
// before each jump table. The first label is never referenced, but tells
// the assembler and linker the extents of the jump table object. The
// second label is actually referenced by the code.
if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0])
// FIXME: This doesn't have to have any specific name, just any randomly
// named and numbered 'l' label would work. Simplify GetJTISymbol.
OutStreamer.EmitLabel(GetJTISymbol(JTI, true));
OutStreamer.EmitLabel(GetJTISymbol(JTI));
for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
}
}
/// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
/// current stream.
void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
const MachineBasicBlock *MBB,
unsigned UID) const {
assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
const MCExpr *Value = 0;
switch (MJTI->getEntryKind()) {
case MachineJumpTableInfo::EK_Inline:
llvm_unreachable("Cannot emit EK_Inline jump table entry");
case MachineJumpTableInfo::EK_Custom32:
Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID,
OutContext);
break;
case MachineJumpTableInfo::EK_BlockAddress:
// EK_BlockAddress - Each entry is a plain address of block, e.g.:
// .word LBB123
Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
break;
case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
// EK_GPRel32BlockAddress - Each entry is an address of block, encoded
// with a relocation as gp-relative, e.g.:
// .gprel32 LBB123
MCSymbol *MBBSym = MBB->getSymbol();
OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
return;
}
case MachineJumpTableInfo::EK_LabelDifference32: {
// EK_LabelDifference32 - Each entry is the address of the block minus
// the address of the jump table. This is used for PIC jump tables where
// gprel32 is not supported. e.g.:
// .word LBB123 - LJTI1_2
// If the .set directive is supported, this is emitted as:
// .set L4_5_set_123, LBB123 - LJTI1_2
// .word L4_5_set_123
// If we have emitted set directives for the jump table entries, print
// them rather than the entries themselves. If we're emitting PIC, then
// emit the table entries as differences between two text section labels.
if (MAI->hasSetDirective()) {
// If we used .set, reference the .set's symbol.
Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()),
OutContext);
break;
}
// Otherwise, use the difference as the jump table entry.
Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext);
Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext);
break;
}
}
assert(Value && "Unknown entry kind!");
unsigned EntrySize = MJTI->getEntrySize(*TM.getTargetData());
OutStreamer.EmitValue(Value, EntrySize, /*addrspace*/0);
}
/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
/// special global used by LLVM. If so, emit it and return true, otherwise
/// do nothing and return false.
bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
if (GV->getName() == "llvm.used") {
if (MAI->hasNoDeadStrip()) // No need to emit this at all.
EmitLLVMUsedList(GV->getInitializer());
return true;
}
// Ignore debug and non-emitted data. This handles llvm.compiler.used.
if (GV->getSection() == "llvm.metadata" ||
GV->hasAvailableExternallyLinkage())
return true;
if (!GV->hasAppendingLinkage()) return false;
assert(GV->hasInitializer() && "Not a special LLVM global!");
if (GV->getName() == "llvm.global_ctors") {
EmitXXStructorList(GV->getInitializer(), /* isCtor */ true);
if (TM.getRelocationModel() == Reloc::Static &&
MAI->hasStaticCtorDtorReferenceInStaticMode()) {
StringRef Sym(".constructors_used");
OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
MCSA_Reference);
}
return true;
}
if (GV->getName() == "llvm.global_dtors") {
EmitXXStructorList(GV->getInitializer(), /* isCtor */ false);
if (TM.getRelocationModel() == Reloc::Static &&
MAI->hasStaticCtorDtorReferenceInStaticMode()) {
StringRef Sym(".destructors_used");
OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
MCSA_Reference);
}
return true;
}
return false;
}
/// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
/// global in the specified llvm.used list for which emitUsedDirectiveFor
/// is true, as being used with this directive.
void AsmPrinter::EmitLLVMUsedList(const Constant *List) {
// Should be an array of 'i8*'.
const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
if (InitList == 0) return;
for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
const GlobalValue *GV =
dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang))
OutStreamer.EmitSymbolAttribute(Mang->getSymbol(GV), MCSA_NoDeadStrip);
}
}
typedef std::pair<unsigned, Constant*> Structor;
static bool priority_order(const Structor& lhs, const Structor& rhs) {
return lhs.first < rhs.first;
}
/// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
/// priority.
void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) {
// Should be an array of '{ int, void ()* }' structs. The first value is the
// init priority.
if (!isa<ConstantArray>(List)) return;
// Sanity check the structors list.
const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
if (!InitList) return; // Not an array!
StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
if (!ETy || ETy->getNumElements() != 2) return; // Not an array of pairs!
if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
!isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
// Gather the structors in a form that's convenient for sorting by priority.
SmallVector<Structor, 8> Structors;
for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
if (!CS) continue; // Malformed.
if (CS->getOperand(1)->isNullValue())
break; // Found a null terminator, skip the rest.
ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
if (!Priority) continue; // Malformed.
Structors.push_back(std::make_pair(Priority->getLimitedValue(65535),
CS->getOperand(1)));
}
// Emit the function pointers in the target-specific order
const TargetData *TD = TM.getTargetData();
unsigned Align = Log2_32(TD->getPointerPrefAlignment());
std::stable_sort(Structors.begin(), Structors.end(), priority_order);
for (unsigned i = 0, e = Structors.size(); i != e; ++i) {
const MCSection *OutputSection =
(isCtor ?
getObjFileLowering().getStaticCtorSection(Structors[i].first) :
getObjFileLowering().getStaticDtorSection(Structors[i].first));
OutStreamer.SwitchSection(OutputSection);
if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection())
EmitAlignment(Align);
EmitXXStructor(Structors[i].second);
}
}
//===--------------------------------------------------------------------===//
// Emission and print routines
//
/// EmitInt8 - Emit a byte directive and value.
///
void AsmPrinter::EmitInt8(int Value) const {
OutStreamer.EmitIntValue(Value, 1, 0/*addrspace*/);
}
/// EmitInt16 - Emit a short directive and value.
///
void AsmPrinter::EmitInt16(int Value) const {
OutStreamer.EmitIntValue(Value, 2, 0/*addrspace*/);
}
/// EmitInt32 - Emit a long directive and value.
///
void AsmPrinter::EmitInt32(int Value) const {
OutStreamer.EmitIntValue(Value, 4, 0/*addrspace*/);
}
/// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size
/// in bytes of the directive is specified by Size and Hi/Lo specify the
/// labels. This implicitly uses .set if it is available.
void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
unsigned Size) const {
// Get the Hi-Lo expression.
const MCExpr *Diff =
MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext),
MCSymbolRefExpr::Create(Lo, OutContext),
OutContext);
if (!MAI->hasSetDirective()) {
OutStreamer.EmitValue(Diff, Size, 0/*AddrSpace*/);
return;
}
// Otherwise, emit with .set (aka assignment).
MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
OutStreamer.EmitAssignment(SetLabel, Diff);
OutStreamer.EmitSymbolValue(SetLabel, Size, 0/*AddrSpace*/);
}
/// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo"
/// where the size in bytes of the directive is specified by Size and Hi/Lo
/// specify the labels. This implicitly uses .set if it is available.
void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset,
const MCSymbol *Lo, unsigned Size)
const {
// Emit Hi+Offset - Lo
// Get the Hi+Offset expression.
const MCExpr *Plus =
MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext),
MCConstantExpr::Create(Offset, OutContext),
OutContext);
// Get the Hi+Offset-Lo expression.
const MCExpr *Diff =
MCBinaryExpr::CreateSub(Plus,
MCSymbolRefExpr::Create(Lo, OutContext),
OutContext);
if (!MAI->hasSetDirective())
OutStreamer.EmitValue(Diff, 4, 0/*AddrSpace*/);
else {
// Otherwise, emit with .set (aka assignment).
MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
OutStreamer.EmitAssignment(SetLabel, Diff);
OutStreamer.EmitSymbolValue(SetLabel, 4, 0/*AddrSpace*/);
}
}
/// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
/// where the size in bytes of the directive is specified by Size and Label
/// specifies the label. This implicitly uses .set if it is available.
void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
unsigned Size)
const {
// Emit Label+Offset
const MCExpr *Plus =
MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Label, OutContext),
MCConstantExpr::Create(Offset, OutContext),
OutContext);
OutStreamer.EmitValue(Plus, 4, 0/*AddrSpace*/);
}
//===----------------------------------------------------------------------===//
// EmitAlignment - Emit an alignment directive to the specified power of
// two boundary. For example, if you pass in 3 here, you will get an 8
// byte alignment. If a global value is specified, and if that global has
// an explicit alignment requested, it will override the alignment request
// if required for correctness.
//
void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const {
if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getTargetData(), NumBits);
if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment.
if (getCurrentSection()->getKind().isText())
OutStreamer.EmitCodeAlignment(1 << NumBits);
else
OutStreamer.EmitValueToAlignment(1 << NumBits, 0, 1, 0);
}
//===----------------------------------------------------------------------===//
// Constant emission.
//===----------------------------------------------------------------------===//
/// LowerConstant - Lower the specified LLVM Constant to an MCExpr.
///
static const MCExpr *LowerConstant(const Constant *CV, AsmPrinter &AP) {
MCContext &Ctx = AP.OutContext;
if (CV->isNullValue() || isa<UndefValue>(CV))
return MCConstantExpr::Create(0, Ctx);
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx);
2010-08-19 02:41:13 +08:00
if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx);
const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
if (CE == 0) {
llvm_unreachable("Unknown constant value to lower!");
}
switch (CE->getOpcode()) {
default:
// If the code isn't optimized, there may be outstanding folding
// opportunities. Attempt to fold the expression using TargetData as a
// last resort before giving up.
if (Constant *C =
ConstantFoldConstantExpression(CE, AP.TM.getTargetData()))
if (C != CE)
return LowerConstant(C, AP);
// Otherwise report the problem to the user.
{
std::string S;
raw_string_ostream OS(S);
OS << "Unsupported expression in static initializer: ";
WriteAsOperand(OS, CE, /*PrintType=*/false,
!AP.MF ? 0 : AP.MF->getFunction()->getParent());
report_fatal_error(OS.str());
}
case Instruction::GetElementPtr: {
const TargetData &TD = *AP.TM.getTargetData();
// Generate a symbolic expression for the byte address
const Constant *PtrVal = CE->getOperand(0);
SmallVector<Value*, 8> IdxVec(CE->op_begin()+1, CE->op_end());
int64_t Offset = TD.getIndexedOffset(PtrVal->getType(), IdxVec);
const MCExpr *Base = LowerConstant(CE->getOperand(0), AP);
if (Offset == 0)
return Base;
// Truncate/sext the offset to the pointer size.
if (TD.getPointerSizeInBits() != 64) {
int SExtAmount = 64-TD.getPointerSizeInBits();
Offset = (Offset << SExtAmount) >> SExtAmount;
}
return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx),
Ctx);
}
case Instruction::Trunc:
// We emit the value and depend on the assembler to truncate the generated
// expression properly. This is important for differences between
// blockaddress labels. Since the two labels are in the same function, it
// is reasonable to treat their delta as a 32-bit value.
// FALL THROUGH.
case Instruction::BitCast:
return LowerConstant(CE->getOperand(0), AP);
case Instruction::IntToPtr: {
const TargetData &TD = *AP.TM.getTargetData();
// Handle casts to pointers by changing them into casts to the appropriate
// integer type. This promotes constant folding and simplifies this code.
Constant *Op = CE->getOperand(0);
Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()),
false/*ZExt*/);
return LowerConstant(Op, AP);
}
case Instruction::PtrToInt: {
const TargetData &TD = *AP.TM.getTargetData();
// Support only foldable casts to/from pointers that can be eliminated by
// changing the pointer to the appropriately sized integer type.
Constant *Op = CE->getOperand(0);
Type *Ty = CE->getType();
const MCExpr *OpExpr = LowerConstant(Op, AP);
// We can emit the pointer value into this slot if the slot is an
// integer slot equal to the size of the pointer.
if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType()))
return OpExpr;
// Otherwise the pointer is smaller than the resultant integer, mask off
// the high bits so we are sure to get a proper truncation if the input is
// a constant expr.
unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType());
const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx);
return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
}
// The MC library also has a right-shift operator, but it isn't consistently
// signed or unsigned between different targets.
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
case Instruction::SDiv:
case Instruction::SRem:
case Instruction::Shl:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor: {
const MCExpr *LHS = LowerConstant(CE->getOperand(0), AP);
const MCExpr *RHS = LowerConstant(CE->getOperand(1), AP);
switch (CE->getOpcode()) {
default: llvm_unreachable("Unknown binary operator constant cast expr");
case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx);
case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx);
case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx);
case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx);
case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx);
case Instruction::Or: return MCBinaryExpr::CreateOr (LHS, RHS, Ctx);
case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx);
}
}
}
}
static void EmitGlobalConstantImpl(const Constant *C, unsigned AddrSpace,
AsmPrinter &AP);
/// isRepeatedByteSequence - Determine whether the given value is
/// composed of a repeated sequence of identical bytes and return the
/// byte value. If it is not a repeated sequence, return -1.
static int isRepeatedByteSequence(const ConstantDataSequential *V) {
StringRef Data = V->getRawDataValues();
assert(!Data.empty() && "Empty aggregates should be CAZ node");
char C = Data[0];
for (unsigned i = 1, e = Data.size(); i != e; ++i)
if (Data[i] != C) return -1;
return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
}
/// isRepeatedByteSequence - Determine whether the given value is
/// composed of a repeated sequence of identical bytes and return the
/// byte value. If it is not a repeated sequence, return -1.
static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) {
if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
if (CI->getBitWidth() > 64) return -1;
uint64_t Size = TM.getTargetData()->getTypeAllocSize(V->getType());
uint64_t Value = CI->getZExtValue();
// Make sure the constant is at least 8 bits long and has a power
// of 2 bit width. This guarantees the constant bit width is
// always a multiple of 8 bits, avoiding issues with padding out
// to Size and other such corner cases.
if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1;
uint8_t Byte = static_cast<uint8_t>(Value);
for (unsigned i = 1; i < Size; ++i) {
Value >>= 8;
if (static_cast<uint8_t>(Value) != Byte) return -1;
}
return Byte;
}
if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
// Make sure all array elements are sequences of the same repeated
// byte.
assert(CA->getNumOperands() != 0 && "Should be a CAZ");
int Byte = isRepeatedByteSequence(CA->getOperand(0), TM);
if (Byte == -1) return -1;
for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM);
if (ThisByte == -1) return -1;
if (Byte != ThisByte) return -1;
}
return Byte;
}
if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
return isRepeatedByteSequence(CDS);
return -1;
}
static void EmitGlobalConstantDataSequential(const ConstantDataSequential *CDS,
unsigned AddrSpace,AsmPrinter &AP){
// See if we can aggregate this into a .fill, if so, emit it as such.
int Value = isRepeatedByteSequence(CDS, AP.TM);
if (Value != -1) {
uint64_t Bytes = AP.TM.getTargetData()->getTypeAllocSize(CDS->getType());
// Don't emit a 1-byte object as a .fill.
if (Bytes > 1)
return AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace);
}
// If this can be emitted with .ascii/.asciz, emit it as such.
if (CDS->isString())
return AP.OutStreamer.EmitBytes(CDS->getAsString(), AddrSpace);
// Otherwise, emit the values in successive locations.
unsigned ElementByteSize = CDS->getElementByteSize();
if (isa<IntegerType>(CDS->getElementType())) {
for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
if (AP.isVerbose())
AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
CDS->getElementAsInteger(i));
AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i),
ElementByteSize, AddrSpace);
}
} else if (ElementByteSize == 4) {
// FP Constants are printed as integer constants to avoid losing
// precision.
assert(CDS->getElementType()->isFloatTy());
for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
union {
float F;
uint32_t I;
};
F = CDS->getElementAsFloat(i);
if (AP.isVerbose())
AP.OutStreamer.GetCommentOS() << "float " << F << '\n';
AP.OutStreamer.EmitIntValue(I, 4, AddrSpace);
}
} else {
assert(CDS->getElementType()->isDoubleTy());
for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
union {
double F;
uint64_t I;
};
F = CDS->getElementAsDouble(i);
if (AP.isVerbose())
AP.OutStreamer.GetCommentOS() << "double " << F << '\n';
AP.OutStreamer.EmitIntValue(I, 8, AddrSpace);
}
}
const TargetData &TD = *AP.TM.getTargetData();
unsigned Size = TD.getTypeAllocSize(CDS->getType());
unsigned EmittedSize = TD.getTypeAllocSize(CDS->getType()->getElementType()) *
CDS->getNumElements();
if (unsigned Padding = Size - EmittedSize)
AP.OutStreamer.EmitZeros(Padding, AddrSpace);
}
static void EmitGlobalConstantArray(const ConstantArray *CA, unsigned AddrSpace,
AsmPrinter &AP) {
if (AddrSpace != 0 || !CA->isString()) {
// Not a string. Print the values in successive locations.
// See if we can aggregate some values. Make sure it can be
// represented as a series of bytes of the constant value.
int Value = isRepeatedByteSequence(CA, AP.TM);
if (Value != -1) {
uint64_t Bytes = AP.TM.getTargetData()->getTypeAllocSize(CA->getType());
AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace);
}
else {
for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
EmitGlobalConstantImpl(CA->getOperand(i), AddrSpace, AP);
}
return;
}
// Otherwise, it can be emitted as .ascii.
SmallVector<char, 128> TmpVec;
TmpVec.reserve(CA->getNumOperands());
for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
TmpVec.push_back(cast<ConstantInt>(CA->getOperand(i))->getZExtValue());
AP.OutStreamer.EmitBytes(StringRef(TmpVec.data(), TmpVec.size()), AddrSpace);
}
static void EmitGlobalConstantVector(const ConstantVector *CV,
unsigned AddrSpace, AsmPrinter &AP) {
for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
EmitGlobalConstantImpl(CV->getOperand(i), AddrSpace, AP);
const TargetData &TD = *AP.TM.getTargetData();
unsigned Size = TD.getTypeAllocSize(CV->getType());
unsigned EmittedSize = TD.getTypeAllocSize(CV->getType()->getElementType()) *
CV->getType()->getNumElements();
if (unsigned Padding = Size - EmittedSize)
AP.OutStreamer.EmitZeros(Padding, AddrSpace);
}
static void EmitGlobalConstantStruct(const ConstantStruct *CS,
unsigned AddrSpace, AsmPrinter &AP) {
// Print the fields in successive locations. Pad to align if needed!
const TargetData *TD = AP.TM.getTargetData();
unsigned Size = TD->getTypeAllocSize(CS->getType());
const StructLayout *Layout = TD->getStructLayout(CS->getType());
uint64_t SizeSoFar = 0;
for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
const Constant *Field = CS->getOperand(i);
// Check if padding is needed and insert one or more 0s.
uint64_t FieldSize = TD->getTypeAllocSize(Field->getType());
uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
- Layout->getElementOffset(i)) - FieldSize;
SizeSoFar += FieldSize + PadSize;
// Now print the actual field value.
EmitGlobalConstantImpl(Field, AddrSpace, AP);
// Insert padding - this may include padding to increase the size of the
// current field up to the ABI size (if the struct is not packed) as well
// as padding to ensure that the next field starts at the right offset.
AP.OutStreamer.EmitZeros(PadSize, AddrSpace);
}
assert(SizeSoFar == Layout->getSizeInBytes() &&
"Layout of constant struct may be incorrect!");
}
static void EmitGlobalConstantFP(const ConstantFP *CFP, unsigned AddrSpace,
AsmPrinter &AP) {
if (CFP->getType()->isHalfTy()) {
if (AP.isVerbose()) {
SmallString<10> Str;
CFP->getValueAPF().toString(Str);
AP.OutStreamer.GetCommentOS() << "half " << Str << '\n';
}
uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
AP.OutStreamer.EmitIntValue(Val, 2, AddrSpace);
return;
}
if (CFP->getType()->isFloatTy()) {
if (AP.isVerbose()) {
float Val = CFP->getValueAPF().convertToFloat();
AP.OutStreamer.GetCommentOS() << "float " << Val << '\n';
}
uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
AP.OutStreamer.EmitIntValue(Val, 4, AddrSpace);
return;
}
// FP Constants are printed as integer constants to avoid losing
// precision.
if (CFP->getType()->isDoubleTy()) {
if (AP.isVerbose()) {
double Val = CFP->getValueAPF().convertToDouble();
AP.OutStreamer.GetCommentOS() << "double " << Val << '\n';
}
uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace);
return;
}
if (CFP->getType()->isX86_FP80Ty()) {
// all long double variants are printed as hex
// API needed to prevent premature destruction
APInt API = CFP->getValueAPF().bitcastToAPInt();
const uint64_t *p = API.getRawData();
if (AP.isVerbose()) {
// Convert to double so we can print the approximate val as a comment.
APFloat DoubleVal = CFP->getValueAPF();
bool ignored;
DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
&ignored);
AP.OutStreamer.GetCommentOS() << "x86_fp80 ~= "
<< DoubleVal.convertToDouble() << '\n';
}
if (AP.TM.getTargetData()->isBigEndian()) {
AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace);
AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
} else {
AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace);
}
// Emit the tail padding for the long double.
const TargetData &TD = *AP.TM.getTargetData();
AP.OutStreamer.EmitZeros(TD.getTypeAllocSize(CFP->getType()) -
TD.getTypeStoreSize(CFP->getType()), AddrSpace);
return;
}
assert(CFP->getType()->isPPC_FP128Ty() &&
"Floating point constant type not handled");
// All long double variants are printed as hex
// API needed to prevent premature destruction.
APInt API = CFP->getValueAPF().bitcastToAPInt();
const uint64_t *p = API.getRawData();
if (AP.TM.getTargetData()->isBigEndian()) {
AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace);
} else {
AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace);
AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
}
}
static void EmitGlobalConstantLargeInt(const ConstantInt *CI,
unsigned AddrSpace, AsmPrinter &AP) {
const TargetData *TD = AP.TM.getTargetData();
unsigned BitWidth = CI->getBitWidth();
assert((BitWidth & 63) == 0 && "only support multiples of 64-bits");
// We don't expect assemblers to support integer data directives
// for more than 64 bits, so we emit the data in at most 64-bit
// quantities at a time.
const uint64_t *RawData = CI->getValue().getRawData();
for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
uint64_t Val = TD->isBigEndian() ? RawData[e - i - 1] : RawData[i];
AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace);
}
}
static void EmitGlobalConstantImpl(const Constant *CV, unsigned AddrSpace,
AsmPrinter &AP) {
if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) {
uint64_t Size = AP.TM.getTargetData()->getTypeAllocSize(CV->getType());
return AP.OutStreamer.EmitZeros(Size, AddrSpace);
}
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
unsigned Size = AP.TM.getTargetData()->getTypeAllocSize(CV->getType());
switch (Size) {
case 1:
case 2:
case 4:
case 8:
if (AP.isVerbose())
AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
CI->getZExtValue());
2010-08-19 02:41:13 +08:00
AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size, AddrSpace);
return;
default:
EmitGlobalConstantLargeInt(CI, AddrSpace, AP);
return;
}
}
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
return EmitGlobalConstantFP(CFP, AddrSpace, AP);
if (isa<ConstantPointerNull>(CV)) {
unsigned Size = AP.TM.getTargetData()->getTypeAllocSize(CV->getType());
AP.OutStreamer.EmitIntValue(0, Size, AddrSpace);
return;
}
if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
return EmitGlobalConstantDataSequential(CDS, AddrSpace, AP);
if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
return EmitGlobalConstantArray(CVA, AddrSpace, AP);
if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
return EmitGlobalConstantStruct(CVS, AddrSpace, AP);
// Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
// vectors).
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV))
if (CE->getOpcode() == Instruction::BitCast)
return EmitGlobalConstantImpl(CE->getOperand(0), AddrSpace, AP);
if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
return EmitGlobalConstantVector(V, AddrSpace, AP);
// Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it
// thread the streamer with EmitValue.
AP.OutStreamer.EmitValue(LowerConstant(CV, AP),
AP.TM.getTargetData()->getTypeAllocSize(CV->getType()),
AddrSpace);
}
/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
uint64_t Size = TM.getTargetData()->getTypeAllocSize(CV->getType());
if (Size)
EmitGlobalConstantImpl(CV, AddrSpace, *this);
else if (MAI->hasSubsectionsViaSymbols()) {
// If the global has zero size, emit a single byte so that two labels don't
// look like they are at the same location.
OutStreamer.EmitIntValue(0, 1, AddrSpace);
}
}
2006-01-27 10:10:10 +08:00
void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
// Target doesn't support this yet!
llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
}
2010-04-05 02:16:38 +08:00
void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
if (Offset > 0)
OS << '+' << Offset;
else if (Offset < 0)
OS << Offset;
}
//===----------------------------------------------------------------------===//
// Symbol Lowering Routines.
//===----------------------------------------------------------------------===//
/// GetTempSymbol - Return the MCSymbol corresponding to the assembler
/// temporary label with the specified stem and unique ID.
MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name, unsigned ID) const {
2010-04-05 03:28:59 +08:00
return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix()) +
Name + Twine(ID));
}
/// GetTempSymbol - Return an assembler temporary label with the specified
/// stem.
MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name) const {
return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix())+
Name);
}
MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
return MMI->getAddrLabelSymbol(BA->getBasicBlock());
}
MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
return MMI->getAddrLabelSymbol(BB);
}
/// GetCPISymbol - Return the symbol for the specified constant pool entry.
MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
return OutContext.GetOrCreateSymbol
(Twine(MAI->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber())
+ "_" + Twine(CPID));
}
/// GetJTISymbol - Return the symbol for the specified jump table entry.
MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
}
/// GetJTSetSymbol - Return the symbol for the specified jump table .set
/// FIXME: privatize to AsmPrinter.
MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
return OutContext.GetOrCreateSymbol
(Twine(MAI->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" +
Twine(UID) + "_set_" + Twine(MBBID));
}
/// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with
2010-01-16 07:25:11 +08:00
/// global value name as its base, with the specified suffix, and where the
/// symbol is forced to have private linkage if ForcePrivate is true.
MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV,
StringRef Suffix,
bool ForcePrivate) const {
2010-01-16 07:25:11 +08:00
SmallString<60> NameStr;
Mang->getNameWithPrefix(NameStr, GV, ForcePrivate);
2010-01-16 07:25:11 +08:00
NameStr.append(Suffix.begin(), Suffix.end());
return OutContext.GetOrCreateSymbol(NameStr.str());
2010-01-16 07:25:11 +08:00
}
/// GetExternalSymbolSymbol - Return the MCSymbol for the specified
/// ExternalSymbol.
MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
SmallString<60> NameStr;
Mang->getNameWithPrefix(NameStr, Sym);
return OutContext.GetOrCreateSymbol(NameStr.str());
}
/// PrintParentLoopComment - Print comments about parent loops of this one.
static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
unsigned FunctionNumber) {
if (Loop == 0) return;
PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
OS.indent(Loop->getLoopDepth()*2)
<< "Parent Loop BB" << FunctionNumber << "_"
<< Loop->getHeader()->getNumber()
<< " Depth=" << Loop->getLoopDepth() << '\n';
}
/// PrintChildLoopComment - Print comments about child loops within
/// the loop for this basic block, with nesting.
static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
unsigned FunctionNumber) {
// Add child loop information
for (MachineLoop::iterator CL = Loop->begin(), E = Loop->end();CL != E; ++CL){
OS.indent((*CL)->getLoopDepth()*2)
<< "Child Loop BB" << FunctionNumber << "_"
<< (*CL)->getHeader()->getNumber() << " Depth " << (*CL)->getLoopDepth()
<< '\n';
PrintChildLoopComment(OS, *CL, FunctionNumber);
}
}
2010-04-05 02:16:38 +08:00
/// EmitBasicBlockLoopComments - Pretty-print comments for basic blocks.
static void EmitBasicBlockLoopComments(const MachineBasicBlock &MBB,
const MachineLoopInfo *LI,
const AsmPrinter &AP) {
// Add loop depth information
const MachineLoop *Loop = LI->getLoopFor(&MBB);
if (Loop == 0) return;
MachineBasicBlock *Header = Loop->getHeader();
assert(Header && "No header for loop");
// If this block is not a loop header, just print out what is the loop header
// and return.
if (Header != &MBB) {
AP.OutStreamer.AddComment(" in Loop: Header=BB" +
Twine(AP.getFunctionNumber())+"_" +
Twine(Loop->getHeader()->getNumber())+
" Depth="+Twine(Loop->getLoopDepth()));
return;
}
// Otherwise, it is a loop header. Print out information about child and
// parent loops.
raw_ostream &OS = AP.OutStreamer.GetCommentOS();
PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
OS << "=>";
OS.indent(Loop->getLoopDepth()*2-2);
OS << "This ";
if (Loop->empty())
OS << "Inner ";
OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
}
/// EmitBasicBlockStart - This method prints the label for the specified
/// MachineBasicBlock, an alignment (if present) and a comment describing
/// it if appropriate.
void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const {
2009-10-30 09:34:35 +08:00
// Emit an alignment directive for this block, if needed.
if (unsigned Align = MBB->getAlignment())
EmitAlignment(Align);
// If the block has its address taken, emit any labels that were used to
// reference the block. It is possible that there is more than one label
// here, because multiple LLVM BB's may have been RAUW'd to this block after
// the references were generated.
if (MBB->hasAddressTaken()) {
const BasicBlock *BB = MBB->getBasicBlock();
if (isVerbose())
OutStreamer.AddComment("Block address taken");
std::vector<MCSymbol*> Syms = MMI->getAddrLabelSymbolToEmit(BB);
for (unsigned i = 0, e = Syms.size(); i != e; ++i)
OutStreamer.EmitLabel(Syms[i]);
}
2009-10-30 09:34:35 +08:00
// Print the main label for the block.
if (MBB->pred_empty() || isBlockOnlyReachableByFallthrough(MBB)) {
if (isVerbose() && OutStreamer.hasRawTextSupport()) {
if (const BasicBlock *BB = MBB->getBasicBlock())
if (BB->hasName())
OutStreamer.AddComment("%" + BB->getName());
2010-04-05 02:16:38 +08:00
EmitBasicBlockLoopComments(*MBB, LI, *this);
// NOTE: Want this comment at start of line, don't emit with AddComment.
OutStreamer.EmitRawText(Twine(MAI->getCommentString()) + " BB#" +
Twine(MBB->getNumber()) + ":");
}
} else {
if (isVerbose()) {
if (const BasicBlock *BB = MBB->getBasicBlock())
if (BB->hasName())
OutStreamer.AddComment("%" + BB->getName());
2010-04-05 02:16:38 +08:00
EmitBasicBlockLoopComments(*MBB, LI, *this);
}
OutStreamer.EmitLabel(MBB->getSymbol());
}
}
void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
bool IsDefinition) const {
MCSymbolAttr Attr = MCSA_Invalid;
switch (Visibility) {
default: break;
case GlobalValue::HiddenVisibility:
if (IsDefinition)
Attr = MAI->getHiddenVisibilityAttr();
else
Attr = MAI->getHiddenDeclarationVisibilityAttr();
break;
case GlobalValue::ProtectedVisibility:
Attr = MAI->getProtectedVisibilityAttr();
break;
}
if (Attr != MCSA_Invalid)
OutStreamer.EmitSymbolAttribute(Sym, Attr);
}
/// isBlockOnlyReachableByFallthough - Return true if the basic block has
/// exactly one predecessor and the control transfer mechanism between
/// the predecessor and this block is a fall-through.
bool AsmPrinter::
isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
// If this is a landing pad, it isn't a fall through. If it has no preds,
// then nothing falls through to it.
if (MBB->isLandingPad() || MBB->pred_empty())
return false;
// If there isn't exactly one predecessor, it can't be a fall through.
MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI;
++PI2;
if (PI2 != MBB->pred_end())
return false;
// The predecessor has to be immediately before this block.
MachineBasicBlock *Pred = *PI;
if (!Pred->isLayoutSuccessor(MBB))
return false;
// If the block is completely empty, then it definitely does fall through.
if (Pred->empty())
return true;
// Check the terminators in the previous blocks
for (MachineBasicBlock::iterator II = Pred->getFirstTerminator(),
IE = Pred->end(); II != IE; ++II) {
MachineInstr &MI = *II;
// If it is not a simple branch, we are in a table somewhere.
if (!MI.isBranch() || MI.isIndirectBranch())
return false;
// If we are the operands of one of the branches, this is not
// a fall through.
for (MachineInstr::mop_iterator OI = MI.operands_begin(),
OE = MI.operands_end(); OI != OE; ++OI) {
const MachineOperand& OP = *OI;
if (OP.isJTI())
return false;
if (OP.isMBB() && OP.getMBB() == MBB)
return false;
}
}
return true;
}
GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
if (!S->usesMetadata())
return 0;
gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
gcp_map_type::iterator GCPI = GCMap.find(S);
if (GCPI != GCMap.end())
return GCPI->second;
const char *Name = S->getName().c_str();
for (GCMetadataPrinterRegistry::iterator
I = GCMetadataPrinterRegistry::begin(),
E = GCMetadataPrinterRegistry::end(); I != E; ++I)
if (strcmp(Name, I->getName()) == 0) {
GCMetadataPrinter *GMP = I->instantiate();
GMP->S = S;
GCMap.insert(std::make_pair(S, GMP));
return GMP;
}
report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
}