llvm-project/llvm/test/TableGen/name-resolution-consistency.td

102 lines
1.6 KiB
TableGen
Raw Normal View History

TableGen: Streamline how defs are instantiated Summary: Instantiating def's and defm's needs to perform the following steps: - for defm's, clone multiclass def prototypes and subsitute template args - for def's and defm's, add subclass definitions, substituting template args - clone the record based on foreach loops and substitute loop iteration variables - override record variables based on the global 'let' stack - resolve the record name (this should be simple, but unfortunately it's not due to existing .td files relying on rather silly implementation details) - for def(m)s in multiclasses, add the unresolved record as a multiclass prototype - for top-level def(m)s, resolve all internal variable references and add them to the record keeper and any active defsets This change streamlines how we go through these steps, by having both def's and defm's feed into a single addDef() method that handles foreach, final resolve, and routing the record to the right place. This happens to make foreach inside of multiclasses work, as the new test case demonstrates. Previously, foreach inside multiclasses was not forbidden by the parser, but it was de facto broken. Another side effect is that the order of "instantiated from" notes in error messages is reversed, as the modified test case shows. This is arguably clearer, since the initial error message ends up pointing directly to whatever triggered the error, and subsequent notes will point to increasingly outer layers of multiclasses. This is consistent with how C++ compilers report nested #includes and nested template instantiations. Change-Id: Ica146d0db2bc133dd7ed88054371becf24320447 Reviewers: arsenm, craig.topper, tra, MartinO Subscribers: wdng, llvm-commits Differential Revision: https://reviews.llvm.org/D44478 llvm-svn: 328117
2018-03-22 01:12:53 +08:00
// RUN: llvm-tblgen %s | FileCheck %s
// XFAIL: vg_leak
// CHECK: def B0a {
// CHECK: string e = "B0";
// CHECK: }
// CHECK: def B0ba {
TableGen: Streamline the semantics of NAME Summary: The new rules are straightforward. The main rules to keep in mind are: 1. NAME is an implicit template argument of class and multiclass, and will be substituted by the name of the instantiating def/defm. 2. The name of a def/defm in a multiclass must contain a reference to NAME. If such a reference is not present, it is automatically prepended. And for some additional subtleties, consider these: 3. defm with no name generates a unique name but has no special behavior otherwise. 4. def with no name generates an anonymous record, whose name is unique but undefined. In particular, the name won't contain a reference to NAME. Keeping rules 1&2 in mind should allow a predictable behavior of name resolution that is simple to follow. The old "rules" were rather surprising: sometimes (but not always), NAME would correspond to the name of the toplevel defm. They were also plain bonkers when you pushed them to their limits, as the old version of the TableGen test case shows. Having NAME correspond to the name of the toplevel defm introduces "spooky action at a distance" and breaks composability: refactoring the upper layers of a hierarchy of nested multiclass instantiations can cause unexpected breakage by changing the value of NAME at a lower level of the hierarchy. The new rules don't suffer from this problem. Some existing .td files have to be adjusted because they ended up depending on the details of the old implementation. Change-Id: I694095231565b30f563e6fd0417b41ee01a12589 Reviewers: tra, simon_tatham, craig.topper, MartinO, arsenm, javed.absar Subscribers: wdng, llvm-commits Differential Revision: https://reviews.llvm.org/D47430 llvm-svn: 333900
2018-06-04 22:26:05 +08:00
// CHECK: string a = "B0b";
TableGen: Streamline how defs are instantiated Summary: Instantiating def's and defm's needs to perform the following steps: - for defm's, clone multiclass def prototypes and subsitute template args - for def's and defm's, add subclass definitions, substituting template args - clone the record based on foreach loops and substitute loop iteration variables - override record variables based on the global 'let' stack - resolve the record name (this should be simple, but unfortunately it's not due to existing .td files relying on rather silly implementation details) - for def(m)s in multiclasses, add the unresolved record as a multiclass prototype - for top-level def(m)s, resolve all internal variable references and add them to the record keeper and any active defsets This change streamlines how we go through these steps, by having both def's and defm's feed into a single addDef() method that handles foreach, final resolve, and routing the record to the right place. This happens to make foreach inside of multiclasses work, as the new test case demonstrates. Previously, foreach inside multiclasses was not forbidden by the parser, but it was de facto broken. Another side effect is that the order of "instantiated from" notes in error messages is reversed, as the modified test case shows. This is arguably clearer, since the initial error message ends up pointing directly to whatever triggered the error, and subsequent notes will point to increasingly outer layers of multiclasses. This is consistent with how C++ compilers report nested #includes and nested template instantiations. Change-Id: Ica146d0db2bc133dd7ed88054371becf24320447 Reviewers: arsenm, craig.topper, tra, MartinO Subscribers: wdng, llvm-commits Differential Revision: https://reviews.llvm.org/D44478 llvm-svn: 328117
2018-03-22 01:12:53 +08:00
// CHECK: string b = "B0";
// CHECK: }
TableGen: Streamline the semantics of NAME Summary: The new rules are straightforward. The main rules to keep in mind are: 1. NAME is an implicit template argument of class and multiclass, and will be substituted by the name of the instantiating def/defm. 2. The name of a def/defm in a multiclass must contain a reference to NAME. If such a reference is not present, it is automatically prepended. And for some additional subtleties, consider these: 3. defm with no name generates a unique name but has no special behavior otherwise. 4. def with no name generates an anonymous record, whose name is unique but undefined. In particular, the name won't contain a reference to NAME. Keeping rules 1&2 in mind should allow a predictable behavior of name resolution that is simple to follow. The old "rules" were rather surprising: sometimes (but not always), NAME would correspond to the name of the toplevel defm. They were also plain bonkers when you pushed them to their limits, as the old version of the TableGen test case shows. Having NAME correspond to the name of the toplevel defm introduces "spooky action at a distance" and breaks composability: refactoring the upper layers of a hierarchy of nested multiclass instantiations can cause unexpected breakage by changing the value of NAME at a lower level of the hierarchy. The new rules don't suffer from this problem. Some existing .td files have to be adjusted because they ended up depending on the details of the old implementation. Change-Id: I694095231565b30f563e6fd0417b41ee01a12589 Reviewers: tra, simon_tatham, craig.topper, MartinO, arsenm, javed.absar Subscribers: wdng, llvm-commits Differential Revision: https://reviews.llvm.org/D47430 llvm-svn: 333900
2018-06-04 22:26:05 +08:00
// CHECK: def B0bys {
// CHECK: string f = "B0b";
// CHECK: string g = "B0";
// CHECK: }
TableGen: Streamline how defs are instantiated Summary: Instantiating def's and defm's needs to perform the following steps: - for defm's, clone multiclass def prototypes and subsitute template args - for def's and defm's, add subclass definitions, substituting template args - clone the record based on foreach loops and substitute loop iteration variables - override record variables based on the global 'let' stack - resolve the record name (this should be simple, but unfortunately it's not due to existing .td files relying on rather silly implementation details) - for def(m)s in multiclasses, add the unresolved record as a multiclass prototype - for top-level def(m)s, resolve all internal variable references and add them to the record keeper and any active defsets This change streamlines how we go through these steps, by having both def's and defm's feed into a single addDef() method that handles foreach, final resolve, and routing the record to the right place. This happens to make foreach inside of multiclasses work, as the new test case demonstrates. Previously, foreach inside multiclasses was not forbidden by the parser, but it was de facto broken. Another side effect is that the order of "instantiated from" notes in error messages is reversed, as the modified test case shows. This is arguably clearer, since the initial error message ends up pointing directly to whatever triggered the error, and subsequent notes will point to increasingly outer layers of multiclasses. This is consistent with how C++ compilers report nested #includes and nested template instantiations. Change-Id: Ica146d0db2bc133dd7ed88054371becf24320447 Reviewers: arsenm, craig.topper, tra, MartinO Subscribers: wdng, llvm-commits Differential Revision: https://reviews.llvm.org/D44478 llvm-svn: 328117
2018-03-22 01:12:53 +08:00
// CHECK: def B0cza {
TableGen: Streamline the semantics of NAME Summary: The new rules are straightforward. The main rules to keep in mind are: 1. NAME is an implicit template argument of class and multiclass, and will be substituted by the name of the instantiating def/defm. 2. The name of a def/defm in a multiclass must contain a reference to NAME. If such a reference is not present, it is automatically prepended. And for some additional subtleties, consider these: 3. defm with no name generates a unique name but has no special behavior otherwise. 4. def with no name generates an anonymous record, whose name is unique but undefined. In particular, the name won't contain a reference to NAME. Keeping rules 1&2 in mind should allow a predictable behavior of name resolution that is simple to follow. The old "rules" were rather surprising: sometimes (but not always), NAME would correspond to the name of the toplevel defm. They were also plain bonkers when you pushed them to their limits, as the old version of the TableGen test case shows. Having NAME correspond to the name of the toplevel defm introduces "spooky action at a distance" and breaks composability: refactoring the upper layers of a hierarchy of nested multiclass instantiations can cause unexpected breakage by changing the value of NAME at a lower level of the hierarchy. The new rules don't suffer from this problem. Some existing .td files have to be adjusted because they ended up depending on the details of the old implementation. Change-Id: I694095231565b30f563e6fd0417b41ee01a12589 Reviewers: tra, simon_tatham, craig.topper, MartinO, arsenm, javed.absar Subscribers: wdng, llvm-commits Differential Revision: https://reviews.llvm.org/D47430 llvm-svn: 333900
2018-06-04 22:26:05 +08:00
// CHECK: string a = "B0cz";
TableGen: Streamline how defs are instantiated Summary: Instantiating def's and defm's needs to perform the following steps: - for defm's, clone multiclass def prototypes and subsitute template args - for def's and defm's, add subclass definitions, substituting template args - clone the record based on foreach loops and substitute loop iteration variables - override record variables based on the global 'let' stack - resolve the record name (this should be simple, but unfortunately it's not due to existing .td files relying on rather silly implementation details) - for def(m)s in multiclasses, add the unresolved record as a multiclass prototype - for top-level def(m)s, resolve all internal variable references and add them to the record keeper and any active defsets This change streamlines how we go through these steps, by having both def's and defm's feed into a single addDef() method that handles foreach, final resolve, and routing the record to the right place. This happens to make foreach inside of multiclasses work, as the new test case demonstrates. Previously, foreach inside multiclasses was not forbidden by the parser, but it was de facto broken. Another side effect is that the order of "instantiated from" notes in error messages is reversed, as the modified test case shows. This is arguably clearer, since the initial error message ends up pointing directly to whatever triggered the error, and subsequent notes will point to increasingly outer layers of multiclasses. This is consistent with how C++ compilers report nested #includes and nested template instantiations. Change-Id: Ica146d0db2bc133dd7ed88054371becf24320447 Reviewers: arsenm, craig.topper, tra, MartinO Subscribers: wdng, llvm-commits Differential Revision: https://reviews.llvm.org/D44478 llvm-svn: 328117
2018-03-22 01:12:53 +08:00
// CHECK: string b = "B0";
// CHECK: }
TableGen: Streamline the semantics of NAME Summary: The new rules are straightforward. The main rules to keep in mind are: 1. NAME is an implicit template argument of class and multiclass, and will be substituted by the name of the instantiating def/defm. 2. The name of a def/defm in a multiclass must contain a reference to NAME. If such a reference is not present, it is automatically prepended. And for some additional subtleties, consider these: 3. defm with no name generates a unique name but has no special behavior otherwise. 4. def with no name generates an anonymous record, whose name is unique but undefined. In particular, the name won't contain a reference to NAME. Keeping rules 1&2 in mind should allow a predictable behavior of name resolution that is simple to follow. The old "rules" were rather surprising: sometimes (but not always), NAME would correspond to the name of the toplevel defm. They were also plain bonkers when you pushed them to their limits, as the old version of the TableGen test case shows. Having NAME correspond to the name of the toplevel defm introduces "spooky action at a distance" and breaks composability: refactoring the upper layers of a hierarchy of nested multiclass instantiations can cause unexpected breakage by changing the value of NAME at a lower level of the hierarchy. The new rules don't suffer from this problem. Some existing .td files have to be adjusted because they ended up depending on the details of the old implementation. Change-Id: I694095231565b30f563e6fd0417b41ee01a12589 Reviewers: tra, simon_tatham, craig.topper, MartinO, arsenm, javed.absar Subscribers: wdng, llvm-commits Differential Revision: https://reviews.llvm.org/D47430 llvm-svn: 333900
2018-06-04 22:26:05 +08:00
// CHECK: def B0czyt {
// CHECK: string f = "B0cz";
// CHECK: string g = "B0";
TableGen: Streamline how defs are instantiated Summary: Instantiating def's and defm's needs to perform the following steps: - for defm's, clone multiclass def prototypes and subsitute template args - for def's and defm's, add subclass definitions, substituting template args - clone the record based on foreach loops and substitute loop iteration variables - override record variables based on the global 'let' stack - resolve the record name (this should be simple, but unfortunately it's not due to existing .td files relying on rather silly implementation details) - for def(m)s in multiclasses, add the unresolved record as a multiclass prototype - for top-level def(m)s, resolve all internal variable references and add them to the record keeper and any active defsets This change streamlines how we go through these steps, by having both def's and defm's feed into a single addDef() method that handles foreach, final resolve, and routing the record to the right place. This happens to make foreach inside of multiclasses work, as the new test case demonstrates. Previously, foreach inside multiclasses was not forbidden by the parser, but it was de facto broken. Another side effect is that the order of "instantiated from" notes in error messages is reversed, as the modified test case shows. This is arguably clearer, since the initial error message ends up pointing directly to whatever triggered the error, and subsequent notes will point to increasingly outer layers of multiclasses. This is consistent with how C++ compilers report nested #includes and nested template instantiations. Change-Id: Ica146d0db2bc133dd7ed88054371becf24320447 Reviewers: arsenm, craig.topper, tra, MartinO Subscribers: wdng, llvm-commits Differential Revision: https://reviews.llvm.org/D44478 llvm-svn: 328117
2018-03-22 01:12:53 +08:00
// CHECK: }
TableGen: Streamline the semantics of NAME Summary: The new rules are straightforward. The main rules to keep in mind are: 1. NAME is an implicit template argument of class and multiclass, and will be substituted by the name of the instantiating def/defm. 2. The name of a def/defm in a multiclass must contain a reference to NAME. If such a reference is not present, it is automatically prepended. And for some additional subtleties, consider these: 3. defm with no name generates a unique name but has no special behavior otherwise. 4. def with no name generates an anonymous record, whose name is unique but undefined. In particular, the name won't contain a reference to NAME. Keeping rules 1&2 in mind should allow a predictable behavior of name resolution that is simple to follow. The old "rules" were rather surprising: sometimes (but not always), NAME would correspond to the name of the toplevel defm. They were also plain bonkers when you pushed them to their limits, as the old version of the TableGen test case shows. Having NAME correspond to the name of the toplevel defm introduces "spooky action at a distance" and breaks composability: refactoring the upper layers of a hierarchy of nested multiclass instantiations can cause unexpected breakage by changing the value of NAME at a lower level of the hierarchy. The new rules don't suffer from this problem. Some existing .td files have to be adjusted because they ended up depending on the details of the old implementation. Change-Id: I694095231565b30f563e6fd0417b41ee01a12589 Reviewers: tra, simon_tatham, craig.topper, MartinO, arsenm, javed.absar Subscribers: wdng, llvm-commits Differential Revision: https://reviews.llvm.org/D47430 llvm-svn: 333900
2018-06-04 22:26:05 +08:00
// CHECK: def C0 {
// CHECK: string a = "C0";
// CHECK: string b = "C0";
// CHECK: string c = "a";
TableGen: Streamline how defs are instantiated Summary: Instantiating def's and defm's needs to perform the following steps: - for defm's, clone multiclass def prototypes and subsitute template args - for def's and defm's, add subclass definitions, substituting template args - clone the record based on foreach loops and substitute loop iteration variables - override record variables based on the global 'let' stack - resolve the record name (this should be simple, but unfortunately it's not due to existing .td files relying on rather silly implementation details) - for def(m)s in multiclasses, add the unresolved record as a multiclass prototype - for top-level def(m)s, resolve all internal variable references and add them to the record keeper and any active defsets This change streamlines how we go through these steps, by having both def's and defm's feed into a single addDef() method that handles foreach, final resolve, and routing the record to the right place. This happens to make foreach inside of multiclasses work, as the new test case demonstrates. Previously, foreach inside multiclasses was not forbidden by the parser, but it was de facto broken. Another side effect is that the order of "instantiated from" notes in error messages is reversed, as the modified test case shows. This is arguably clearer, since the initial error message ends up pointing directly to whatever triggered the error, and subsequent notes will point to increasingly outer layers of multiclasses. This is consistent with how C++ compilers report nested #includes and nested template instantiations. Change-Id: Ica146d0db2bc133dd7ed88054371becf24320447 Reviewers: arsenm, craig.topper, tra, MartinO Subscribers: wdng, llvm-commits Differential Revision: https://reviews.llvm.org/D44478 llvm-svn: 328117
2018-03-22 01:12:53 +08:00
// CHECK: }
TableGen: Streamline the semantics of NAME Summary: The new rules are straightforward. The main rules to keep in mind are: 1. NAME is an implicit template argument of class and multiclass, and will be substituted by the name of the instantiating def/defm. 2. The name of a def/defm in a multiclass must contain a reference to NAME. If such a reference is not present, it is automatically prepended. And for some additional subtleties, consider these: 3. defm with no name generates a unique name but has no special behavior otherwise. 4. def with no name generates an anonymous record, whose name is unique but undefined. In particular, the name won't contain a reference to NAME. Keeping rules 1&2 in mind should allow a predictable behavior of name resolution that is simple to follow. The old "rules" were rather surprising: sometimes (but not always), NAME would correspond to the name of the toplevel defm. They were also plain bonkers when you pushed them to their limits, as the old version of the TableGen test case shows. Having NAME correspond to the name of the toplevel defm introduces "spooky action at a distance" and breaks composability: refactoring the upper layers of a hierarchy of nested multiclass instantiations can cause unexpected breakage by changing the value of NAME at a lower level of the hierarchy. The new rules don't suffer from this problem. Some existing .td files have to be adjusted because they ended up depending on the details of the old implementation. Change-Id: I694095231565b30f563e6fd0417b41ee01a12589 Reviewers: tra, simon_tatham, craig.topper, MartinO, arsenm, javed.absar Subscribers: wdng, llvm-commits Differential Revision: https://reviews.llvm.org/D47430 llvm-svn: 333900
2018-06-04 22:26:05 +08:00
// CHECK: def D0a {
// CHECK: string a = "D0a";
// CHECK: string b = "D0a";
// CHECK: string c = "D0";
TableGen: Streamline how defs are instantiated Summary: Instantiating def's and defm's needs to perform the following steps: - for defm's, clone multiclass def prototypes and subsitute template args - for def's and defm's, add subclass definitions, substituting template args - clone the record based on foreach loops and substitute loop iteration variables - override record variables based on the global 'let' stack - resolve the record name (this should be simple, but unfortunately it's not due to existing .td files relying on rather silly implementation details) - for def(m)s in multiclasses, add the unresolved record as a multiclass prototype - for top-level def(m)s, resolve all internal variable references and add them to the record keeper and any active defsets This change streamlines how we go through these steps, by having both def's and defm's feed into a single addDef() method that handles foreach, final resolve, and routing the record to the right place. This happens to make foreach inside of multiclasses work, as the new test case demonstrates. Previously, foreach inside multiclasses was not forbidden by the parser, but it was de facto broken. Another side effect is that the order of "instantiated from" notes in error messages is reversed, as the modified test case shows. This is arguably clearer, since the initial error message ends up pointing directly to whatever triggered the error, and subsequent notes will point to increasingly outer layers of multiclasses. This is consistent with how C++ compilers report nested #includes and nested template instantiations. Change-Id: Ica146d0db2bc133dd7ed88054371becf24320447 Reviewers: arsenm, craig.topper, tra, MartinO Subscribers: wdng, llvm-commits Differential Revision: https://reviews.llvm.org/D44478 llvm-svn: 328117
2018-03-22 01:12:53 +08:00
// CHECK: }
TableGen: Streamline the semantics of NAME Summary: The new rules are straightforward. The main rules to keep in mind are: 1. NAME is an implicit template argument of class and multiclass, and will be substituted by the name of the instantiating def/defm. 2. The name of a def/defm in a multiclass must contain a reference to NAME. If such a reference is not present, it is automatically prepended. And for some additional subtleties, consider these: 3. defm with no name generates a unique name but has no special behavior otherwise. 4. def with no name generates an anonymous record, whose name is unique but undefined. In particular, the name won't contain a reference to NAME. Keeping rules 1&2 in mind should allow a predictable behavior of name resolution that is simple to follow. The old "rules" were rather surprising: sometimes (but not always), NAME would correspond to the name of the toplevel defm. They were also plain bonkers when you pushed them to their limits, as the old version of the TableGen test case shows. Having NAME correspond to the name of the toplevel defm introduces "spooky action at a distance" and breaks composability: refactoring the upper layers of a hierarchy of nested multiclass instantiations can cause unexpected breakage by changing the value of NAME at a lower level of the hierarchy. The new rules don't suffer from this problem. Some existing .td files have to be adjusted because they ended up depending on the details of the old implementation. Change-Id: I694095231565b30f563e6fd0417b41ee01a12589 Reviewers: tra, simon_tatham, craig.topper, MartinO, arsenm, javed.absar Subscribers: wdng, llvm-commits Differential Revision: https://reviews.llvm.org/D47430 llvm-svn: 333900
2018-06-04 22:26:05 +08:00
// CHECK: def D0b {
// CHECK: string a = "D0b";
// CHECK: string b = "D0b";
// CHECK: string c = "a";
// CHECK: }
// CHECK: def xB0b {
// CHECK: string c = "B0b";
// CHECK: string d = "B0";
// CHECK: }
// CHECK: def xB0cz {
// CHECK: string c = "B0cz";
// CHECK: string d = "B0";
TableGen: Streamline how defs are instantiated Summary: Instantiating def's and defm's needs to perform the following steps: - for defm's, clone multiclass def prototypes and subsitute template args - for def's and defm's, add subclass definitions, substituting template args - clone the record based on foreach loops and substitute loop iteration variables - override record variables based on the global 'let' stack - resolve the record name (this should be simple, but unfortunately it's not due to existing .td files relying on rather silly implementation details) - for def(m)s in multiclasses, add the unresolved record as a multiclass prototype - for top-level def(m)s, resolve all internal variable references and add them to the record keeper and any active defsets This change streamlines how we go through these steps, by having both def's and defm's feed into a single addDef() method that handles foreach, final resolve, and routing the record to the right place. This happens to make foreach inside of multiclasses work, as the new test case demonstrates. Previously, foreach inside multiclasses was not forbidden by the parser, but it was de facto broken. Another side effect is that the order of "instantiated from" notes in error messages is reversed, as the modified test case shows. This is arguably clearer, since the initial error message ends up pointing directly to whatever triggered the error, and subsequent notes will point to increasingly outer layers of multiclasses. This is consistent with how C++ compilers report nested #includes and nested template instantiations. Change-Id: Ica146d0db2bc133dd7ed88054371becf24320447 Reviewers: arsenm, craig.topper, tra, MartinO Subscribers: wdng, llvm-commits Differential Revision: https://reviews.llvm.org/D44478 llvm-svn: 328117
2018-03-22 01:12:53 +08:00
// CHECK: }
multiclass A<string p, string q> {
def a {
string a = NAME;
string b = p;
}
def x # NAME {
string c = NAME;
string d = p;
}
def y # q {
string f = NAME;
string g = p;
}
}
multiclass B<string name, string t> {
def a {
string e = NAME;
}
defm b : A<NAME, "s">;
defm NAME # c # name : A<NAME, t>;
}
defm B0 : B<"z", "t">;
TableGen: Streamline the semantics of NAME Summary: The new rules are straightforward. The main rules to keep in mind are: 1. NAME is an implicit template argument of class and multiclass, and will be substituted by the name of the instantiating def/defm. 2. The name of a def/defm in a multiclass must contain a reference to NAME. If such a reference is not present, it is automatically prepended. And for some additional subtleties, consider these: 3. defm with no name generates a unique name but has no special behavior otherwise. 4. def with no name generates an anonymous record, whose name is unique but undefined. In particular, the name won't contain a reference to NAME. Keeping rules 1&2 in mind should allow a predictable behavior of name resolution that is simple to follow. The old "rules" were rather surprising: sometimes (but not always), NAME would correspond to the name of the toplevel defm. They were also plain bonkers when you pushed them to their limits, as the old version of the TableGen test case shows. Having NAME correspond to the name of the toplevel defm introduces "spooky action at a distance" and breaks composability: refactoring the upper layers of a hierarchy of nested multiclass instantiations can cause unexpected breakage by changing the value of NAME at a lower level of the hierarchy. The new rules don't suffer from this problem. Some existing .td files have to be adjusted because they ended up depending on the details of the old implementation. Change-Id: I694095231565b30f563e6fd0417b41ee01a12589 Reviewers: tra, simon_tatham, craig.topper, MartinO, arsenm, javed.absar Subscribers: wdng, llvm-commits Differential Revision: https://reviews.llvm.org/D47430 llvm-svn: 333900
2018-06-04 22:26:05 +08:00
class Cbase {
string a = NAME;
}
class C<string arg> : Cbase {
string b = NAME;
string c = arg;
}
def C0 : C<"a">;
multiclass D<string arg> {
def a : C<NAME>;
def b : C<arg>;
}
defm D0 : D<"a">;