llvm-project/compiler-rt/lib/fuzzer/dataflow/DataFlow.cpp

278 lines
9.4 KiB
C++
Raw Normal View History

/*===- DataFlow.cpp - a standalone DataFlow tracer -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// An experimental data-flow tracer for fuzz targets.
// It is based on DFSan and SanitizerCoverage.
// https://clang.llvm.org/docs/DataFlowSanitizer.html
// https://clang.llvm.org/docs/SanitizerCoverage.html#tracing-data-flow
//
// It executes the fuzz target on the given input while monitoring the
// data flow for every instrumented comparison instruction.
//
// The output shows which functions depend on which bytes of the input,
// and also provides basic-block coverage for every input.
//
// Build:
// 1. Compile this file with -fsanitize=dataflow
// 2. Build the fuzz target with -g -fsanitize=dataflow
// -fsanitize-coverage=trace-pc-guard,pc-table,bb,trace-cmp
// 3. Link those together with -fsanitize=dataflow
//
// -fsanitize-coverage=trace-cmp inserts callbacks around every comparison
// instruction, DFSan modifies the calls to pass the data flow labels.
// The callbacks update the data flow label for the current function.
// See e.g. __dfsw___sanitizer_cov_trace_cmp1 below.
//
// -fsanitize-coverage=trace-pc-guard,pc-table,bb instruments function
// entries so that the comparison callback knows that current function.
// -fsanitize-coverage=...,bb also allows to collect basic block coverage.
//
//
// Run:
// # Collect data flow and coverage for INPUT_FILE
// # write to OUTPUT_FILE (default: stdout)
// ./a.out FIRST_LABEL LAST_LABEL INPUT_FILE [OUTPUT_FILE]
//
// # Print all instrumented functions. llvm-symbolizer must be present in PATH
// ./a.out
//
// Example output:
// ===============
// F0 11111111111111
// F1 10000000000000
// C0 1 2 3 4
// C1
// ===============
// "FN xxxxxxxxxx": tells what bytes of the input does the function N depend on.
// The byte string is LEN+1 bytes. The last byte is set if the function
// depends on the input length.
// "CN X Y Z": tells that a function N has basic blocks X, Y, and Z covered
// in addition to the function's entry block.
//
//===----------------------------------------------------------------------===*/
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <execinfo.h> // backtrace_symbols_fd
#include <sanitizer/dfsan_interface.h>
extern "C" {
extern int LLVMFuzzerTestOneInput(const unsigned char *Data, size_t Size);
__attribute__((weak)) extern int LLVMFuzzerInitialize(int *argc, char ***argv);
} // extern "C"
static size_t InputLen;
static size_t InputLabelBeg;
static size_t InputLabelEnd;
static size_t InputSizeLabel;
static size_t NumFuncs, NumGuards;
static uint32_t *GuardsBeg, *GuardsEnd;
static const uintptr_t *PCsBeg, *PCsEnd;
static __thread size_t CurrentFunc;
static dfsan_label *FuncLabels; // Array of NumFuncs elements.
static bool *BBExecuted; // Array of NumGuards elements.
static char *PrintableStringForLabel; // InputLen + 2 bytes.
static bool LabelSeen[1 << 8 * sizeof(dfsan_label)];
enum {
PCFLAG_FUNC_ENTRY = 1,
};
// Prints all instrumented functions.
static int PrintFunctions() {
// We don't have the symbolizer integrated with dfsan yet.
// So use backtrace_symbols_fd and pipe it through llvm-symbolizer.
// TODO(kcc): this is pretty ugly and may break in lots of ways.
// We'll need to make a proper in-process symbolizer work with DFSan.
FILE *Pipe = popen("sed 's/(+/ /g; s/).*//g' "
"| llvm-symbolizer "
"| grep 'dfs\\$' "
"| sed 's/dfs\\$//g'", "w");
for (size_t I = 0; I < NumGuards; I++) {
uintptr_t PC = PCsBeg[I * 2];
uintptr_t PCFlags = PCsBeg[I * 2 + 1];
if (!(PCFlags & PCFLAG_FUNC_ENTRY)) continue;
void *const Buf[1] = {(void*)PC};
backtrace_symbols_fd(Buf, 1, fileno(Pipe));
}
pclose(Pipe);
return 0;
}
extern "C"
void SetBytesForLabel(dfsan_label L, char *Bytes) {
if (LabelSeen[L])
return;
LabelSeen[L] = true;
assert(L);
if (L < InputSizeLabel) {
Bytes[L + InputLabelBeg - 1] = '1';
} else if (L == InputSizeLabel) {
Bytes[InputLen] = '1';
} else {
auto *DLI = dfsan_get_label_info(L);
SetBytesForLabel(DLI->l1, Bytes);
SetBytesForLabel(DLI->l2, Bytes);
}
}
static char *GetPrintableStringForLabel(dfsan_label L) {
memset(PrintableStringForLabel, '0', InputLen + 1);
PrintableStringForLabel[InputLen + 1] = 0;
memset(LabelSeen, 0, sizeof(LabelSeen));
SetBytesForLabel(L, PrintableStringForLabel);
return PrintableStringForLabel;
}
static void PrintDataFlow(FILE *Out) {
for (size_t I = 0; I < NumFuncs; I++)
if (FuncLabels[I])
fprintf(Out, "F%zd %s\n", I, GetPrintableStringForLabel(FuncLabels[I]));
}
static void PrintCoverage(FILE *Out) {
ssize_t CurrentFuncGuard = -1;
ssize_t CurrentFuncNum = -1;
int NumFuncsCovered = 0;
for (size_t I = 0; I < NumGuards; I++) {
bool IsEntry = PCsBeg[I * 2 + 1] & PCFLAG_FUNC_ENTRY;
if (IsEntry) {
CurrentFuncNum++;
CurrentFuncGuard = I;
}
if (!BBExecuted[I]) continue;
if (IsEntry) {
if (NumFuncsCovered) fprintf(Out, "\n");
fprintf(Out, "C%zd ", CurrentFuncNum);
NumFuncsCovered++;
} else {
fprintf(Out, "%zd ", I - CurrentFuncGuard);
}
}
fprintf(Out, "\n");
}
int main(int argc, char **argv) {
if (LLVMFuzzerInitialize)
LLVMFuzzerInitialize(&argc, &argv);
if (argc == 1)
return PrintFunctions();
assert(argc == 4 || argc == 5);
InputLabelBeg = atoi(argv[1]);
InputLabelEnd = atoi(argv[2]);
assert(InputLabelBeg < InputLabelEnd);
const char *Input = argv[3];
fprintf(stderr, "INFO: reading '%s'\n", Input);
FILE *In = fopen(Input, "r");
assert(In);
fseek(In, 0, SEEK_END);
InputLen = ftell(In);
fseek(In, 0, SEEK_SET);
unsigned char *Buf = (unsigned char*)malloc(InputLen);
size_t NumBytesRead = fread(Buf, 1, InputLen, In);
assert(NumBytesRead == InputLen);
PrintableStringForLabel = (char*)malloc(InputLen + 2);
fclose(In);
fprintf(stderr, "INFO: running '%s'\n", Input);
for (size_t I = 1; I <= InputLen; I++) {
size_t Idx = I - 1;
if (Idx >= InputLabelBeg && Idx < InputLabelEnd) {
dfsan_label L = dfsan_create_label("", nullptr);
assert(L == I - InputLabelBeg);
dfsan_set_label(L, Buf + Idx, 1);
}
}
dfsan_label SizeL = dfsan_create_label("", nullptr);
InputSizeLabel = SizeL;
assert(InputSizeLabel == InputLabelEnd - InputLabelBeg + 1);
dfsan_set_label(SizeL, &InputLen, sizeof(InputLen));
LLVMFuzzerTestOneInput(Buf, InputLen);
free(Buf);
bool OutIsStdout = argc == 4;
fprintf(stderr, "INFO: writing dataflow to %s\n",
OutIsStdout ? "<stdout>" : argv[4]);
FILE *Out = OutIsStdout ? stdout : fopen(argv[4], "w");
PrintDataFlow(Out);
PrintCoverage(Out);
if (!OutIsStdout) fclose(Out);
}
extern "C" {
void __sanitizer_cov_trace_pc_guard_init(uint32_t *start,
uint32_t *stop) {
assert(NumFuncs == 0 && "This tool does not support DSOs");
assert(start < stop && "The code is not instrumented for coverage");
if (start == stop || *start) return; // Initialize only once.
GuardsBeg = start;
GuardsEnd = stop;
}
void __sanitizer_cov_pcs_init(const uintptr_t *pcs_beg,
const uintptr_t *pcs_end) {
if (NumGuards) return; // Initialize only once.
NumGuards = GuardsEnd - GuardsBeg;
PCsBeg = pcs_beg;
PCsEnd = pcs_end;
assert(NumGuards == (PCsEnd - PCsBeg) / 2);
for (size_t i = 0; i < NumGuards; i++) {
if (PCsBeg[i * 2 + 1] & PCFLAG_FUNC_ENTRY) {
NumFuncs++;
GuardsBeg[i] = NumFuncs;
}
}
FuncLabels = (dfsan_label*)calloc(NumFuncs, sizeof(dfsan_label));
BBExecuted = (bool*)calloc(NumGuards, sizeof(bool));
fprintf(stderr, "INFO: %zd instrumented function(s) observed "
"and %zd basic blocks\n", NumFuncs, NumGuards);
}
void __sanitizer_cov_trace_pc_indir(uint64_t x){} // unused.
void __sanitizer_cov_trace_pc_guard(uint32_t *guard) {
size_t GuardIdx = guard - GuardsBeg;
assert(GuardIdx < NumGuards);
BBExecuted[GuardIdx] = true;
if (!*guard) return; // not a function entry.
uint32_t FuncNum = *guard - 1; // Guards start from 1.
assert(FuncNum < NumFuncs);
CurrentFunc = FuncNum;
}
void __dfsw___sanitizer_cov_trace_switch(uint64_t Val, uint64_t *Cases,
dfsan_label L1, dfsan_label UnusedL) {
assert(CurrentFunc < NumFuncs);
FuncLabels[CurrentFunc] = dfsan_union(FuncLabels[CurrentFunc], L1);
}
#define HOOK(Name, Type) \
void Name(Type Arg1, Type Arg2, dfsan_label L1, dfsan_label L2) { \
assert(CurrentFunc < NumFuncs); \
FuncLabels[CurrentFunc] = \
dfsan_union(FuncLabels[CurrentFunc], dfsan_union(L1, L2)); \
}
HOOK(__dfsw___sanitizer_cov_trace_const_cmp1, uint8_t)
HOOK(__dfsw___sanitizer_cov_trace_const_cmp2, uint16_t)
HOOK(__dfsw___sanitizer_cov_trace_const_cmp4, uint32_t)
HOOK(__dfsw___sanitizer_cov_trace_const_cmp8, uint64_t)
HOOK(__dfsw___sanitizer_cov_trace_cmp1, uint8_t)
HOOK(__dfsw___sanitizer_cov_trace_cmp2, uint16_t)
HOOK(__dfsw___sanitizer_cov_trace_cmp4, uint32_t)
HOOK(__dfsw___sanitizer_cov_trace_cmp8, uint64_t)
} // extern "C"