2014-09-08 04:05:11 +08:00
|
|
|
//===----------------------- AlignmentFromAssumptions.cpp -----------------===//
|
|
|
|
// Set Load/Store Alignments From Assumptions
|
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// This file implements a ScalarEvolution-based transformation to set
|
|
|
|
// the alignments of load, stores and memory intrinsics based on the truth
|
|
|
|
// expressions of assume intrinsics. The primary motivation is to handle
|
|
|
|
// complex alignment assumptions that apply to vector loads and stores that
|
|
|
|
// appear after vectorization and unrolling.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#define AA_NAME "alignment-from-assumptions"
|
|
|
|
#define DEBUG_TYPE AA_NAME
|
|
|
|
#include "llvm/Transforms/Scalar.h"
|
|
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
|
|
#include "llvm/ADT/Statistic.h"
|
2015-01-04 20:03:27 +08:00
|
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
2014-09-08 04:05:11 +08:00
|
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
|
|
#include "llvm/IR/Constant.h"
|
|
|
|
#include "llvm/IR/Dominators.h"
|
|
|
|
#include "llvm/IR/Instruction.h"
|
|
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
|
|
#include "llvm/IR/Intrinsics.h"
|
|
|
|
#include "llvm/IR/DataLayout.h"
|
|
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace llvm;
|
|
|
|
|
|
|
|
STATISTIC(NumLoadAlignChanged,
|
|
|
|
"Number of loads changed by alignment assumptions");
|
|
|
|
STATISTIC(NumStoreAlignChanged,
|
|
|
|
"Number of stores changed by alignment assumptions");
|
|
|
|
STATISTIC(NumMemIntAlignChanged,
|
|
|
|
"Number of memory intrinsics changed by alignment assumptions");
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
struct AlignmentFromAssumptions : public FunctionPass {
|
|
|
|
static char ID; // Pass identification, replacement for typeid
|
|
|
|
AlignmentFromAssumptions() : FunctionPass(ID) {
|
|
|
|
initializeAlignmentFromAssumptionsPass(*PassRegistry::getPassRegistry());
|
|
|
|
}
|
|
|
|
|
|
|
|
bool runOnFunction(Function &F);
|
|
|
|
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
2015-01-04 20:03:27 +08:00
|
|
|
AU.addRequired<AssumptionCacheTracker>();
|
2014-09-08 04:05:11 +08:00
|
|
|
AU.addRequired<ScalarEvolution>();
|
|
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
|
|
|
|
|
|
AU.setPreservesCFG();
|
2015-01-17 22:16:18 +08:00
|
|
|
AU.addPreserved<LoopInfoWrapperPass>();
|
2014-09-08 04:05:11 +08:00
|
|
|
AU.addPreserved<DominatorTreeWrapperPass>();
|
|
|
|
AU.addPreserved<ScalarEvolution>();
|
|
|
|
}
|
|
|
|
|
|
|
|
// For memory transfers, we need a common alignment for both the source and
|
|
|
|
// destination. If we have a new alignment for only one operand of a transfer
|
|
|
|
// instruction, save it in these maps. If we reach the other operand through
|
|
|
|
// another assumption later, then we may change the alignment at that point.
|
|
|
|
DenseMap<MemTransferInst *, unsigned> NewDestAlignments, NewSrcAlignments;
|
|
|
|
|
|
|
|
ScalarEvolution *SE;
|
|
|
|
DominatorTree *DT;
|
|
|
|
const DataLayout *DL;
|
|
|
|
|
|
|
|
bool extractAlignmentInfo(CallInst *I, Value *&AAPtr, const SCEV *&AlignSCEV,
|
|
|
|
const SCEV *&OffSCEV);
|
|
|
|
bool processAssumption(CallInst *I);
|
|
|
|
};
|
|
|
|
}
|
|
|
|
|
|
|
|
char AlignmentFromAssumptions::ID = 0;
|
|
|
|
static const char aip_name[] = "Alignment from assumptions";
|
|
|
|
INITIALIZE_PASS_BEGIN(AlignmentFromAssumptions, AA_NAME,
|
|
|
|
aip_name, false, false)
|
2015-01-04 20:03:27 +08:00
|
|
|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
|
2014-09-08 04:05:11 +08:00
|
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
|
|
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
|
|
|
|
INITIALIZE_PASS_END(AlignmentFromAssumptions, AA_NAME,
|
|
|
|
aip_name, false, false)
|
|
|
|
|
|
|
|
FunctionPass *llvm::createAlignmentFromAssumptionsPass() {
|
|
|
|
return new AlignmentFromAssumptions();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Given an expression for the (constant) alignment, AlignSCEV, and an
|
|
|
|
// expression for the displacement between a pointer and the aligned address,
|
2014-09-08 07:16:24 +08:00
|
|
|
// DiffSCEV, compute the alignment of the displaced pointer if it can be reduced
|
|
|
|
// to a constant. Using SCEV to compute alignment handles the case where
|
|
|
|
// DiffSCEV is a recurrence with constant start such that the aligned offset
|
|
|
|
// is constant. e.g. {16,+,32} % 32 -> 16.
|
2014-09-08 04:05:11 +08:00
|
|
|
static unsigned getNewAlignmentDiff(const SCEV *DiffSCEV,
|
|
|
|
const SCEV *AlignSCEV,
|
|
|
|
ScalarEvolution *SE) {
|
|
|
|
// DiffUnits = Diff % int64_t(Alignment)
|
|
|
|
const SCEV *DiffAlignDiv = SE->getUDivExpr(DiffSCEV, AlignSCEV);
|
|
|
|
const SCEV *DiffAlign = SE->getMulExpr(DiffAlignDiv, AlignSCEV);
|
|
|
|
const SCEV *DiffUnitsSCEV = SE->getMinusSCEV(DiffAlign, DiffSCEV);
|
|
|
|
|
|
|
|
DEBUG(dbgs() << "\talignment relative to " << *AlignSCEV << " is " <<
|
|
|
|
*DiffUnitsSCEV << " (diff: " << *DiffSCEV << ")\n");
|
|
|
|
|
|
|
|
if (const SCEVConstant *ConstDUSCEV =
|
|
|
|
dyn_cast<SCEVConstant>(DiffUnitsSCEV)) {
|
|
|
|
int64_t DiffUnits = ConstDUSCEV->getValue()->getSExtValue();
|
|
|
|
|
|
|
|
// If the displacement is an exact multiple of the alignment, then the
|
|
|
|
// displaced pointer has the same alignment as the aligned pointer, so
|
|
|
|
// return the alignment value.
|
|
|
|
if (!DiffUnits)
|
|
|
|
return (unsigned)
|
|
|
|
cast<SCEVConstant>(AlignSCEV)->getValue()->getSExtValue();
|
|
|
|
|
|
|
|
// If the displacement is not an exact multiple, but the remainder is a
|
|
|
|
// constant, then return this remainder (but only if it is a power of 2).
|
|
|
|
uint64_t DiffUnitsAbs = abs64(DiffUnits);
|
|
|
|
if (isPowerOf2_64(DiffUnitsAbs))
|
|
|
|
return (unsigned) DiffUnitsAbs;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// There is an address given by an offset OffSCEV from AASCEV which has an
|
|
|
|
// alignment AlignSCEV. Use that information, if possible, to compute a new
|
|
|
|
// alignment for Ptr.
|
|
|
|
static unsigned getNewAlignment(const SCEV *AASCEV, const SCEV *AlignSCEV,
|
|
|
|
const SCEV *OffSCEV, Value *Ptr,
|
|
|
|
ScalarEvolution *SE) {
|
|
|
|
const SCEV *PtrSCEV = SE->getSCEV(Ptr);
|
|
|
|
const SCEV *DiffSCEV = SE->getMinusSCEV(PtrSCEV, AASCEV);
|
|
|
|
|
2014-09-11 16:40:17 +08:00
|
|
|
// On 32-bit platforms, DiffSCEV might now have type i32 -- we've always
|
|
|
|
// sign-extended OffSCEV to i64, so make sure they agree again.
|
|
|
|
DiffSCEV = SE->getNoopOrSignExtend(DiffSCEV, OffSCEV->getType());
|
|
|
|
|
2014-09-08 04:05:11 +08:00
|
|
|
// What we really want to know is the overall offset to the aligned
|
|
|
|
// address. This address is displaced by the provided offset.
|
|
|
|
DiffSCEV = SE->getMinusSCEV(DiffSCEV, OffSCEV);
|
|
|
|
|
|
|
|
DEBUG(dbgs() << "AFI: alignment of " << *Ptr << " relative to " <<
|
|
|
|
*AlignSCEV << " and offset " << *OffSCEV <<
|
|
|
|
" using diff " << *DiffSCEV << "\n");
|
|
|
|
|
|
|
|
unsigned NewAlignment = getNewAlignmentDiff(DiffSCEV, AlignSCEV, SE);
|
|
|
|
DEBUG(dbgs() << "\tnew alignment: " << NewAlignment << "\n");
|
|
|
|
|
|
|
|
if (NewAlignment) {
|
|
|
|
return NewAlignment;
|
|
|
|
} else if (const SCEVAddRecExpr *DiffARSCEV =
|
|
|
|
dyn_cast<SCEVAddRecExpr>(DiffSCEV)) {
|
|
|
|
// The relative offset to the alignment assumption did not yield a constant,
|
|
|
|
// but we should try harder: if we assume that a is 32-byte aligned, then in
|
|
|
|
// for (i = 0; i < 1024; i += 4) r += a[i]; not all of the loads from a are
|
|
|
|
// 32-byte aligned, but instead alternate between 32 and 16-byte alignment.
|
|
|
|
// As a result, the new alignment will not be a constant, but can still
|
|
|
|
// be improved over the default (of 4) to 16.
|
|
|
|
|
|
|
|
const SCEV *DiffStartSCEV = DiffARSCEV->getStart();
|
|
|
|
const SCEV *DiffIncSCEV = DiffARSCEV->getStepRecurrence(*SE);
|
|
|
|
|
|
|
|
DEBUG(dbgs() << "\ttrying start/inc alignment using start " <<
|
|
|
|
*DiffStartSCEV << " and inc " << *DiffIncSCEV << "\n");
|
|
|
|
|
|
|
|
// Now compute the new alignment using the displacement to the value in the
|
|
|
|
// first iteration, and also the alignment using the per-iteration delta.
|
|
|
|
// If these are the same, then use that answer. Otherwise, use the smaller
|
|
|
|
// one, but only if it divides the larger one.
|
|
|
|
NewAlignment = getNewAlignmentDiff(DiffStartSCEV, AlignSCEV, SE);
|
|
|
|
unsigned NewIncAlignment = getNewAlignmentDiff(DiffIncSCEV, AlignSCEV, SE);
|
|
|
|
|
|
|
|
DEBUG(dbgs() << "\tnew start alignment: " << NewAlignment << "\n");
|
|
|
|
DEBUG(dbgs() << "\tnew inc alignment: " << NewIncAlignment << "\n");
|
|
|
|
|
2014-09-11 05:05:52 +08:00
|
|
|
if (!NewAlignment || !NewIncAlignment) {
|
|
|
|
return 0;
|
|
|
|
} else if (NewAlignment > NewIncAlignment) {
|
2014-09-08 04:05:11 +08:00
|
|
|
if (NewAlignment % NewIncAlignment == 0) {
|
|
|
|
DEBUG(dbgs() << "\tnew start/inc alignment: " <<
|
|
|
|
NewIncAlignment << "\n");
|
|
|
|
return NewIncAlignment;
|
|
|
|
}
|
|
|
|
} else if (NewIncAlignment > NewAlignment) {
|
|
|
|
if (NewIncAlignment % NewAlignment == 0) {
|
|
|
|
DEBUG(dbgs() << "\tnew start/inc alignment: " <<
|
|
|
|
NewAlignment << "\n");
|
|
|
|
return NewAlignment;
|
|
|
|
}
|
2014-09-11 05:05:52 +08:00
|
|
|
} else if (NewIncAlignment == NewAlignment) {
|
2014-09-08 04:05:11 +08:00
|
|
|
DEBUG(dbgs() << "\tnew start/inc alignment: " <<
|
|
|
|
NewAlignment << "\n");
|
|
|
|
return NewAlignment;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool AlignmentFromAssumptions::extractAlignmentInfo(CallInst *I,
|
|
|
|
Value *&AAPtr, const SCEV *&AlignSCEV,
|
|
|
|
const SCEV *&OffSCEV) {
|
|
|
|
// An alignment assume must be a statement about the least-significant
|
|
|
|
// bits of the pointer being zero, possibly with some offset.
|
|
|
|
ICmpInst *ICI = dyn_cast<ICmpInst>(I->getArgOperand(0));
|
|
|
|
if (!ICI)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// This must be an expression of the form: x & m == 0.
|
|
|
|
if (ICI->getPredicate() != ICmpInst::ICMP_EQ)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// Swap things around so that the RHS is 0.
|
|
|
|
Value *CmpLHS = ICI->getOperand(0);
|
|
|
|
Value *CmpRHS = ICI->getOperand(1);
|
|
|
|
const SCEV *CmpLHSSCEV = SE->getSCEV(CmpLHS);
|
|
|
|
const SCEV *CmpRHSSCEV = SE->getSCEV(CmpRHS);
|
|
|
|
if (CmpLHSSCEV->isZero())
|
|
|
|
std::swap(CmpLHS, CmpRHS);
|
|
|
|
else if (!CmpRHSSCEV->isZero())
|
|
|
|
return false;
|
|
|
|
|
|
|
|
BinaryOperator *CmpBO = dyn_cast<BinaryOperator>(CmpLHS);
|
|
|
|
if (!CmpBO || CmpBO->getOpcode() != Instruction::And)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// Swap things around so that the right operand of the and is a constant
|
|
|
|
// (the mask); we cannot deal with variable masks.
|
|
|
|
Value *AndLHS = CmpBO->getOperand(0);
|
|
|
|
Value *AndRHS = CmpBO->getOperand(1);
|
|
|
|
const SCEV *AndLHSSCEV = SE->getSCEV(AndLHS);
|
|
|
|
const SCEV *AndRHSSCEV = SE->getSCEV(AndRHS);
|
|
|
|
if (isa<SCEVConstant>(AndLHSSCEV)) {
|
|
|
|
std::swap(AndLHS, AndRHS);
|
|
|
|
std::swap(AndLHSSCEV, AndRHSSCEV);
|
|
|
|
}
|
|
|
|
|
|
|
|
const SCEVConstant *MaskSCEV = dyn_cast<SCEVConstant>(AndRHSSCEV);
|
|
|
|
if (!MaskSCEV)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// The mask must have some trailing ones (otherwise the condition is
|
|
|
|
// trivial and tells us nothing about the alignment of the left operand).
|
|
|
|
unsigned TrailingOnes =
|
|
|
|
MaskSCEV->getValue()->getValue().countTrailingOnes();
|
|
|
|
if (!TrailingOnes)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// Cap the alignment at the maximum with which LLVM can deal (and make sure
|
|
|
|
// we don't overflow the shift).
|
|
|
|
uint64_t Alignment;
|
|
|
|
TrailingOnes = std::min(TrailingOnes,
|
|
|
|
unsigned(sizeof(unsigned) * CHAR_BIT - 1));
|
|
|
|
Alignment = std::min(1u << TrailingOnes, +Value::MaximumAlignment);
|
|
|
|
|
|
|
|
Type *Int64Ty = Type::getInt64Ty(I->getParent()->getParent()->getContext());
|
|
|
|
AlignSCEV = SE->getConstant(Int64Ty, Alignment);
|
|
|
|
|
|
|
|
// The LHS might be a ptrtoint instruction, or it might be the pointer
|
|
|
|
// with an offset.
|
|
|
|
AAPtr = nullptr;
|
|
|
|
OffSCEV = nullptr;
|
|
|
|
if (PtrToIntInst *PToI = dyn_cast<PtrToIntInst>(AndLHS)) {
|
|
|
|
AAPtr = PToI->getPointerOperand();
|
|
|
|
OffSCEV = SE->getConstant(Int64Ty, 0);
|
|
|
|
} else if (const SCEVAddExpr* AndLHSAddSCEV =
|
|
|
|
dyn_cast<SCEVAddExpr>(AndLHSSCEV)) {
|
|
|
|
// Try to find the ptrtoint; subtract it and the rest is the offset.
|
|
|
|
for (SCEVAddExpr::op_iterator J = AndLHSAddSCEV->op_begin(),
|
|
|
|
JE = AndLHSAddSCEV->op_end(); J != JE; ++J)
|
|
|
|
if (const SCEVUnknown *OpUnk = dyn_cast<SCEVUnknown>(*J))
|
|
|
|
if (PtrToIntInst *PToI = dyn_cast<PtrToIntInst>(OpUnk->getValue())) {
|
|
|
|
AAPtr = PToI->getPointerOperand();
|
|
|
|
OffSCEV = SE->getMinusSCEV(AndLHSAddSCEV, *J);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!AAPtr)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// Sign extend the offset to 64 bits (so that it is like all of the other
|
|
|
|
// expressions).
|
|
|
|
unsigned OffSCEVBits = OffSCEV->getType()->getPrimitiveSizeInBits();
|
|
|
|
if (OffSCEVBits < 64)
|
|
|
|
OffSCEV = SE->getSignExtendExpr(OffSCEV, Int64Ty);
|
|
|
|
else if (OffSCEVBits > 64)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
AAPtr = AAPtr->stripPointerCasts();
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool AlignmentFromAssumptions::processAssumption(CallInst *ACall) {
|
|
|
|
Value *AAPtr;
|
|
|
|
const SCEV *AlignSCEV, *OffSCEV;
|
|
|
|
if (!extractAlignmentInfo(ACall, AAPtr, AlignSCEV, OffSCEV))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
const SCEV *AASCEV = SE->getSCEV(AAPtr);
|
|
|
|
|
|
|
|
// Apply the assumption to all other users of the specified pointer.
|
|
|
|
SmallPtrSet<Instruction *, 32> Visited;
|
|
|
|
SmallVector<Instruction*, 16> WorkList;
|
|
|
|
for (User *J : AAPtr->users()) {
|
|
|
|
if (J == ACall)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (Instruction *K = dyn_cast<Instruction>(J))
|
|
|
|
if (isValidAssumeForContext(ACall, K, DL, DT))
|
|
|
|
WorkList.push_back(K);
|
|
|
|
}
|
|
|
|
|
|
|
|
while (!WorkList.empty()) {
|
|
|
|
Instruction *J = WorkList.pop_back_val();
|
|
|
|
|
|
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(J)) {
|
|
|
|
unsigned NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
|
|
|
|
LI->getPointerOperand(), SE);
|
|
|
|
|
|
|
|
if (NewAlignment > LI->getAlignment()) {
|
|
|
|
LI->setAlignment(NewAlignment);
|
|
|
|
++NumLoadAlignChanged;
|
|
|
|
}
|
|
|
|
} else if (StoreInst *SI = dyn_cast<StoreInst>(J)) {
|
|
|
|
unsigned NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
|
|
|
|
SI->getPointerOperand(), SE);
|
|
|
|
|
|
|
|
if (NewAlignment > SI->getAlignment()) {
|
|
|
|
SI->setAlignment(NewAlignment);
|
|
|
|
++NumStoreAlignChanged;
|
|
|
|
}
|
|
|
|
} else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(J)) {
|
|
|
|
unsigned NewDestAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
|
|
|
|
MI->getDest(), SE);
|
|
|
|
|
|
|
|
// For memory transfers, we need a common alignment for both the
|
|
|
|
// source and destination. If we have a new alignment for this
|
|
|
|
// instruction, but only for one operand, save it. If we reach the
|
|
|
|
// other operand through another assumption later, then we may
|
|
|
|
// change the alignment at that point.
|
|
|
|
if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
|
|
|
|
unsigned NewSrcAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
|
|
|
|
MTI->getSource(), SE);
|
|
|
|
|
|
|
|
DenseMap<MemTransferInst *, unsigned>::iterator DI =
|
|
|
|
NewDestAlignments.find(MTI);
|
|
|
|
unsigned AltDestAlignment = (DI == NewDestAlignments.end()) ?
|
|
|
|
0 : DI->second;
|
|
|
|
|
|
|
|
DenseMap<MemTransferInst *, unsigned>::iterator SI =
|
|
|
|
NewSrcAlignments.find(MTI);
|
|
|
|
unsigned AltSrcAlignment = (SI == NewSrcAlignments.end()) ?
|
|
|
|
0 : SI->second;
|
|
|
|
|
|
|
|
DEBUG(dbgs() << "\tmem trans: " << NewDestAlignment << " " <<
|
|
|
|
AltDestAlignment << " " << NewSrcAlignment <<
|
|
|
|
" " << AltSrcAlignment << "\n");
|
|
|
|
|
|
|
|
// Of these four alignments, pick the largest possible...
|
|
|
|
unsigned NewAlignment = 0;
|
|
|
|
if (NewDestAlignment <= std::max(NewSrcAlignment, AltSrcAlignment))
|
|
|
|
NewAlignment = std::max(NewAlignment, NewDestAlignment);
|
|
|
|
if (AltDestAlignment <= std::max(NewSrcAlignment, AltSrcAlignment))
|
|
|
|
NewAlignment = std::max(NewAlignment, AltDestAlignment);
|
|
|
|
if (NewSrcAlignment <= std::max(NewDestAlignment, AltDestAlignment))
|
|
|
|
NewAlignment = std::max(NewAlignment, NewSrcAlignment);
|
|
|
|
if (AltSrcAlignment <= std::max(NewDestAlignment, AltDestAlignment))
|
|
|
|
NewAlignment = std::max(NewAlignment, AltSrcAlignment);
|
|
|
|
|
|
|
|
if (NewAlignment > MI->getAlignment()) {
|
|
|
|
MI->setAlignment(ConstantInt::get(Type::getInt32Ty(
|
|
|
|
MI->getParent()->getContext()), NewAlignment));
|
|
|
|
++NumMemIntAlignChanged;
|
|
|
|
}
|
|
|
|
|
|
|
|
NewDestAlignments.insert(std::make_pair(MTI, NewDestAlignment));
|
|
|
|
NewSrcAlignments.insert(std::make_pair(MTI, NewSrcAlignment));
|
|
|
|
} else if (NewDestAlignment > MI->getAlignment()) {
|
|
|
|
assert((!isa<MemIntrinsic>(MI) || isa<MemSetInst>(MI)) &&
|
|
|
|
"Unknown memory intrinsic");
|
|
|
|
|
|
|
|
MI->setAlignment(ConstantInt::get(Type::getInt32Ty(
|
|
|
|
MI->getParent()->getContext()), NewDestAlignment));
|
|
|
|
++NumMemIntAlignChanged;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Now that we've updated that use of the pointer, look for other uses of
|
|
|
|
// the pointer to update.
|
|
|
|
Visited.insert(J);
|
|
|
|
for (User *UJ : J->users()) {
|
|
|
|
Instruction *K = cast<Instruction>(UJ);
|
|
|
|
if (!Visited.count(K) && isValidAssumeForContext(ACall, K, DL, DT))
|
|
|
|
WorkList.push_back(K);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool AlignmentFromAssumptions::runOnFunction(Function &F) {
|
|
|
|
bool Changed = false;
|
2015-01-04 20:03:27 +08:00
|
|
|
auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
|
2014-09-08 04:05:11 +08:00
|
|
|
SE = &getAnalysis<ScalarEvolution>();
|
|
|
|
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
|
|
DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
|
|
|
|
DL = DLP ? &DLP->getDataLayout() : nullptr;
|
|
|
|
|
|
|
|
NewDestAlignments.clear();
|
|
|
|
NewSrcAlignments.clear();
|
|
|
|
|
2015-01-04 20:03:27 +08:00
|
|
|
for (auto &AssumeVH : AC.assumptions())
|
|
|
|
if (AssumeVH)
|
|
|
|
Changed |= processAssumption(cast<CallInst>(AssumeVH));
|
2014-09-08 04:05:11 +08:00
|
|
|
|
|
|
|
return Changed;
|
|
|
|
}
|
|
|
|
|