2017-07-12 06:04:36 +08:00
|
|
|
; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
|
[x86] Teach the cmov converter to aggressively convert cmovs with memory
operands into control flow.
We have seen periodically performance problems with cmov where one
operand comes from memory. On modern x86 processors with strong branch
predictors and speculative execution, this tends to be much better done
with a branch than cmov. We routinely see cmov stalling while the load
is completed rather than continuing, and if there are subsequent
branches, they cannot be speculated in turn.
Also, in many (even simple) cases, macro fusion causes the control flow
version to be fewer uops.
Consider the IACA output for the initial sequence of code in a very hot
function in one of our internal benchmarks that motivates this, and notice the
micro-op reduction provided.
Before, SNB:
```
Throughput Analysis Report
--------------------------
Block Throughput: 2.20 Cycles Throughput Bottleneck: Port1
| Num Of | Ports pressure in cycles | |
| Uops | 0 - DV | 1 | 2 - D | 3 - D | 4 | 5 | |
---------------------------------------------------------------------
| 1 | | 1.0 | | | | | CP | mov rcx, rdi
| 0* | | | | | | | | xor edi, edi
| 2^ | 0.1 | 0.6 | 0.5 0.5 | 0.5 0.5 | | 0.4 | CP | cmp byte ptr [rsi+0xf], 0xf
| 1 | | | 0.5 0.5 | 0.5 0.5 | | | | mov rax, qword ptr [rsi]
| 3 | 1.8 | 0.6 | | | | 0.6 | CP | cmovbe rax, rdi
| 2^ | | | 0.5 0.5 | 0.5 0.5 | | 1.0 | | cmp byte ptr [rcx+0xf], 0x10
| 0F | | | | | | | | jb 0xf
Total Num Of Uops: 9
```
After, SNB:
```
Throughput Analysis Report
--------------------------
Block Throughput: 2.00 Cycles Throughput Bottleneck: Port5
| Num Of | Ports pressure in cycles | |
| Uops | 0 - DV | 1 | 2 - D | 3 - D | 4 | 5 | |
---------------------------------------------------------------------
| 1 | 0.5 | 0.5 | | | | | | mov rax, rdi
| 0* | | | | | | | | xor edi, edi
| 2^ | 0.5 | 0.5 | 1.0 1.0 | | | | | cmp byte ptr [rsi+0xf], 0xf
| 1 | 0.5 | 0.5 | | | | | | mov ecx, 0x0
| 1 | | | | | | 1.0 | CP | jnbe 0x39
| 2^ | | | | 1.0 1.0 | | 1.0 | CP | cmp byte ptr [rax+0xf], 0x10
| 0F | | | | | | | | jnb 0x3c
Total Num Of Uops: 7
```
The difference even manifests in a throughput cycle rate difference on Haswell.
Before, HSW:
```
Throughput Analysis Report
--------------------------
Block Throughput: 2.00 Cycles Throughput Bottleneck: FrontEnd
| Num Of | Ports pressure in cycles | |
| Uops | 0 - DV | 1 | 2 - D | 3 - D | 4 | 5 | 6 | 7 | |
---------------------------------------------------------------------------------
| 0* | | | | | | | | | | mov rcx, rdi
| 0* | | | | | | | | | | xor edi, edi
| 2^ | | | 0.5 0.5 | 0.5 0.5 | | 1.0 | | | | cmp byte ptr [rsi+0xf], 0xf
| 1 | | | 0.5 0.5 | 0.5 0.5 | | | | | | mov rax, qword ptr [rsi]
| 3 | 1.0 | 1.0 | | | | | 1.0 | | | cmovbe rax, rdi
| 2^ | 0.5 | | 0.5 0.5 | 0.5 0.5 | | | 0.5 | | | cmp byte ptr [rcx+0xf], 0x10
| 0F | | | | | | | | | | jb 0xf
Total Num Of Uops: 8
```
After, HSW:
```
Throughput Analysis Report
--------------------------
Block Throughput: 1.50 Cycles Throughput Bottleneck: FrontEnd
| Num Of | Ports pressure in cycles | |
| Uops | 0 - DV | 1 | 2 - D | 3 - D | 4 | 5 | 6 | 7 | |
---------------------------------------------------------------------------------
| 0* | | | | | | | | | | mov rax, rdi
| 0* | | | | | | | | | | xor edi, edi
| 2^ | | | 1.0 1.0 | | | 1.0 | | | | cmp byte ptr [rsi+0xf], 0xf
| 1 | | 1.0 | | | | | | | | mov ecx, 0x0
| 1 | | | | | | | 1.0 | | | jnbe 0x39
| 2^ | 1.0 | | | 1.0 1.0 | | | | | | cmp byte ptr [rax+0xf], 0x10
| 0F | | | | | | | | | | jnb 0x3c
Total Num Of Uops: 6
```
Note that this cannot be usefully restricted to inner loops. Much of the
hot code we see hitting this is not in an inner loop or not in a loop at
all. The optimization still remains effective and indeed critical for
some of our code.
I have run a suite of internal benchmarks with this change. I saw a few
very significant improvements and a very few minor regressions,
but overall this change rarely has a significant effect. However, the
improvements were very significant, and in quite important routines
responsible for a great deal of our C++ CPU cycles. The gains pretty
clealy outweigh the regressions for us.
I also ran the test-suite and SPEC2006. Only 11 binaries changed at all
and none of them showed any regressions.
Amjad Aboud at Intel also ran this over their benchmarks and saw no
regressions.
Differential Revision: https://reviews.llvm.org/D36858
llvm-svn: 311226
2017-08-19 13:01:19 +08:00
|
|
|
; RUN: llc < %s -verify-machineinstrs -mtriple=x86_64-unknown-unknown -disable-cgp-select2branch -x86-cmov-converter=false | FileCheck %s
|
2009-09-15 10:25:21 +08:00
|
|
|
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128"
|
2009-09-15 10:22:47 +08:00
|
|
|
|
|
|
|
define i32 @test1(i32 %x, i32 %n, i32 %w, i32* %vp) nounwind readnone {
|
2013-07-14 04:38:47 +08:00
|
|
|
; CHECK-LABEL: test1:
|
2017-12-05 01:18:51 +08:00
|
|
|
; CHECK: # %bb.0: # %entry
|
2017-07-12 06:04:36 +08:00
|
|
|
; CHECK-NEXT: btl %esi, %edi
|
|
|
|
; CHECK-NEXT: movl $12, %eax
|
|
|
|
; CHECK-NEXT: cmovael (%rcx), %eax
|
|
|
|
; CHECK-NEXT: retq
|
|
|
|
entry:
|
|
|
|
%0 = lshr i32 %x, %n
|
|
|
|
%1 = and i32 %0, 1
|
|
|
|
%toBool = icmp eq i32 %1, 0
|
2015-02-28 05:17:42 +08:00
|
|
|
%v = load i32, i32* %vp
|
2017-07-12 06:04:36 +08:00
|
|
|
%.0 = select i1 %toBool, i32 %v, i32 12
|
2009-09-15 10:22:47 +08:00
|
|
|
ret i32 %.0
|
|
|
|
}
|
2017-07-12 06:04:36 +08:00
|
|
|
|
2009-09-15 10:22:47 +08:00
|
|
|
define i32 @test2(i32 %x, i32 %n, i32 %w, i32* %vp) nounwind readnone {
|
2013-07-14 04:38:47 +08:00
|
|
|
; CHECK-LABEL: test2:
|
2017-12-05 01:18:51 +08:00
|
|
|
; CHECK: # %bb.0: # %entry
|
2017-07-12 06:04:36 +08:00
|
|
|
; CHECK-NEXT: btl %esi, %edi
|
|
|
|
; CHECK-NEXT: movl $12, %eax
|
|
|
|
; CHECK-NEXT: cmovbl (%rcx), %eax
|
|
|
|
; CHECK-NEXT: retq
|
|
|
|
entry:
|
|
|
|
%0 = lshr i32 %x, %n
|
|
|
|
%1 = and i32 %0, 1
|
|
|
|
%toBool = icmp eq i32 %1, 0
|
2015-02-28 05:17:42 +08:00
|
|
|
%v = load i32, i32* %vp
|
2017-07-12 06:04:36 +08:00
|
|
|
%.0 = select i1 %toBool, i32 12, i32 %v
|
2009-09-15 10:22:47 +08:00
|
|
|
ret i32 %.0
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2016-07-29 23:09:54 +08:00
|
|
|
; x86's 32-bit cmov zeroes the high 32 bits of the destination. Make
|
|
|
|
; sure CodeGen takes advantage of that to avoid an unnecessary
|
|
|
|
; zero-extend (movl) after the cmov.
|
2009-09-15 23:09:54 +08:00
|
|
|
|
2009-09-15 10:22:47 +08:00
|
|
|
declare void @bar(i64) nounwind
|
|
|
|
|
|
|
|
define void @test3(i64 %a, i64 %b, i1 %p) nounwind {
|
2013-07-14 04:38:47 +08:00
|
|
|
; CHECK-LABEL: test3:
|
2017-12-05 01:18:51 +08:00
|
|
|
; CHECK: # %bb.0:
|
2017-07-12 06:04:36 +08:00
|
|
|
; CHECK-NEXT: pushq %rax
|
|
|
|
; CHECK-NEXT: testb $1, %dl
|
|
|
|
; CHECK-NEXT: cmovel %esi, %edi
|
|
|
|
; CHECK-NEXT: callq bar
|
|
|
|
; CHECK-NEXT: popq %rax
|
|
|
|
; CHECK-NEXT: retq
|
2009-09-15 10:22:47 +08:00
|
|
|
%c = trunc i64 %a to i32
|
|
|
|
%d = trunc i64 %b to i32
|
|
|
|
%e = select i1 %p, i32 %c, i32 %d
|
|
|
|
%f = zext i32 %e to i64
|
|
|
|
call void @bar(i64 %f)
|
|
|
|
ret void
|
|
|
|
}
|
2009-09-15 10:25:21 +08:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
; CodeGen shouldn't try to do a setne after an expanded 8-bit conditional
|
|
|
|
; move without recomputing EFLAGS, because the expansion of the conditional
|
|
|
|
; move with control flow may clobber EFLAGS (e.g., with xor, to set the
|
|
|
|
; register to zero).
|
|
|
|
|
|
|
|
; The test is a little awkward; the important part is that there's a test before the
|
|
|
|
; setne.
|
|
|
|
; PR4814
|
|
|
|
|
|
|
|
|
2017-07-12 06:04:36 +08:00
|
|
|
@g_3 = external global i8
|
|
|
|
@g_96 = external global i8
|
|
|
|
@g_100 = external global i8
|
|
|
|
@_2E_str = external constant [15 x i8], align 1
|
2009-09-15 10:25:21 +08:00
|
|
|
|
2017-01-25 00:36:07 +08:00
|
|
|
define i1 @test4() nounwind {
|
2017-07-12 06:04:36 +08:00
|
|
|
; CHECK-LABEL: test4:
|
2017-12-05 01:18:51 +08:00
|
|
|
; CHECK: # %bb.0: # %entry
|
[FIX] Forces shrink wrapping to consider any memory access as aliasing with the stack
Summary:
Relate bug: https://bugs.llvm.org/show_bug.cgi?id=37472
The shrink wrapping pass prematurally restores the stack, at a point where the stack might still be accessed.
Taking an exception can cause the stack to be corrupted.
As a first approach, this patch is overly conservative, assuming that any instruction that may load or store could access
the stack.
Reviewers: dmgreen, qcolombet
Reviewed By: qcolombet
Subscribers: simpal01, efriedma, eli.friedman, javed.absar, llvm-commits, eugenis, chill, carwil, thegameg
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63152
llvm-svn: 363265
2019-06-13 21:56:19 +08:00
|
|
|
; CHECK-NEXT: pushq %rbx
|
2017-07-12 06:04:36 +08:00
|
|
|
; CHECK-NEXT: movsbl {{.*}}(%rip), %edx
|
2018-06-06 05:03:52 +08:00
|
|
|
; CHECK-NEXT: movzbl %dl, %ecx
|
|
|
|
; CHECK-NEXT: shrl $7, %ecx
|
2018-12-09 00:07:38 +08:00
|
|
|
; CHECK-NEXT: xorb $1, %cl
|
2018-02-01 06:04:26 +08:00
|
|
|
; CHECK-NEXT: # kill: def $cl killed $cl killed $ecx
|
2017-07-12 06:04:36 +08:00
|
|
|
; CHECK-NEXT: sarl %cl, %edx
|
|
|
|
; CHECK-NEXT: movb {{.*}}(%rip), %al
|
|
|
|
; CHECK-NEXT: testb %al, %al
|
|
|
|
; CHECK-NEXT: je .LBB3_2
|
2017-12-05 01:18:51 +08:00
|
|
|
; CHECK-NEXT: # %bb.1: # %bb.i.i.i
|
2017-07-12 06:04:36 +08:00
|
|
|
; CHECK-NEXT: movb {{.*}}(%rip), %cl
|
|
|
|
; CHECK-NEXT: .LBB3_2: # %func_4.exit.i
|
[X86] Promote i8 CMOV's (PR40965)
Summary:
@mclow.lists brought up this issue up in IRC, it came up during
implementation of libc++ `std::midpoint()` implementation (D59099)
https://godbolt.org/z/oLrHBP
Currently LLVM X86 backend only promotes i8 CMOV if it came from 2x`trunc`.
This differential proposes to always promote i8 CMOV.
There are several concerns here:
* Is this actually more performant, or is it just the ASM that looks cuter?
* Does this result in partial register stalls?
* What about branch predictor?
# Indeed, performance should be the main point here.
Let's look at a simple microbenchmark: {F8412076}
```
#include "benchmark/benchmark.h"
#include <algorithm>
#include <cmath>
#include <cstdint>
#include <iterator>
#include <limits>
#include <random>
#include <type_traits>
#include <utility>
#include <vector>
// Future preliminary libc++ code, from Marshall Clow.
namespace std {
template <class _Tp>
__inline _Tp midpoint(_Tp __a, _Tp __b) noexcept {
using _Up = typename std::make_unsigned<typename remove_cv<_Tp>::type>::type;
int __sign = 1;
_Up __m = __a;
_Up __M = __b;
if (__a > __b) {
__sign = -1;
__m = __b;
__M = __a;
}
return __a + __sign * _Tp(_Up(__M - __m) >> 1);
}
} // namespace std
template <typename T>
std::vector<T> getVectorOfRandomNumbers(size_t count) {
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_int_distribution<T> dis(std::numeric_limits<T>::min(),
std::numeric_limits<T>::max());
std::vector<T> v;
v.reserve(count);
std::generate_n(std::back_inserter(v), count,
[&dis, &gen]() { return dis(gen); });
assert(v.size() == count);
return v;
}
struct RandRand {
template <typename T>
static std::pair<std::vector<T>, std::vector<T>> Gen(size_t count) {
return std::make_pair(getVectorOfRandomNumbers<T>(count),
getVectorOfRandomNumbers<T>(count));
}
};
struct ZeroRand {
template <typename T>
static std::pair<std::vector<T>, std::vector<T>> Gen(size_t count) {
return std::make_pair(std::vector<T>(count, T(0)),
getVectorOfRandomNumbers<T>(count));
}
};
template <class T, class Gen>
void BM_StdMidpoint(benchmark::State& state) {
const size_t Length = state.range(0);
const std::pair<std::vector<T>, std::vector<T>> Data =
Gen::template Gen<T>(Length);
const std::vector<T>& a = Data.first;
const std::vector<T>& b = Data.second;
assert(a.size() == Length && b.size() == a.size());
benchmark::ClobberMemory();
benchmark::DoNotOptimize(a);
benchmark::DoNotOptimize(a.data());
benchmark::DoNotOptimize(b);
benchmark::DoNotOptimize(b.data());
for (auto _ : state) {
for (size_t i = 0; i < Length; i++) {
const auto calculated = std::midpoint(a[i], b[i]);
benchmark::DoNotOptimize(calculated);
}
}
state.SetComplexityN(Length);
state.counters["midpoints"] =
benchmark::Counter(Length, benchmark::Counter::kIsIterationInvariant);
state.counters["midpoints/sec"] =
benchmark::Counter(Length, benchmark::Counter::kIsIterationInvariantRate);
const size_t BytesRead = 2 * sizeof(T) * Length;
state.counters["bytes_read/iteration"] =
benchmark::Counter(BytesRead, benchmark::Counter::kDefaults,
benchmark::Counter::OneK::kIs1024);
state.counters["bytes_read/sec"] = benchmark::Counter(
BytesRead, benchmark::Counter::kIsIterationInvariantRate,
benchmark::Counter::OneK::kIs1024);
}
template <typename T>
static void CustomArguments(benchmark::internal::Benchmark* b) {
const size_t L2SizeBytes = 2 * 1024 * 1024;
// What is the largest range we can check to always fit within given L2 cache?
const size_t MaxLen = L2SizeBytes / /*total bufs*/ 2 /
/*maximal elt size*/ sizeof(T) / /*safety margin*/ 2;
b->RangeMultiplier(2)->Range(1, MaxLen)->Complexity(benchmark::oN);
}
// Both of the values are random.
// The comparison is unpredictable.
BENCHMARK_TEMPLATE(BM_StdMidpoint, int32_t, RandRand)
->Apply(CustomArguments<int32_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, uint32_t, RandRand)
->Apply(CustomArguments<uint32_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, int64_t, RandRand)
->Apply(CustomArguments<int64_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, uint64_t, RandRand)
->Apply(CustomArguments<uint64_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, int16_t, RandRand)
->Apply(CustomArguments<int16_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, uint16_t, RandRand)
->Apply(CustomArguments<uint16_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, int8_t, RandRand)
->Apply(CustomArguments<int8_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, uint8_t, RandRand)
->Apply(CustomArguments<uint8_t>);
// One value is always zero, and another is bigger or equal than zero.
// The comparison is predictable.
BENCHMARK_TEMPLATE(BM_StdMidpoint, uint32_t, ZeroRand)
->Apply(CustomArguments<uint32_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, uint64_t, ZeroRand)
->Apply(CustomArguments<uint64_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, uint16_t, ZeroRand)
->Apply(CustomArguments<uint16_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, uint8_t, ZeroRand)
->Apply(CustomArguments<uint8_t>);
```
```
$ ~/src/googlebenchmark/tools/compare.py --no-utest benchmarks ./llvm-cmov-bench-OLD ./llvm-cmov-bench-NEW
RUNNING: ./llvm-cmov-bench-OLD --benchmark_out=/tmp/tmp5a5qjm
2019-03-06 21:53:31
Running ./llvm-cmov-bench-OLD
Run on (8 X 4000 MHz CPU s)
CPU Caches:
L1 Data 16K (x8)
L1 Instruction 64K (x4)
L2 Unified 2048K (x4)
L3 Unified 8192K (x1)
Load Average: 1.78, 1.81, 1.36
----------------------------------------------------------------------------------------------------
Benchmark Time CPU Iterations UserCounters<...>
----------------------------------------------------------------------------------------------------
<...>
BM_StdMidpoint<int32_t, RandRand>/131072 300398 ns 300404 ns 2330 bytes_read/iteration=1024k bytes_read/sec=3.25083G/s midpoints=305.398M midpoints/sec=436.319M/s
BM_StdMidpoint<int32_t, RandRand>_BigO 2.29 N 2.29 N
BM_StdMidpoint<int32_t, RandRand>_RMS 2 % 2 %
<...>
BM_StdMidpoint<uint32_t, RandRand>/131072 300433 ns 300433 ns 2330 bytes_read/iteration=1024k bytes_read/sec=3.25052G/s midpoints=305.398M midpoints/sec=436.278M/s
BM_StdMidpoint<uint32_t, RandRand>_BigO 2.29 N 2.29 N
BM_StdMidpoint<uint32_t, RandRand>_RMS 2 % 2 %
<...>
BM_StdMidpoint<int64_t, RandRand>/65536 169857 ns 169858 ns 4121 bytes_read/iteration=1024k bytes_read/sec=5.74929G/s midpoints=270.074M midpoints/sec=385.828M/s
BM_StdMidpoint<int64_t, RandRand>_BigO 2.59 N 2.59 N
BM_StdMidpoint<int64_t, RandRand>_RMS 3 % 3 %
<...>
BM_StdMidpoint<uint64_t, RandRand>/65536 169770 ns 169771 ns 4125 bytes_read/iteration=1024k bytes_read/sec=5.75223G/s midpoints=270.336M midpoints/sec=386.026M/s
BM_StdMidpoint<uint64_t, RandRand>_BigO 2.59 N 2.59 N
BM_StdMidpoint<uint64_t, RandRand>_RMS 3 % 3 %
<...>
BM_StdMidpoint<int16_t, RandRand>/262144 591169 ns 591179 ns 1182 bytes_read/iteration=1024k bytes_read/sec=1.65189G/s midpoints=309.854M midpoints/sec=443.426M/s
BM_StdMidpoint<int16_t, RandRand>_BigO 2.25 N 2.25 N
BM_StdMidpoint<int16_t, RandRand>_RMS 1 % 1 %
<...>
BM_StdMidpoint<uint16_t, RandRand>/262144 591264 ns 591274 ns 1184 bytes_read/iteration=1024k bytes_read/sec=1.65162G/s midpoints=310.378M midpoints/sec=443.354M/s
BM_StdMidpoint<uint16_t, RandRand>_BigO 2.25 N 2.25 N
BM_StdMidpoint<uint16_t, RandRand>_RMS 1 % 1 %
<...>
BM_StdMidpoint<int8_t, RandRand>/524288 2983669 ns 2983689 ns 235 bytes_read/iteration=1024k bytes_read/sec=335.156M/s midpoints=123.208M midpoints/sec=175.718M/s
BM_StdMidpoint<int8_t, RandRand>_BigO 5.69 N 5.69 N
BM_StdMidpoint<int8_t, RandRand>_RMS 0 % 0 %
<...>
BM_StdMidpoint<uint8_t, RandRand>/524288 2668398 ns 2668419 ns 262 bytes_read/iteration=1024k bytes_read/sec=374.754M/s midpoints=137.363M midpoints/sec=196.479M/s
BM_StdMidpoint<uint8_t, RandRand>_BigO 5.09 N 5.09 N
BM_StdMidpoint<uint8_t, RandRand>_RMS 0 % 0 %
<...>
BM_StdMidpoint<uint32_t, ZeroRand>/131072 300887 ns 300887 ns 2331 bytes_read/iteration=1024k bytes_read/sec=3.24561G/s midpoints=305.529M midpoints/sec=435.619M/s
BM_StdMidpoint<uint32_t, ZeroRand>_BigO 2.29 N 2.29 N
BM_StdMidpoint<uint32_t, ZeroRand>_RMS 2 % 2 %
<...>
BM_StdMidpoint<uint64_t, ZeroRand>/65536 169634 ns 169634 ns 4102 bytes_read/iteration=1024k bytes_read/sec=5.75688G/s midpoints=268.829M midpoints/sec=386.338M/s
BM_StdMidpoint<uint64_t, ZeroRand>_BigO 2.59 N 2.59 N
BM_StdMidpoint<uint64_t, ZeroRand>_RMS 3 % 3 %
<...>
BM_StdMidpoint<uint16_t, ZeroRand>/262144 592252 ns 592255 ns 1182 bytes_read/iteration=1024k bytes_read/sec=1.64889G/s midpoints=309.854M midpoints/sec=442.62M/s
BM_StdMidpoint<uint16_t, ZeroRand>_BigO 2.26 N 2.26 N
BM_StdMidpoint<uint16_t, ZeroRand>_RMS 1 % 1 %
<...>
BM_StdMidpoint<uint8_t, ZeroRand>/524288 987295 ns 987309 ns 711 bytes_read/iteration=1024k bytes_read/sec=1012.85M/s midpoints=372.769M midpoints/sec=531.028M/s
BM_StdMidpoint<uint8_t, ZeroRand>_BigO 1.88 N 1.88 N
BM_StdMidpoint<uint8_t, ZeroRand>_RMS 1 % 1 %
RUNNING: ./llvm-cmov-bench-NEW --benchmark_out=/tmp/tmpPvwpfW
2019-03-06 21:56:58
Running ./llvm-cmov-bench-NEW
Run on (8 X 4000 MHz CPU s)
CPU Caches:
L1 Data 16K (x8)
L1 Instruction 64K (x4)
L2 Unified 2048K (x4)
L3 Unified 8192K (x1)
Load Average: 1.17, 1.46, 1.30
----------------------------------------------------------------------------------------------------
Benchmark Time CPU Iterations UserCounters<...>
----------------------------------------------------------------------------------------------------
<...>
BM_StdMidpoint<int32_t, RandRand>/131072 300878 ns 300880 ns 2324 bytes_read/iteration=1024k bytes_read/sec=3.24569G/s midpoints=304.611M midpoints/sec=435.629M/s
BM_StdMidpoint<int32_t, RandRand>_BigO 2.29 N 2.29 N
BM_StdMidpoint<int32_t, RandRand>_RMS 2 % 2 %
<...>
BM_StdMidpoint<uint32_t, RandRand>/131072 300231 ns 300226 ns 2330 bytes_read/iteration=1024k bytes_read/sec=3.25276G/s midpoints=305.398M midpoints/sec=436.578M/s
BM_StdMidpoint<uint32_t, RandRand>_BigO 2.29 N 2.29 N
BM_StdMidpoint<uint32_t, RandRand>_RMS 2 % 2 %
<...>
BM_StdMidpoint<int64_t, RandRand>/65536 170819 ns 170777 ns 4115 bytes_read/iteration=1024k bytes_read/sec=5.71835G/s midpoints=269.681M midpoints/sec=383.752M/s
BM_StdMidpoint<int64_t, RandRand>_BigO 2.60 N 2.60 N
BM_StdMidpoint<int64_t, RandRand>_RMS 3 % 3 %
<...>
BM_StdMidpoint<uint64_t, RandRand>/65536 171705 ns 171708 ns 4106 bytes_read/iteration=1024k bytes_read/sec=5.68733G/s midpoints=269.091M midpoints/sec=381.671M/s
BM_StdMidpoint<uint64_t, RandRand>_BigO 2.62 N 2.62 N
BM_StdMidpoint<uint64_t, RandRand>_RMS 3 % 3 %
<...>
BM_StdMidpoint<int16_t, RandRand>/262144 592510 ns 592516 ns 1182 bytes_read/iteration=1024k bytes_read/sec=1.64816G/s midpoints=309.854M midpoints/sec=442.425M/s
BM_StdMidpoint<int16_t, RandRand>_BigO 2.26 N 2.26 N
BM_StdMidpoint<int16_t, RandRand>_RMS 1 % 1 %
<...>
BM_StdMidpoint<uint16_t, RandRand>/262144 614823 ns 614823 ns 1180 bytes_read/iteration=1024k bytes_read/sec=1.58836G/s midpoints=309.33M midpoints/sec=426.373M/s
BM_StdMidpoint<uint16_t, RandRand>_BigO 2.33 N 2.33 N
BM_StdMidpoint<uint16_t, RandRand>_RMS 4 % 4 %
<...>
BM_StdMidpoint<int8_t, RandRand>/524288 1073181 ns 1073201 ns 650 bytes_read/iteration=1024k bytes_read/sec=931.791M/s midpoints=340.787M midpoints/sec=488.527M/s
BM_StdMidpoint<int8_t, RandRand>_BigO 2.05 N 2.05 N
BM_StdMidpoint<int8_t, RandRand>_RMS 1 % 1 %
BM_StdMidpoint<uint8_t, RandRand>/524288 1071010 ns 1071020 ns 653 bytes_read/iteration=1024k bytes_read/sec=933.689M/s midpoints=342.36M midpoints/sec=489.522M/s
BM_StdMidpoint<uint8_t, RandRand>_BigO 2.05 N 2.05 N
BM_StdMidpoint<uint8_t, RandRand>_RMS 1 % 1 %
<...>
BM_StdMidpoint<uint32_t, ZeroRand>/131072 300413 ns 300416 ns 2330 bytes_read/iteration=1024k bytes_read/sec=3.2507G/s midpoints=305.398M midpoints/sec=436.302M/s
BM_StdMidpoint<uint32_t, ZeroRand>_BigO 2.29 N 2.29 N
BM_StdMidpoint<uint32_t, ZeroRand>_RMS 2 % 2 %
<...>
BM_StdMidpoint<uint64_t, ZeroRand>/65536 169667 ns 169669 ns 4123 bytes_read/iteration=1024k bytes_read/sec=5.75568G/s midpoints=270.205M midpoints/sec=386.257M/s
BM_StdMidpoint<uint64_t, ZeroRand>_BigO 2.59 N 2.59 N
BM_StdMidpoint<uint64_t, ZeroRand>_RMS 3 % 3 %
<...>
BM_StdMidpoint<uint16_t, ZeroRand>/262144 591396 ns 591404 ns 1184 bytes_read/iteration=1024k bytes_read/sec=1.65126G/s midpoints=310.378M midpoints/sec=443.257M/s
BM_StdMidpoint<uint16_t, ZeroRand>_BigO 2.26 N 2.26 N
BM_StdMidpoint<uint16_t, ZeroRand>_RMS 1 % 1 %
<...>
BM_StdMidpoint<uint8_t, ZeroRand>/524288 1069421 ns 1069413 ns 655 bytes_read/iteration=1024k bytes_read/sec=935.092M/s midpoints=343.409M midpoints/sec=490.258M/s
BM_StdMidpoint<uint8_t, ZeroRand>_BigO 2.04 N 2.04 N
BM_StdMidpoint<uint8_t, ZeroRand>_RMS 0 % 0 %
Comparing ./llvm-cmov-bench-OLD to ./llvm-cmov-bench-NEW
Benchmark Time CPU Time Old Time New CPU Old CPU New
----------------------------------------------------------------------------------------------------------------------------------------
<...>
BM_StdMidpoint<int32_t, RandRand>/131072 +0.0016 +0.0016 300398 300878 300404 300880
<...>
BM_StdMidpoint<uint32_t, RandRand>/131072 -0.0007 -0.0007 300433 300231 300433 300226
<...>
BM_StdMidpoint<int64_t, RandRand>/65536 +0.0057 +0.0054 169857 170819 169858 170777
<...>
BM_StdMidpoint<uint64_t, RandRand>/65536 +0.0114 +0.0114 169770 171705 169771 171708
<...>
BM_StdMidpoint<int16_t, RandRand>/262144 +0.0023 +0.0023 591169 592510 591179 592516
<...>
BM_StdMidpoint<uint16_t, RandRand>/262144 +0.0398 +0.0398 591264 614823 591274 614823
<...>
BM_StdMidpoint<int8_t, RandRand>/524288 -0.6403 -0.6403 2983669 1073181 2983689 1073201
<...>
BM_StdMidpoint<uint8_t, RandRand>/524288 -0.5986 -0.5986 2668398 1071010 2668419 1071020
<...>
BM_StdMidpoint<uint32_t, ZeroRand>/131072 -0.0016 -0.0016 300887 300413 300887 300416
<...>
BM_StdMidpoint<uint64_t, ZeroRand>/65536 +0.0002 +0.0002 169634 169667 169634 169669
<...>
BM_StdMidpoint<uint16_t, ZeroRand>/262144 -0.0014 -0.0014 592252 591396 592255 591404
<...>
BM_StdMidpoint<uint8_t, ZeroRand>/524288 +0.0832 +0.0832 987295 1069421 987309 1069413
```
What can we tell from the benchmark?
* `BM_StdMidpoint<[u]int8_t, RandRand>` indeed has the worst performance.
* All `BM_StdMidpoint<uint{8,16,32}_t, ZeroRand>` are all performant, even the 8-bit case.
That is because there we are computing mid point between zero and some random number,
thus if the branch predictor is in use, it is in optimal situation.
* Promoting 8-bit CMOV did improve performance of `BM_StdMidpoint<[u]int8_t, RandRand>`, by -59%..-64%.
# What about branch predictor?
* `BM_StdMidpoint<uint8_t, ZeroRand>` was faster than `BM_StdMidpoint<uint{16,32,64}_t, ZeroRand>`,
which may mean that well-predicted branch is better than `cmov`.
* Promoting 8-bit CMOV degraded performance of `BM_StdMidpoint<uint8_t, ZeroRand>`,
`cmov` is up to +10% worse than well-predicted branch.
* However, i do not believe this is a concern. If the branch is well predicted, then the PGO
will also say that it is well predicted, and LLVM will happily expand cmov back into branch:
https://godbolt.org/z/P5ufig
# What about partial register stalls?
I'm not really able to answer that.
What i can say is that if the branch is unpredictable (if it is predictable, then use PGO and you'll have branch)
in ~50% of cases you will have to pay branch misprediction penalty.
```
$ grep -i MispredictPenalty X86Sched*.td
X86SchedBroadwell.td: let MispredictPenalty = 16;
X86SchedHaswell.td: let MispredictPenalty = 16;
X86SchedSandyBridge.td: let MispredictPenalty = 16;
X86SchedSkylakeClient.td: let MispredictPenalty = 14;
X86SchedSkylakeServer.td: let MispredictPenalty = 14;
X86ScheduleBdVer2.td: let MispredictPenalty = 20; // Minimum branch misdirection penalty.
X86ScheduleBtVer2.td: let MispredictPenalty = 14; // Minimum branch misdirection penalty
X86ScheduleSLM.td: let MispredictPenalty = 10;
X86ScheduleZnver1.td: let MispredictPenalty = 17;
```
.. which it can be as small as 10 cycles and as large as 20 cycles.
Partial register stalls do not seem to be an issue for AMD CPU's.
For intel CPU's, they should be around ~5 cycles?
Is that actually an issue here? I'm not sure.
In short, i'd say this is an improvement, at least on this microbenchmark.
Fixes [[ https://bugs.llvm.org/show_bug.cgi?id=40965 | PR40965 ]].
Reviewers: craig.topper, RKSimon, spatel, andreadb, nikic
Reviewed By: craig.topper, andreadb
Subscribers: jfb, jdoerfert, llvm-commits, mclow.lists
Tags: #llvm, #libc
Differential Revision: https://reviews.llvm.org/D59035
llvm-svn: 356300
2019-03-16 05:17:53 +08:00
|
|
|
; CHECK-NEXT: xorl %esi, %esi
|
2017-07-12 06:04:36 +08:00
|
|
|
; CHECK-NEXT: testb %dl, %dl
|
|
|
|
; CHECK-NEXT: setne %bl
|
[X86] Promote i8 CMOV's (PR40965)
Summary:
@mclow.lists brought up this issue up in IRC, it came up during
implementation of libc++ `std::midpoint()` implementation (D59099)
https://godbolt.org/z/oLrHBP
Currently LLVM X86 backend only promotes i8 CMOV if it came from 2x`trunc`.
This differential proposes to always promote i8 CMOV.
There are several concerns here:
* Is this actually more performant, or is it just the ASM that looks cuter?
* Does this result in partial register stalls?
* What about branch predictor?
# Indeed, performance should be the main point here.
Let's look at a simple microbenchmark: {F8412076}
```
#include "benchmark/benchmark.h"
#include <algorithm>
#include <cmath>
#include <cstdint>
#include <iterator>
#include <limits>
#include <random>
#include <type_traits>
#include <utility>
#include <vector>
// Future preliminary libc++ code, from Marshall Clow.
namespace std {
template <class _Tp>
__inline _Tp midpoint(_Tp __a, _Tp __b) noexcept {
using _Up = typename std::make_unsigned<typename remove_cv<_Tp>::type>::type;
int __sign = 1;
_Up __m = __a;
_Up __M = __b;
if (__a > __b) {
__sign = -1;
__m = __b;
__M = __a;
}
return __a + __sign * _Tp(_Up(__M - __m) >> 1);
}
} // namespace std
template <typename T>
std::vector<T> getVectorOfRandomNumbers(size_t count) {
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_int_distribution<T> dis(std::numeric_limits<T>::min(),
std::numeric_limits<T>::max());
std::vector<T> v;
v.reserve(count);
std::generate_n(std::back_inserter(v), count,
[&dis, &gen]() { return dis(gen); });
assert(v.size() == count);
return v;
}
struct RandRand {
template <typename T>
static std::pair<std::vector<T>, std::vector<T>> Gen(size_t count) {
return std::make_pair(getVectorOfRandomNumbers<T>(count),
getVectorOfRandomNumbers<T>(count));
}
};
struct ZeroRand {
template <typename T>
static std::pair<std::vector<T>, std::vector<T>> Gen(size_t count) {
return std::make_pair(std::vector<T>(count, T(0)),
getVectorOfRandomNumbers<T>(count));
}
};
template <class T, class Gen>
void BM_StdMidpoint(benchmark::State& state) {
const size_t Length = state.range(0);
const std::pair<std::vector<T>, std::vector<T>> Data =
Gen::template Gen<T>(Length);
const std::vector<T>& a = Data.first;
const std::vector<T>& b = Data.second;
assert(a.size() == Length && b.size() == a.size());
benchmark::ClobberMemory();
benchmark::DoNotOptimize(a);
benchmark::DoNotOptimize(a.data());
benchmark::DoNotOptimize(b);
benchmark::DoNotOptimize(b.data());
for (auto _ : state) {
for (size_t i = 0; i < Length; i++) {
const auto calculated = std::midpoint(a[i], b[i]);
benchmark::DoNotOptimize(calculated);
}
}
state.SetComplexityN(Length);
state.counters["midpoints"] =
benchmark::Counter(Length, benchmark::Counter::kIsIterationInvariant);
state.counters["midpoints/sec"] =
benchmark::Counter(Length, benchmark::Counter::kIsIterationInvariantRate);
const size_t BytesRead = 2 * sizeof(T) * Length;
state.counters["bytes_read/iteration"] =
benchmark::Counter(BytesRead, benchmark::Counter::kDefaults,
benchmark::Counter::OneK::kIs1024);
state.counters["bytes_read/sec"] = benchmark::Counter(
BytesRead, benchmark::Counter::kIsIterationInvariantRate,
benchmark::Counter::OneK::kIs1024);
}
template <typename T>
static void CustomArguments(benchmark::internal::Benchmark* b) {
const size_t L2SizeBytes = 2 * 1024 * 1024;
// What is the largest range we can check to always fit within given L2 cache?
const size_t MaxLen = L2SizeBytes / /*total bufs*/ 2 /
/*maximal elt size*/ sizeof(T) / /*safety margin*/ 2;
b->RangeMultiplier(2)->Range(1, MaxLen)->Complexity(benchmark::oN);
}
// Both of the values are random.
// The comparison is unpredictable.
BENCHMARK_TEMPLATE(BM_StdMidpoint, int32_t, RandRand)
->Apply(CustomArguments<int32_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, uint32_t, RandRand)
->Apply(CustomArguments<uint32_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, int64_t, RandRand)
->Apply(CustomArguments<int64_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, uint64_t, RandRand)
->Apply(CustomArguments<uint64_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, int16_t, RandRand)
->Apply(CustomArguments<int16_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, uint16_t, RandRand)
->Apply(CustomArguments<uint16_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, int8_t, RandRand)
->Apply(CustomArguments<int8_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, uint8_t, RandRand)
->Apply(CustomArguments<uint8_t>);
// One value is always zero, and another is bigger or equal than zero.
// The comparison is predictable.
BENCHMARK_TEMPLATE(BM_StdMidpoint, uint32_t, ZeroRand)
->Apply(CustomArguments<uint32_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, uint64_t, ZeroRand)
->Apply(CustomArguments<uint64_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, uint16_t, ZeroRand)
->Apply(CustomArguments<uint16_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, uint8_t, ZeroRand)
->Apply(CustomArguments<uint8_t>);
```
```
$ ~/src/googlebenchmark/tools/compare.py --no-utest benchmarks ./llvm-cmov-bench-OLD ./llvm-cmov-bench-NEW
RUNNING: ./llvm-cmov-bench-OLD --benchmark_out=/tmp/tmp5a5qjm
2019-03-06 21:53:31
Running ./llvm-cmov-bench-OLD
Run on (8 X 4000 MHz CPU s)
CPU Caches:
L1 Data 16K (x8)
L1 Instruction 64K (x4)
L2 Unified 2048K (x4)
L3 Unified 8192K (x1)
Load Average: 1.78, 1.81, 1.36
----------------------------------------------------------------------------------------------------
Benchmark Time CPU Iterations UserCounters<...>
----------------------------------------------------------------------------------------------------
<...>
BM_StdMidpoint<int32_t, RandRand>/131072 300398 ns 300404 ns 2330 bytes_read/iteration=1024k bytes_read/sec=3.25083G/s midpoints=305.398M midpoints/sec=436.319M/s
BM_StdMidpoint<int32_t, RandRand>_BigO 2.29 N 2.29 N
BM_StdMidpoint<int32_t, RandRand>_RMS 2 % 2 %
<...>
BM_StdMidpoint<uint32_t, RandRand>/131072 300433 ns 300433 ns 2330 bytes_read/iteration=1024k bytes_read/sec=3.25052G/s midpoints=305.398M midpoints/sec=436.278M/s
BM_StdMidpoint<uint32_t, RandRand>_BigO 2.29 N 2.29 N
BM_StdMidpoint<uint32_t, RandRand>_RMS 2 % 2 %
<...>
BM_StdMidpoint<int64_t, RandRand>/65536 169857 ns 169858 ns 4121 bytes_read/iteration=1024k bytes_read/sec=5.74929G/s midpoints=270.074M midpoints/sec=385.828M/s
BM_StdMidpoint<int64_t, RandRand>_BigO 2.59 N 2.59 N
BM_StdMidpoint<int64_t, RandRand>_RMS 3 % 3 %
<...>
BM_StdMidpoint<uint64_t, RandRand>/65536 169770 ns 169771 ns 4125 bytes_read/iteration=1024k bytes_read/sec=5.75223G/s midpoints=270.336M midpoints/sec=386.026M/s
BM_StdMidpoint<uint64_t, RandRand>_BigO 2.59 N 2.59 N
BM_StdMidpoint<uint64_t, RandRand>_RMS 3 % 3 %
<...>
BM_StdMidpoint<int16_t, RandRand>/262144 591169 ns 591179 ns 1182 bytes_read/iteration=1024k bytes_read/sec=1.65189G/s midpoints=309.854M midpoints/sec=443.426M/s
BM_StdMidpoint<int16_t, RandRand>_BigO 2.25 N 2.25 N
BM_StdMidpoint<int16_t, RandRand>_RMS 1 % 1 %
<...>
BM_StdMidpoint<uint16_t, RandRand>/262144 591264 ns 591274 ns 1184 bytes_read/iteration=1024k bytes_read/sec=1.65162G/s midpoints=310.378M midpoints/sec=443.354M/s
BM_StdMidpoint<uint16_t, RandRand>_BigO 2.25 N 2.25 N
BM_StdMidpoint<uint16_t, RandRand>_RMS 1 % 1 %
<...>
BM_StdMidpoint<int8_t, RandRand>/524288 2983669 ns 2983689 ns 235 bytes_read/iteration=1024k bytes_read/sec=335.156M/s midpoints=123.208M midpoints/sec=175.718M/s
BM_StdMidpoint<int8_t, RandRand>_BigO 5.69 N 5.69 N
BM_StdMidpoint<int8_t, RandRand>_RMS 0 % 0 %
<...>
BM_StdMidpoint<uint8_t, RandRand>/524288 2668398 ns 2668419 ns 262 bytes_read/iteration=1024k bytes_read/sec=374.754M/s midpoints=137.363M midpoints/sec=196.479M/s
BM_StdMidpoint<uint8_t, RandRand>_BigO 5.09 N 5.09 N
BM_StdMidpoint<uint8_t, RandRand>_RMS 0 % 0 %
<...>
BM_StdMidpoint<uint32_t, ZeroRand>/131072 300887 ns 300887 ns 2331 bytes_read/iteration=1024k bytes_read/sec=3.24561G/s midpoints=305.529M midpoints/sec=435.619M/s
BM_StdMidpoint<uint32_t, ZeroRand>_BigO 2.29 N 2.29 N
BM_StdMidpoint<uint32_t, ZeroRand>_RMS 2 % 2 %
<...>
BM_StdMidpoint<uint64_t, ZeroRand>/65536 169634 ns 169634 ns 4102 bytes_read/iteration=1024k bytes_read/sec=5.75688G/s midpoints=268.829M midpoints/sec=386.338M/s
BM_StdMidpoint<uint64_t, ZeroRand>_BigO 2.59 N 2.59 N
BM_StdMidpoint<uint64_t, ZeroRand>_RMS 3 % 3 %
<...>
BM_StdMidpoint<uint16_t, ZeroRand>/262144 592252 ns 592255 ns 1182 bytes_read/iteration=1024k bytes_read/sec=1.64889G/s midpoints=309.854M midpoints/sec=442.62M/s
BM_StdMidpoint<uint16_t, ZeroRand>_BigO 2.26 N 2.26 N
BM_StdMidpoint<uint16_t, ZeroRand>_RMS 1 % 1 %
<...>
BM_StdMidpoint<uint8_t, ZeroRand>/524288 987295 ns 987309 ns 711 bytes_read/iteration=1024k bytes_read/sec=1012.85M/s midpoints=372.769M midpoints/sec=531.028M/s
BM_StdMidpoint<uint8_t, ZeroRand>_BigO 1.88 N 1.88 N
BM_StdMidpoint<uint8_t, ZeroRand>_RMS 1 % 1 %
RUNNING: ./llvm-cmov-bench-NEW --benchmark_out=/tmp/tmpPvwpfW
2019-03-06 21:56:58
Running ./llvm-cmov-bench-NEW
Run on (8 X 4000 MHz CPU s)
CPU Caches:
L1 Data 16K (x8)
L1 Instruction 64K (x4)
L2 Unified 2048K (x4)
L3 Unified 8192K (x1)
Load Average: 1.17, 1.46, 1.30
----------------------------------------------------------------------------------------------------
Benchmark Time CPU Iterations UserCounters<...>
----------------------------------------------------------------------------------------------------
<...>
BM_StdMidpoint<int32_t, RandRand>/131072 300878 ns 300880 ns 2324 bytes_read/iteration=1024k bytes_read/sec=3.24569G/s midpoints=304.611M midpoints/sec=435.629M/s
BM_StdMidpoint<int32_t, RandRand>_BigO 2.29 N 2.29 N
BM_StdMidpoint<int32_t, RandRand>_RMS 2 % 2 %
<...>
BM_StdMidpoint<uint32_t, RandRand>/131072 300231 ns 300226 ns 2330 bytes_read/iteration=1024k bytes_read/sec=3.25276G/s midpoints=305.398M midpoints/sec=436.578M/s
BM_StdMidpoint<uint32_t, RandRand>_BigO 2.29 N 2.29 N
BM_StdMidpoint<uint32_t, RandRand>_RMS 2 % 2 %
<...>
BM_StdMidpoint<int64_t, RandRand>/65536 170819 ns 170777 ns 4115 bytes_read/iteration=1024k bytes_read/sec=5.71835G/s midpoints=269.681M midpoints/sec=383.752M/s
BM_StdMidpoint<int64_t, RandRand>_BigO 2.60 N 2.60 N
BM_StdMidpoint<int64_t, RandRand>_RMS 3 % 3 %
<...>
BM_StdMidpoint<uint64_t, RandRand>/65536 171705 ns 171708 ns 4106 bytes_read/iteration=1024k bytes_read/sec=5.68733G/s midpoints=269.091M midpoints/sec=381.671M/s
BM_StdMidpoint<uint64_t, RandRand>_BigO 2.62 N 2.62 N
BM_StdMidpoint<uint64_t, RandRand>_RMS 3 % 3 %
<...>
BM_StdMidpoint<int16_t, RandRand>/262144 592510 ns 592516 ns 1182 bytes_read/iteration=1024k bytes_read/sec=1.64816G/s midpoints=309.854M midpoints/sec=442.425M/s
BM_StdMidpoint<int16_t, RandRand>_BigO 2.26 N 2.26 N
BM_StdMidpoint<int16_t, RandRand>_RMS 1 % 1 %
<...>
BM_StdMidpoint<uint16_t, RandRand>/262144 614823 ns 614823 ns 1180 bytes_read/iteration=1024k bytes_read/sec=1.58836G/s midpoints=309.33M midpoints/sec=426.373M/s
BM_StdMidpoint<uint16_t, RandRand>_BigO 2.33 N 2.33 N
BM_StdMidpoint<uint16_t, RandRand>_RMS 4 % 4 %
<...>
BM_StdMidpoint<int8_t, RandRand>/524288 1073181 ns 1073201 ns 650 bytes_read/iteration=1024k bytes_read/sec=931.791M/s midpoints=340.787M midpoints/sec=488.527M/s
BM_StdMidpoint<int8_t, RandRand>_BigO 2.05 N 2.05 N
BM_StdMidpoint<int8_t, RandRand>_RMS 1 % 1 %
BM_StdMidpoint<uint8_t, RandRand>/524288 1071010 ns 1071020 ns 653 bytes_read/iteration=1024k bytes_read/sec=933.689M/s midpoints=342.36M midpoints/sec=489.522M/s
BM_StdMidpoint<uint8_t, RandRand>_BigO 2.05 N 2.05 N
BM_StdMidpoint<uint8_t, RandRand>_RMS 1 % 1 %
<...>
BM_StdMidpoint<uint32_t, ZeroRand>/131072 300413 ns 300416 ns 2330 bytes_read/iteration=1024k bytes_read/sec=3.2507G/s midpoints=305.398M midpoints/sec=436.302M/s
BM_StdMidpoint<uint32_t, ZeroRand>_BigO 2.29 N 2.29 N
BM_StdMidpoint<uint32_t, ZeroRand>_RMS 2 % 2 %
<...>
BM_StdMidpoint<uint64_t, ZeroRand>/65536 169667 ns 169669 ns 4123 bytes_read/iteration=1024k bytes_read/sec=5.75568G/s midpoints=270.205M midpoints/sec=386.257M/s
BM_StdMidpoint<uint64_t, ZeroRand>_BigO 2.59 N 2.59 N
BM_StdMidpoint<uint64_t, ZeroRand>_RMS 3 % 3 %
<...>
BM_StdMidpoint<uint16_t, ZeroRand>/262144 591396 ns 591404 ns 1184 bytes_read/iteration=1024k bytes_read/sec=1.65126G/s midpoints=310.378M midpoints/sec=443.257M/s
BM_StdMidpoint<uint16_t, ZeroRand>_BigO 2.26 N 2.26 N
BM_StdMidpoint<uint16_t, ZeroRand>_RMS 1 % 1 %
<...>
BM_StdMidpoint<uint8_t, ZeroRand>/524288 1069421 ns 1069413 ns 655 bytes_read/iteration=1024k bytes_read/sec=935.092M/s midpoints=343.409M midpoints/sec=490.258M/s
BM_StdMidpoint<uint8_t, ZeroRand>_BigO 2.04 N 2.04 N
BM_StdMidpoint<uint8_t, ZeroRand>_RMS 0 % 0 %
Comparing ./llvm-cmov-bench-OLD to ./llvm-cmov-bench-NEW
Benchmark Time CPU Time Old Time New CPU Old CPU New
----------------------------------------------------------------------------------------------------------------------------------------
<...>
BM_StdMidpoint<int32_t, RandRand>/131072 +0.0016 +0.0016 300398 300878 300404 300880
<...>
BM_StdMidpoint<uint32_t, RandRand>/131072 -0.0007 -0.0007 300433 300231 300433 300226
<...>
BM_StdMidpoint<int64_t, RandRand>/65536 +0.0057 +0.0054 169857 170819 169858 170777
<...>
BM_StdMidpoint<uint64_t, RandRand>/65536 +0.0114 +0.0114 169770 171705 169771 171708
<...>
BM_StdMidpoint<int16_t, RandRand>/262144 +0.0023 +0.0023 591169 592510 591179 592516
<...>
BM_StdMidpoint<uint16_t, RandRand>/262144 +0.0398 +0.0398 591264 614823 591274 614823
<...>
BM_StdMidpoint<int8_t, RandRand>/524288 -0.6403 -0.6403 2983669 1073181 2983689 1073201
<...>
BM_StdMidpoint<uint8_t, RandRand>/524288 -0.5986 -0.5986 2668398 1071010 2668419 1071020
<...>
BM_StdMidpoint<uint32_t, ZeroRand>/131072 -0.0016 -0.0016 300887 300413 300887 300416
<...>
BM_StdMidpoint<uint64_t, ZeroRand>/65536 +0.0002 +0.0002 169634 169667 169634 169669
<...>
BM_StdMidpoint<uint16_t, ZeroRand>/262144 -0.0014 -0.0014 592252 591396 592255 591404
<...>
BM_StdMidpoint<uint8_t, ZeroRand>/524288 +0.0832 +0.0832 987295 1069421 987309 1069413
```
What can we tell from the benchmark?
* `BM_StdMidpoint<[u]int8_t, RandRand>` indeed has the worst performance.
* All `BM_StdMidpoint<uint{8,16,32}_t, ZeroRand>` are all performant, even the 8-bit case.
That is because there we are computing mid point between zero and some random number,
thus if the branch predictor is in use, it is in optimal situation.
* Promoting 8-bit CMOV did improve performance of `BM_StdMidpoint<[u]int8_t, RandRand>`, by -59%..-64%.
# What about branch predictor?
* `BM_StdMidpoint<uint8_t, ZeroRand>` was faster than `BM_StdMidpoint<uint{16,32,64}_t, ZeroRand>`,
which may mean that well-predicted branch is better than `cmov`.
* Promoting 8-bit CMOV degraded performance of `BM_StdMidpoint<uint8_t, ZeroRand>`,
`cmov` is up to +10% worse than well-predicted branch.
* However, i do not believe this is a concern. If the branch is well predicted, then the PGO
will also say that it is well predicted, and LLVM will happily expand cmov back into branch:
https://godbolt.org/z/P5ufig
# What about partial register stalls?
I'm not really able to answer that.
What i can say is that if the branch is unpredictable (if it is predictable, then use PGO and you'll have branch)
in ~50% of cases you will have to pay branch misprediction penalty.
```
$ grep -i MispredictPenalty X86Sched*.td
X86SchedBroadwell.td: let MispredictPenalty = 16;
X86SchedHaswell.td: let MispredictPenalty = 16;
X86SchedSandyBridge.td: let MispredictPenalty = 16;
X86SchedSkylakeClient.td: let MispredictPenalty = 14;
X86SchedSkylakeServer.td: let MispredictPenalty = 14;
X86ScheduleBdVer2.td: let MispredictPenalty = 20; // Minimum branch misdirection penalty.
X86ScheduleBtVer2.td: let MispredictPenalty = 14; // Minimum branch misdirection penalty
X86ScheduleSLM.td: let MispredictPenalty = 10;
X86ScheduleZnver1.td: let MispredictPenalty = 17;
```
.. which it can be as small as 10 cycles and as large as 20 cycles.
Partial register stalls do not seem to be an issue for AMD CPU's.
For intel CPU's, they should be around ~5 cycles?
Is that actually an issue here? I'm not sure.
In short, i'd say this is an improvement, at least on this microbenchmark.
Fixes [[ https://bugs.llvm.org/show_bug.cgi?id=40965 | PR40965 ]].
Reviewers: craig.topper, RKSimon, spatel, andreadb, nikic
Reviewed By: craig.topper, andreadb
Subscribers: jfb, jdoerfert, llvm-commits, mclow.lists
Tags: #llvm, #libc
Differential Revision: https://reviews.llvm.org/D59035
llvm-svn: 356300
2019-03-16 05:17:53 +08:00
|
|
|
; CHECK-NEXT: movzbl %al, %ecx
|
|
|
|
; CHECK-NEXT: cmovnel %esi, %ecx
|
2017-07-12 06:04:36 +08:00
|
|
|
; CHECK-NEXT: testb %al, %al
|
[X86] Promote i8 CMOV's (PR40965)
Summary:
@mclow.lists brought up this issue up in IRC, it came up during
implementation of libc++ `std::midpoint()` implementation (D59099)
https://godbolt.org/z/oLrHBP
Currently LLVM X86 backend only promotes i8 CMOV if it came from 2x`trunc`.
This differential proposes to always promote i8 CMOV.
There are several concerns here:
* Is this actually more performant, or is it just the ASM that looks cuter?
* Does this result in partial register stalls?
* What about branch predictor?
# Indeed, performance should be the main point here.
Let's look at a simple microbenchmark: {F8412076}
```
#include "benchmark/benchmark.h"
#include <algorithm>
#include <cmath>
#include <cstdint>
#include <iterator>
#include <limits>
#include <random>
#include <type_traits>
#include <utility>
#include <vector>
// Future preliminary libc++ code, from Marshall Clow.
namespace std {
template <class _Tp>
__inline _Tp midpoint(_Tp __a, _Tp __b) noexcept {
using _Up = typename std::make_unsigned<typename remove_cv<_Tp>::type>::type;
int __sign = 1;
_Up __m = __a;
_Up __M = __b;
if (__a > __b) {
__sign = -1;
__m = __b;
__M = __a;
}
return __a + __sign * _Tp(_Up(__M - __m) >> 1);
}
} // namespace std
template <typename T>
std::vector<T> getVectorOfRandomNumbers(size_t count) {
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_int_distribution<T> dis(std::numeric_limits<T>::min(),
std::numeric_limits<T>::max());
std::vector<T> v;
v.reserve(count);
std::generate_n(std::back_inserter(v), count,
[&dis, &gen]() { return dis(gen); });
assert(v.size() == count);
return v;
}
struct RandRand {
template <typename T>
static std::pair<std::vector<T>, std::vector<T>> Gen(size_t count) {
return std::make_pair(getVectorOfRandomNumbers<T>(count),
getVectorOfRandomNumbers<T>(count));
}
};
struct ZeroRand {
template <typename T>
static std::pair<std::vector<T>, std::vector<T>> Gen(size_t count) {
return std::make_pair(std::vector<T>(count, T(0)),
getVectorOfRandomNumbers<T>(count));
}
};
template <class T, class Gen>
void BM_StdMidpoint(benchmark::State& state) {
const size_t Length = state.range(0);
const std::pair<std::vector<T>, std::vector<T>> Data =
Gen::template Gen<T>(Length);
const std::vector<T>& a = Data.first;
const std::vector<T>& b = Data.second;
assert(a.size() == Length && b.size() == a.size());
benchmark::ClobberMemory();
benchmark::DoNotOptimize(a);
benchmark::DoNotOptimize(a.data());
benchmark::DoNotOptimize(b);
benchmark::DoNotOptimize(b.data());
for (auto _ : state) {
for (size_t i = 0; i < Length; i++) {
const auto calculated = std::midpoint(a[i], b[i]);
benchmark::DoNotOptimize(calculated);
}
}
state.SetComplexityN(Length);
state.counters["midpoints"] =
benchmark::Counter(Length, benchmark::Counter::kIsIterationInvariant);
state.counters["midpoints/sec"] =
benchmark::Counter(Length, benchmark::Counter::kIsIterationInvariantRate);
const size_t BytesRead = 2 * sizeof(T) * Length;
state.counters["bytes_read/iteration"] =
benchmark::Counter(BytesRead, benchmark::Counter::kDefaults,
benchmark::Counter::OneK::kIs1024);
state.counters["bytes_read/sec"] = benchmark::Counter(
BytesRead, benchmark::Counter::kIsIterationInvariantRate,
benchmark::Counter::OneK::kIs1024);
}
template <typename T>
static void CustomArguments(benchmark::internal::Benchmark* b) {
const size_t L2SizeBytes = 2 * 1024 * 1024;
// What is the largest range we can check to always fit within given L2 cache?
const size_t MaxLen = L2SizeBytes / /*total bufs*/ 2 /
/*maximal elt size*/ sizeof(T) / /*safety margin*/ 2;
b->RangeMultiplier(2)->Range(1, MaxLen)->Complexity(benchmark::oN);
}
// Both of the values are random.
// The comparison is unpredictable.
BENCHMARK_TEMPLATE(BM_StdMidpoint, int32_t, RandRand)
->Apply(CustomArguments<int32_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, uint32_t, RandRand)
->Apply(CustomArguments<uint32_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, int64_t, RandRand)
->Apply(CustomArguments<int64_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, uint64_t, RandRand)
->Apply(CustomArguments<uint64_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, int16_t, RandRand)
->Apply(CustomArguments<int16_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, uint16_t, RandRand)
->Apply(CustomArguments<uint16_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, int8_t, RandRand)
->Apply(CustomArguments<int8_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, uint8_t, RandRand)
->Apply(CustomArguments<uint8_t>);
// One value is always zero, and another is bigger or equal than zero.
// The comparison is predictable.
BENCHMARK_TEMPLATE(BM_StdMidpoint, uint32_t, ZeroRand)
->Apply(CustomArguments<uint32_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, uint64_t, ZeroRand)
->Apply(CustomArguments<uint64_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, uint16_t, ZeroRand)
->Apply(CustomArguments<uint16_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, uint8_t, ZeroRand)
->Apply(CustomArguments<uint8_t>);
```
```
$ ~/src/googlebenchmark/tools/compare.py --no-utest benchmarks ./llvm-cmov-bench-OLD ./llvm-cmov-bench-NEW
RUNNING: ./llvm-cmov-bench-OLD --benchmark_out=/tmp/tmp5a5qjm
2019-03-06 21:53:31
Running ./llvm-cmov-bench-OLD
Run on (8 X 4000 MHz CPU s)
CPU Caches:
L1 Data 16K (x8)
L1 Instruction 64K (x4)
L2 Unified 2048K (x4)
L3 Unified 8192K (x1)
Load Average: 1.78, 1.81, 1.36
----------------------------------------------------------------------------------------------------
Benchmark Time CPU Iterations UserCounters<...>
----------------------------------------------------------------------------------------------------
<...>
BM_StdMidpoint<int32_t, RandRand>/131072 300398 ns 300404 ns 2330 bytes_read/iteration=1024k bytes_read/sec=3.25083G/s midpoints=305.398M midpoints/sec=436.319M/s
BM_StdMidpoint<int32_t, RandRand>_BigO 2.29 N 2.29 N
BM_StdMidpoint<int32_t, RandRand>_RMS 2 % 2 %
<...>
BM_StdMidpoint<uint32_t, RandRand>/131072 300433 ns 300433 ns 2330 bytes_read/iteration=1024k bytes_read/sec=3.25052G/s midpoints=305.398M midpoints/sec=436.278M/s
BM_StdMidpoint<uint32_t, RandRand>_BigO 2.29 N 2.29 N
BM_StdMidpoint<uint32_t, RandRand>_RMS 2 % 2 %
<...>
BM_StdMidpoint<int64_t, RandRand>/65536 169857 ns 169858 ns 4121 bytes_read/iteration=1024k bytes_read/sec=5.74929G/s midpoints=270.074M midpoints/sec=385.828M/s
BM_StdMidpoint<int64_t, RandRand>_BigO 2.59 N 2.59 N
BM_StdMidpoint<int64_t, RandRand>_RMS 3 % 3 %
<...>
BM_StdMidpoint<uint64_t, RandRand>/65536 169770 ns 169771 ns 4125 bytes_read/iteration=1024k bytes_read/sec=5.75223G/s midpoints=270.336M midpoints/sec=386.026M/s
BM_StdMidpoint<uint64_t, RandRand>_BigO 2.59 N 2.59 N
BM_StdMidpoint<uint64_t, RandRand>_RMS 3 % 3 %
<...>
BM_StdMidpoint<int16_t, RandRand>/262144 591169 ns 591179 ns 1182 bytes_read/iteration=1024k bytes_read/sec=1.65189G/s midpoints=309.854M midpoints/sec=443.426M/s
BM_StdMidpoint<int16_t, RandRand>_BigO 2.25 N 2.25 N
BM_StdMidpoint<int16_t, RandRand>_RMS 1 % 1 %
<...>
BM_StdMidpoint<uint16_t, RandRand>/262144 591264 ns 591274 ns 1184 bytes_read/iteration=1024k bytes_read/sec=1.65162G/s midpoints=310.378M midpoints/sec=443.354M/s
BM_StdMidpoint<uint16_t, RandRand>_BigO 2.25 N 2.25 N
BM_StdMidpoint<uint16_t, RandRand>_RMS 1 % 1 %
<...>
BM_StdMidpoint<int8_t, RandRand>/524288 2983669 ns 2983689 ns 235 bytes_read/iteration=1024k bytes_read/sec=335.156M/s midpoints=123.208M midpoints/sec=175.718M/s
BM_StdMidpoint<int8_t, RandRand>_BigO 5.69 N 5.69 N
BM_StdMidpoint<int8_t, RandRand>_RMS 0 % 0 %
<...>
BM_StdMidpoint<uint8_t, RandRand>/524288 2668398 ns 2668419 ns 262 bytes_read/iteration=1024k bytes_read/sec=374.754M/s midpoints=137.363M midpoints/sec=196.479M/s
BM_StdMidpoint<uint8_t, RandRand>_BigO 5.09 N 5.09 N
BM_StdMidpoint<uint8_t, RandRand>_RMS 0 % 0 %
<...>
BM_StdMidpoint<uint32_t, ZeroRand>/131072 300887 ns 300887 ns 2331 bytes_read/iteration=1024k bytes_read/sec=3.24561G/s midpoints=305.529M midpoints/sec=435.619M/s
BM_StdMidpoint<uint32_t, ZeroRand>_BigO 2.29 N 2.29 N
BM_StdMidpoint<uint32_t, ZeroRand>_RMS 2 % 2 %
<...>
BM_StdMidpoint<uint64_t, ZeroRand>/65536 169634 ns 169634 ns 4102 bytes_read/iteration=1024k bytes_read/sec=5.75688G/s midpoints=268.829M midpoints/sec=386.338M/s
BM_StdMidpoint<uint64_t, ZeroRand>_BigO 2.59 N 2.59 N
BM_StdMidpoint<uint64_t, ZeroRand>_RMS 3 % 3 %
<...>
BM_StdMidpoint<uint16_t, ZeroRand>/262144 592252 ns 592255 ns 1182 bytes_read/iteration=1024k bytes_read/sec=1.64889G/s midpoints=309.854M midpoints/sec=442.62M/s
BM_StdMidpoint<uint16_t, ZeroRand>_BigO 2.26 N 2.26 N
BM_StdMidpoint<uint16_t, ZeroRand>_RMS 1 % 1 %
<...>
BM_StdMidpoint<uint8_t, ZeroRand>/524288 987295 ns 987309 ns 711 bytes_read/iteration=1024k bytes_read/sec=1012.85M/s midpoints=372.769M midpoints/sec=531.028M/s
BM_StdMidpoint<uint8_t, ZeroRand>_BigO 1.88 N 1.88 N
BM_StdMidpoint<uint8_t, ZeroRand>_RMS 1 % 1 %
RUNNING: ./llvm-cmov-bench-NEW --benchmark_out=/tmp/tmpPvwpfW
2019-03-06 21:56:58
Running ./llvm-cmov-bench-NEW
Run on (8 X 4000 MHz CPU s)
CPU Caches:
L1 Data 16K (x8)
L1 Instruction 64K (x4)
L2 Unified 2048K (x4)
L3 Unified 8192K (x1)
Load Average: 1.17, 1.46, 1.30
----------------------------------------------------------------------------------------------------
Benchmark Time CPU Iterations UserCounters<...>
----------------------------------------------------------------------------------------------------
<...>
BM_StdMidpoint<int32_t, RandRand>/131072 300878 ns 300880 ns 2324 bytes_read/iteration=1024k bytes_read/sec=3.24569G/s midpoints=304.611M midpoints/sec=435.629M/s
BM_StdMidpoint<int32_t, RandRand>_BigO 2.29 N 2.29 N
BM_StdMidpoint<int32_t, RandRand>_RMS 2 % 2 %
<...>
BM_StdMidpoint<uint32_t, RandRand>/131072 300231 ns 300226 ns 2330 bytes_read/iteration=1024k bytes_read/sec=3.25276G/s midpoints=305.398M midpoints/sec=436.578M/s
BM_StdMidpoint<uint32_t, RandRand>_BigO 2.29 N 2.29 N
BM_StdMidpoint<uint32_t, RandRand>_RMS 2 % 2 %
<...>
BM_StdMidpoint<int64_t, RandRand>/65536 170819 ns 170777 ns 4115 bytes_read/iteration=1024k bytes_read/sec=5.71835G/s midpoints=269.681M midpoints/sec=383.752M/s
BM_StdMidpoint<int64_t, RandRand>_BigO 2.60 N 2.60 N
BM_StdMidpoint<int64_t, RandRand>_RMS 3 % 3 %
<...>
BM_StdMidpoint<uint64_t, RandRand>/65536 171705 ns 171708 ns 4106 bytes_read/iteration=1024k bytes_read/sec=5.68733G/s midpoints=269.091M midpoints/sec=381.671M/s
BM_StdMidpoint<uint64_t, RandRand>_BigO 2.62 N 2.62 N
BM_StdMidpoint<uint64_t, RandRand>_RMS 3 % 3 %
<...>
BM_StdMidpoint<int16_t, RandRand>/262144 592510 ns 592516 ns 1182 bytes_read/iteration=1024k bytes_read/sec=1.64816G/s midpoints=309.854M midpoints/sec=442.425M/s
BM_StdMidpoint<int16_t, RandRand>_BigO 2.26 N 2.26 N
BM_StdMidpoint<int16_t, RandRand>_RMS 1 % 1 %
<...>
BM_StdMidpoint<uint16_t, RandRand>/262144 614823 ns 614823 ns 1180 bytes_read/iteration=1024k bytes_read/sec=1.58836G/s midpoints=309.33M midpoints/sec=426.373M/s
BM_StdMidpoint<uint16_t, RandRand>_BigO 2.33 N 2.33 N
BM_StdMidpoint<uint16_t, RandRand>_RMS 4 % 4 %
<...>
BM_StdMidpoint<int8_t, RandRand>/524288 1073181 ns 1073201 ns 650 bytes_read/iteration=1024k bytes_read/sec=931.791M/s midpoints=340.787M midpoints/sec=488.527M/s
BM_StdMidpoint<int8_t, RandRand>_BigO 2.05 N 2.05 N
BM_StdMidpoint<int8_t, RandRand>_RMS 1 % 1 %
BM_StdMidpoint<uint8_t, RandRand>/524288 1071010 ns 1071020 ns 653 bytes_read/iteration=1024k bytes_read/sec=933.689M/s midpoints=342.36M midpoints/sec=489.522M/s
BM_StdMidpoint<uint8_t, RandRand>_BigO 2.05 N 2.05 N
BM_StdMidpoint<uint8_t, RandRand>_RMS 1 % 1 %
<...>
BM_StdMidpoint<uint32_t, ZeroRand>/131072 300413 ns 300416 ns 2330 bytes_read/iteration=1024k bytes_read/sec=3.2507G/s midpoints=305.398M midpoints/sec=436.302M/s
BM_StdMidpoint<uint32_t, ZeroRand>_BigO 2.29 N 2.29 N
BM_StdMidpoint<uint32_t, ZeroRand>_RMS 2 % 2 %
<...>
BM_StdMidpoint<uint64_t, ZeroRand>/65536 169667 ns 169669 ns 4123 bytes_read/iteration=1024k bytes_read/sec=5.75568G/s midpoints=270.205M midpoints/sec=386.257M/s
BM_StdMidpoint<uint64_t, ZeroRand>_BigO 2.59 N 2.59 N
BM_StdMidpoint<uint64_t, ZeroRand>_RMS 3 % 3 %
<...>
BM_StdMidpoint<uint16_t, ZeroRand>/262144 591396 ns 591404 ns 1184 bytes_read/iteration=1024k bytes_read/sec=1.65126G/s midpoints=310.378M midpoints/sec=443.257M/s
BM_StdMidpoint<uint16_t, ZeroRand>_BigO 2.26 N 2.26 N
BM_StdMidpoint<uint16_t, ZeroRand>_RMS 1 % 1 %
<...>
BM_StdMidpoint<uint8_t, ZeroRand>/524288 1069421 ns 1069413 ns 655 bytes_read/iteration=1024k bytes_read/sec=935.092M/s midpoints=343.409M midpoints/sec=490.258M/s
BM_StdMidpoint<uint8_t, ZeroRand>_BigO 2.04 N 2.04 N
BM_StdMidpoint<uint8_t, ZeroRand>_RMS 0 % 0 %
Comparing ./llvm-cmov-bench-OLD to ./llvm-cmov-bench-NEW
Benchmark Time CPU Time Old Time New CPU Old CPU New
----------------------------------------------------------------------------------------------------------------------------------------
<...>
BM_StdMidpoint<int32_t, RandRand>/131072 +0.0016 +0.0016 300398 300878 300404 300880
<...>
BM_StdMidpoint<uint32_t, RandRand>/131072 -0.0007 -0.0007 300433 300231 300433 300226
<...>
BM_StdMidpoint<int64_t, RandRand>/65536 +0.0057 +0.0054 169857 170819 169858 170777
<...>
BM_StdMidpoint<uint64_t, RandRand>/65536 +0.0114 +0.0114 169770 171705 169771 171708
<...>
BM_StdMidpoint<int16_t, RandRand>/262144 +0.0023 +0.0023 591169 592510 591179 592516
<...>
BM_StdMidpoint<uint16_t, RandRand>/262144 +0.0398 +0.0398 591264 614823 591274 614823
<...>
BM_StdMidpoint<int8_t, RandRand>/524288 -0.6403 -0.6403 2983669 1073181 2983689 1073201
<...>
BM_StdMidpoint<uint8_t, RandRand>/524288 -0.5986 -0.5986 2668398 1071010 2668419 1071020
<...>
BM_StdMidpoint<uint32_t, ZeroRand>/131072 -0.0016 -0.0016 300887 300413 300887 300416
<...>
BM_StdMidpoint<uint64_t, ZeroRand>/65536 +0.0002 +0.0002 169634 169667 169634 169669
<...>
BM_StdMidpoint<uint16_t, ZeroRand>/262144 -0.0014 -0.0014 592252 591396 592255 591404
<...>
BM_StdMidpoint<uint8_t, ZeroRand>/524288 +0.0832 +0.0832 987295 1069421 987309 1069413
```
What can we tell from the benchmark?
* `BM_StdMidpoint<[u]int8_t, RandRand>` indeed has the worst performance.
* All `BM_StdMidpoint<uint{8,16,32}_t, ZeroRand>` are all performant, even the 8-bit case.
That is because there we are computing mid point between zero and some random number,
thus if the branch predictor is in use, it is in optimal situation.
* Promoting 8-bit CMOV did improve performance of `BM_StdMidpoint<[u]int8_t, RandRand>`, by -59%..-64%.
# What about branch predictor?
* `BM_StdMidpoint<uint8_t, ZeroRand>` was faster than `BM_StdMidpoint<uint{16,32,64}_t, ZeroRand>`,
which may mean that well-predicted branch is better than `cmov`.
* Promoting 8-bit CMOV degraded performance of `BM_StdMidpoint<uint8_t, ZeroRand>`,
`cmov` is up to +10% worse than well-predicted branch.
* However, i do not believe this is a concern. If the branch is well predicted, then the PGO
will also say that it is well predicted, and LLVM will happily expand cmov back into branch:
https://godbolt.org/z/P5ufig
# What about partial register stalls?
I'm not really able to answer that.
What i can say is that if the branch is unpredictable (if it is predictable, then use PGO and you'll have branch)
in ~50% of cases you will have to pay branch misprediction penalty.
```
$ grep -i MispredictPenalty X86Sched*.td
X86SchedBroadwell.td: let MispredictPenalty = 16;
X86SchedHaswell.td: let MispredictPenalty = 16;
X86SchedSandyBridge.td: let MispredictPenalty = 16;
X86SchedSkylakeClient.td: let MispredictPenalty = 14;
X86SchedSkylakeServer.td: let MispredictPenalty = 14;
X86ScheduleBdVer2.td: let MispredictPenalty = 20; // Minimum branch misdirection penalty.
X86ScheduleBtVer2.td: let MispredictPenalty = 14; // Minimum branch misdirection penalty
X86ScheduleSLM.td: let MispredictPenalty = 10;
X86ScheduleZnver1.td: let MispredictPenalty = 17;
```
.. which it can be as small as 10 cycles and as large as 20 cycles.
Partial register stalls do not seem to be an issue for AMD CPU's.
For intel CPU's, they should be around ~5 cycles?
Is that actually an issue here? I'm not sure.
In short, i'd say this is an improvement, at least on this microbenchmark.
Fixes [[ https://bugs.llvm.org/show_bug.cgi?id=40965 | PR40965 ]].
Reviewers: craig.topper, RKSimon, spatel, andreadb, nikic
Reviewed By: craig.topper, andreadb
Subscribers: jfb, jdoerfert, llvm-commits, mclow.lists
Tags: #llvm, #libc
Differential Revision: https://reviews.llvm.org/D59035
llvm-svn: 356300
2019-03-16 05:17:53 +08:00
|
|
|
; CHECK-NEXT: je .LBB3_5
|
|
|
|
; CHECK-NEXT: # %bb.3: # %func_4.exit.i
|
2017-07-12 06:04:36 +08:00
|
|
|
; CHECK-NEXT: testb %bl, %bl
|
[X86] Promote i8 CMOV's (PR40965)
Summary:
@mclow.lists brought up this issue up in IRC, it came up during
implementation of libc++ `std::midpoint()` implementation (D59099)
https://godbolt.org/z/oLrHBP
Currently LLVM X86 backend only promotes i8 CMOV if it came from 2x`trunc`.
This differential proposes to always promote i8 CMOV.
There are several concerns here:
* Is this actually more performant, or is it just the ASM that looks cuter?
* Does this result in partial register stalls?
* What about branch predictor?
# Indeed, performance should be the main point here.
Let's look at a simple microbenchmark: {F8412076}
```
#include "benchmark/benchmark.h"
#include <algorithm>
#include <cmath>
#include <cstdint>
#include <iterator>
#include <limits>
#include <random>
#include <type_traits>
#include <utility>
#include <vector>
// Future preliminary libc++ code, from Marshall Clow.
namespace std {
template <class _Tp>
__inline _Tp midpoint(_Tp __a, _Tp __b) noexcept {
using _Up = typename std::make_unsigned<typename remove_cv<_Tp>::type>::type;
int __sign = 1;
_Up __m = __a;
_Up __M = __b;
if (__a > __b) {
__sign = -1;
__m = __b;
__M = __a;
}
return __a + __sign * _Tp(_Up(__M - __m) >> 1);
}
} // namespace std
template <typename T>
std::vector<T> getVectorOfRandomNumbers(size_t count) {
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_int_distribution<T> dis(std::numeric_limits<T>::min(),
std::numeric_limits<T>::max());
std::vector<T> v;
v.reserve(count);
std::generate_n(std::back_inserter(v), count,
[&dis, &gen]() { return dis(gen); });
assert(v.size() == count);
return v;
}
struct RandRand {
template <typename T>
static std::pair<std::vector<T>, std::vector<T>> Gen(size_t count) {
return std::make_pair(getVectorOfRandomNumbers<T>(count),
getVectorOfRandomNumbers<T>(count));
}
};
struct ZeroRand {
template <typename T>
static std::pair<std::vector<T>, std::vector<T>> Gen(size_t count) {
return std::make_pair(std::vector<T>(count, T(0)),
getVectorOfRandomNumbers<T>(count));
}
};
template <class T, class Gen>
void BM_StdMidpoint(benchmark::State& state) {
const size_t Length = state.range(0);
const std::pair<std::vector<T>, std::vector<T>> Data =
Gen::template Gen<T>(Length);
const std::vector<T>& a = Data.first;
const std::vector<T>& b = Data.second;
assert(a.size() == Length && b.size() == a.size());
benchmark::ClobberMemory();
benchmark::DoNotOptimize(a);
benchmark::DoNotOptimize(a.data());
benchmark::DoNotOptimize(b);
benchmark::DoNotOptimize(b.data());
for (auto _ : state) {
for (size_t i = 0; i < Length; i++) {
const auto calculated = std::midpoint(a[i], b[i]);
benchmark::DoNotOptimize(calculated);
}
}
state.SetComplexityN(Length);
state.counters["midpoints"] =
benchmark::Counter(Length, benchmark::Counter::kIsIterationInvariant);
state.counters["midpoints/sec"] =
benchmark::Counter(Length, benchmark::Counter::kIsIterationInvariantRate);
const size_t BytesRead = 2 * sizeof(T) * Length;
state.counters["bytes_read/iteration"] =
benchmark::Counter(BytesRead, benchmark::Counter::kDefaults,
benchmark::Counter::OneK::kIs1024);
state.counters["bytes_read/sec"] = benchmark::Counter(
BytesRead, benchmark::Counter::kIsIterationInvariantRate,
benchmark::Counter::OneK::kIs1024);
}
template <typename T>
static void CustomArguments(benchmark::internal::Benchmark* b) {
const size_t L2SizeBytes = 2 * 1024 * 1024;
// What is the largest range we can check to always fit within given L2 cache?
const size_t MaxLen = L2SizeBytes / /*total bufs*/ 2 /
/*maximal elt size*/ sizeof(T) / /*safety margin*/ 2;
b->RangeMultiplier(2)->Range(1, MaxLen)->Complexity(benchmark::oN);
}
// Both of the values are random.
// The comparison is unpredictable.
BENCHMARK_TEMPLATE(BM_StdMidpoint, int32_t, RandRand)
->Apply(CustomArguments<int32_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, uint32_t, RandRand)
->Apply(CustomArguments<uint32_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, int64_t, RandRand)
->Apply(CustomArguments<int64_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, uint64_t, RandRand)
->Apply(CustomArguments<uint64_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, int16_t, RandRand)
->Apply(CustomArguments<int16_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, uint16_t, RandRand)
->Apply(CustomArguments<uint16_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, int8_t, RandRand)
->Apply(CustomArguments<int8_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, uint8_t, RandRand)
->Apply(CustomArguments<uint8_t>);
// One value is always zero, and another is bigger or equal than zero.
// The comparison is predictable.
BENCHMARK_TEMPLATE(BM_StdMidpoint, uint32_t, ZeroRand)
->Apply(CustomArguments<uint32_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, uint64_t, ZeroRand)
->Apply(CustomArguments<uint64_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, uint16_t, ZeroRand)
->Apply(CustomArguments<uint16_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, uint8_t, ZeroRand)
->Apply(CustomArguments<uint8_t>);
```
```
$ ~/src/googlebenchmark/tools/compare.py --no-utest benchmarks ./llvm-cmov-bench-OLD ./llvm-cmov-bench-NEW
RUNNING: ./llvm-cmov-bench-OLD --benchmark_out=/tmp/tmp5a5qjm
2019-03-06 21:53:31
Running ./llvm-cmov-bench-OLD
Run on (8 X 4000 MHz CPU s)
CPU Caches:
L1 Data 16K (x8)
L1 Instruction 64K (x4)
L2 Unified 2048K (x4)
L3 Unified 8192K (x1)
Load Average: 1.78, 1.81, 1.36
----------------------------------------------------------------------------------------------------
Benchmark Time CPU Iterations UserCounters<...>
----------------------------------------------------------------------------------------------------
<...>
BM_StdMidpoint<int32_t, RandRand>/131072 300398 ns 300404 ns 2330 bytes_read/iteration=1024k bytes_read/sec=3.25083G/s midpoints=305.398M midpoints/sec=436.319M/s
BM_StdMidpoint<int32_t, RandRand>_BigO 2.29 N 2.29 N
BM_StdMidpoint<int32_t, RandRand>_RMS 2 % 2 %
<...>
BM_StdMidpoint<uint32_t, RandRand>/131072 300433 ns 300433 ns 2330 bytes_read/iteration=1024k bytes_read/sec=3.25052G/s midpoints=305.398M midpoints/sec=436.278M/s
BM_StdMidpoint<uint32_t, RandRand>_BigO 2.29 N 2.29 N
BM_StdMidpoint<uint32_t, RandRand>_RMS 2 % 2 %
<...>
BM_StdMidpoint<int64_t, RandRand>/65536 169857 ns 169858 ns 4121 bytes_read/iteration=1024k bytes_read/sec=5.74929G/s midpoints=270.074M midpoints/sec=385.828M/s
BM_StdMidpoint<int64_t, RandRand>_BigO 2.59 N 2.59 N
BM_StdMidpoint<int64_t, RandRand>_RMS 3 % 3 %
<...>
BM_StdMidpoint<uint64_t, RandRand>/65536 169770 ns 169771 ns 4125 bytes_read/iteration=1024k bytes_read/sec=5.75223G/s midpoints=270.336M midpoints/sec=386.026M/s
BM_StdMidpoint<uint64_t, RandRand>_BigO 2.59 N 2.59 N
BM_StdMidpoint<uint64_t, RandRand>_RMS 3 % 3 %
<...>
BM_StdMidpoint<int16_t, RandRand>/262144 591169 ns 591179 ns 1182 bytes_read/iteration=1024k bytes_read/sec=1.65189G/s midpoints=309.854M midpoints/sec=443.426M/s
BM_StdMidpoint<int16_t, RandRand>_BigO 2.25 N 2.25 N
BM_StdMidpoint<int16_t, RandRand>_RMS 1 % 1 %
<...>
BM_StdMidpoint<uint16_t, RandRand>/262144 591264 ns 591274 ns 1184 bytes_read/iteration=1024k bytes_read/sec=1.65162G/s midpoints=310.378M midpoints/sec=443.354M/s
BM_StdMidpoint<uint16_t, RandRand>_BigO 2.25 N 2.25 N
BM_StdMidpoint<uint16_t, RandRand>_RMS 1 % 1 %
<...>
BM_StdMidpoint<int8_t, RandRand>/524288 2983669 ns 2983689 ns 235 bytes_read/iteration=1024k bytes_read/sec=335.156M/s midpoints=123.208M midpoints/sec=175.718M/s
BM_StdMidpoint<int8_t, RandRand>_BigO 5.69 N 5.69 N
BM_StdMidpoint<int8_t, RandRand>_RMS 0 % 0 %
<...>
BM_StdMidpoint<uint8_t, RandRand>/524288 2668398 ns 2668419 ns 262 bytes_read/iteration=1024k bytes_read/sec=374.754M/s midpoints=137.363M midpoints/sec=196.479M/s
BM_StdMidpoint<uint8_t, RandRand>_BigO 5.09 N 5.09 N
BM_StdMidpoint<uint8_t, RandRand>_RMS 0 % 0 %
<...>
BM_StdMidpoint<uint32_t, ZeroRand>/131072 300887 ns 300887 ns 2331 bytes_read/iteration=1024k bytes_read/sec=3.24561G/s midpoints=305.529M midpoints/sec=435.619M/s
BM_StdMidpoint<uint32_t, ZeroRand>_BigO 2.29 N 2.29 N
BM_StdMidpoint<uint32_t, ZeroRand>_RMS 2 % 2 %
<...>
BM_StdMidpoint<uint64_t, ZeroRand>/65536 169634 ns 169634 ns 4102 bytes_read/iteration=1024k bytes_read/sec=5.75688G/s midpoints=268.829M midpoints/sec=386.338M/s
BM_StdMidpoint<uint64_t, ZeroRand>_BigO 2.59 N 2.59 N
BM_StdMidpoint<uint64_t, ZeroRand>_RMS 3 % 3 %
<...>
BM_StdMidpoint<uint16_t, ZeroRand>/262144 592252 ns 592255 ns 1182 bytes_read/iteration=1024k bytes_read/sec=1.64889G/s midpoints=309.854M midpoints/sec=442.62M/s
BM_StdMidpoint<uint16_t, ZeroRand>_BigO 2.26 N 2.26 N
BM_StdMidpoint<uint16_t, ZeroRand>_RMS 1 % 1 %
<...>
BM_StdMidpoint<uint8_t, ZeroRand>/524288 987295 ns 987309 ns 711 bytes_read/iteration=1024k bytes_read/sec=1012.85M/s midpoints=372.769M midpoints/sec=531.028M/s
BM_StdMidpoint<uint8_t, ZeroRand>_BigO 1.88 N 1.88 N
BM_StdMidpoint<uint8_t, ZeroRand>_RMS 1 % 1 %
RUNNING: ./llvm-cmov-bench-NEW --benchmark_out=/tmp/tmpPvwpfW
2019-03-06 21:56:58
Running ./llvm-cmov-bench-NEW
Run on (8 X 4000 MHz CPU s)
CPU Caches:
L1 Data 16K (x8)
L1 Instruction 64K (x4)
L2 Unified 2048K (x4)
L3 Unified 8192K (x1)
Load Average: 1.17, 1.46, 1.30
----------------------------------------------------------------------------------------------------
Benchmark Time CPU Iterations UserCounters<...>
----------------------------------------------------------------------------------------------------
<...>
BM_StdMidpoint<int32_t, RandRand>/131072 300878 ns 300880 ns 2324 bytes_read/iteration=1024k bytes_read/sec=3.24569G/s midpoints=304.611M midpoints/sec=435.629M/s
BM_StdMidpoint<int32_t, RandRand>_BigO 2.29 N 2.29 N
BM_StdMidpoint<int32_t, RandRand>_RMS 2 % 2 %
<...>
BM_StdMidpoint<uint32_t, RandRand>/131072 300231 ns 300226 ns 2330 bytes_read/iteration=1024k bytes_read/sec=3.25276G/s midpoints=305.398M midpoints/sec=436.578M/s
BM_StdMidpoint<uint32_t, RandRand>_BigO 2.29 N 2.29 N
BM_StdMidpoint<uint32_t, RandRand>_RMS 2 % 2 %
<...>
BM_StdMidpoint<int64_t, RandRand>/65536 170819 ns 170777 ns 4115 bytes_read/iteration=1024k bytes_read/sec=5.71835G/s midpoints=269.681M midpoints/sec=383.752M/s
BM_StdMidpoint<int64_t, RandRand>_BigO 2.60 N 2.60 N
BM_StdMidpoint<int64_t, RandRand>_RMS 3 % 3 %
<...>
BM_StdMidpoint<uint64_t, RandRand>/65536 171705 ns 171708 ns 4106 bytes_read/iteration=1024k bytes_read/sec=5.68733G/s midpoints=269.091M midpoints/sec=381.671M/s
BM_StdMidpoint<uint64_t, RandRand>_BigO 2.62 N 2.62 N
BM_StdMidpoint<uint64_t, RandRand>_RMS 3 % 3 %
<...>
BM_StdMidpoint<int16_t, RandRand>/262144 592510 ns 592516 ns 1182 bytes_read/iteration=1024k bytes_read/sec=1.64816G/s midpoints=309.854M midpoints/sec=442.425M/s
BM_StdMidpoint<int16_t, RandRand>_BigO 2.26 N 2.26 N
BM_StdMidpoint<int16_t, RandRand>_RMS 1 % 1 %
<...>
BM_StdMidpoint<uint16_t, RandRand>/262144 614823 ns 614823 ns 1180 bytes_read/iteration=1024k bytes_read/sec=1.58836G/s midpoints=309.33M midpoints/sec=426.373M/s
BM_StdMidpoint<uint16_t, RandRand>_BigO 2.33 N 2.33 N
BM_StdMidpoint<uint16_t, RandRand>_RMS 4 % 4 %
<...>
BM_StdMidpoint<int8_t, RandRand>/524288 1073181 ns 1073201 ns 650 bytes_read/iteration=1024k bytes_read/sec=931.791M/s midpoints=340.787M midpoints/sec=488.527M/s
BM_StdMidpoint<int8_t, RandRand>_BigO 2.05 N 2.05 N
BM_StdMidpoint<int8_t, RandRand>_RMS 1 % 1 %
BM_StdMidpoint<uint8_t, RandRand>/524288 1071010 ns 1071020 ns 653 bytes_read/iteration=1024k bytes_read/sec=933.689M/s midpoints=342.36M midpoints/sec=489.522M/s
BM_StdMidpoint<uint8_t, RandRand>_BigO 2.05 N 2.05 N
BM_StdMidpoint<uint8_t, RandRand>_RMS 1 % 1 %
<...>
BM_StdMidpoint<uint32_t, ZeroRand>/131072 300413 ns 300416 ns 2330 bytes_read/iteration=1024k bytes_read/sec=3.2507G/s midpoints=305.398M midpoints/sec=436.302M/s
BM_StdMidpoint<uint32_t, ZeroRand>_BigO 2.29 N 2.29 N
BM_StdMidpoint<uint32_t, ZeroRand>_RMS 2 % 2 %
<...>
BM_StdMidpoint<uint64_t, ZeroRand>/65536 169667 ns 169669 ns 4123 bytes_read/iteration=1024k bytes_read/sec=5.75568G/s midpoints=270.205M midpoints/sec=386.257M/s
BM_StdMidpoint<uint64_t, ZeroRand>_BigO 2.59 N 2.59 N
BM_StdMidpoint<uint64_t, ZeroRand>_RMS 3 % 3 %
<...>
BM_StdMidpoint<uint16_t, ZeroRand>/262144 591396 ns 591404 ns 1184 bytes_read/iteration=1024k bytes_read/sec=1.65126G/s midpoints=310.378M midpoints/sec=443.257M/s
BM_StdMidpoint<uint16_t, ZeroRand>_BigO 2.26 N 2.26 N
BM_StdMidpoint<uint16_t, ZeroRand>_RMS 1 % 1 %
<...>
BM_StdMidpoint<uint8_t, ZeroRand>/524288 1069421 ns 1069413 ns 655 bytes_read/iteration=1024k bytes_read/sec=935.092M/s midpoints=343.409M midpoints/sec=490.258M/s
BM_StdMidpoint<uint8_t, ZeroRand>_BigO 2.04 N 2.04 N
BM_StdMidpoint<uint8_t, ZeroRand>_RMS 0 % 0 %
Comparing ./llvm-cmov-bench-OLD to ./llvm-cmov-bench-NEW
Benchmark Time CPU Time Old Time New CPU Old CPU New
----------------------------------------------------------------------------------------------------------------------------------------
<...>
BM_StdMidpoint<int32_t, RandRand>/131072 +0.0016 +0.0016 300398 300878 300404 300880
<...>
BM_StdMidpoint<uint32_t, RandRand>/131072 -0.0007 -0.0007 300433 300231 300433 300226
<...>
BM_StdMidpoint<int64_t, RandRand>/65536 +0.0057 +0.0054 169857 170819 169858 170777
<...>
BM_StdMidpoint<uint64_t, RandRand>/65536 +0.0114 +0.0114 169770 171705 169771 171708
<...>
BM_StdMidpoint<int16_t, RandRand>/262144 +0.0023 +0.0023 591169 592510 591179 592516
<...>
BM_StdMidpoint<uint16_t, RandRand>/262144 +0.0398 +0.0398 591264 614823 591274 614823
<...>
BM_StdMidpoint<int8_t, RandRand>/524288 -0.6403 -0.6403 2983669 1073181 2983689 1073201
<...>
BM_StdMidpoint<uint8_t, RandRand>/524288 -0.5986 -0.5986 2668398 1071010 2668419 1071020
<...>
BM_StdMidpoint<uint32_t, ZeroRand>/131072 -0.0016 -0.0016 300887 300413 300887 300416
<...>
BM_StdMidpoint<uint64_t, ZeroRand>/65536 +0.0002 +0.0002 169634 169667 169634 169669
<...>
BM_StdMidpoint<uint16_t, ZeroRand>/262144 -0.0014 -0.0014 592252 591396 592255 591404
<...>
BM_StdMidpoint<uint8_t, ZeroRand>/524288 +0.0832 +0.0832 987295 1069421 987309 1069413
```
What can we tell from the benchmark?
* `BM_StdMidpoint<[u]int8_t, RandRand>` indeed has the worst performance.
* All `BM_StdMidpoint<uint{8,16,32}_t, ZeroRand>` are all performant, even the 8-bit case.
That is because there we are computing mid point between zero and some random number,
thus if the branch predictor is in use, it is in optimal situation.
* Promoting 8-bit CMOV did improve performance of `BM_StdMidpoint<[u]int8_t, RandRand>`, by -59%..-64%.
# What about branch predictor?
* `BM_StdMidpoint<uint8_t, ZeroRand>` was faster than `BM_StdMidpoint<uint{16,32,64}_t, ZeroRand>`,
which may mean that well-predicted branch is better than `cmov`.
* Promoting 8-bit CMOV degraded performance of `BM_StdMidpoint<uint8_t, ZeroRand>`,
`cmov` is up to +10% worse than well-predicted branch.
* However, i do not believe this is a concern. If the branch is well predicted, then the PGO
will also say that it is well predicted, and LLVM will happily expand cmov back into branch:
https://godbolt.org/z/P5ufig
# What about partial register stalls?
I'm not really able to answer that.
What i can say is that if the branch is unpredictable (if it is predictable, then use PGO and you'll have branch)
in ~50% of cases you will have to pay branch misprediction penalty.
```
$ grep -i MispredictPenalty X86Sched*.td
X86SchedBroadwell.td: let MispredictPenalty = 16;
X86SchedHaswell.td: let MispredictPenalty = 16;
X86SchedSandyBridge.td: let MispredictPenalty = 16;
X86SchedSkylakeClient.td: let MispredictPenalty = 14;
X86SchedSkylakeServer.td: let MispredictPenalty = 14;
X86ScheduleBdVer2.td: let MispredictPenalty = 20; // Minimum branch misdirection penalty.
X86ScheduleBtVer2.td: let MispredictPenalty = 14; // Minimum branch misdirection penalty
X86ScheduleSLM.td: let MispredictPenalty = 10;
X86ScheduleZnver1.td: let MispredictPenalty = 17;
```
.. which it can be as small as 10 cycles and as large as 20 cycles.
Partial register stalls do not seem to be an issue for AMD CPU's.
For intel CPU's, they should be around ~5 cycles?
Is that actually an issue here? I'm not sure.
In short, i'd say this is an improvement, at least on this microbenchmark.
Fixes [[ https://bugs.llvm.org/show_bug.cgi?id=40965 | PR40965 ]].
Reviewers: craig.topper, RKSimon, spatel, andreadb, nikic
Reviewed By: craig.topper, andreadb
Subscribers: jfb, jdoerfert, llvm-commits, mclow.lists
Tags: #llvm, #libc
Differential Revision: https://reviews.llvm.org/D59035
llvm-svn: 356300
2019-03-16 05:17:53 +08:00
|
|
|
; CHECK-NEXT: jne .LBB3_5
|
|
|
|
; CHECK-NEXT: # %bb.4: # %bb.i.i
|
2017-07-12 06:04:36 +08:00
|
|
|
; CHECK-NEXT: movb {{.*}}(%rip), %cl
|
|
|
|
; CHECK-NEXT: xorl %ebx, %ebx
|
[X86FixupBWInsts] More precise register liveness if no <imp-use> on MOVs.
Summary:
Subregister liveness tracking is not implemented for X86 backend, so
sometimes the whole super register is said to be live, when only a
subregister is really live. That might happen if the def and the use
are located in different MBBs, see added fixup-bw-isnt.mir test.
However, using knowledge of the specific instructions handled by the
bw-fixup-pass we can get more precise liveness information which this
change does.
Reviewers: MatzeB, DavidKreitzer, ab, andrew.w.kaylor, craig.topper
Reviewed By: craig.topper
Subscribers: n.bozhenov, myatsina, llvm-commits, hiraditya
Patch by Andrei Elovikov <andrei.elovikov@intel.com>
Differential Revision: https://reviews.llvm.org/D37559
llvm-svn: 313524
2017-09-18 18:17:59 +08:00
|
|
|
; CHECK-NEXT: movl %eax, %ecx
|
[X86] Promote i8 CMOV's (PR40965)
Summary:
@mclow.lists brought up this issue up in IRC, it came up during
implementation of libc++ `std::midpoint()` implementation (D59099)
https://godbolt.org/z/oLrHBP
Currently LLVM X86 backend only promotes i8 CMOV if it came from 2x`trunc`.
This differential proposes to always promote i8 CMOV.
There are several concerns here:
* Is this actually more performant, or is it just the ASM that looks cuter?
* Does this result in partial register stalls?
* What about branch predictor?
# Indeed, performance should be the main point here.
Let's look at a simple microbenchmark: {F8412076}
```
#include "benchmark/benchmark.h"
#include <algorithm>
#include <cmath>
#include <cstdint>
#include <iterator>
#include <limits>
#include <random>
#include <type_traits>
#include <utility>
#include <vector>
// Future preliminary libc++ code, from Marshall Clow.
namespace std {
template <class _Tp>
__inline _Tp midpoint(_Tp __a, _Tp __b) noexcept {
using _Up = typename std::make_unsigned<typename remove_cv<_Tp>::type>::type;
int __sign = 1;
_Up __m = __a;
_Up __M = __b;
if (__a > __b) {
__sign = -1;
__m = __b;
__M = __a;
}
return __a + __sign * _Tp(_Up(__M - __m) >> 1);
}
} // namespace std
template <typename T>
std::vector<T> getVectorOfRandomNumbers(size_t count) {
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_int_distribution<T> dis(std::numeric_limits<T>::min(),
std::numeric_limits<T>::max());
std::vector<T> v;
v.reserve(count);
std::generate_n(std::back_inserter(v), count,
[&dis, &gen]() { return dis(gen); });
assert(v.size() == count);
return v;
}
struct RandRand {
template <typename T>
static std::pair<std::vector<T>, std::vector<T>> Gen(size_t count) {
return std::make_pair(getVectorOfRandomNumbers<T>(count),
getVectorOfRandomNumbers<T>(count));
}
};
struct ZeroRand {
template <typename T>
static std::pair<std::vector<T>, std::vector<T>> Gen(size_t count) {
return std::make_pair(std::vector<T>(count, T(0)),
getVectorOfRandomNumbers<T>(count));
}
};
template <class T, class Gen>
void BM_StdMidpoint(benchmark::State& state) {
const size_t Length = state.range(0);
const std::pair<std::vector<T>, std::vector<T>> Data =
Gen::template Gen<T>(Length);
const std::vector<T>& a = Data.first;
const std::vector<T>& b = Data.second;
assert(a.size() == Length && b.size() == a.size());
benchmark::ClobberMemory();
benchmark::DoNotOptimize(a);
benchmark::DoNotOptimize(a.data());
benchmark::DoNotOptimize(b);
benchmark::DoNotOptimize(b.data());
for (auto _ : state) {
for (size_t i = 0; i < Length; i++) {
const auto calculated = std::midpoint(a[i], b[i]);
benchmark::DoNotOptimize(calculated);
}
}
state.SetComplexityN(Length);
state.counters["midpoints"] =
benchmark::Counter(Length, benchmark::Counter::kIsIterationInvariant);
state.counters["midpoints/sec"] =
benchmark::Counter(Length, benchmark::Counter::kIsIterationInvariantRate);
const size_t BytesRead = 2 * sizeof(T) * Length;
state.counters["bytes_read/iteration"] =
benchmark::Counter(BytesRead, benchmark::Counter::kDefaults,
benchmark::Counter::OneK::kIs1024);
state.counters["bytes_read/sec"] = benchmark::Counter(
BytesRead, benchmark::Counter::kIsIterationInvariantRate,
benchmark::Counter::OneK::kIs1024);
}
template <typename T>
static void CustomArguments(benchmark::internal::Benchmark* b) {
const size_t L2SizeBytes = 2 * 1024 * 1024;
// What is the largest range we can check to always fit within given L2 cache?
const size_t MaxLen = L2SizeBytes / /*total bufs*/ 2 /
/*maximal elt size*/ sizeof(T) / /*safety margin*/ 2;
b->RangeMultiplier(2)->Range(1, MaxLen)->Complexity(benchmark::oN);
}
// Both of the values are random.
// The comparison is unpredictable.
BENCHMARK_TEMPLATE(BM_StdMidpoint, int32_t, RandRand)
->Apply(CustomArguments<int32_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, uint32_t, RandRand)
->Apply(CustomArguments<uint32_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, int64_t, RandRand)
->Apply(CustomArguments<int64_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, uint64_t, RandRand)
->Apply(CustomArguments<uint64_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, int16_t, RandRand)
->Apply(CustomArguments<int16_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, uint16_t, RandRand)
->Apply(CustomArguments<uint16_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, int8_t, RandRand)
->Apply(CustomArguments<int8_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, uint8_t, RandRand)
->Apply(CustomArguments<uint8_t>);
// One value is always zero, and another is bigger or equal than zero.
// The comparison is predictable.
BENCHMARK_TEMPLATE(BM_StdMidpoint, uint32_t, ZeroRand)
->Apply(CustomArguments<uint32_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, uint64_t, ZeroRand)
->Apply(CustomArguments<uint64_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, uint16_t, ZeroRand)
->Apply(CustomArguments<uint16_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, uint8_t, ZeroRand)
->Apply(CustomArguments<uint8_t>);
```
```
$ ~/src/googlebenchmark/tools/compare.py --no-utest benchmarks ./llvm-cmov-bench-OLD ./llvm-cmov-bench-NEW
RUNNING: ./llvm-cmov-bench-OLD --benchmark_out=/tmp/tmp5a5qjm
2019-03-06 21:53:31
Running ./llvm-cmov-bench-OLD
Run on (8 X 4000 MHz CPU s)
CPU Caches:
L1 Data 16K (x8)
L1 Instruction 64K (x4)
L2 Unified 2048K (x4)
L3 Unified 8192K (x1)
Load Average: 1.78, 1.81, 1.36
----------------------------------------------------------------------------------------------------
Benchmark Time CPU Iterations UserCounters<...>
----------------------------------------------------------------------------------------------------
<...>
BM_StdMidpoint<int32_t, RandRand>/131072 300398 ns 300404 ns 2330 bytes_read/iteration=1024k bytes_read/sec=3.25083G/s midpoints=305.398M midpoints/sec=436.319M/s
BM_StdMidpoint<int32_t, RandRand>_BigO 2.29 N 2.29 N
BM_StdMidpoint<int32_t, RandRand>_RMS 2 % 2 %
<...>
BM_StdMidpoint<uint32_t, RandRand>/131072 300433 ns 300433 ns 2330 bytes_read/iteration=1024k bytes_read/sec=3.25052G/s midpoints=305.398M midpoints/sec=436.278M/s
BM_StdMidpoint<uint32_t, RandRand>_BigO 2.29 N 2.29 N
BM_StdMidpoint<uint32_t, RandRand>_RMS 2 % 2 %
<...>
BM_StdMidpoint<int64_t, RandRand>/65536 169857 ns 169858 ns 4121 bytes_read/iteration=1024k bytes_read/sec=5.74929G/s midpoints=270.074M midpoints/sec=385.828M/s
BM_StdMidpoint<int64_t, RandRand>_BigO 2.59 N 2.59 N
BM_StdMidpoint<int64_t, RandRand>_RMS 3 % 3 %
<...>
BM_StdMidpoint<uint64_t, RandRand>/65536 169770 ns 169771 ns 4125 bytes_read/iteration=1024k bytes_read/sec=5.75223G/s midpoints=270.336M midpoints/sec=386.026M/s
BM_StdMidpoint<uint64_t, RandRand>_BigO 2.59 N 2.59 N
BM_StdMidpoint<uint64_t, RandRand>_RMS 3 % 3 %
<...>
BM_StdMidpoint<int16_t, RandRand>/262144 591169 ns 591179 ns 1182 bytes_read/iteration=1024k bytes_read/sec=1.65189G/s midpoints=309.854M midpoints/sec=443.426M/s
BM_StdMidpoint<int16_t, RandRand>_BigO 2.25 N 2.25 N
BM_StdMidpoint<int16_t, RandRand>_RMS 1 % 1 %
<...>
BM_StdMidpoint<uint16_t, RandRand>/262144 591264 ns 591274 ns 1184 bytes_read/iteration=1024k bytes_read/sec=1.65162G/s midpoints=310.378M midpoints/sec=443.354M/s
BM_StdMidpoint<uint16_t, RandRand>_BigO 2.25 N 2.25 N
BM_StdMidpoint<uint16_t, RandRand>_RMS 1 % 1 %
<...>
BM_StdMidpoint<int8_t, RandRand>/524288 2983669 ns 2983689 ns 235 bytes_read/iteration=1024k bytes_read/sec=335.156M/s midpoints=123.208M midpoints/sec=175.718M/s
BM_StdMidpoint<int8_t, RandRand>_BigO 5.69 N 5.69 N
BM_StdMidpoint<int8_t, RandRand>_RMS 0 % 0 %
<...>
BM_StdMidpoint<uint8_t, RandRand>/524288 2668398 ns 2668419 ns 262 bytes_read/iteration=1024k bytes_read/sec=374.754M/s midpoints=137.363M midpoints/sec=196.479M/s
BM_StdMidpoint<uint8_t, RandRand>_BigO 5.09 N 5.09 N
BM_StdMidpoint<uint8_t, RandRand>_RMS 0 % 0 %
<...>
BM_StdMidpoint<uint32_t, ZeroRand>/131072 300887 ns 300887 ns 2331 bytes_read/iteration=1024k bytes_read/sec=3.24561G/s midpoints=305.529M midpoints/sec=435.619M/s
BM_StdMidpoint<uint32_t, ZeroRand>_BigO 2.29 N 2.29 N
BM_StdMidpoint<uint32_t, ZeroRand>_RMS 2 % 2 %
<...>
BM_StdMidpoint<uint64_t, ZeroRand>/65536 169634 ns 169634 ns 4102 bytes_read/iteration=1024k bytes_read/sec=5.75688G/s midpoints=268.829M midpoints/sec=386.338M/s
BM_StdMidpoint<uint64_t, ZeroRand>_BigO 2.59 N 2.59 N
BM_StdMidpoint<uint64_t, ZeroRand>_RMS 3 % 3 %
<...>
BM_StdMidpoint<uint16_t, ZeroRand>/262144 592252 ns 592255 ns 1182 bytes_read/iteration=1024k bytes_read/sec=1.64889G/s midpoints=309.854M midpoints/sec=442.62M/s
BM_StdMidpoint<uint16_t, ZeroRand>_BigO 2.26 N 2.26 N
BM_StdMidpoint<uint16_t, ZeroRand>_RMS 1 % 1 %
<...>
BM_StdMidpoint<uint8_t, ZeroRand>/524288 987295 ns 987309 ns 711 bytes_read/iteration=1024k bytes_read/sec=1012.85M/s midpoints=372.769M midpoints/sec=531.028M/s
BM_StdMidpoint<uint8_t, ZeroRand>_BigO 1.88 N 1.88 N
BM_StdMidpoint<uint8_t, ZeroRand>_RMS 1 % 1 %
RUNNING: ./llvm-cmov-bench-NEW --benchmark_out=/tmp/tmpPvwpfW
2019-03-06 21:56:58
Running ./llvm-cmov-bench-NEW
Run on (8 X 4000 MHz CPU s)
CPU Caches:
L1 Data 16K (x8)
L1 Instruction 64K (x4)
L2 Unified 2048K (x4)
L3 Unified 8192K (x1)
Load Average: 1.17, 1.46, 1.30
----------------------------------------------------------------------------------------------------
Benchmark Time CPU Iterations UserCounters<...>
----------------------------------------------------------------------------------------------------
<...>
BM_StdMidpoint<int32_t, RandRand>/131072 300878 ns 300880 ns 2324 bytes_read/iteration=1024k bytes_read/sec=3.24569G/s midpoints=304.611M midpoints/sec=435.629M/s
BM_StdMidpoint<int32_t, RandRand>_BigO 2.29 N 2.29 N
BM_StdMidpoint<int32_t, RandRand>_RMS 2 % 2 %
<...>
BM_StdMidpoint<uint32_t, RandRand>/131072 300231 ns 300226 ns 2330 bytes_read/iteration=1024k bytes_read/sec=3.25276G/s midpoints=305.398M midpoints/sec=436.578M/s
BM_StdMidpoint<uint32_t, RandRand>_BigO 2.29 N 2.29 N
BM_StdMidpoint<uint32_t, RandRand>_RMS 2 % 2 %
<...>
BM_StdMidpoint<int64_t, RandRand>/65536 170819 ns 170777 ns 4115 bytes_read/iteration=1024k bytes_read/sec=5.71835G/s midpoints=269.681M midpoints/sec=383.752M/s
BM_StdMidpoint<int64_t, RandRand>_BigO 2.60 N 2.60 N
BM_StdMidpoint<int64_t, RandRand>_RMS 3 % 3 %
<...>
BM_StdMidpoint<uint64_t, RandRand>/65536 171705 ns 171708 ns 4106 bytes_read/iteration=1024k bytes_read/sec=5.68733G/s midpoints=269.091M midpoints/sec=381.671M/s
BM_StdMidpoint<uint64_t, RandRand>_BigO 2.62 N 2.62 N
BM_StdMidpoint<uint64_t, RandRand>_RMS 3 % 3 %
<...>
BM_StdMidpoint<int16_t, RandRand>/262144 592510 ns 592516 ns 1182 bytes_read/iteration=1024k bytes_read/sec=1.64816G/s midpoints=309.854M midpoints/sec=442.425M/s
BM_StdMidpoint<int16_t, RandRand>_BigO 2.26 N 2.26 N
BM_StdMidpoint<int16_t, RandRand>_RMS 1 % 1 %
<...>
BM_StdMidpoint<uint16_t, RandRand>/262144 614823 ns 614823 ns 1180 bytes_read/iteration=1024k bytes_read/sec=1.58836G/s midpoints=309.33M midpoints/sec=426.373M/s
BM_StdMidpoint<uint16_t, RandRand>_BigO 2.33 N 2.33 N
BM_StdMidpoint<uint16_t, RandRand>_RMS 4 % 4 %
<...>
BM_StdMidpoint<int8_t, RandRand>/524288 1073181 ns 1073201 ns 650 bytes_read/iteration=1024k bytes_read/sec=931.791M/s midpoints=340.787M midpoints/sec=488.527M/s
BM_StdMidpoint<int8_t, RandRand>_BigO 2.05 N 2.05 N
BM_StdMidpoint<int8_t, RandRand>_RMS 1 % 1 %
BM_StdMidpoint<uint8_t, RandRand>/524288 1071010 ns 1071020 ns 653 bytes_read/iteration=1024k bytes_read/sec=933.689M/s midpoints=342.36M midpoints/sec=489.522M/s
BM_StdMidpoint<uint8_t, RandRand>_BigO 2.05 N 2.05 N
BM_StdMidpoint<uint8_t, RandRand>_RMS 1 % 1 %
<...>
BM_StdMidpoint<uint32_t, ZeroRand>/131072 300413 ns 300416 ns 2330 bytes_read/iteration=1024k bytes_read/sec=3.2507G/s midpoints=305.398M midpoints/sec=436.302M/s
BM_StdMidpoint<uint32_t, ZeroRand>_BigO 2.29 N 2.29 N
BM_StdMidpoint<uint32_t, ZeroRand>_RMS 2 % 2 %
<...>
BM_StdMidpoint<uint64_t, ZeroRand>/65536 169667 ns 169669 ns 4123 bytes_read/iteration=1024k bytes_read/sec=5.75568G/s midpoints=270.205M midpoints/sec=386.257M/s
BM_StdMidpoint<uint64_t, ZeroRand>_BigO 2.59 N 2.59 N
BM_StdMidpoint<uint64_t, ZeroRand>_RMS 3 % 3 %
<...>
BM_StdMidpoint<uint16_t, ZeroRand>/262144 591396 ns 591404 ns 1184 bytes_read/iteration=1024k bytes_read/sec=1.65126G/s midpoints=310.378M midpoints/sec=443.257M/s
BM_StdMidpoint<uint16_t, ZeroRand>_BigO 2.26 N 2.26 N
BM_StdMidpoint<uint16_t, ZeroRand>_RMS 1 % 1 %
<...>
BM_StdMidpoint<uint8_t, ZeroRand>/524288 1069421 ns 1069413 ns 655 bytes_read/iteration=1024k bytes_read/sec=935.092M/s midpoints=343.409M midpoints/sec=490.258M/s
BM_StdMidpoint<uint8_t, ZeroRand>_BigO 2.04 N 2.04 N
BM_StdMidpoint<uint8_t, ZeroRand>_RMS 0 % 0 %
Comparing ./llvm-cmov-bench-OLD to ./llvm-cmov-bench-NEW
Benchmark Time CPU Time Old Time New CPU Old CPU New
----------------------------------------------------------------------------------------------------------------------------------------
<...>
BM_StdMidpoint<int32_t, RandRand>/131072 +0.0016 +0.0016 300398 300878 300404 300880
<...>
BM_StdMidpoint<uint32_t, RandRand>/131072 -0.0007 -0.0007 300433 300231 300433 300226
<...>
BM_StdMidpoint<int64_t, RandRand>/65536 +0.0057 +0.0054 169857 170819 169858 170777
<...>
BM_StdMidpoint<uint64_t, RandRand>/65536 +0.0114 +0.0114 169770 171705 169771 171708
<...>
BM_StdMidpoint<int16_t, RandRand>/262144 +0.0023 +0.0023 591169 592510 591179 592516
<...>
BM_StdMidpoint<uint16_t, RandRand>/262144 +0.0398 +0.0398 591264 614823 591274 614823
<...>
BM_StdMidpoint<int8_t, RandRand>/524288 -0.6403 -0.6403 2983669 1073181 2983689 1073201
<...>
BM_StdMidpoint<uint8_t, RandRand>/524288 -0.5986 -0.5986 2668398 1071010 2668419 1071020
<...>
BM_StdMidpoint<uint32_t, ZeroRand>/131072 -0.0016 -0.0016 300887 300413 300887 300416
<...>
BM_StdMidpoint<uint64_t, ZeroRand>/65536 +0.0002 +0.0002 169634 169667 169634 169669
<...>
BM_StdMidpoint<uint16_t, ZeroRand>/262144 -0.0014 -0.0014 592252 591396 592255 591404
<...>
BM_StdMidpoint<uint8_t, ZeroRand>/524288 +0.0832 +0.0832 987295 1069421 987309 1069413
```
What can we tell from the benchmark?
* `BM_StdMidpoint<[u]int8_t, RandRand>` indeed has the worst performance.
* All `BM_StdMidpoint<uint{8,16,32}_t, ZeroRand>` are all performant, even the 8-bit case.
That is because there we are computing mid point between zero and some random number,
thus if the branch predictor is in use, it is in optimal situation.
* Promoting 8-bit CMOV did improve performance of `BM_StdMidpoint<[u]int8_t, RandRand>`, by -59%..-64%.
# What about branch predictor?
* `BM_StdMidpoint<uint8_t, ZeroRand>` was faster than `BM_StdMidpoint<uint{16,32,64}_t, ZeroRand>`,
which may mean that well-predicted branch is better than `cmov`.
* Promoting 8-bit CMOV degraded performance of `BM_StdMidpoint<uint8_t, ZeroRand>`,
`cmov` is up to +10% worse than well-predicted branch.
* However, i do not believe this is a concern. If the branch is well predicted, then the PGO
will also say that it is well predicted, and LLVM will happily expand cmov back into branch:
https://godbolt.org/z/P5ufig
# What about partial register stalls?
I'm not really able to answer that.
What i can say is that if the branch is unpredictable (if it is predictable, then use PGO and you'll have branch)
in ~50% of cases you will have to pay branch misprediction penalty.
```
$ grep -i MispredictPenalty X86Sched*.td
X86SchedBroadwell.td: let MispredictPenalty = 16;
X86SchedHaswell.td: let MispredictPenalty = 16;
X86SchedSandyBridge.td: let MispredictPenalty = 16;
X86SchedSkylakeClient.td: let MispredictPenalty = 14;
X86SchedSkylakeServer.td: let MispredictPenalty = 14;
X86ScheduleBdVer2.td: let MispredictPenalty = 20; // Minimum branch misdirection penalty.
X86ScheduleBtVer2.td: let MispredictPenalty = 14; // Minimum branch misdirection penalty
X86ScheduleSLM.td: let MispredictPenalty = 10;
X86ScheduleZnver1.td: let MispredictPenalty = 17;
```
.. which it can be as small as 10 cycles and as large as 20 cycles.
Partial register stalls do not seem to be an issue for AMD CPU's.
For intel CPU's, they should be around ~5 cycles?
Is that actually an issue here? I'm not sure.
In short, i'd say this is an improvement, at least on this microbenchmark.
Fixes [[ https://bugs.llvm.org/show_bug.cgi?id=40965 | PR40965 ]].
Reviewers: craig.topper, RKSimon, spatel, andreadb, nikic
Reviewed By: craig.topper, andreadb
Subscribers: jfb, jdoerfert, llvm-commits, mclow.lists
Tags: #llvm, #libc
Differential Revision: https://reviews.llvm.org/D59035
llvm-svn: 356300
2019-03-16 05:17:53 +08:00
|
|
|
; CHECK-NEXT: .LBB3_5: # %func_1.exit
|
2017-07-12 06:04:36 +08:00
|
|
|
; CHECK-NEXT: movb %cl, {{.*}}(%rip)
|
|
|
|
; CHECK-NEXT: movzbl %cl, %esi
|
|
|
|
; CHECK-NEXT: movl $_2E_str, %edi
|
|
|
|
; CHECK-NEXT: xorl %eax, %eax
|
|
|
|
; CHECK-NEXT: callq printf
|
|
|
|
; CHECK-NEXT: movl %ebx, %eax
|
|
|
|
; CHECK-NEXT: popq %rbx
|
|
|
|
; CHECK-NEXT: retq
|
2009-09-15 10:25:21 +08:00
|
|
|
entry:
|
2017-07-12 06:04:36 +08:00
|
|
|
%0 = load i8, i8* @g_3, align 1
|
|
|
|
%1 = sext i8 %0 to i32
|
|
|
|
%.lobit.i = lshr i8 %0, 7
|
|
|
|
%tmp.i = zext i8 %.lobit.i to i32
|
|
|
|
%tmp.not.i = xor i32 %tmp.i, 1
|
|
|
|
%iftmp.17.0.i.i = ashr i32 %1, %tmp.not.i
|
|
|
|
%retval56.i.i = trunc i32 %iftmp.17.0.i.i to i8
|
|
|
|
%2 = icmp eq i8 %retval56.i.i, 0
|
|
|
|
%g_96.promoted.i = load i8, i8* @g_96
|
|
|
|
%3 = icmp eq i8 %g_96.promoted.i, 0
|
2009-09-15 10:25:21 +08:00
|
|
|
br i1 %3, label %func_4.exit.i, label %bb.i.i.i
|
|
|
|
|
2017-07-12 06:04:36 +08:00
|
|
|
bb.i.i.i:
|
|
|
|
%4 = load volatile i8, i8* @g_100, align 1
|
2009-09-15 10:25:21 +08:00
|
|
|
br label %func_4.exit.i
|
|
|
|
|
2017-07-12 06:04:36 +08:00
|
|
|
func_4.exit.i:
|
|
|
|
%.not.i = xor i1 %2, true
|
|
|
|
%brmerge.i = or i1 %3, %.not.i
|
|
|
|
%.mux.i = select i1 %2, i8 %g_96.promoted.i, i8 0
|
2009-09-15 10:25:21 +08:00
|
|
|
br i1 %brmerge.i, label %func_1.exit, label %bb.i.i
|
|
|
|
|
2017-07-12 06:04:36 +08:00
|
|
|
bb.i.i:
|
|
|
|
%5 = load volatile i8, i8* @g_100, align 1
|
2009-09-15 10:25:21 +08:00
|
|
|
br label %func_1.exit
|
|
|
|
|
2017-07-12 06:04:36 +08:00
|
|
|
func_1.exit:
|
|
|
|
%g_96.tmp.0.i = phi i8 [ %g_96.promoted.i, %bb.i.i ], [ %.mux.i, %func_4.exit.i ]
|
2017-01-25 00:36:07 +08:00
|
|
|
%ret = phi i1 [ 0, %bb.i.i ], [ %.not.i, %func_4.exit.i ]
|
2009-09-15 10:25:21 +08:00
|
|
|
store i8 %g_96.tmp.0.i, i8* @g_96
|
2017-07-12 06:04:36 +08:00
|
|
|
%6 = zext i8 %g_96.tmp.0.i to i32
|
|
|
|
%7 = tail call i32 (i8*, ...) @printf(i8* noalias getelementptr ([15 x i8], [15 x i8]* @_2E_str, i64 0, i64 0), i32 %6) nounwind
|
2017-01-25 00:36:07 +08:00
|
|
|
ret i1 %ret
|
2009-09-15 10:25:21 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
declare i32 @printf(i8* nocapture, ...) nounwind
|
|
|
|
|
|
|
|
|
|
|
|
; Should compile to setcc | -2.
|
|
|
|
; rdar://6668608
|
|
|
|
define i32 @test5(i32* nocapture %P) nounwind readonly {
|
2013-07-14 04:38:47 +08:00
|
|
|
; CHECK-LABEL: test5:
|
2017-12-05 01:18:51 +08:00
|
|
|
; CHECK: # %bb.0: # %entry
|
2017-07-12 06:04:36 +08:00
|
|
|
; CHECK-NEXT: xorl %eax, %eax
|
|
|
|
; CHECK-NEXT: cmpl $41, (%rdi)
|
|
|
|
; CHECK-NEXT: setg %al
|
|
|
|
; CHECK-NEXT: orl $-2, %eax
|
|
|
|
; CHECK-NEXT: retq
|
|
|
|
entry:
|
|
|
|
%0 = load i32, i32* %P, align 4
|
|
|
|
%1 = icmp sgt i32 %0, 41
|
|
|
|
%iftmp.0.0 = select i1 %1, i32 -1, i32 -2
|
2009-09-15 10:25:21 +08:00
|
|
|
ret i32 %iftmp.0.0
|
|
|
|
}
|
|
|
|
|
|
|
|
define i32 @test6(i32* nocapture %P) nounwind readonly {
|
2013-07-14 04:38:47 +08:00
|
|
|
; CHECK-LABEL: test6:
|
2017-12-05 01:18:51 +08:00
|
|
|
; CHECK: # %bb.0: # %entry
|
2017-07-12 06:04:36 +08:00
|
|
|
; CHECK-NEXT: xorl %eax, %eax
|
|
|
|
; CHECK-NEXT: cmpl $42, (%rdi)
|
|
|
|
; CHECK-NEXT: setl %al
|
|
|
|
; CHECK-NEXT: leal 4(%rax,%rax,8), %eax
|
|
|
|
; CHECK-NEXT: retq
|
|
|
|
entry:
|
|
|
|
%0 = load i32, i32* %P, align 4
|
|
|
|
%1 = icmp sgt i32 %0, 41
|
|
|
|
%iftmp.0.0 = select i1 %1, i32 4, i32 13
|
2009-09-15 10:25:21 +08:00
|
|
|
ret i32 %iftmp.0.0
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2009-09-15 10:27:23 +08:00
|
|
|
; Don't try to use a 16-bit conditional move to do an 8-bit select,
|
|
|
|
; because it isn't worth it. Just use a branch instead.
|
|
|
|
define i8 @test7(i1 inreg %c, i8 inreg %a, i8 inreg %b) nounwind {
|
2013-07-14 04:38:47 +08:00
|
|
|
; CHECK-LABEL: test7:
|
2017-12-05 01:18:51 +08:00
|
|
|
; CHECK: # %bb.0:
|
2017-07-12 06:04:36 +08:00
|
|
|
; CHECK-NEXT: movl %esi, %eax
|
[X86] Promote i8 CMOV's (PR40965)
Summary:
@mclow.lists brought up this issue up in IRC, it came up during
implementation of libc++ `std::midpoint()` implementation (D59099)
https://godbolt.org/z/oLrHBP
Currently LLVM X86 backend only promotes i8 CMOV if it came from 2x`trunc`.
This differential proposes to always promote i8 CMOV.
There are several concerns here:
* Is this actually more performant, or is it just the ASM that looks cuter?
* Does this result in partial register stalls?
* What about branch predictor?
# Indeed, performance should be the main point here.
Let's look at a simple microbenchmark: {F8412076}
```
#include "benchmark/benchmark.h"
#include <algorithm>
#include <cmath>
#include <cstdint>
#include <iterator>
#include <limits>
#include <random>
#include <type_traits>
#include <utility>
#include <vector>
// Future preliminary libc++ code, from Marshall Clow.
namespace std {
template <class _Tp>
__inline _Tp midpoint(_Tp __a, _Tp __b) noexcept {
using _Up = typename std::make_unsigned<typename remove_cv<_Tp>::type>::type;
int __sign = 1;
_Up __m = __a;
_Up __M = __b;
if (__a > __b) {
__sign = -1;
__m = __b;
__M = __a;
}
return __a + __sign * _Tp(_Up(__M - __m) >> 1);
}
} // namespace std
template <typename T>
std::vector<T> getVectorOfRandomNumbers(size_t count) {
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_int_distribution<T> dis(std::numeric_limits<T>::min(),
std::numeric_limits<T>::max());
std::vector<T> v;
v.reserve(count);
std::generate_n(std::back_inserter(v), count,
[&dis, &gen]() { return dis(gen); });
assert(v.size() == count);
return v;
}
struct RandRand {
template <typename T>
static std::pair<std::vector<T>, std::vector<T>> Gen(size_t count) {
return std::make_pair(getVectorOfRandomNumbers<T>(count),
getVectorOfRandomNumbers<T>(count));
}
};
struct ZeroRand {
template <typename T>
static std::pair<std::vector<T>, std::vector<T>> Gen(size_t count) {
return std::make_pair(std::vector<T>(count, T(0)),
getVectorOfRandomNumbers<T>(count));
}
};
template <class T, class Gen>
void BM_StdMidpoint(benchmark::State& state) {
const size_t Length = state.range(0);
const std::pair<std::vector<T>, std::vector<T>> Data =
Gen::template Gen<T>(Length);
const std::vector<T>& a = Data.first;
const std::vector<T>& b = Data.second;
assert(a.size() == Length && b.size() == a.size());
benchmark::ClobberMemory();
benchmark::DoNotOptimize(a);
benchmark::DoNotOptimize(a.data());
benchmark::DoNotOptimize(b);
benchmark::DoNotOptimize(b.data());
for (auto _ : state) {
for (size_t i = 0; i < Length; i++) {
const auto calculated = std::midpoint(a[i], b[i]);
benchmark::DoNotOptimize(calculated);
}
}
state.SetComplexityN(Length);
state.counters["midpoints"] =
benchmark::Counter(Length, benchmark::Counter::kIsIterationInvariant);
state.counters["midpoints/sec"] =
benchmark::Counter(Length, benchmark::Counter::kIsIterationInvariantRate);
const size_t BytesRead = 2 * sizeof(T) * Length;
state.counters["bytes_read/iteration"] =
benchmark::Counter(BytesRead, benchmark::Counter::kDefaults,
benchmark::Counter::OneK::kIs1024);
state.counters["bytes_read/sec"] = benchmark::Counter(
BytesRead, benchmark::Counter::kIsIterationInvariantRate,
benchmark::Counter::OneK::kIs1024);
}
template <typename T>
static void CustomArguments(benchmark::internal::Benchmark* b) {
const size_t L2SizeBytes = 2 * 1024 * 1024;
// What is the largest range we can check to always fit within given L2 cache?
const size_t MaxLen = L2SizeBytes / /*total bufs*/ 2 /
/*maximal elt size*/ sizeof(T) / /*safety margin*/ 2;
b->RangeMultiplier(2)->Range(1, MaxLen)->Complexity(benchmark::oN);
}
// Both of the values are random.
// The comparison is unpredictable.
BENCHMARK_TEMPLATE(BM_StdMidpoint, int32_t, RandRand)
->Apply(CustomArguments<int32_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, uint32_t, RandRand)
->Apply(CustomArguments<uint32_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, int64_t, RandRand)
->Apply(CustomArguments<int64_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, uint64_t, RandRand)
->Apply(CustomArguments<uint64_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, int16_t, RandRand)
->Apply(CustomArguments<int16_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, uint16_t, RandRand)
->Apply(CustomArguments<uint16_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, int8_t, RandRand)
->Apply(CustomArguments<int8_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, uint8_t, RandRand)
->Apply(CustomArguments<uint8_t>);
// One value is always zero, and another is bigger or equal than zero.
// The comparison is predictable.
BENCHMARK_TEMPLATE(BM_StdMidpoint, uint32_t, ZeroRand)
->Apply(CustomArguments<uint32_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, uint64_t, ZeroRand)
->Apply(CustomArguments<uint64_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, uint16_t, ZeroRand)
->Apply(CustomArguments<uint16_t>);
BENCHMARK_TEMPLATE(BM_StdMidpoint, uint8_t, ZeroRand)
->Apply(CustomArguments<uint8_t>);
```
```
$ ~/src/googlebenchmark/tools/compare.py --no-utest benchmarks ./llvm-cmov-bench-OLD ./llvm-cmov-bench-NEW
RUNNING: ./llvm-cmov-bench-OLD --benchmark_out=/tmp/tmp5a5qjm
2019-03-06 21:53:31
Running ./llvm-cmov-bench-OLD
Run on (8 X 4000 MHz CPU s)
CPU Caches:
L1 Data 16K (x8)
L1 Instruction 64K (x4)
L2 Unified 2048K (x4)
L3 Unified 8192K (x1)
Load Average: 1.78, 1.81, 1.36
----------------------------------------------------------------------------------------------------
Benchmark Time CPU Iterations UserCounters<...>
----------------------------------------------------------------------------------------------------
<...>
BM_StdMidpoint<int32_t, RandRand>/131072 300398 ns 300404 ns 2330 bytes_read/iteration=1024k bytes_read/sec=3.25083G/s midpoints=305.398M midpoints/sec=436.319M/s
BM_StdMidpoint<int32_t, RandRand>_BigO 2.29 N 2.29 N
BM_StdMidpoint<int32_t, RandRand>_RMS 2 % 2 %
<...>
BM_StdMidpoint<uint32_t, RandRand>/131072 300433 ns 300433 ns 2330 bytes_read/iteration=1024k bytes_read/sec=3.25052G/s midpoints=305.398M midpoints/sec=436.278M/s
BM_StdMidpoint<uint32_t, RandRand>_BigO 2.29 N 2.29 N
BM_StdMidpoint<uint32_t, RandRand>_RMS 2 % 2 %
<...>
BM_StdMidpoint<int64_t, RandRand>/65536 169857 ns 169858 ns 4121 bytes_read/iteration=1024k bytes_read/sec=5.74929G/s midpoints=270.074M midpoints/sec=385.828M/s
BM_StdMidpoint<int64_t, RandRand>_BigO 2.59 N 2.59 N
BM_StdMidpoint<int64_t, RandRand>_RMS 3 % 3 %
<...>
BM_StdMidpoint<uint64_t, RandRand>/65536 169770 ns 169771 ns 4125 bytes_read/iteration=1024k bytes_read/sec=5.75223G/s midpoints=270.336M midpoints/sec=386.026M/s
BM_StdMidpoint<uint64_t, RandRand>_BigO 2.59 N 2.59 N
BM_StdMidpoint<uint64_t, RandRand>_RMS 3 % 3 %
<...>
BM_StdMidpoint<int16_t, RandRand>/262144 591169 ns 591179 ns 1182 bytes_read/iteration=1024k bytes_read/sec=1.65189G/s midpoints=309.854M midpoints/sec=443.426M/s
BM_StdMidpoint<int16_t, RandRand>_BigO 2.25 N 2.25 N
BM_StdMidpoint<int16_t, RandRand>_RMS 1 % 1 %
<...>
BM_StdMidpoint<uint16_t, RandRand>/262144 591264 ns 591274 ns 1184 bytes_read/iteration=1024k bytes_read/sec=1.65162G/s midpoints=310.378M midpoints/sec=443.354M/s
BM_StdMidpoint<uint16_t, RandRand>_BigO 2.25 N 2.25 N
BM_StdMidpoint<uint16_t, RandRand>_RMS 1 % 1 %
<...>
BM_StdMidpoint<int8_t, RandRand>/524288 2983669 ns 2983689 ns 235 bytes_read/iteration=1024k bytes_read/sec=335.156M/s midpoints=123.208M midpoints/sec=175.718M/s
BM_StdMidpoint<int8_t, RandRand>_BigO 5.69 N 5.69 N
BM_StdMidpoint<int8_t, RandRand>_RMS 0 % 0 %
<...>
BM_StdMidpoint<uint8_t, RandRand>/524288 2668398 ns 2668419 ns 262 bytes_read/iteration=1024k bytes_read/sec=374.754M/s midpoints=137.363M midpoints/sec=196.479M/s
BM_StdMidpoint<uint8_t, RandRand>_BigO 5.09 N 5.09 N
BM_StdMidpoint<uint8_t, RandRand>_RMS 0 % 0 %
<...>
BM_StdMidpoint<uint32_t, ZeroRand>/131072 300887 ns 300887 ns 2331 bytes_read/iteration=1024k bytes_read/sec=3.24561G/s midpoints=305.529M midpoints/sec=435.619M/s
BM_StdMidpoint<uint32_t, ZeroRand>_BigO 2.29 N 2.29 N
BM_StdMidpoint<uint32_t, ZeroRand>_RMS 2 % 2 %
<...>
BM_StdMidpoint<uint64_t, ZeroRand>/65536 169634 ns 169634 ns 4102 bytes_read/iteration=1024k bytes_read/sec=5.75688G/s midpoints=268.829M midpoints/sec=386.338M/s
BM_StdMidpoint<uint64_t, ZeroRand>_BigO 2.59 N 2.59 N
BM_StdMidpoint<uint64_t, ZeroRand>_RMS 3 % 3 %
<...>
BM_StdMidpoint<uint16_t, ZeroRand>/262144 592252 ns 592255 ns 1182 bytes_read/iteration=1024k bytes_read/sec=1.64889G/s midpoints=309.854M midpoints/sec=442.62M/s
BM_StdMidpoint<uint16_t, ZeroRand>_BigO 2.26 N 2.26 N
BM_StdMidpoint<uint16_t, ZeroRand>_RMS 1 % 1 %
<...>
BM_StdMidpoint<uint8_t, ZeroRand>/524288 987295 ns 987309 ns 711 bytes_read/iteration=1024k bytes_read/sec=1012.85M/s midpoints=372.769M midpoints/sec=531.028M/s
BM_StdMidpoint<uint8_t, ZeroRand>_BigO 1.88 N 1.88 N
BM_StdMidpoint<uint8_t, ZeroRand>_RMS 1 % 1 %
RUNNING: ./llvm-cmov-bench-NEW --benchmark_out=/tmp/tmpPvwpfW
2019-03-06 21:56:58
Running ./llvm-cmov-bench-NEW
Run on (8 X 4000 MHz CPU s)
CPU Caches:
L1 Data 16K (x8)
L1 Instruction 64K (x4)
L2 Unified 2048K (x4)
L3 Unified 8192K (x1)
Load Average: 1.17, 1.46, 1.30
----------------------------------------------------------------------------------------------------
Benchmark Time CPU Iterations UserCounters<...>
----------------------------------------------------------------------------------------------------
<...>
BM_StdMidpoint<int32_t, RandRand>/131072 300878 ns 300880 ns 2324 bytes_read/iteration=1024k bytes_read/sec=3.24569G/s midpoints=304.611M midpoints/sec=435.629M/s
BM_StdMidpoint<int32_t, RandRand>_BigO 2.29 N 2.29 N
BM_StdMidpoint<int32_t, RandRand>_RMS 2 % 2 %
<...>
BM_StdMidpoint<uint32_t, RandRand>/131072 300231 ns 300226 ns 2330 bytes_read/iteration=1024k bytes_read/sec=3.25276G/s midpoints=305.398M midpoints/sec=436.578M/s
BM_StdMidpoint<uint32_t, RandRand>_BigO 2.29 N 2.29 N
BM_StdMidpoint<uint32_t, RandRand>_RMS 2 % 2 %
<...>
BM_StdMidpoint<int64_t, RandRand>/65536 170819 ns 170777 ns 4115 bytes_read/iteration=1024k bytes_read/sec=5.71835G/s midpoints=269.681M midpoints/sec=383.752M/s
BM_StdMidpoint<int64_t, RandRand>_BigO 2.60 N 2.60 N
BM_StdMidpoint<int64_t, RandRand>_RMS 3 % 3 %
<...>
BM_StdMidpoint<uint64_t, RandRand>/65536 171705 ns 171708 ns 4106 bytes_read/iteration=1024k bytes_read/sec=5.68733G/s midpoints=269.091M midpoints/sec=381.671M/s
BM_StdMidpoint<uint64_t, RandRand>_BigO 2.62 N 2.62 N
BM_StdMidpoint<uint64_t, RandRand>_RMS 3 % 3 %
<...>
BM_StdMidpoint<int16_t, RandRand>/262144 592510 ns 592516 ns 1182 bytes_read/iteration=1024k bytes_read/sec=1.64816G/s midpoints=309.854M midpoints/sec=442.425M/s
BM_StdMidpoint<int16_t, RandRand>_BigO 2.26 N 2.26 N
BM_StdMidpoint<int16_t, RandRand>_RMS 1 % 1 %
<...>
BM_StdMidpoint<uint16_t, RandRand>/262144 614823 ns 614823 ns 1180 bytes_read/iteration=1024k bytes_read/sec=1.58836G/s midpoints=309.33M midpoints/sec=426.373M/s
BM_StdMidpoint<uint16_t, RandRand>_BigO 2.33 N 2.33 N
BM_StdMidpoint<uint16_t, RandRand>_RMS 4 % 4 %
<...>
BM_StdMidpoint<int8_t, RandRand>/524288 1073181 ns 1073201 ns 650 bytes_read/iteration=1024k bytes_read/sec=931.791M/s midpoints=340.787M midpoints/sec=488.527M/s
BM_StdMidpoint<int8_t, RandRand>_BigO 2.05 N 2.05 N
BM_StdMidpoint<int8_t, RandRand>_RMS 1 % 1 %
BM_StdMidpoint<uint8_t, RandRand>/524288 1071010 ns 1071020 ns 653 bytes_read/iteration=1024k bytes_read/sec=933.689M/s midpoints=342.36M midpoints/sec=489.522M/s
BM_StdMidpoint<uint8_t, RandRand>_BigO 2.05 N 2.05 N
BM_StdMidpoint<uint8_t, RandRand>_RMS 1 % 1 %
<...>
BM_StdMidpoint<uint32_t, ZeroRand>/131072 300413 ns 300416 ns 2330 bytes_read/iteration=1024k bytes_read/sec=3.2507G/s midpoints=305.398M midpoints/sec=436.302M/s
BM_StdMidpoint<uint32_t, ZeroRand>_BigO 2.29 N 2.29 N
BM_StdMidpoint<uint32_t, ZeroRand>_RMS 2 % 2 %
<...>
BM_StdMidpoint<uint64_t, ZeroRand>/65536 169667 ns 169669 ns 4123 bytes_read/iteration=1024k bytes_read/sec=5.75568G/s midpoints=270.205M midpoints/sec=386.257M/s
BM_StdMidpoint<uint64_t, ZeroRand>_BigO 2.59 N 2.59 N
BM_StdMidpoint<uint64_t, ZeroRand>_RMS 3 % 3 %
<...>
BM_StdMidpoint<uint16_t, ZeroRand>/262144 591396 ns 591404 ns 1184 bytes_read/iteration=1024k bytes_read/sec=1.65126G/s midpoints=310.378M midpoints/sec=443.257M/s
BM_StdMidpoint<uint16_t, ZeroRand>_BigO 2.26 N 2.26 N
BM_StdMidpoint<uint16_t, ZeroRand>_RMS 1 % 1 %
<...>
BM_StdMidpoint<uint8_t, ZeroRand>/524288 1069421 ns 1069413 ns 655 bytes_read/iteration=1024k bytes_read/sec=935.092M/s midpoints=343.409M midpoints/sec=490.258M/s
BM_StdMidpoint<uint8_t, ZeroRand>_BigO 2.04 N 2.04 N
BM_StdMidpoint<uint8_t, ZeroRand>_RMS 0 % 0 %
Comparing ./llvm-cmov-bench-OLD to ./llvm-cmov-bench-NEW
Benchmark Time CPU Time Old Time New CPU Old CPU New
----------------------------------------------------------------------------------------------------------------------------------------
<...>
BM_StdMidpoint<int32_t, RandRand>/131072 +0.0016 +0.0016 300398 300878 300404 300880
<...>
BM_StdMidpoint<uint32_t, RandRand>/131072 -0.0007 -0.0007 300433 300231 300433 300226
<...>
BM_StdMidpoint<int64_t, RandRand>/65536 +0.0057 +0.0054 169857 170819 169858 170777
<...>
BM_StdMidpoint<uint64_t, RandRand>/65536 +0.0114 +0.0114 169770 171705 169771 171708
<...>
BM_StdMidpoint<int16_t, RandRand>/262144 +0.0023 +0.0023 591169 592510 591179 592516
<...>
BM_StdMidpoint<uint16_t, RandRand>/262144 +0.0398 +0.0398 591264 614823 591274 614823
<...>
BM_StdMidpoint<int8_t, RandRand>/524288 -0.6403 -0.6403 2983669 1073181 2983689 1073201
<...>
BM_StdMidpoint<uint8_t, RandRand>/524288 -0.5986 -0.5986 2668398 1071010 2668419 1071020
<...>
BM_StdMidpoint<uint32_t, ZeroRand>/131072 -0.0016 -0.0016 300887 300413 300887 300416
<...>
BM_StdMidpoint<uint64_t, ZeroRand>/65536 +0.0002 +0.0002 169634 169667 169634 169669
<...>
BM_StdMidpoint<uint16_t, ZeroRand>/262144 -0.0014 -0.0014 592252 591396 592255 591404
<...>
BM_StdMidpoint<uint8_t, ZeroRand>/524288 +0.0832 +0.0832 987295 1069421 987309 1069413
```
What can we tell from the benchmark?
* `BM_StdMidpoint<[u]int8_t, RandRand>` indeed has the worst performance.
* All `BM_StdMidpoint<uint{8,16,32}_t, ZeroRand>` are all performant, even the 8-bit case.
That is because there we are computing mid point between zero and some random number,
thus if the branch predictor is in use, it is in optimal situation.
* Promoting 8-bit CMOV did improve performance of `BM_StdMidpoint<[u]int8_t, RandRand>`, by -59%..-64%.
# What about branch predictor?
* `BM_StdMidpoint<uint8_t, ZeroRand>` was faster than `BM_StdMidpoint<uint{16,32,64}_t, ZeroRand>`,
which may mean that well-predicted branch is better than `cmov`.
* Promoting 8-bit CMOV degraded performance of `BM_StdMidpoint<uint8_t, ZeroRand>`,
`cmov` is up to +10% worse than well-predicted branch.
* However, i do not believe this is a concern. If the branch is well predicted, then the PGO
will also say that it is well predicted, and LLVM will happily expand cmov back into branch:
https://godbolt.org/z/P5ufig
# What about partial register stalls?
I'm not really able to answer that.
What i can say is that if the branch is unpredictable (if it is predictable, then use PGO and you'll have branch)
in ~50% of cases you will have to pay branch misprediction penalty.
```
$ grep -i MispredictPenalty X86Sched*.td
X86SchedBroadwell.td: let MispredictPenalty = 16;
X86SchedHaswell.td: let MispredictPenalty = 16;
X86SchedSandyBridge.td: let MispredictPenalty = 16;
X86SchedSkylakeClient.td: let MispredictPenalty = 14;
X86SchedSkylakeServer.td: let MispredictPenalty = 14;
X86ScheduleBdVer2.td: let MispredictPenalty = 20; // Minimum branch misdirection penalty.
X86ScheduleBtVer2.td: let MispredictPenalty = 14; // Minimum branch misdirection penalty
X86ScheduleSLM.td: let MispredictPenalty = 10;
X86ScheduleZnver1.td: let MispredictPenalty = 17;
```
.. which it can be as small as 10 cycles and as large as 20 cycles.
Partial register stalls do not seem to be an issue for AMD CPU's.
For intel CPU's, they should be around ~5 cycles?
Is that actually an issue here? I'm not sure.
In short, i'd say this is an improvement, at least on this microbenchmark.
Fixes [[ https://bugs.llvm.org/show_bug.cgi?id=40965 | PR40965 ]].
Reviewers: craig.topper, RKSimon, spatel, andreadb, nikic
Reviewed By: craig.topper, andreadb
Subscribers: jfb, jdoerfert, llvm-commits, mclow.lists
Tags: #llvm, #libc
Differential Revision: https://reviews.llvm.org/D59035
llvm-svn: 356300
2019-03-16 05:17:53 +08:00
|
|
|
; CHECK-NEXT: testb $1, %dil
|
|
|
|
; CHECK-NEXT: cmovel %edx, %eax
|
2018-09-20 02:59:08 +08:00
|
|
|
; CHECK-NEXT: # kill: def $al killed $al killed $eax
|
2017-07-12 06:04:36 +08:00
|
|
|
; CHECK-NEXT: retq
|
2009-09-15 10:27:23 +08:00
|
|
|
%d = select i1 %c, i8 %a, i8 %b
|
|
|
|
ret i8 %d
|
|
|
|
}
|
2017-01-06 02:35:44 +08:00
|
|
|
|
|
|
|
define i32 @smin(i32 %x) {
|
|
|
|
; CHECK-LABEL: smin:
|
2017-12-05 01:18:51 +08:00
|
|
|
; CHECK: # %bb.0:
|
[x86] Fix an amazing goof in the handling of sub, or, and xor lowering.
The comment for this code indicated that it should work similar to our
handling of add lowering above: if we see uses of an instruction other
than flag usage and store usage, it tries to avoid the specialized
X86ISD::* nodes that are designed for flag+op modeling and emits an
explicit test.
Problem is, only the add case actually did this. In all the other cases,
the logic was incomplete and inverted. Any time the value was used by
a store, we bailed on the specialized X86ISD node. All of this appears
to have been historical where we had different logic here. =/
Turns out, we have quite a few patterns designed around these nodes. We
should actually form them. I fixed the code to match what we do for add,
and it has quite a positive effect just within some of our test cases.
The only thing close to a regression I see is using:
notl %r
testl %r, %r
instead of:
xorl -1, %r
But we can add a pattern or something to fold that back out. The
improvements seem more than worth this.
I've also worked with Craig to update the comments to no longer be
actively contradicted by the code. =[ Some of this still remains
a mystery to both Craig and myself, but this seems like a large step in
the direction of consistency and slightly more accurate comments.
Many thanks to Craig for help figuring out this nasty stuff.
Differential Revision: https://reviews.llvm.org/D37096
llvm-svn: 311737
2017-08-25 08:34:07 +08:00
|
|
|
; CHECK-NEXT: notl %edi
|
|
|
|
; CHECK-NEXT: testl %edi, %edi
|
2017-01-06 02:35:44 +08:00
|
|
|
; CHECK-NEXT: movl $-1, %eax
|
[x86] fix usage of stale operands when lowering select
I noticed this problem as part of the ongoing attempt to canonicalize min/max ops in IR.
The debug output shows nodes like this:
t4: i32 = xor t2, Constant:i32<-1>
t21: i8 = setcc t4, Constant:i32<0>, setlt:ch
t14: i32 = select t21, t4, Constant:i32<-1>
And because the select is holding onto the t4 (xor) node while EmitTest creates a new
x86-specific xor node, the lowering results in:
t4: i32 = xor t2, Constant:i32<-1>
t25: i32,i32 = X86ISD::XOR t2, Constant:i32<-1>
t28: i32,glue = X86ISD::CMOV Constant:i32<-1>, t4, Constant:i8<15>, t25:1
Differential Revision: https://reviews.llvm.org/D28374
llvm-svn: 291392
2017-01-08 23:53:40 +08:00
|
|
|
; CHECK-NEXT: cmovsl %edi, %eax
|
2017-01-06 02:35:44 +08:00
|
|
|
; CHECK-NEXT: retq
|
|
|
|
%not_x = xor i32 %x, -1
|
|
|
|
%1 = icmp slt i32 %not_x, -1
|
|
|
|
%sel = select i1 %1, i32 %not_x, i32 -1
|
|
|
|
ret i32 %sel
|
|
|
|
}
|
|
|
|
|