llvm-project/mlir/lib/Analysis/AffineStructures.cpp

2789 lines
104 KiB
C++
Raw Normal View History

//===- AffineStructures.cpp - MLIR Affine Structures Class-------*- C++ -*-===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// Structures for affine/polyhedral analysis of MLIR functions.
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/AffineStructures.h"
#include "mlir/AffineOps/AffineOps.h"
#include "mlir/IR/AffineExprVisitor.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/IR/Operation.h"
#include "mlir/StandardOps/Ops.h"
#include "mlir/Support/MathExtras.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "affine-structures"
using namespace mlir;
using llvm::SmallDenseMap;
using llvm::SmallDenseSet;
using llvm::SmallPtrSet;
namespace {
// See comments for SimpleAffineExprFlattener.
// An AffineExprFlattener extends a SimpleAffineExprFlattener by recording
// constraint information associated with mod's, floordiv's, and ceildiv's
// in FlatAffineConstraints 'localVarCst'.
struct AffineExprFlattener : public SimpleAffineExprFlattener {
public:
// Constraints connecting newly introduced local variables (for mod's and
// div's) to existing (dimensional and symbolic) ones. These are always
// inequalities.
FlatAffineConstraints localVarCst;
AffineExprFlattener(unsigned nDims, unsigned nSymbols, MLIRContext *ctx)
: SimpleAffineExprFlattener(nDims, nSymbols) {
localVarCst.reset(nDims, nSymbols, /*numLocals=*/0);
}
private:
// Add a local identifier (needed to flatten a mod, floordiv, ceildiv expr).
// The local identifier added is always a floordiv of a pure add/mul affine
// function of other identifiers, coefficients of which are specified in
// `dividend' and with respect to the positive constant `divisor'. localExpr
// is the simplified tree expression (AffineExpr) corresponding to the
// quantifier.
void addLocalFloorDivId(ArrayRef<int64_t> dividend, int64_t divisor,
AffineExpr localExpr) override {
SimpleAffineExprFlattener::addLocalFloorDivId(dividend, divisor, localExpr);
// Update localVarCst.
localVarCst.addLocalFloorDiv(dividend, divisor);
}
};
} // end anonymous namespace
// Flattens the expressions in map. Returns failure if 'expr' was unable to be
// flattened (i.e., semi-affine expressions not handled yet).
static LogicalResult getFlattenedAffineExprs(
ArrayRef<AffineExpr> exprs, unsigned numDims, unsigned numSymbols,
std::vector<llvm::SmallVector<int64_t, 8>> *flattenedExprs,
FlatAffineConstraints *localVarCst) {
if (exprs.empty()) {
localVarCst->reset(numDims, numSymbols);
return success();
}
AffineExprFlattener flattener(numDims, numSymbols, exprs[0].getContext());
// Use the same flattener to simplify each expression successively. This way
// local identifiers / expressions are shared.
for (auto expr : exprs) {
if (!expr.isPureAffine())
return failure();
flattener.walkPostOrder(expr);
}
assert(flattener.operandExprStack.size() == exprs.size());
flattenedExprs->clear();
flattenedExprs->assign(flattener.operandExprStack.begin(),
flattener.operandExprStack.end());
if (localVarCst) {
localVarCst->clearAndCopyFrom(flattener.localVarCst);
}
return success();
}
// Flattens 'expr' into 'flattenedExpr'. Returns failure if 'expr' was unable to
// be flattened (semi-affine expressions not handled yet).
LogicalResult
mlir::getFlattenedAffineExpr(AffineExpr expr, unsigned numDims,
unsigned numSymbols,
llvm::SmallVectorImpl<int64_t> *flattenedExpr,
FlatAffineConstraints *localVarCst) {
std::vector<SmallVector<int64_t, 8>> flattenedExprs;
LogicalResult ret = ::getFlattenedAffineExprs({expr}, numDims, numSymbols,
&flattenedExprs, localVarCst);
*flattenedExpr = flattenedExprs[0];
return ret;
}
/// Flattens the expressions in map. Returns failure if 'expr' was unable to be
/// flattened (i.e., semi-affine expressions not handled yet).
LogicalResult mlir::getFlattenedAffineExprs(
AffineMap map, std::vector<llvm::SmallVector<int64_t, 8>> *flattenedExprs,
FlatAffineConstraints *localVarCst) {
if (map.getNumResults() == 0) {
localVarCst->reset(map.getNumDims(), map.getNumSymbols());
return success();
}
return ::getFlattenedAffineExprs(map.getResults(), map.getNumDims(),
map.getNumSymbols(), flattenedExprs,
localVarCst);
}
LogicalResult mlir::getFlattenedAffineExprs(
IntegerSet set, std::vector<llvm::SmallVector<int64_t, 8>> *flattenedExprs,
FlatAffineConstraints *localVarCst) {
if (set.getNumConstraints() == 0) {
localVarCst->reset(set.getNumDims(), set.getNumSymbols());
return success();
}
return ::getFlattenedAffineExprs(set.getConstraints(), set.getNumDims(),
set.getNumSymbols(), flattenedExprs,
localVarCst);
}
//===----------------------------------------------------------------------===//
// MutableAffineMap.
//===----------------------------------------------------------------------===//
MutableAffineMap::MutableAffineMap(AffineMap map)
: numDims(map.getNumDims()), numSymbols(map.getNumSymbols()),
// A map always has at least 1 result by construction
context(map.getResult(0).getContext()) {
for (auto result : map.getResults())
results.push_back(result);
for (auto rangeSize : map.getRangeSizes())
results.push_back(rangeSize);
}
void MutableAffineMap::reset(AffineMap map) {
results.clear();
rangeSizes.clear();
numDims = map.getNumDims();
numSymbols = map.getNumSymbols();
// A map always has at least 1 result by construction
context = map.getResult(0).getContext();
for (auto result : map.getResults())
results.push_back(result);
for (auto rangeSize : map.getRangeSizes())
results.push_back(rangeSize);
}
bool MutableAffineMap::isMultipleOf(unsigned idx, int64_t factor) const {
if (results[idx].isMultipleOf(factor))
return true;
// TODO(bondhugula): use simplifyAffineExpr and FlatAffineConstraints to
// complete this (for a more powerful analysis).
return false;
}
// Simplifies the result affine expressions of this map. The expressions have to
// be pure for the simplification implemented.
void MutableAffineMap::simplify() {
// Simplify each of the results if possible.
// TODO(ntv): functional-style map
for (unsigned i = 0, e = getNumResults(); i < e; i++) {
results[i] = simplifyAffineExpr(getResult(i), numDims, numSymbols);
}
}
AffineMap MutableAffineMap::getAffineMap() const {
return AffineMap::get(numDims, numSymbols, results, rangeSizes);
}
MutableIntegerSet::MutableIntegerSet(IntegerSet set, MLIRContext *context)
: numDims(set.getNumDims()), numSymbols(set.getNumSymbols()),
context(context) {
// TODO(bondhugula)
}
// Universal set.
MutableIntegerSet::MutableIntegerSet(unsigned numDims, unsigned numSymbols,
MLIRContext *context)
: numDims(numDims), numSymbols(numSymbols), context(context) {}
//===----------------------------------------------------------------------===//
// AffineValueMap.
//===----------------------------------------------------------------------===//
AffineValueMap::AffineValueMap(AffineMap map, ArrayRef<Value *> operands,
ArrayRef<Value *> results)
: map(map), operands(operands.begin(), operands.end()),
results(results.begin(), results.end()) {}
AffineValueMap::AffineValueMap(AffineApplyOp applyOp)
: map(applyOp.getAffineMap()),
operands(applyOp.operand_begin(), applyOp.operand_end()) {
results.push_back(applyOp.getResult());
}
AffineValueMap::AffineValueMap(AffineBound bound)
: map(bound.getMap()),
operands(bound.operand_begin(), bound.operand_end()) {}
void AffineValueMap::reset(AffineMap map, ArrayRef<Value *> operands,
ArrayRef<Value *> results) {
this->map.reset(map);
this->operands.assign(operands.begin(), operands.end());
this->results.assign(results.begin(), results.end());
}
// Returns true and sets 'indexOfMatch' if 'valueToMatch' is found in
// 'valuesToSearch' beginning at 'indexStart'. Returns false otherwise.
static bool findIndex(Value *valueToMatch, ArrayRef<Value *> valuesToSearch,
unsigned indexStart, unsigned *indexOfMatch) {
unsigned size = valuesToSearch.size();
for (unsigned i = indexStart; i < size; ++i) {
if (valueToMatch == valuesToSearch[i]) {
[MLIR] Basic infrastructure for vectorization test This CL implements a very simple loop vectorization **test** and the basic infrastructure to support it. The test simply consists in: 1. matching the loops in the MLFunction and all the Load/Store operations nested under the loop; 2. testing whether all the Load/Store are contiguous along the innermost memory dimension along that particular loop. If any reference is non-contiguous (i.e. the ForStmt SSAValue appears in the expression), then the loop is not-vectorizable. The simple test above can gradually be extended with more interesting behaviors to account for the fact that a layout permutation may exist that enables contiguity etc. All these will come in due time but it is worthwhile noting that the test already supports detection of outer-vetorizable loops. In implementing this test, I also added a recursive MLFunctionMatcher and some sugar that can capture patterns such as `auto gemmLike = Doall(Doall(Red(LoadStore())))` and allows iterating on the matched IR structures. For now it just uses in order traversal but post-order DFS will be useful in the future once IR rewrites start occuring. One may note that the memory management design decision follows a different pattern from MLIR. After evaluating different designs and how they quickly increase cognitive overhead, I decided to opt for the simplest solution in my view: a class-wide (threadsafe) RAII context. This way, a pass that needs MLFunctionMatcher can just have its own locally scoped BumpPtrAllocator and everything is cleaned up when the pass is destroyed. If passes are expected to have a longer lifetime, then the contexts can easily be scoped inside the runOnMLFunction call and storage lifetime reduced. Lastly, whatever the scope of threading (module, function, pass), this is expected to also be future-proof wrt concurrency (but this is a detail atm). PiperOrigin-RevId: 217622889
2018-10-18 09:01:44 +08:00
*indexOfMatch = i;
return true;
}
}
return false;
}
inline bool AffineValueMap::isMultipleOf(unsigned idx, int64_t factor) const {
return map.isMultipleOf(idx, factor);
}
[MLIR] Basic infrastructure for vectorization test This CL implements a very simple loop vectorization **test** and the basic infrastructure to support it. The test simply consists in: 1. matching the loops in the MLFunction and all the Load/Store operations nested under the loop; 2. testing whether all the Load/Store are contiguous along the innermost memory dimension along that particular loop. If any reference is non-contiguous (i.e. the ForStmt SSAValue appears in the expression), then the loop is not-vectorizable. The simple test above can gradually be extended with more interesting behaviors to account for the fact that a layout permutation may exist that enables contiguity etc. All these will come in due time but it is worthwhile noting that the test already supports detection of outer-vetorizable loops. In implementing this test, I also added a recursive MLFunctionMatcher and some sugar that can capture patterns such as `auto gemmLike = Doall(Doall(Red(LoadStore())))` and allows iterating on the matched IR structures. For now it just uses in order traversal but post-order DFS will be useful in the future once IR rewrites start occuring. One may note that the memory management design decision follows a different pattern from MLIR. After evaluating different designs and how they quickly increase cognitive overhead, I decided to opt for the simplest solution in my view: a class-wide (threadsafe) RAII context. This way, a pass that needs MLFunctionMatcher can just have its own locally scoped BumpPtrAllocator and everything is cleaned up when the pass is destroyed. If passes are expected to have a longer lifetime, then the contexts can easily be scoped inside the runOnMLFunction call and storage lifetime reduced. Lastly, whatever the scope of threading (module, function, pass), this is expected to also be future-proof wrt concurrency (but this is a detail atm). PiperOrigin-RevId: 217622889
2018-10-18 09:01:44 +08:00
/// This method uses the invariant that operands are always positionally aligned
/// with the AffineDimExpr in the underlying AffineMap.
bool AffineValueMap::isFunctionOf(unsigned idx, Value *value) const {
[MLIR] Basic infrastructure for vectorization test This CL implements a very simple loop vectorization **test** and the basic infrastructure to support it. The test simply consists in: 1. matching the loops in the MLFunction and all the Load/Store operations nested under the loop; 2. testing whether all the Load/Store are contiguous along the innermost memory dimension along that particular loop. If any reference is non-contiguous (i.e. the ForStmt SSAValue appears in the expression), then the loop is not-vectorizable. The simple test above can gradually be extended with more interesting behaviors to account for the fact that a layout permutation may exist that enables contiguity etc. All these will come in due time but it is worthwhile noting that the test already supports detection of outer-vetorizable loops. In implementing this test, I also added a recursive MLFunctionMatcher and some sugar that can capture patterns such as `auto gemmLike = Doall(Doall(Red(LoadStore())))` and allows iterating on the matched IR structures. For now it just uses in order traversal but post-order DFS will be useful in the future once IR rewrites start occuring. One may note that the memory management design decision follows a different pattern from MLIR. After evaluating different designs and how they quickly increase cognitive overhead, I decided to opt for the simplest solution in my view: a class-wide (threadsafe) RAII context. This way, a pass that needs MLFunctionMatcher can just have its own locally scoped BumpPtrAllocator and everything is cleaned up when the pass is destroyed. If passes are expected to have a longer lifetime, then the contexts can easily be scoped inside the runOnMLFunction call and storage lifetime reduced. Lastly, whatever the scope of threading (module, function, pass), this is expected to also be future-proof wrt concurrency (but this is a detail atm). PiperOrigin-RevId: 217622889
2018-10-18 09:01:44 +08:00
unsigned index;
if (!findIndex(value, operands, /*indexStart=*/0, &index)) {
return false;
}
[MLIR] Basic infrastructure for vectorization test This CL implements a very simple loop vectorization **test** and the basic infrastructure to support it. The test simply consists in: 1. matching the loops in the MLFunction and all the Load/Store operations nested under the loop; 2. testing whether all the Load/Store are contiguous along the innermost memory dimension along that particular loop. If any reference is non-contiguous (i.e. the ForStmt SSAValue appears in the expression), then the loop is not-vectorizable. The simple test above can gradually be extended with more interesting behaviors to account for the fact that a layout permutation may exist that enables contiguity etc. All these will come in due time but it is worthwhile noting that the test already supports detection of outer-vetorizable loops. In implementing this test, I also added a recursive MLFunctionMatcher and some sugar that can capture patterns such as `auto gemmLike = Doall(Doall(Red(LoadStore())))` and allows iterating on the matched IR structures. For now it just uses in order traversal but post-order DFS will be useful in the future once IR rewrites start occuring. One may note that the memory management design decision follows a different pattern from MLIR. After evaluating different designs and how they quickly increase cognitive overhead, I decided to opt for the simplest solution in my view: a class-wide (threadsafe) RAII context. This way, a pass that needs MLFunctionMatcher can just have its own locally scoped BumpPtrAllocator and everything is cleaned up when the pass is destroyed. If passes are expected to have a longer lifetime, then the contexts can easily be scoped inside the runOnMLFunction call and storage lifetime reduced. Lastly, whatever the scope of threading (module, function, pass), this is expected to also be future-proof wrt concurrency (but this is a detail atm). PiperOrigin-RevId: 217622889
2018-10-18 09:01:44 +08:00
auto expr = const_cast<AffineValueMap *>(this)->getAffineMap().getResult(idx);
// TODO(ntv): this is better implemented on a flattened representation.
// At least for now it is conservative.
return expr.isFunctionOfDim(index);
}
Value *AffineValueMap::getOperand(unsigned i) const {
return static_cast<Value *>(operands[i]);
}
ArrayRef<Value *> AffineValueMap::getOperands() const {
return ArrayRef<Value *>(operands);
}
AffineMap AffineValueMap::getAffineMap() const { return map.getAffineMap(); }
AffineValueMap::~AffineValueMap() {}
//===----------------------------------------------------------------------===//
// FlatAffineConstraints.
//===----------------------------------------------------------------------===//
// Copy constructor.
FlatAffineConstraints::FlatAffineConstraints(
const FlatAffineConstraints &other) {
numReservedCols = other.numReservedCols;
numDims = other.getNumDimIds();
numSymbols = other.getNumSymbolIds();
numIds = other.getNumIds();
auto otherIds = other.getIds();
ids.reserve(numReservedCols);
ids.append(otherIds.begin(), otherIds.end());
unsigned numReservedEqualities = other.getNumReservedEqualities();
unsigned numReservedInequalities = other.getNumReservedInequalities();
equalities.reserve(numReservedEqualities * numReservedCols);
inequalities.reserve(numReservedInequalities * numReservedCols);
for (unsigned r = 0, e = other.getNumInequalities(); r < e; r++) {
addInequality(other.getInequality(r));
}
for (unsigned r = 0, e = other.getNumEqualities(); r < e; r++) {
addEquality(other.getEquality(r));
}
}
// Clones this object.
std::unique_ptr<FlatAffineConstraints> FlatAffineConstraints::clone() const {
return llvm::make_unique<FlatAffineConstraints>(*this);
}
// Construct from an IntegerSet.
FlatAffineConstraints::FlatAffineConstraints(IntegerSet set)
: numReservedCols(set.getNumOperands() + 1),
numIds(set.getNumDims() + set.getNumSymbols()), numDims(set.getNumDims()),
numSymbols(set.getNumSymbols()) {
equalities.reserve(set.getNumEqualities() * numReservedCols);
inequalities.reserve(set.getNumInequalities() * numReservedCols);
ids.resize(numIds, None);
// Flatten expressions and add them to the constraint system.
std::vector<SmallVector<int64_t, 8>> flatExprs;
FlatAffineConstraints localVarCst;
if (failed(getFlattenedAffineExprs(set, &flatExprs, &localVarCst))) {
assert(false && "flattening unimplemented for semi-affine integer sets");
return;
}
assert(flatExprs.size() == set.getNumConstraints());
for (unsigned l = 0, e = localVarCst.getNumLocalIds(); l < e; l++) {
addLocalId(getNumLocalIds());
}
for (unsigned i = 0, e = flatExprs.size(); i < e; ++i) {
const auto &flatExpr = flatExprs[i];
assert(flatExpr.size() == getNumCols());
if (set.getEqFlags()[i]) {
addEquality(flatExpr);
} else {
addInequality(flatExpr);
}
}
// Add the other constraints involving local id's from flattening.
append(localVarCst);
}
Introduce memref bound checking. Introduce analysis to check memref accesses (in MLFunctions) for out of bound ones. It works as follows: $ mlir-opt -memref-bound-check test/Transforms/memref-bound-check.mlir /tmp/single.mlir:10:12: error: 'load' op memref out of upper bound access along dimension tensorflow/mlir#1 %x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32> ^ /tmp/single.mlir:10:12: error: 'load' op memref out of lower bound access along dimension tensorflow/mlir#1 %x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32> ^ /tmp/single.mlir:10:12: error: 'load' op memref out of upper bound access along dimension tensorflow/mlir#2 %x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32> ^ /tmp/single.mlir:10:12: error: 'load' op memref out of lower bound access along dimension tensorflow/mlir#2 %x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32> ^ /tmp/single.mlir:12:12: error: 'load' op memref out of upper bound access along dimension tensorflow/mlir#1 %y = load %B[%idy] : memref<128 x i32> ^ /tmp/single.mlir:12:12: error: 'load' op memref out of lower bound access along dimension tensorflow/mlir#1 %y = load %B[%idy] : memref<128 x i32> ^ #map0 = (d0, d1) -> (d0, d1) #map1 = (d0, d1) -> (d0 * 128 - d1) mlfunc @test() { %0 = alloc() : memref<9x9xi32> %1 = alloc() : memref<128xi32> for %i0 = -1 to 9 { for %i1 = -1 to 9 { %2 = affine_apply #map0(%i0, %i1) %3 = load %0[%2tensorflow/mlir#0, %2tensorflow/mlir#1] : memref<9x9xi32> %4 = affine_apply #map1(%i0, %i1) %5 = load %1[%4] : memref<128xi32> } } return } - Improves productivity while manually / semi-automatically developing MLIR for testing / prototyping; also provides an indirect way to catch errors in transformations. - This pass is an easy way to test the underlying affine analysis machinery including low level routines. Some code (in getMemoryRegion()) borrowed from @andydavis cl/218263256. While on this: - create mlir/Analysis/Passes.h; move Pass.h up from mlir/Transforms/ to mlir/ - fix a bug in AffineAnalysis.cpp::toAffineExpr TODO: extend to non-constant loop bounds (straightforward). Will transparently work for all accesses once floordiv, mod, ceildiv are supported in the AffineMap -> FlatAffineConstraints conversion. PiperOrigin-RevId: 219397961
2018-10-31 08:43:06 +08:00
void FlatAffineConstraints::reset(unsigned numReservedInequalities,
unsigned numReservedEqualities,
unsigned newNumReservedCols,
unsigned newNumDims, unsigned newNumSymbols,
unsigned newNumLocals,
ArrayRef<Value *> idArgs) {
assert(newNumReservedCols >= newNumDims + newNumSymbols + newNumLocals + 1 &&
"minimum 1 column");
Introduce memref bound checking. Introduce analysis to check memref accesses (in MLFunctions) for out of bound ones. It works as follows: $ mlir-opt -memref-bound-check test/Transforms/memref-bound-check.mlir /tmp/single.mlir:10:12: error: 'load' op memref out of upper bound access along dimension tensorflow/mlir#1 %x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32> ^ /tmp/single.mlir:10:12: error: 'load' op memref out of lower bound access along dimension tensorflow/mlir#1 %x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32> ^ /tmp/single.mlir:10:12: error: 'load' op memref out of upper bound access along dimension tensorflow/mlir#2 %x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32> ^ /tmp/single.mlir:10:12: error: 'load' op memref out of lower bound access along dimension tensorflow/mlir#2 %x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32> ^ /tmp/single.mlir:12:12: error: 'load' op memref out of upper bound access along dimension tensorflow/mlir#1 %y = load %B[%idy] : memref<128 x i32> ^ /tmp/single.mlir:12:12: error: 'load' op memref out of lower bound access along dimension tensorflow/mlir#1 %y = load %B[%idy] : memref<128 x i32> ^ #map0 = (d0, d1) -> (d0, d1) #map1 = (d0, d1) -> (d0 * 128 - d1) mlfunc @test() { %0 = alloc() : memref<9x9xi32> %1 = alloc() : memref<128xi32> for %i0 = -1 to 9 { for %i1 = -1 to 9 { %2 = affine_apply #map0(%i0, %i1) %3 = load %0[%2tensorflow/mlir#0, %2tensorflow/mlir#1] : memref<9x9xi32> %4 = affine_apply #map1(%i0, %i1) %5 = load %1[%4] : memref<128xi32> } } return } - Improves productivity while manually / semi-automatically developing MLIR for testing / prototyping; also provides an indirect way to catch errors in transformations. - This pass is an easy way to test the underlying affine analysis machinery including low level routines. Some code (in getMemoryRegion()) borrowed from @andydavis cl/218263256. While on this: - create mlir/Analysis/Passes.h; move Pass.h up from mlir/Transforms/ to mlir/ - fix a bug in AffineAnalysis.cpp::toAffineExpr TODO: extend to non-constant loop bounds (straightforward). Will transparently work for all accesses once floordiv, mod, ceildiv are supported in the AffineMap -> FlatAffineConstraints conversion. PiperOrigin-RevId: 219397961
2018-10-31 08:43:06 +08:00
numReservedCols = newNumReservedCols;
numDims = newNumDims;
numSymbols = newNumSymbols;
numIds = numDims + numSymbols + newNumLocals;
assert(idArgs.empty() || idArgs.size() == numIds);
clearConstraints();
if (numReservedEqualities >= 1)
equalities.reserve(newNumReservedCols * numReservedEqualities);
if (numReservedInequalities >= 1)
inequalities.reserve(newNumReservedCols * numReservedInequalities);
if (idArgs.empty()) {
ids.resize(numIds, None);
} else {
ids.assign(idArgs.begin(), idArgs.end());
}
}
void FlatAffineConstraints::reset(unsigned newNumDims, unsigned newNumSymbols,
unsigned newNumLocals,
ArrayRef<Value *> idArgs) {
reset(0, 0, newNumDims + newNumSymbols + newNumLocals + 1, newNumDims,
newNumSymbols, newNumLocals, idArgs);
}
void FlatAffineConstraints::append(const FlatAffineConstraints &other) {
assert(other.getNumCols() == getNumCols());
assert(other.getNumDimIds() == getNumDimIds());
assert(other.getNumSymbolIds() == getNumSymbolIds());
inequalities.reserve(inequalities.size() +
other.getNumInequalities() * numReservedCols);
equalities.reserve(equalities.size() +
other.getNumEqualities() * numReservedCols);
for (unsigned r = 0, e = other.getNumInequalities(); r < e; r++) {
addInequality(other.getInequality(r));
}
for (unsigned r = 0, e = other.getNumEqualities(); r < e; r++) {
addEquality(other.getEquality(r));
}
}
void FlatAffineConstraints::addLocalId(unsigned pos) {
addId(IdKind::Local, pos);
}
void FlatAffineConstraints::addDimId(unsigned pos, Value *id) {
addId(IdKind::Dimension, pos, id);
}
void FlatAffineConstraints::addSymbolId(unsigned pos, Value *id) {
addId(IdKind::Symbol, pos, id);
Introduce memref bound checking. Introduce analysis to check memref accesses (in MLFunctions) for out of bound ones. It works as follows: $ mlir-opt -memref-bound-check test/Transforms/memref-bound-check.mlir /tmp/single.mlir:10:12: error: 'load' op memref out of upper bound access along dimension tensorflow/mlir#1 %x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32> ^ /tmp/single.mlir:10:12: error: 'load' op memref out of lower bound access along dimension tensorflow/mlir#1 %x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32> ^ /tmp/single.mlir:10:12: error: 'load' op memref out of upper bound access along dimension tensorflow/mlir#2 %x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32> ^ /tmp/single.mlir:10:12: error: 'load' op memref out of lower bound access along dimension tensorflow/mlir#2 %x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32> ^ /tmp/single.mlir:12:12: error: 'load' op memref out of upper bound access along dimension tensorflow/mlir#1 %y = load %B[%idy] : memref<128 x i32> ^ /tmp/single.mlir:12:12: error: 'load' op memref out of lower bound access along dimension tensorflow/mlir#1 %y = load %B[%idy] : memref<128 x i32> ^ #map0 = (d0, d1) -> (d0, d1) #map1 = (d0, d1) -> (d0 * 128 - d1) mlfunc @test() { %0 = alloc() : memref<9x9xi32> %1 = alloc() : memref<128xi32> for %i0 = -1 to 9 { for %i1 = -1 to 9 { %2 = affine_apply #map0(%i0, %i1) %3 = load %0[%2tensorflow/mlir#0, %2tensorflow/mlir#1] : memref<9x9xi32> %4 = affine_apply #map1(%i0, %i1) %5 = load %1[%4] : memref<128xi32> } } return } - Improves productivity while manually / semi-automatically developing MLIR for testing / prototyping; also provides an indirect way to catch errors in transformations. - This pass is an easy way to test the underlying affine analysis machinery including low level routines. Some code (in getMemoryRegion()) borrowed from @andydavis cl/218263256. While on this: - create mlir/Analysis/Passes.h; move Pass.h up from mlir/Transforms/ to mlir/ - fix a bug in AffineAnalysis.cpp::toAffineExpr TODO: extend to non-constant loop bounds (straightforward). Will transparently work for all accesses once floordiv, mod, ceildiv are supported in the AffineMap -> FlatAffineConstraints conversion. PiperOrigin-RevId: 219397961
2018-10-31 08:43:06 +08:00
}
/// Adds a dimensional identifier. The added column is initialized to
/// zero.
void FlatAffineConstraints::addId(IdKind kind, unsigned pos, Value *id) {
if (kind == IdKind::Dimension) {
assert(pos <= getNumDimIds());
} else if (kind == IdKind::Symbol) {
assert(pos <= getNumSymbolIds());
} else {
assert(pos <= getNumLocalIds());
}
unsigned oldNumReservedCols = numReservedCols;
// Check if a resize is necessary.
if (getNumCols() + 1 > numReservedCols) {
equalities.resize(getNumEqualities() * (getNumCols() + 1));
inequalities.resize(getNumInequalities() * (getNumCols() + 1));
numReservedCols++;
}
unsigned absolutePos;
if (kind == IdKind::Dimension) {
absolutePos = pos;
numDims++;
} else if (kind == IdKind::Symbol) {
absolutePos = pos + getNumDimIds();
numSymbols++;
} else {
absolutePos = pos + getNumDimIds() + getNumSymbolIds();
}
numIds++;
// Note that getNumCols() now will already return the new size, which will be
// at least one.
int numInequalities = static_cast<int>(getNumInequalities());
int numEqualities = static_cast<int>(getNumEqualities());
int numCols = static_cast<int>(getNumCols());
for (int r = numInequalities - 1; r >= 0; r--) {
for (int c = numCols - 2; c >= 0; c--) {
if (c < absolutePos)
atIneq(r, c) = inequalities[r * oldNumReservedCols + c];
else
atIneq(r, c + 1) = inequalities[r * oldNumReservedCols + c];
}
atIneq(r, absolutePos) = 0;
}
for (int r = numEqualities - 1; r >= 0; r--) {
for (int c = numCols - 2; c >= 0; c--) {
// All values in column absolutePositions < absolutePos have the same
// coordinates in the 2-d view of the coefficient buffer.
if (c < absolutePos)
atEq(r, c) = equalities[r * oldNumReservedCols + c];
else
// Those at absolutePosition >= absolutePos, get a shifted
// absolutePosition.
atEq(r, c + 1) = equalities[r * oldNumReservedCols + c];
}
// Initialize added dimension to zero.
atEq(r, absolutePos) = 0;
}
// If an 'id' is provided, insert it; otherwise use None.
if (id) {
ids.insert(ids.begin() + absolutePos, id);
} else {
ids.insert(ids.begin() + absolutePos, None);
}
assert(ids.size() == getNumIds());
}
/// Checks if two constraint systems are in the same space, i.e., if they are
/// associated with the same set of identifiers, appearing in the same order.
bool areIdsAligned(const FlatAffineConstraints &A,
const FlatAffineConstraints &B) {
return A.getNumDimIds() == B.getNumDimIds() &&
A.getNumSymbolIds() == B.getNumSymbolIds() &&
A.getNumIds() == B.getNumIds() && A.getIds().equals(B.getIds());
}
/// Checks if the SSA values associated with `cst''s identifiers are unique.
static bool areIdsUnique(const FlatAffineConstraints &cst) {
SmallPtrSet<Value *, 8> uniqueIds;
for (auto id : cst.getIds()) {
if (id.hasValue() && !uniqueIds.insert(id.getValue()).second)
return false;
}
return true;
}
// Swap the posA^th identifier with the posB^th identifier.
static void swapId(FlatAffineConstraints *A, unsigned posA, unsigned posB) {
assert(posA < A->getNumIds() && "invalid position A");
assert(posB < A->getNumIds() && "invalid position B");
if (posA == posB)
return;
for (unsigned r = 0, e = A->getNumInequalities(); r < e; r++) {
std::swap(A->atIneq(r, posA), A->atIneq(r, posB));
}
for (unsigned r = 0, e = A->getNumEqualities(); r < e; r++) {
std::swap(A->atEq(r, posA), A->atEq(r, posB));
}
std::swap(A->getId(posA), A->getId(posB));
}
/// Merge and align the identifiers of A and B starting at 'offset', so that
/// both constraint systems get the union of the contained identifiers that is
/// dimension-wise and symbol-wise unique; both constraint systems are updated
/// so that they have the union of all identifiers, with A's original
/// identifiers appearing first followed by any of B's identifiers that didn't
/// appear in A. Local identifiers of each system are by design separate/local
/// and are placed one after other (A's followed by B's).
// Eg: Input: A has ((%i %j) [%M %N]) and B has (%k, %j) [%P, %N, %M])
// Output: both A, B have (%i, %j, %k) [%M, %N, %P]
//
// TODO(mlir-team): expose this function at some point.
static void mergeAndAlignIds(unsigned offset, FlatAffineConstraints *A,
FlatAffineConstraints *B) {
assert(offset <= A->getNumDimIds() && offset <= B->getNumDimIds());
// A merge/align isn't meaningful if a cst's ids aren't distinct.
assert(areIdsUnique(*A) && "A's id values aren't unique");
assert(areIdsUnique(*B) && "B's id values aren't unique");
assert(std::all_of(A->getIds().begin() + offset,
A->getIds().begin() + A->getNumDimAndSymbolIds(),
[](Optional<Value *> id) { return id.hasValue(); }));
assert(std::all_of(B->getIds().begin() + offset,
B->getIds().begin() + B->getNumDimAndSymbolIds(),
[](Optional<Value *> id) { return id.hasValue(); }));
// Place local id's of A after local id's of B.
for (unsigned l = 0, e = A->getNumLocalIds(); l < e; l++) {
B->addLocalId(0);
}
for (unsigned t = 0, e = B->getNumLocalIds() - A->getNumLocalIds(); t < e;
t++) {
A->addLocalId(A->getNumLocalIds());
}
SmallVector<Value *, 4> aDimValues, aSymValues;
A->getIdValues(offset, A->getNumDimIds(), &aDimValues);
A->getIdValues(A->getNumDimIds(), A->getNumDimAndSymbolIds(), &aSymValues);
{
// Merge dims from A into B.
unsigned d = offset;
for (auto *aDimValue : aDimValues) {
unsigned loc;
if (B->findId(*aDimValue, &loc)) {
assert(loc >= offset && "A's dim appears in B's aligned range");
assert(loc < B->getNumDimIds() &&
"A's dim appears in B's non-dim position");
swapId(B, d, loc);
} else {
B->addDimId(d);
B->setIdValue(d, aDimValue);
}
d++;
}
// Dimensions that are in B, but not in A, are added at the end.
for (unsigned t = A->getNumDimIds(), e = B->getNumDimIds(); t < e; t++) {
A->addDimId(A->getNumDimIds());
A->setIdValue(A->getNumDimIds() - 1, B->getIdValue(t));
}
}
{
// Merge symbols: merge A's symbols into B first.
unsigned s = B->getNumDimIds();
for (auto *aSymValue : aSymValues) {
unsigned loc;
if (B->findId(*aSymValue, &loc)) {
assert(loc >= B->getNumDimIds() && loc < B->getNumDimAndSymbolIds() &&
"A's symbol appears in B's non-symbol position");
swapId(B, s, loc);
} else {
B->addSymbolId(s - B->getNumDimIds());
B->setIdValue(s, aSymValue);
}
s++;
}
// Symbols that are in B, but not in A, are added at the end.
for (unsigned t = A->getNumDimAndSymbolIds(),
e = B->getNumDimAndSymbolIds();
t < e; t++) {
A->addSymbolId(A->getNumSymbolIds());
A->setIdValue(A->getNumDimAndSymbolIds() - 1, B->getIdValue(t));
}
}
assert(areIdsAligned(*A, *B) && "IDs expected to be aligned");
}
// This routine may add additional local variables if the flattened expression
// corresponding to the map has such variables due to mod's, ceildiv's, and
// floordiv's in it.
LogicalResult FlatAffineConstraints::composeMap(AffineValueMap *vMap) {
std::vector<SmallVector<int64_t, 8>> flatExprs;
FlatAffineConstraints localCst;
if (failed(getFlattenedAffineExprs(vMap->getAffineMap(), &flatExprs,
&localCst))) {
LLVM_DEBUG(llvm::dbgs()
<< "composition unimplemented for semi-affine maps\n");
return failure();
}
assert(flatExprs.size() == vMap->getNumResults());
// Add localCst information.
if (localCst.getNumLocalIds() > 0) {
SmallVector<Value *, 8> values(vMap->getOperands().begin(),
vMap->getOperands().end());
localCst.setIdValues(0, localCst.getNumDimAndSymbolIds(), values);
// Align localCst and this.
mergeAndAlignIds(/*offset=*/0, &localCst, this);
// Finally, append localCst to this constraint set.
append(localCst);
}
// Add dimensions corresponding to the map's results.
for (unsigned t = 0, e = vMap->getNumResults(); t < e; t++) {
// TODO: Consider using a batched version to add a range of IDs.
addDimId(0);
}
// We add one equality for each result connecting the result dim of the map to
// the other identifiers.
// For eg: if the expression is 16*i0 + i1, and this is the r^th
// iteration/result of the value map, we are adding the equality:
// d_r - 16*i0 - i1 = 0. Hence, when flattening say (i0 + 1, i0 + 8*i2), we
// add two equalities overall: d_0 - i0 - 1 == 0, d1 - i0 - 8*i2 == 0.
for (unsigned r = 0, e = flatExprs.size(); r < e; r++) {
const auto &flatExpr = flatExprs[r];
assert(flatExpr.size() >= vMap->getNumOperands() + 1);
// eqToAdd is the equality corresponding to the flattened affine expression.
SmallVector<int64_t, 8> eqToAdd(getNumCols(), 0);
// Set the coefficient for this result to one.
eqToAdd[r] = 1;
// Dims and symbols.
for (unsigned i = 0, e = vMap->getNumOperands(); i < e; i++) {
unsigned loc;
bool ret = findId(*vMap->getOperand(i), &loc);
assert(ret && "value map's id can't be found");
(void)ret;
// Negate 'eq[r]' since the newly added dimension will be set to this one.
eqToAdd[loc] = -flatExpr[i];
}
// Local vars common to eq and localCst are at the beginning.
unsigned j = getNumDimIds() + getNumSymbolIds();
unsigned end = flatExpr.size() - 1;
for (unsigned i = vMap->getNumOperands(); i < end; i++, j++) {
eqToAdd[j] = -flatExpr[i];
}
// Constant term.
eqToAdd[getNumCols() - 1] = -flatExpr[flatExpr.size() - 1];
// Add the equality connecting the result of the map to this constraint set.
addEquality(eqToAdd);
}
return success();
}
// Turn a dimension into a symbol.
static void turnDimIntoSymbol(FlatAffineConstraints *cst, Value &id) {
unsigned pos;
if (cst->findId(id, &pos) && pos < cst->getNumDimIds()) {
swapId(cst, pos, cst->getNumDimIds() - 1);
cst->setDimSymbolSeparation(cst->getNumSymbolIds() + 1);
}
}
// Turn a symbol into a dimension.
static void turnSymbolIntoDim(FlatAffineConstraints *cst, Value &id) {
unsigned pos;
if (cst->findId(id, &pos) && pos >= cst->getNumDimIds() &&
pos < cst->getNumDimAndSymbolIds()) {
swapId(cst, pos, cst->getNumDimIds());
cst->setDimSymbolSeparation(cst->getNumSymbolIds() - 1);
}
}
// Changes all symbol identifiers which are loop IVs to dim identifiers.
void FlatAffineConstraints::convertLoopIVSymbolsToDims() {
// Gather all symbols which are loop IVs.
SmallVector<Value *, 4> loopIVs;
for (unsigned i = getNumDimIds(), e = getNumDimAndSymbolIds(); i < e; i++) {
if (ids[i].hasValue() && getForInductionVarOwner(ids[i].getValue()))
loopIVs.push_back(ids[i].getValue());
}
// Turn each symbol in 'loopIVs' into a dim identifier.
for (auto *iv : loopIVs) {
turnSymbolIntoDim(this, *iv);
}
}
void FlatAffineConstraints::addInductionVarOrTerminalSymbol(Value *id) {
if (containsId(*id))
return;
// Caller is expected to fully compose map/operands if necessary.
assert((isTopLevelSymbol(id) || isForInductionVar(id)) &&
"non-terminal symbol / loop IV expected");
// Outer loop IVs could be used in forOp's bounds.
if (auto loop = getForInductionVarOwner(id)) {
addDimId(getNumDimIds(), id);
if (failed(this->addAffineForOpDomain(loop)))
LLVM_DEBUG(
loop.emitWarning("failed to add domain info to constraint system"));
return;
}
// Add top level symbol.
addSymbolId(getNumSymbolIds(), id);
// Check if the symbol is a constant.
if (auto *opInst = id->getDefiningInst()) {
if (auto constOp = opInst->dyn_cast<ConstantIndexOp>()) {
setIdToConstant(*id, constOp.getValue());
}
}
}
LogicalResult FlatAffineConstraints::addAffineForOpDomain(AffineForOp forOp) {
unsigned pos;
// Pre-condition for this method.
if (!findId(*forOp.getInductionVar(), &pos)) {
assert(false && "Value not found");
return failure();
}
int64_t step = forOp.getStep();
if (step != 1) {
if (!forOp.hasConstantLowerBound())
forOp.emitWarning("domain conservatively approximated");
else {
// Add constraints for the stride.
// (iv - lb) % step = 0 can be written as:
// (iv - lb) - step * q = 0 where q = (iv - lb) / step.
// Add local variable 'q' and add the above equality.
// The first constraint is q = (iv - lb) floordiv step
SmallVector<int64_t, 8> dividend(getNumCols(), 0);
int64_t lb = forOp.getConstantLowerBound();
dividend[pos] = 1;
dividend.back() -= lb;
addLocalFloorDiv(dividend, step);
// Second constraint: (iv - lb) - step * q = 0.
SmallVector<int64_t, 8> eq(getNumCols(), 0);
eq[pos] = 1;
eq.back() -= lb;
// For the local var just added above.
eq[getNumCols() - 2] = -step;
addEquality(eq);
}
}
if (forOp.hasConstantLowerBound()) {
addConstantLowerBound(pos, forOp.getConstantLowerBound());
} else {
// Non-constant lower bound case.
SmallVector<Value *, 4> lbOperands(forOp.getLowerBoundOperands().begin(),
forOp.getLowerBoundOperands().end());
if (failed(addLowerOrUpperBound(pos, forOp.getLowerBoundMap(), lbOperands,
/*eq=*/false, /*lower=*/true)))
return failure();
}
if (forOp.hasConstantUpperBound()) {
addConstantUpperBound(pos, forOp.getConstantUpperBound() - 1);
return success();
}
// Non-constant upper bound case.
SmallVector<Value *, 4> ubOperands(forOp.getUpperBoundOperands().begin(),
forOp.getUpperBoundOperands().end());
return addLowerOrUpperBound(pos, forOp.getUpperBoundMap(), ubOperands,
/*eq=*/false, /*lower=*/false);
}
// Searches for a constraint with a non-zero coefficient at 'colIdx' in
// equality (isEq=true) or inequality (isEq=false) constraints.
// Returns true and sets row found in search in 'rowIdx'.
// Returns false otherwise.
static bool
findConstraintWithNonZeroAt(const FlatAffineConstraints &constraints,
unsigned colIdx, bool isEq, unsigned *rowIdx) {
auto at = [&](unsigned rowIdx) -> int64_t {
return isEq ? constraints.atEq(rowIdx, colIdx)
: constraints.atIneq(rowIdx, colIdx);
};
unsigned e =
isEq ? constraints.getNumEqualities() : constraints.getNumInequalities();
for (*rowIdx = 0; *rowIdx < e; ++(*rowIdx)) {
if (at(*rowIdx) != 0) {
return true;
}
}
return false;
}
// Normalizes the coefficient values across all columns in 'rowIDx' by their
// GCD in equality or inequality contraints as specified by 'isEq'.
template <bool isEq>
static void normalizeConstraintByGCD(FlatAffineConstraints *constraints,
unsigned rowIdx) {
auto at = [&](unsigned colIdx) -> int64_t {
return isEq ? constraints->atEq(rowIdx, colIdx)
: constraints->atIneq(rowIdx, colIdx);
};
uint64_t gcd = std::abs(at(0));
for (unsigned j = 1, e = constraints->getNumCols(); j < e; ++j) {
gcd = llvm::GreatestCommonDivisor64(gcd, std::abs(at(j)));
}
if (gcd > 0 && gcd != 1) {
for (unsigned j = 0, e = constraints->getNumCols(); j < e; ++j) {
int64_t v = at(j) / static_cast<int64_t>(gcd);
isEq ? constraints->atEq(rowIdx, j) = v
: constraints->atIneq(rowIdx, j) = v;
}
}
}
void FlatAffineConstraints::normalizeConstraintsByGCD() {
for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
normalizeConstraintByGCD</*isEq=*/true>(this, i);
}
for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
normalizeConstraintByGCD</*isEq=*/false>(this, i);
}
}
bool FlatAffineConstraints::hasConsistentState() const {
if (inequalities.size() != getNumInequalities() * numReservedCols)
return false;
if (equalities.size() != getNumEqualities() * numReservedCols)
return false;
if (ids.size() != getNumIds())
return false;
// Catches errors where numDims, numSymbols, numIds aren't consistent.
if (numDims > numIds || numSymbols > numIds || numDims + numSymbols > numIds)
return false;
return true;
}
/// Checks all rows of equality/inequality constraints for trivial
/// contradictions (for example: 1 == 0, 0 >= 1), which may have surfaced
/// after elimination. Returns 'true' if an invalid constraint is found;
/// 'false' otherwise.
bool FlatAffineConstraints::hasInvalidConstraint() const {
assert(hasConsistentState());
auto check = [&](bool isEq) -> bool {
unsigned numCols = getNumCols();
unsigned numRows = isEq ? getNumEqualities() : getNumInequalities();
for (unsigned i = 0, e = numRows; i < e; ++i) {
unsigned j;
for (j = 0; j < numCols - 1; ++j) {
int64_t v = isEq ? atEq(i, j) : atIneq(i, j);
// Skip rows with non-zero variable coefficients.
if (v != 0)
break;
}
if (j < numCols - 1) {
continue;
}
// Check validity of constant term at 'numCols - 1' w.r.t 'isEq'.
// Example invalid constraints include: '1 == 0' or '-1 >= 0'
int64_t v = isEq ? atEq(i, numCols - 1) : atIneq(i, numCols - 1);
if ((isEq && v != 0) || (!isEq && v < 0)) {
return true;
}
}
return false;
};
if (check(/*isEq=*/true))
return true;
return check(/*isEq=*/false);
}
// Eliminate identifier from constraint at 'rowIdx' based on coefficient at
// pivotRow, pivotCol. Columns in range [elimColStart, pivotCol) will not be
// updated as they have already been eliminated.
static void eliminateFromConstraint(FlatAffineConstraints *constraints,
unsigned rowIdx, unsigned pivotRow,
unsigned pivotCol, unsigned elimColStart,
bool isEq) {
// Skip if equality 'rowIdx' if same as 'pivotRow'.
if (isEq && rowIdx == pivotRow)
return;
auto at = [&](unsigned i, unsigned j) -> int64_t {
return isEq ? constraints->atEq(i, j) : constraints->atIneq(i, j);
};
int64_t leadCoeff = at(rowIdx, pivotCol);
// Skip if leading coefficient at 'rowIdx' is already zero.
if (leadCoeff == 0)
return;
int64_t pivotCoeff = constraints->atEq(pivotRow, pivotCol);
int64_t sign = (leadCoeff * pivotCoeff > 0) ? -1 : 1;
int64_t lcm = mlir::lcm(pivotCoeff, leadCoeff);
int64_t pivotMultiplier = sign * (lcm / std::abs(pivotCoeff));
int64_t rowMultiplier = lcm / std::abs(leadCoeff);
unsigned numCols = constraints->getNumCols();
for (unsigned j = 0; j < numCols; ++j) {
// Skip updating column 'j' if it was just eliminated.
if (j >= elimColStart && j < pivotCol)
continue;
int64_t v = pivotMultiplier * constraints->atEq(pivotRow, j) +
rowMultiplier * at(rowIdx, j);
isEq ? constraints->atEq(rowIdx, j) = v
: constraints->atIneq(rowIdx, j) = v;
}
}
// Remove coefficients in column range [colStart, colLimit) in place.
// This removes in data in the specified column range, and copies any
// remaining valid data into place.
static void shiftColumnsToLeft(FlatAffineConstraints *constraints,
unsigned colStart, unsigned colLimit,
bool isEq) {
assert(colStart >= 0 && colLimit <= constraints->getNumIds());
if (colLimit <= colStart)
return;
unsigned numCols = constraints->getNumCols();
unsigned numRows = isEq ? constraints->getNumEqualities()
: constraints->getNumInequalities();
unsigned numToEliminate = colLimit - colStart;
for (unsigned r = 0, e = numRows; r < e; ++r) {
for (unsigned c = colLimit; c < numCols; ++c) {
if (isEq) {
constraints->atEq(r, c - numToEliminate) = constraints->atEq(r, c);
} else {
constraints->atIneq(r, c - numToEliminate) = constraints->atIneq(r, c);
}
}
}
}
// Removes identifiers in column range [idStart, idLimit), and copies any
// remaining valid data into place, and updates member variables.
void FlatAffineConstraints::removeIdRange(unsigned idStart, unsigned idLimit) {
assert(idLimit < getNumCols() && "invalid id limit");
if (idStart >= idLimit)
return;
// We are going to be removing one or more identifiers from the range.
assert(idStart < numIds && "invalid idStart position");
// TODO(andydavis) Make 'removeIdRange' a lambda called from here.
// Remove eliminated identifiers from equalities.
shiftColumnsToLeft(this, idStart, idLimit, /*isEq=*/true);
// Remove eliminated identifiers from inequalities.
shiftColumnsToLeft(this, idStart, idLimit, /*isEq=*/false);
// Update members numDims, numSymbols and numIds.
unsigned numDimsEliminated = 0;
unsigned numLocalsEliminated = 0;
unsigned numColsEliminated = idLimit - idStart;
if (idStart < numDims) {
numDimsEliminated = std::min(numDims, idLimit) - idStart;
}
// Check how many local id's were removed. Note that our identifier order is
// [dims, symbols, locals]. Local id start at position numDims + numSymbols.
if (idLimit > numDims + numSymbols) {
numLocalsEliminated = std::min(
idLimit - std::max(idStart, numDims + numSymbols), getNumLocalIds());
}
unsigned numSymbolsEliminated =
numColsEliminated - numDimsEliminated - numLocalsEliminated;
numDims -= numDimsEliminated;
numSymbols -= numSymbolsEliminated;
numIds = numIds - numColsEliminated;
ids.erase(ids.begin() + idStart, ids.begin() + idLimit);
// No resize necessary. numReservedCols remains the same.
}
/// Returns the position of the identifier that has the minimum <number of lower
/// bounds> times <number of upper bounds> from the specified range of
/// identifiers [start, end). It is often best to eliminate in the increasing
/// order of these counts when doing Fourier-Motzkin elimination since FM adds
/// that many new constraints.
static unsigned getBestIdToEliminate(const FlatAffineConstraints &cst,
unsigned start, unsigned end) {
assert(start < cst.getNumIds() && end < cst.getNumIds() + 1);
auto getProductOfNumLowerUpperBounds = [&](unsigned pos) {
unsigned numLb = 0;
unsigned numUb = 0;
for (unsigned r = 0, e = cst.getNumInequalities(); r < e; r++) {
if (cst.atIneq(r, pos) > 0) {
++numLb;
} else if (cst.atIneq(r, pos) < 0) {
++numUb;
}
}
return numLb * numUb;
};
unsigned minLoc = start;
unsigned min = getProductOfNumLowerUpperBounds(start);
for (unsigned c = start + 1; c < end; c++) {
unsigned numLbUbProduct = getProductOfNumLowerUpperBounds(c);
if (numLbUbProduct < min) {
min = numLbUbProduct;
minLoc = c;
}
}
return minLoc;
}
// Checks for emptiness of the set by eliminating identifiers successively and
// using the GCD test (on all equality constraints) and checking for trivially
// invalid constraints. Returns 'true' if the constraint system is found to be
// empty; false otherwise.
bool FlatAffineConstraints::isEmpty() const {
if (isEmptyByGCDTest() || hasInvalidConstraint())
return true;
// First, eliminate as many identifiers as possible using Gaussian
// elimination.
FlatAffineConstraints tmpCst(*this);
unsigned currentPos = 0;
while (currentPos < tmpCst.getNumIds()) {
tmpCst.gaussianEliminateIds(currentPos, tmpCst.getNumIds());
++currentPos;
// We check emptiness through trivial checks after eliminating each ID to
// detect emptiness early. Since the checks isEmptyByGCDTest() and
// hasInvalidConstraint() are linear time and single sweep on the constraint
// buffer, this appears reasonable - but can optimize in the future.
if (tmpCst.hasInvalidConstraint() || tmpCst.isEmptyByGCDTest())
return true;
}
// Eliminate the remaining using FM.
for (unsigned i = 0, e = tmpCst.getNumIds(); i < e; i++) {
tmpCst.FourierMotzkinEliminate(
getBestIdToEliminate(tmpCst, 0, tmpCst.getNumIds()));
// Check for a constraint explosion. This rarely happens in practice, but
// this check exists as a safeguard against improperly constructed
// constraint systems or artifically created arbitrarily complex systems
// that aren't the intended use case for FlatAffineConstraints. This is
// needed since FM has a worst case exponential complexity in theory.
if (tmpCst.getNumConstraints() >= kExplosionFactor * getNumIds()) {
LLVM_DEBUG(llvm::dbgs() << "FM constraint explosion detected\n");
return false;
}
// FM wouldn't have modified the equalities in any way. So no need to again
// run GCD test. Check for trivial invalid constraints.
if (tmpCst.hasInvalidConstraint())
return true;
}
return false;
}
// Runs the GCD test on all equality constraints. Returns 'true' if this test
// fails on any equality. Returns 'false' otherwise.
// This test can be used to disprove the existence of a solution. If it returns
// true, no integer solution to the equality constraints can exist.
//
// GCD test definition:
//
// The equality constraint:
//
// c_1*x_1 + c_2*x_2 + ... + c_n*x_n = c_0
//
// has an integer solution iff:
//
// GCD of c_1, c_2, ..., c_n divides c_0.
//
bool FlatAffineConstraints::isEmptyByGCDTest() const {
assert(hasConsistentState());
unsigned numCols = getNumCols();
for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
uint64_t gcd = std::abs(atEq(i, 0));
for (unsigned j = 1; j < numCols - 1; ++j) {
gcd = llvm::GreatestCommonDivisor64(gcd, std::abs(atEq(i, j)));
}
int64_t v = std::abs(atEq(i, numCols - 1));
if (gcd > 0 && (v % gcd != 0)) {
return true;
}
}
return false;
}
/// Tightens inequalities given that we are dealing with integer spaces. This is
/// analogous to the GCD test but applied to inequalities. The constant term can
/// be reduced to the preceding multiple of the GCD of the coefficients, i.e.,
/// 64*i - 100 >= 0 => 64*i - 128 >= 0 (since 'i' is an integer). This is a
/// fast method - linear in the number of coefficients.
// Example on how this affects practical cases: consider the scenario:
// 64*i >= 100, j = 64*i; without a tightening, elimination of i would yield
// j >= 100 instead of the tighter (exact) j >= 128.
void FlatAffineConstraints::GCDTightenInequalities() {
unsigned numCols = getNumCols();
for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
uint64_t gcd = std::abs(atIneq(i, 0));
for (unsigned j = 1; j < numCols - 1; ++j) {
gcd = llvm::GreatestCommonDivisor64(gcd, std::abs(atIneq(i, j)));
}
if (gcd > 0 && gcd != 1) {
int64_t gcdI = static_cast<int64_t>(gcd);
// Tighten the constant term and normalize the constraint by the GCD.
atIneq(i, numCols - 1) = mlir::floorDiv(atIneq(i, numCols - 1), gcdI);
for (unsigned j = 0, e = numCols - 1; j < e; ++j)
atIneq(i, j) /= gcdI;
}
}
}
// Eliminates all identifer variables in column range [posStart, posLimit).
// Returns the number of variables eliminated.
unsigned FlatAffineConstraints::gaussianEliminateIds(unsigned posStart,
unsigned posLimit) {
// Return if identifier positions to eliminate are out of range.
assert(posLimit <= numIds);
assert(hasConsistentState());
if (posStart >= posLimit)
return 0;
GCDTightenInequalities();
unsigned pivotCol = 0;
for (pivotCol = posStart; pivotCol < posLimit; ++pivotCol) {
// Find a row which has a non-zero coefficient in column 'j'.
unsigned pivotRow;
if (!findConstraintWithNonZeroAt(*this, pivotCol, /*isEq=*/true,
&pivotRow)) {
// No pivot row in equalities with non-zero at 'pivotCol'.
if (!findConstraintWithNonZeroAt(*this, pivotCol, /*isEq=*/false,
&pivotRow)) {
// If inequalities are also non-zero in 'pivotCol', it can be
// eliminated.
continue;
}
break;
}
// Eliminate identifier at 'pivotCol' from each equality row.
for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
eliminateFromConstraint(this, i, pivotRow, pivotCol, posStart,
/*isEq=*/true);
normalizeConstraintByGCD</*isEq=*/true>(this, i);
}
// Eliminate identifier at 'pivotCol' from each inequality row.
for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
eliminateFromConstraint(this, i, pivotRow, pivotCol, posStart,
/*isEq=*/false);
normalizeConstraintByGCD</*isEq=*/false>(this, i);
}
removeEquality(pivotRow);
}
// Update position limit based on number eliminated.
posLimit = pivotCol;
// Remove eliminated columns from all constraints.
removeIdRange(posStart, posLimit);
return posLimit - posStart;
}
// Detect the identifier at 'pos' (say id_r) as modulo of another identifier
// (say id_n) w.r.t a constant. When this happens, another identifier (say id_q)
// could be detected as the floordiv of n. For eg:
// id_n - 4*id_q - id_r = 0, 0 <= id_r <= 3 <=>
// id_r = id_n mod 4, id_q = id_n floordiv 4.
// lbConst and ubConst are the constant lower and upper bounds for 'pos' -
// pre-detected at the caller.
static bool detectAsMod(const FlatAffineConstraints &cst, unsigned pos,
int64_t lbConst, int64_t ubConst,
SmallVectorImpl<AffineExpr> *memo) {
assert(pos < cst.getNumIds() && "invalid position");
// Check if 0 <= id_r <= divisor - 1 and if id_r is equal to
// id_n - divisor * id_q. If these are true, then id_n becomes the dividend
// and id_q the quotient when dividing id_n by the divisor.
if (lbConst != 0 || ubConst < 1)
return false;
int64_t divisor = ubConst + 1;
// Now check for: id_r = id_n - divisor * id_q. As an example, we
// are looking r = d - 4q, i.e., either r - d + 4q = 0 or -r + d - 4q = 0.
unsigned seenQuotient = 0, seenDividend = 0;
int quotientPos = -1, dividendPos = -1;
for (unsigned r = 0, e = cst.getNumEqualities(); r < e; r++) {
// id_n should have coeff 1 or -1.
if (std::abs(cst.atEq(r, pos)) != 1)
continue;
// constant term should be 0.
if (cst.atEq(r, cst.getNumCols() - 1) != 0)
continue;
unsigned c, f;
int quotientSign = 1, dividendSign = 1;
for (c = 0, f = cst.getNumDimAndSymbolIds(); c < f; c++) {
if (c == pos)
continue;
// The coefficient of the quotient should be +/-divisor.
// TODO(bondhugula): could be extended to detect an affine function for
// the quotient (i.e., the coeff could be a non-zero multiple of divisor).
int64_t v = cst.atEq(r, c) * cst.atEq(r, pos);
if (v == divisor || v == -divisor) {
seenQuotient++;
quotientPos = c;
quotientSign = v > 0 ? 1 : -1;
}
// The coefficient of the dividend should be +/-1.
// TODO(bondhugula): could be extended to detect an affine function of
// the other identifiers as the dividend.
else if (v == -1 || v == 1) {
seenDividend++;
dividendPos = c;
dividendSign = v < 0 ? 1 : -1;
} else if (cst.atEq(r, c) != 0) {
// Cannot be inferred as a mod since the constraint has a coefficient
// for an identifier that's neither a unit nor the divisor (see TODOs
// above).
break;
}
}
if (c < f)
// Cannot be inferred as a mod since the constraint has a coefficient for
// an identifier that's neither a unit nor the divisor (see TODOs above).
continue;
// We are looking for exactly one identifier as the dividend.
if (seenDividend == 1 && seenQuotient >= 1) {
if (!(*memo)[dividendPos])
return false;
// Successfully detected a mod.
(*memo)[pos] = (*memo)[dividendPos] % divisor * dividendSign;
auto ub = cst.getConstantUpperBound(dividendPos);
if (ub.hasValue() && ub.getValue() < divisor)
// The mod can be optimized away.
(*memo)[pos] = (*memo)[dividendPos] * dividendSign;
else
(*memo)[pos] = (*memo)[dividendPos] % divisor * dividendSign;
if (seenQuotient == 1 && !(*memo)[quotientPos])
// Successfully detected a floordiv as well.
(*memo)[quotientPos] =
(*memo)[dividendPos].floorDiv(divisor) * quotientSign;
return true;
}
}
return false;
}
// Gather lower and upper bounds for the pos^th identifier.
static void getLowerAndUpperBoundIndices(const FlatAffineConstraints &cst,
unsigned pos,
SmallVectorImpl<unsigned> *lbIndices,
SmallVectorImpl<unsigned> *ubIndices) {
assert(pos < cst.getNumIds() && "invalid position");
// Gather all lower bounds and upper bounds of the variable. Since the
// canonical form c_1*x_1 + c_2*x_2 + ... + c_0 >= 0, a constraint is a lower
// bound for x_i if c_i >= 1, and an upper bound if c_i <= -1.
for (unsigned r = 0, e = cst.getNumInequalities(); r < e; r++) {
if (cst.atIneq(r, pos) >= 1) {
// Lower bound.
lbIndices->push_back(r);
} else if (cst.atIneq(r, pos) <= -1) {
// Upper bound.
ubIndices->push_back(r);
}
}
}
// Check if the pos^th identifier can be expressed as a floordiv of an affine
// function of other identifiers (where the divisor is a positive constant).
// For eg: 4q <= i + j <= 4q + 3 <=> q = (i + j) floordiv 4.
bool detectAsFloorDiv(const FlatAffineConstraints &cst, unsigned pos,
SmallVectorImpl<AffineExpr> *memo, MLIRContext *context) {
assert(pos < cst.getNumIds() && "invalid position");
SmallVector<unsigned, 4> lbIndices, ubIndices;
getLowerAndUpperBoundIndices(cst, pos, &lbIndices, &ubIndices);
// Check if any lower bound, upper bound pair is of the form:
// divisor * id >= expr - (divisor - 1) <-- Lower bound for 'id'
// divisor * id <= expr <-- Upper bound for 'id'
// Then, 'id' is equivalent to 'expr floordiv divisor'. (where divisor > 1).
//
// For example, if -32*k + 16*i + j >= 0
// 32*k - 16*i - j + 31 >= 0 <=>
// k = ( 16*i + j ) floordiv 32
unsigned seenDividends = 0;
for (auto ubPos : ubIndices) {
for (auto lbPos : lbIndices) {
// Check if lower bound's constant term is 'divisor - 1'. The 'divisor'
// here is cst.atIneq(lbPos, pos) and we already know that it's positive
// (since cst.Ineq(lbPos, ...) is a lower bound expression for 'pos'.
if (cst.atIneq(lbPos, cst.getNumCols() - 1) != cst.atIneq(lbPos, pos) - 1)
continue;
// Check if upper bound's constant term is 0.
if (cst.atIneq(ubPos, cst.getNumCols() - 1) != 0)
continue;
// For the remaining part, check if the lower bound expr's coeff's are
// negations of corresponding upper bound ones'.
unsigned c, f;
for (c = 0, f = cst.getNumCols() - 1; c < f; c++) {
if (cst.atIneq(lbPos, c) != -cst.atIneq(ubPos, c))
break;
if (c != pos && cst.atIneq(lbPos, c) != 0)
seenDividends++;
}
// Lb coeff's aren't negative of ub coeff's (for the non constant term
// part).
if (c < f)
continue;
if (seenDividends >= 1) {
// The divisor is the constant term of the lower bound expression.
// We already know that cst.atIneq(lbPos, pos) > 0.
int64_t divisor = cst.atIneq(lbPos, pos);
// Construct the dividend expression.
auto dividendExpr = getAffineConstantExpr(0, context);
unsigned c, f;
for (c = 0, f = cst.getNumCols() - 1; c < f; c++) {
if (c == pos)
continue;
int64_t ubVal = cst.atIneq(ubPos, c);
if (ubVal == 0)
continue;
if (!(*memo)[c])
break;
dividendExpr = dividendExpr + ubVal * (*memo)[c];
}
// Expression can't be constructed as it depends on a yet unknown
// identifier.
// TODO(mlir-team): Visit/compute the identifiers in an order so that
// this doesn't happen. More complex but much more efficient.
if (c < f)
continue;
// Successfully detected the floordiv.
(*memo)[pos] = dividendExpr.floorDiv(divisor);
return true;
}
}
}
return false;
}
// Fills an inequality row with the value 'val'.
static inline void fillInequality(FlatAffineConstraints *cst, unsigned r,
int64_t val) {
for (unsigned c = 0, f = cst->getNumCols(); c < f; c++) {
cst->atIneq(r, c) = val;
}
}
// Negates an inequality.
static inline void negateInequality(FlatAffineConstraints *cst, unsigned r) {
for (unsigned c = 0, f = cst->getNumCols(); c < f; c++) {
cst->atIneq(r, c) = -cst->atIneq(r, c);
}
}
// A more complex check to eliminate redundant inequalities. Uses FourierMotzkin
// to check if a constraint is redundant.
void FlatAffineConstraints::removeRedundantInequalities() {
SmallVector<bool, 32> redun(getNumInequalities(), false);
// To check if an inequality is redundant, we replace the inequality by its
// complement (for eg., i - 1 >= 0 by i <= 0), and check if the resulting
// system is empty. If it is, the inequality is redundant.
FlatAffineConstraints tmpCst(*this);
for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
// Change the inequality to its complement.
negateInequality(&tmpCst, r);
tmpCst.atIneq(r, tmpCst.getNumCols() - 1)--;
if (tmpCst.isEmpty()) {
redun[r] = true;
// Zero fill the redundant inequality.
fillInequality(this, r, /*val=*/0);
fillInequality(&tmpCst, r, /*val=*/0);
} else {
// Reverse the change (to avoid recreating tmpCst each time).
tmpCst.atIneq(r, tmpCst.getNumCols() - 1)++;
negateInequality(&tmpCst, r);
}
}
// Scan to get rid of all rows marked redundant, in-place.
auto copyRow = [&](unsigned src, unsigned dest) {
if (src == dest)
return;
for (unsigned c = 0, e = getNumCols(); c < e; c++) {
atIneq(dest, c) = atIneq(src, c);
}
};
unsigned pos = 0;
for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
if (!redun[r])
copyRow(r, pos++);
}
inequalities.resize(numReservedCols * pos);
}
std::pair<AffineMap, AffineMap> FlatAffineConstraints::getLowerAndUpperBound(
unsigned pos, unsigned dimStartPos, unsigned symStartPos,
ArrayRef<AffineExpr> localExprs, MLIRContext *context) {
assert(pos < dimStartPos && "invalid dim start pos");
assert(symStartPos >= dimStartPos && "invalid sym start pos");
assert(getNumLocalIds() == localExprs.size() &&
"incorrect local exprs count");
SmallVector<unsigned, 4> lbIndices, ubIndices;
getLowerAndUpperBoundIndices(*this, pos, &lbIndices, &ubIndices);
SmallVector<int64_t, 8> lb, ub;
SmallVector<AffineExpr, 4> exprs;
unsigned dimCount = symStartPos - dimStartPos;
unsigned symCount = getNumDimAndSymbolIds() - symStartPos;
exprs.reserve(lbIndices.size());
// Lower bound expressions.
for (auto idx : lbIndices) {
auto ineq = getInequality(idx);
// Extract the lower bound (in terms of other coeff's + const), i.e., if
// i - j + 1 >= 0 is the constraint, 'pos' is for i the lower bound is j
// - 1.
lb.assign(ineq.begin() + dimStartPos, ineq.end());
std::transform(lb.begin(), lb.end(), lb.begin(), std::negate<int64_t>());
auto expr = mlir::toAffineExpr(lb, dimCount, symCount, localExprs, context);
exprs.push_back(expr);
}
auto lbMap = exprs.empty() ? AffineMap()
: AffineMap::get(dimCount, symCount, exprs, {});
exprs.clear();
exprs.reserve(ubIndices.size());
// Upper bound expressions.
for (auto idx : ubIndices) {
auto ineq = getInequality(idx);
// Extract the upper bound (in terms of other coeff's + const).
ub.assign(ineq.begin() + dimStartPos, ineq.end());
auto expr = mlir::toAffineExpr(ub, dimCount, symCount, localExprs, context);
// Upper bound is exclusive.
exprs.push_back(expr + 1);
}
auto ubMap = exprs.empty() ? AffineMap()
: AffineMap::get(dimCount, symCount, exprs, {});
return {lbMap, ubMap};
}
/// Computes the lower and upper bounds of the first 'num' dimensional
/// identifiers as affine maps of the remaining identifiers (dimensional and
/// symbolic identifiers). Local identifiers are themselves explicitly computed
/// as affine functions of other identifiers in this process if needed.
void FlatAffineConstraints::getSliceBounds(unsigned num, MLIRContext *context,
SmallVectorImpl<AffineMap> *lbMaps,
SmallVectorImpl<AffineMap> *ubMaps) {
assert(num < getNumDimIds() && "invalid range");
// Basic simplification.
normalizeConstraintsByGCD();
LLVM_DEBUG(llvm::dbgs() << "getSliceBounds for first " << num
<< " identifiers\n");
LLVM_DEBUG(dump());
// Record computed/detected identifiers.
SmallVector<AffineExpr, 8> memo(getNumIds(), AffineExpr::Null());
// Initialize dimensional and symbolic identifiers.
for (unsigned i = num, e = getNumDimIds(); i < e; i++)
memo[i] = getAffineDimExpr(i - num, context);
for (unsigned i = getNumDimIds(), e = getNumDimAndSymbolIds(); i < e; i++)
memo[i] = getAffineSymbolExpr(i - getNumDimIds(), context);
bool changed;
do {
changed = false;
// Identify yet unknown identifiers as constants or mod's / floordiv's of
// other identifiers if possible.
for (unsigned pos = 0; pos < getNumIds(); pos++) {
if (memo[pos])
continue;
auto lbConst = getConstantLowerBound(pos);
auto ubConst = getConstantUpperBound(pos);
if (lbConst.hasValue() && ubConst.hasValue()) {
// Detect equality to a constant.
if (lbConst.getValue() == ubConst.getValue()) {
memo[pos] = getAffineConstantExpr(lbConst.getValue(), context);
changed = true;
continue;
}
// Detect an identifier as modulo of another identifier w.r.t a
// constant.
if (detectAsMod(*this, pos, lbConst.getValue(), ubConst.getValue(),
&memo)) {
changed = true;
continue;
}
}
// Detect an identifier as floordiv of another identifier w.r.t a
// constant.
if (detectAsFloorDiv(*this, pos, &memo, context)) {
changed = true;
continue;
}
// Detect an identifier as an expression of other identifiers.
unsigned idx;
if (!findConstraintWithNonZeroAt(*this, pos, /*isEq=*/true, &idx)) {
continue;
}
// Build AffineExpr solving for identifier 'pos' in terms of all others.
auto expr = getAffineConstantExpr(0, context);
unsigned j, e;
for (j = 0, e = getNumIds(); j < e; ++j) {
if (j == pos)
continue;
int64_t c = atEq(idx, j);
if (c == 0)
continue;
// If any of the involved IDs hasn't been found yet, we can't proceed.
if (!memo[j])
break;
expr = expr + memo[j] * c;
}
if (j < e)
// Can't construct expression as it depends on a yet uncomputed
// identifier.
continue;
// Add constant term to AffineExpr.
expr = expr + atEq(idx, getNumIds());
int64_t vPos = atEq(idx, pos);
assert(vPos != 0 && "expected non-zero here");
if (vPos > 0)
expr = (-expr).floorDiv(vPos);
else
// vPos < 0.
expr = expr.floorDiv(-vPos);
// Successfully constructed expression.
memo[pos] = expr;
changed = true;
}
// This loop is guaranteed to reach a fixed point - since once an
// identifier's explicit form is computed (in memo[pos]), it's not updated
// again.
} while (changed);
// Set the lower and upper bound maps for all the identifiers that were
// computed as affine expressions of the rest as the "detected expr" and
// "detected expr + 1" respectively; set the undetected ones to Null().
Optional<FlatAffineConstraints> tmpClone;
for (unsigned pos = 0; pos < num; pos++) {
unsigned numMapDims = getNumDimIds() - num;
unsigned numMapSymbols = getNumSymbolIds();
AffineExpr expr = memo[pos];
if (expr)
expr = simplifyAffineExpr(expr, numMapDims, numMapSymbols);
AffineMap &lbMap = (*lbMaps)[pos];
AffineMap &ubMap = (*ubMaps)[pos];
if (expr) {
lbMap = AffineMap::get(numMapDims, numMapSymbols, expr, {});
ubMap = AffineMap::get(numMapDims, numMapSymbols, expr + 1, {});
} else {
// TODO(bondhugula): Whenever there are local identifiers in the
// dependence constraints, we'll conservatively over-approximate, since we
// don't always explicitly compute them above (in the while loop).
if (getNumLocalIds() == 0) {
// Work on a copy so that we don't update this constraint system.
if (!tmpClone) {
tmpClone.emplace(FlatAffineConstraints(*this));
// Removing redudnant inequalities is necessary so that we don't get
// redundant loop bounds.
tmpClone->removeRedundantInequalities();
}
std::tie(lbMap, ubMap) = tmpClone->getLowerAndUpperBound(
pos, num, getNumDimIds(), {}, context);
}
// If the above fails, we'll just use the constant lower bound and the
// constant upper bound (if they exist) as the slice bounds.
// TODO(b/126426796): being conservative for the moment in cases that
// lead to multiple bounds - until getConstDifference in LoopFusion.cpp is
// fixed (b/126426796).
if (!lbMap || lbMap.getNumResults() > 1) {
LLVM_DEBUG(llvm::dbgs()
<< "WARNING: Potentially over-approximating slice lb\n");
auto lbConst = getConstantLowerBound(pos);
if (lbConst.hasValue()) {
lbMap = AffineMap::get(
numMapDims, numMapSymbols,
getAffineConstantExpr(lbConst.getValue(), context), {});
}
}
if (!ubMap || ubMap.getNumResults() > 1) {
LLVM_DEBUG(llvm::dbgs()
<< "WARNING: Potentially over-approximating slice ub\n");
auto ubConst = getConstantUpperBound(pos);
if (ubConst.hasValue()) {
(ubMap) = AffineMap::get(
numMapDims, numMapSymbols,
getAffineConstantExpr(ubConst.getValue() + 1, context), {});
}
}
}
LLVM_DEBUG(llvm::dbgs() << "lb map for pos = " << Twine(pos) << ", expr: ");
LLVM_DEBUG(lbMap.dump(););
LLVM_DEBUG(llvm::dbgs() << "ub map for pos = " << Twine(pos) << ", expr: ");
LLVM_DEBUG(ubMap.dump(););
}
}
LogicalResult
FlatAffineConstraints::addLowerOrUpperBound(unsigned pos, AffineMap boundMap,
ArrayRef<Value *> boundOperands,
bool eq, bool lower) {
assert(pos < getNumDimAndSymbolIds() && "invalid position");
// Equality follows the logic of lower bound except that we add an equality
// instead of an inequality.
assert(!eq || boundMap.getNumResults() == 1 && "single result expected");
if (eq)
lower = true;
// Fully commpose map and operands; canonicalize and simplify so that we
// transitively get to terminal symbols or loop IVs.
auto map = boundMap;
SmallVector<Value *, 4> operands(boundOperands.begin(), boundOperands.end());
fullyComposeAffineMapAndOperands(&map, &operands);
map = simplifyAffineMap(map);
canonicalizeMapAndOperands(&map, &operands);
for (auto *operand : operands)
addInductionVarOrTerminalSymbol(operand);
FlatAffineConstraints localVarCst;
std::vector<SmallVector<int64_t, 8>> flatExprs;
if (failed(getFlattenedAffineExprs(map, &flatExprs, &localVarCst))) {
LLVM_DEBUG(llvm::dbgs() << "semi-affine expressions not yet supported\n");
return failure();
}
// Merge and align with localVarCst.
if (localVarCst.getNumLocalIds() > 0) {
// Set values for localVarCst.
localVarCst.setIdValues(0, localVarCst.getNumDimAndSymbolIds(), operands);
for (auto *operand : operands) {
unsigned pos;
if (findId(*operand, &pos)) {
if (pos >= getNumDimIds() && pos < getNumDimAndSymbolIds()) {
// If the local var cst has this as a dim, turn it into its symbol.
turnDimIntoSymbol(&localVarCst, *operand);
} else if (pos < getNumDimIds()) {
// Or vice versa.
turnSymbolIntoDim(&localVarCst, *operand);
}
}
}
mergeAndAlignIds(/*offset=*/0, this, &localVarCst);
append(localVarCst);
}
// Record positions of the operands in the constraint system. Need to do
// this here since the constraint system changes after a bound is added.
SmallVector<unsigned, 8> positions;
unsigned numOperands = operands.size();
for (auto *operand : operands) {
unsigned pos;
if (!findId(*operand, &pos))
assert(0 && "expected to be found");
positions.push_back(pos);
}
for (const auto &flatExpr : flatExprs) {
SmallVector<int64_t, 4> ineq(getNumCols(), 0);
ineq[pos] = lower ? 1 : -1;
// Dims and symbols.
for (unsigned j = 0, e = map.getNumInputs(); j < e; j++) {
ineq[positions[j]] = lower ? -flatExpr[j] : flatExpr[j];
}
// Copy over the local id coefficients.
unsigned numLocalIds = flatExpr.size() - 1 - numOperands;
for (unsigned jj = 0, j = getNumIds() - numLocalIds; jj < numLocalIds;
jj++, j++) {
ineq[j] =
lower ? -flatExpr[numOperands + jj] : flatExpr[numOperands + jj];
}
// Constant term.
ineq[getNumCols() - 1] =
lower ? -flatExpr[flatExpr.size() - 1]
// Upper bound in flattenedExpr is an exclusive one.
: flatExpr[flatExpr.size() - 1] - 1;
eq ? addEquality(ineq) : addInequality(ineq);
}
return success();
}
// Adds slice lower bounds represented by lower bounds in 'lbMaps' and upper
// bounds in 'ubMaps' to each value in `values' that appears in the constraint
// system. Note that both lower/upper bounds share the same operand list
// 'operands'.
// This function assumes 'values.size' == 'lbMaps.size' == 'ubMaps.size', and
// skips any null AffineMaps in 'lbMaps' or 'ubMaps'.
// Note that both lower/upper bounds use operands from 'operands'.
// Returns failure for unimplemented cases such as semi-affine expressions or
// expressions with mod/floordiv.
LogicalResult FlatAffineConstraints::addSliceBounds(
ArrayRef<Value *> values, ArrayRef<AffineMap> lbMaps,
ArrayRef<AffineMap> ubMaps, ArrayRef<Value *> operands) {
assert(values.size() == lbMaps.size());
assert(lbMaps.size() == ubMaps.size());
for (unsigned i = 0, e = lbMaps.size(); i < e; ++i) {
unsigned pos;
if (!findId(*values[i], &pos))
continue;
AffineMap lbMap = lbMaps[i];
AffineMap ubMap = ubMaps[i];
assert(!lbMap || lbMap.getNumInputs() == operands.size());
assert(!ubMap || ubMap.getNumInputs() == operands.size());
// Check if this slice is just an equality along this dimension.
if (lbMap && ubMap && lbMap.getNumResults() == 1 &&
ubMap.getNumResults() == 1 &&
lbMap.getResult(0) + 1 == ubMap.getResult(0)) {
if (failed(addLowerOrUpperBound(pos, lbMap, operands, /*eq=*/true,
/*lower=*/true)))
return failure();
if (failed(addLowerOrUpperBound(pos, lbMap, operands, /*eq=*/true,
/*lower=*/true)))
return failure();
continue;
}
if (lbMap && failed(addLowerOrUpperBound(pos, lbMap, operands, /*eq=*/false,
/*lower=*/true)))
return failure();
if (lbMap && failed(addLowerOrUpperBound(pos, lbMap, operands, /*eq=*/false,
/*lower=*/true)))
return failure();
if (ubMap && failed(addLowerOrUpperBound(pos, ubMap, operands, /*eq=*/false,
/*lower=*/false)))
return failure();
}
return success();
}
void FlatAffineConstraints::addEquality(ArrayRef<int64_t> eq) {
assert(eq.size() == getNumCols());
unsigned offset = equalities.size();
equalities.resize(equalities.size() + numReservedCols);
std::copy(eq.begin(), eq.end(), equalities.begin() + offset);
}
void FlatAffineConstraints::addInequality(ArrayRef<int64_t> inEq) {
assert(inEq.size() == getNumCols());
unsigned offset = inequalities.size();
inequalities.resize(inequalities.size() + numReservedCols);
std::copy(inEq.begin(), inEq.end(), inequalities.begin() + offset);
}
void FlatAffineConstraints::addConstantLowerBound(unsigned pos, int64_t lb) {
assert(pos < getNumCols());
unsigned offset = inequalities.size();
inequalities.resize(inequalities.size() + numReservedCols);
std::fill(inequalities.begin() + offset,
inequalities.begin() + offset + getNumCols(), 0);
inequalities[offset + pos] = 1;
inequalities[offset + getNumCols() - 1] = -lb;
}
void FlatAffineConstraints::addConstantUpperBound(unsigned pos, int64_t ub) {
assert(pos < getNumCols());
unsigned offset = inequalities.size();
inequalities.resize(inequalities.size() + numReservedCols);
std::fill(inequalities.begin() + offset,
inequalities.begin() + offset + getNumCols(), 0);
inequalities[offset + pos] = -1;
inequalities[offset + getNumCols() - 1] = ub;
}
void FlatAffineConstraints::addConstantLowerBound(ArrayRef<int64_t> expr,
int64_t lb) {
assert(expr.size() == getNumCols());
unsigned offset = inequalities.size();
inequalities.resize(inequalities.size() + numReservedCols);
std::fill(inequalities.begin() + offset,
inequalities.begin() + offset + getNumCols(), 0);
std::copy(expr.begin(), expr.end(), inequalities.begin() + offset);
inequalities[offset + getNumCols() - 1] += -lb;
}
void FlatAffineConstraints::addConstantUpperBound(ArrayRef<int64_t> expr,
int64_t ub) {
assert(expr.size() == getNumCols());
unsigned offset = inequalities.size();
inequalities.resize(inequalities.size() + numReservedCols);
std::fill(inequalities.begin() + offset,
inequalities.begin() + offset + getNumCols(), 0);
for (unsigned i = 0, e = getNumCols(); i < e; i++) {
inequalities[offset + i] = -expr[i];
}
inequalities[offset + getNumCols() - 1] += ub;
}
/// Adds a new local identifier as the floordiv of an affine function of other
/// identifiers, the coefficients of which are provided in 'dividend' and with
/// respect to a positive constant 'divisor'. Two constraints are added to the
/// system to capture equivalence with the floordiv.
/// q = expr floordiv c <=> c*q <= expr <= c*q + c - 1.
void FlatAffineConstraints::addLocalFloorDiv(ArrayRef<int64_t> dividend,
int64_t divisor) {
assert(dividend.size() == getNumCols() && "incorrect dividend size");
assert(divisor > 0 && "positive divisor expected");
addLocalId(getNumLocalIds());
// Add two constraints for this new identifier 'q'.
SmallVector<int64_t, 8> bound(dividend.size() + 1);
// dividend - q * divisor >= 0
std::copy(dividend.begin(), dividend.begin() + dividend.size() - 1,
bound.begin());
bound.back() = dividend.back();
bound[getNumIds() - 1] = -divisor;
addInequality(bound);
// -dividend +qdivisor * q + divisor - 1 >= 0
std::transform(bound.begin(), bound.end(), bound.begin(),
std::negate<int64_t>());
bound[bound.size() - 1] += divisor - 1;
addInequality(bound);
}
bool FlatAffineConstraints::findId(Value &id, unsigned *pos) const {
unsigned i = 0;
for (const auto &mayBeId : ids) {
if (mayBeId.hasValue() && mayBeId.getValue() == &id) {
*pos = i;
return true;
}
i++;
}
return false;
}
bool FlatAffineConstraints::containsId(Value &id) const {
return llvm::any_of(ids, [&](const Optional<Value *> &mayBeId) {
return mayBeId.hasValue() && mayBeId.getValue() == &id;
});
}
void FlatAffineConstraints::setDimSymbolSeparation(unsigned newSymbolCount) {
assert(newSymbolCount <= numDims + numSymbols &&
"invalid separation position");
numDims = numDims + numSymbols - newSymbolCount;
numSymbols = newSymbolCount;
}
/// Sets the specified identifer to a constant value.
void FlatAffineConstraints::setIdToConstant(unsigned pos, int64_t val) {
unsigned offset = equalities.size();
equalities.resize(equalities.size() + numReservedCols);
std::fill(equalities.begin() + offset,
equalities.begin() + offset + getNumCols(), 0);
equalities[offset + pos] = 1;
equalities[offset + getNumCols() - 1] = -val;
}
/// Sets the specified identifer to a constant value; asserts if the id is not
/// found.
void FlatAffineConstraints::setIdToConstant(Value &id, int64_t val) {
unsigned pos;
if (!findId(id, &pos))
// This is a pre-condition for this method.
assert(0 && "id not found");
setIdToConstant(pos, val);
}
void FlatAffineConstraints::removeEquality(unsigned pos) {
unsigned numEqualities = getNumEqualities();
assert(pos < numEqualities);
unsigned outputIndex = pos * numReservedCols;
unsigned inputIndex = (pos + 1) * numReservedCols;
unsigned numElemsToCopy = (numEqualities - pos - 1) * numReservedCols;
std::copy(equalities.begin() + inputIndex,
equalities.begin() + inputIndex + numElemsToCopy,
equalities.begin() + outputIndex);
equalities.resize(equalities.size() - numReservedCols);
}
/// Finds an equality that equates the specified identifier to a constant.
/// Returns the position of the equality row. If 'symbolic' is set to true,
/// symbols are also treated like a constant, i.e., an affine function of the
/// symbols is also treated like a constant.
static int findEqualityToConstant(const FlatAffineConstraints &cst,
unsigned pos, bool symbolic = false) {
assert(pos < cst.getNumIds() && "invalid position");
for (unsigned r = 0, e = cst.getNumEqualities(); r < e; r++) {
int64_t v = cst.atEq(r, pos);
if (v * v != 1)
continue;
unsigned c;
unsigned f = symbolic ? cst.getNumDimIds() : cst.getNumIds();
// This checks for zeros in all positions other than 'pos' in [0, f)
for (c = 0; c < f; c++) {
if (c == pos)
continue;
if (cst.atEq(r, c) != 0) {
// Dependent on another identifier.
break;
}
}
if (c == f)
// Equality is free of other identifiers.
return r;
}
return -1;
}
void FlatAffineConstraints::setAndEliminate(unsigned pos, int64_t constVal) {
assert(pos < getNumIds() && "invalid position");
for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
atIneq(r, getNumCols() - 1) += atIneq(r, pos) * constVal;
}
for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
atEq(r, getNumCols() - 1) += atEq(r, pos) * constVal;
}
removeId(pos);
}
LogicalResult FlatAffineConstraints::constantFoldId(unsigned pos) {
assert(pos < getNumIds() && "invalid position");
int rowIdx;
if ((rowIdx = findEqualityToConstant(*this, pos)) == -1)
return failure();
// atEq(rowIdx, pos) is either -1 or 1.
assert(atEq(rowIdx, pos) * atEq(rowIdx, pos) == 1);
int64_t constVal = -atEq(rowIdx, getNumCols() - 1) / atEq(rowIdx, pos);
setAndEliminate(pos, constVal);
return success();
}
void FlatAffineConstraints::constantFoldIdRange(unsigned pos, unsigned num) {
for (unsigned s = pos, t = pos, e = pos + num; s < e; s++) {
if (failed(constantFoldId(t)))
t++;
}
}
/// Returns the extent (upper bound - lower bound) of the specified
/// identifier if it is found to be a constant; returns None if it's not a
/// constant. This methods treats symbolic identifiers specially, i.e.,
/// it looks for constant differences between affine expressions involving
/// only the symbolic identifiers. See comments at function definition for
/// example. 'lb', if provided, is set to the lower bound associated with the
/// constant difference. Note that 'lb' is purely symbolic and thus will contain
/// the coefficients of the symbolic identifiers and the constant coefficient.
// Egs: 0 <= i <= 15, return 16.
// s0 + 2 <= i <= s0 + 17, returns 16. (s0 has to be a symbol)
// s0 + s1 + 16 <= d0 <= s0 + s1 + 31, returns 16.
// s0 - 7 <= 8*j <= s0 returns 1 with lb = s0, lbDivisor = 8 (since lb =
// ceil(s0 - 7 / 8) = floor(s0 / 8)).
Optional<int64_t> FlatAffineConstraints::getConstantBoundOnDimSize(
unsigned pos, SmallVectorImpl<int64_t> *lb, int64_t *lbFloorDivisor,
SmallVectorImpl<int64_t> *ub) const {
assert(pos < getNumDimIds() && "Invalid identifier position");
assert(getNumLocalIds() == 0);
// TODO(bondhugula): eliminate all remaining dimensional identifiers (other
// than the one at 'pos' to make this more powerful. Not needed for
// hyper-rectangular spaces.
// Find an equality for 'pos'^th identifier that equates it to some function
// of the symbolic identifiers (+ constant).
int eqRow = findEqualityToConstant(*this, pos, /*symbolic=*/true);
if (eqRow != -1) {
// This identifier can only take a single value.
if (lb) {
// Set lb to the symbolic value.
lb->resize(getNumSymbolIds() + 1);
if (ub)
ub->resize(getNumSymbolIds() + 1);
for (unsigned c = 0, f = getNumSymbolIds() + 1; c < f; c++) {
int64_t v = atEq(eqRow, pos);
// atEq(eqRow, pos) is either -1 or 1.
assert(v * v == 1);
(*lb)[c] = v < 0 ? atEq(eqRow, getNumDimIds() + c) / -v
: -atEq(eqRow, getNumDimIds() + c) / v;
// Since this is an equality, ub = lb.
if (ub)
(*ub)[c] = (*lb)[c];
}
assert(lbFloorDivisor &&
"both lb and divisor or none should be provided");
*lbFloorDivisor = 1;
}
return 1;
}
// Check if the identifier appears at all in any of the inequalities.
unsigned r, e;
for (r = 0, e = getNumInequalities(); r < e; r++) {
if (atIneq(r, pos) != 0)
break;
}
if (r == e)
// If it doesn't, there isn't a bound on it.
return None;
// Positions of constraints that are lower/upper bounds on the variable.
SmallVector<unsigned, 4> lbIndices, ubIndices;
// Gather all symbolic lower bounds and upper bounds of the variable. Since
// the canonical form c_1*x_1 + c_2*x_2 + ... + c_0 >= 0, a constraint is a
// lower bound for x_i if c_i >= 1, and an upper bound if c_i <= -1.
for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
unsigned c, f;
for (c = 0, f = getNumDimIds(); c < f; c++) {
if (c != pos && atIneq(r, c) != 0)
break;
}
if (c < getNumDimIds())
// Not a pure symbolic bound.
continue;
if (atIneq(r, pos) >= 1)
// Lower bound.
lbIndices.push_back(r);
else if (atIneq(r, pos) <= -1)
// Upper bound.
ubIndices.push_back(r);
}
// TODO(bondhugula): eliminate other dimensional identifiers to make this more
// powerful. Not needed for hyper-rectangular iteration spaces.
Optional<int64_t> minDiff = None;
unsigned minLbPosition, minUbPosition;
for (auto ubPos : ubIndices) {
for (auto lbPos : lbIndices) {
// Look for a lower bound and an upper bound that only differ by a
// constant, i.e., pairs of the form 0 <= c_pos - f(c_i's) <= diffConst.
// For example, if ii is the pos^th variable, we are looking for
// constraints like ii >= i, ii <= ii + 50, 50 being the difference. The
// minimum among all such constant differences is kept since that's the
// constant bounding the extent of the pos^th variable.
unsigned j, e;
for (j = 0, e = getNumCols() - 1; j < e; j++)
if (atIneq(ubPos, j) != -atIneq(lbPos, j)) {
break;
}
if (j < getNumCols() - 1)
continue;
int64_t diff = ceilDiv(atIneq(ubPos, getNumCols() - 1) +
atIneq(lbPos, getNumCols() - 1) + 1,
atIneq(lbPos, pos));
if (minDiff == None || diff < minDiff) {
minDiff = diff;
minLbPosition = lbPos;
minUbPosition = ubPos;
}
}
}
if (lb && minDiff.hasValue()) {
// Set lb to the symbolic lower bound.
lb->resize(getNumSymbolIds() + 1);
if (ub)
ub->resize(getNumSymbolIds() + 1);
// The lower bound is the ceildiv of the lb constraint over the coefficient
// of the variable at 'pos'. We express the ceildiv equivalently as a floor
// for uniformity. For eg., if the lower bound constraint was: 32*d0 - N +
// 31 >= 0, the lower bound for d0 is ceil(N - 31, 32), i.e., floor(N, 32).
*lbFloorDivisor = atIneq(minLbPosition, pos);
assert(*lbFloorDivisor == -atIneq(minUbPosition, pos));
for (unsigned c = 0, e = getNumSymbolIds() + 1; c < e; c++) {
(*lb)[c] = -atIneq(minLbPosition, getNumDimIds() + c);
}
if (ub) {
for (unsigned c = 0, e = getNumSymbolIds() + 1; c < e; c++)
(*ub)[c] = atIneq(minUbPosition, getNumDimIds() + c);
}
// The lower bound leads to a ceildiv while the upper bound is a floordiv
// whenever the cofficient at pos != 1. ceildiv (val / d) = floordiv (val +
// d - 1 / d); hence, the addition of 'atIneq(minLbPosition, pos) - 1' to
// the constant term for the lower bound.
(*lb)[getNumSymbolIds()] += atIneq(minLbPosition, pos) - 1;
}
return minDiff;
}
template <bool isLower>
Optional<int64_t>
FlatAffineConstraints::computeConstantLowerOrUpperBound(unsigned pos) {
assert(pos < getNumIds() && "invalid position");
// Project to 'pos'.
projectOut(0, pos);
projectOut(1, getNumIds() - 1);
// Check if there's an equality equating the '0'^th identifier to a constant.
int eqRowIdx = findEqualityToConstant(*this, 0, /*symbolic=*/false);
if (eqRowIdx != -1)
// atEq(rowIdx, 0) is either -1 or 1.
return -atEq(eqRowIdx, getNumCols() - 1) / atEq(eqRowIdx, 0);
// Check if the identifier appears at all in any of the inequalities.
unsigned r, e;
for (r = 0, e = getNumInequalities(); r < e; r++) {
if (atIneq(r, 0) != 0)
break;
}
if (r == e)
// If it doesn't, there isn't a bound on it.
return None;
Optional<int64_t> minOrMaxConst = None;
// Take the max across all const lower bounds (or min across all constant
// upper bounds).
for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
if (isLower) {
if (atIneq(r, 0) <= 0)
// Not a lower bound.
continue;
} else if (atIneq(r, 0) >= 0) {
// Not an upper bound.
continue;
}
unsigned c, f;
for (c = 0, f = getNumCols() - 1; c < f; c++)
if (c != 0 && atIneq(r, c) != 0)
break;
if (c < getNumCols() - 1)
// Not a constant bound.
continue;
int64_t boundConst =
isLower ? mlir::ceilDiv(-atIneq(r, getNumCols() - 1), atIneq(r, 0))
: mlir::floorDiv(atIneq(r, getNumCols() - 1), -atIneq(r, 0));
if (isLower) {
if (minOrMaxConst == None || boundConst > minOrMaxConst)
minOrMaxConst = boundConst;
} else {
if (minOrMaxConst == None || boundConst < minOrMaxConst)
minOrMaxConst = boundConst;
}
}
return minOrMaxConst;
}
Optional<int64_t>
FlatAffineConstraints::getConstantLowerBound(unsigned pos) const {
FlatAffineConstraints tmpCst(*this);
return tmpCst.computeConstantLowerOrUpperBound</*isLower=*/true>(pos);
}
Optional<int64_t>
FlatAffineConstraints::getConstantUpperBound(unsigned pos) const {
FlatAffineConstraints tmpCst(*this);
return tmpCst.computeConstantLowerOrUpperBound</*isLower=*/false>(pos);
}
// A simple (naive and conservative) check for hyper-rectangularlity.
bool FlatAffineConstraints::isHyperRectangular(unsigned pos,
unsigned num) const {
assert(pos < getNumCols() - 1);
// Check for two non-zero coefficients in the range [pos, pos + sum).
for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
unsigned sum = 0;
for (unsigned c = pos; c < pos + num; c++) {
if (atIneq(r, c) != 0)
sum++;
}
if (sum > 1)
return false;
}
for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
unsigned sum = 0;
for (unsigned c = pos; c < pos + num; c++) {
if (atEq(r, c) != 0)
sum++;
}
if (sum > 1)
return false;
}
return true;
}
void FlatAffineConstraints::print(raw_ostream &os) const {
assert(hasConsistentState());
os << "\nConstraints (" << getNumDimIds() << " dims, " << getNumSymbolIds()
<< " symbols, " << getNumLocalIds() << " locals), (" << getNumConstraints()
<< " constraints)\n";
os << "(";
for (unsigned i = 0, e = getNumIds(); i < e; i++) {
if (ids[i] == None)
os << "None ";
else
os << "Value ";
}
os << " const)\n";
for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
for (unsigned j = 0, f = getNumCols(); j < f; ++j) {
os << atEq(i, j) << " ";
}
os << "= 0\n";
}
for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
for (unsigned j = 0, f = getNumCols(); j < f; ++j) {
os << atIneq(i, j) << " ";
}
os << ">= 0\n";
}
os << '\n';
}
void FlatAffineConstraints::dump() const { print(llvm::errs()); }
/// Removes duplicate constraints, trivially true constraints, and constraints
/// that can be detected as redundant as a result of differing only in their
/// constant term part. A constraint of the form <non-negative constant> >= 0 is
/// considered trivially true.
// Uses a DenseSet to hash and detect duplicates followed by a linear scan to
// remove duplicates in place.
void FlatAffineConstraints::removeTrivialRedundancy() {
SmallDenseSet<ArrayRef<int64_t>, 8> rowSet;
// A map used to detect redundancy stemming from constraints that only differ
// in their constant term. The value stored is <row position, const term>
// for a given row.
SmallDenseMap<ArrayRef<int64_t>, std::pair<unsigned, int64_t>>
rowsWithoutConstTerm;
// Check if constraint is of the form <non-negative-constant> >= 0.
auto isTriviallyValid = [&](unsigned r) -> bool {
for (unsigned c = 0, e = getNumCols() - 1; c < e; c++) {
if (atIneq(r, c) != 0)
return false;
}
return atIneq(r, getNumCols() - 1) >= 0;
};
// Detect and mark redundant constraints.
SmallVector<bool, 256> redunIneq(getNumInequalities(), false);
for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
int64_t *rowStart = inequalities.data() + numReservedCols * r;
auto row = ArrayRef<int64_t>(rowStart, getNumCols());
if (isTriviallyValid(r) || !rowSet.insert(row).second) {
redunIneq[r] = true;
continue;
}
// Among constraints that only differ in the constant term part, mark
// everything other than the one with the smallest constant term redundant.
// (eg: among i - 16j - 5 >= 0, i - 16j - 1 >=0, i - 16j - 7 >= 0, the
// former two are redundant).
int64_t constTerm = atIneq(r, getNumCols() - 1);
auto rowWithoutConstTerm = ArrayRef<int64_t>(rowStart, getNumCols() - 1);
const auto &ret =
rowsWithoutConstTerm.insert({rowWithoutConstTerm, {r, constTerm}});
if (!ret.second) {
// Check if the other constraint has a higher constant term.
auto &val = ret.first->second;
if (val.second > constTerm) {
// The stored row is redundant. Mark it so, and update with this one.
redunIneq[val.first] = true;
val = {r, constTerm};
} else {
// The one stored makes this one redundant.
redunIneq[r] = true;
}
}
}
auto copyRow = [&](unsigned src, unsigned dest) {
if (src == dest)
return;
for (unsigned c = 0, e = getNumCols(); c < e; c++) {
atIneq(dest, c) = atIneq(src, c);
}
};
// Scan to get rid of all rows marked redundant, in-place.
unsigned pos = 0;
for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
if (!redunIneq[r])
copyRow(r, pos++);
}
inequalities.resize(numReservedCols * pos);
// TODO(bondhugula): consider doing this for equalities as well, but probably
// not worth the savings.
}
void FlatAffineConstraints::clearAndCopyFrom(
const FlatAffineConstraints &other) {
FlatAffineConstraints copy(other);
std::swap(*this, copy);
assert(copy.getNumIds() == copy.getIds().size());
}
void FlatAffineConstraints::removeId(unsigned pos) {
removeIdRange(pos, pos + 1);
}
static std::pair<unsigned, unsigned>
getNewNumDimsSymbols(unsigned pos, const FlatAffineConstraints &cst) {
unsigned numDims = cst.getNumDimIds();
unsigned numSymbols = cst.getNumSymbolIds();
unsigned newNumDims, newNumSymbols;
if (pos < numDims) {
newNumDims = numDims - 1;
newNumSymbols = numSymbols;
} else if (pos < numDims + numSymbols) {
assert(numSymbols >= 1);
newNumDims = numDims;
newNumSymbols = numSymbols - 1;
} else {
newNumDims = numDims;
newNumSymbols = numSymbols;
}
return {newNumDims, newNumSymbols};
}
#undef DEBUG_TYPE
#define DEBUG_TYPE "fm"
/// Eliminates identifier at the specified position using Fourier-Motzkin
/// variable elimination. This technique is exact for rational spaces but
/// conservative (in "rare" cases) for integer spaces. The operation corresponds
/// to a projection operation yielding the (convex) set of integer points
/// contained in the rational shadow of the set. An emptiness test that relies
/// on this method will guarantee emptiness, i.e., it disproves the existence of
/// a solution if it says it's empty.
/// If a non-null isResultIntegerExact is passed, it is set to true if the
/// result is also integer exact. If it's set to false, the obtained solution
/// *may* not be exact, i.e., it may contain integer points that do not have an
/// integer pre-image in the original set.
///
/// Eg:
/// j >= 0, j <= i + 1
/// i >= 0, i <= N + 1
/// Eliminating i yields,
/// j >= 0, 0 <= N + 1, j - 1 <= N + 1
///
/// If darkShadow = true, this method computes the dark shadow on elimination;
/// the dark shadow is a convex integer subset of the exact integer shadow. A
/// non-empty dark shadow proves the existence of an integer solution. The
/// elimination in such a case could however be an under-approximation, and thus
/// should not be used for scanning sets or used by itself for dependence
/// checking.
///
/// Eg: 2-d set, * represents grid points, 'o' represents a point in the set.
/// ^
/// |
/// | * * * * o o
/// i | * * o o o o
/// | o * * * * *
/// --------------->
/// j ->
///
/// Eliminating i from this system (projecting on the j dimension):
/// rational shadow / integer light shadow: 1 <= j <= 6
/// dark shadow: 3 <= j <= 6
/// exact integer shadow: j = 1 \union 3 <= j <= 6
/// holes/splinters: j = 2
///
/// darkShadow = false, isResultIntegerExact = nullptr are default values.
// TODO(bondhugula): a slight modification to yield dark shadow version of FM
// (tightened), which can prove the existence of a solution if there is one.
void FlatAffineConstraints::FourierMotzkinEliminate(
unsigned pos, bool darkShadow, bool *isResultIntegerExact) {
LLVM_DEBUG(llvm::dbgs() << "FM input (eliminate pos " << pos << "):\n");
LLVM_DEBUG(dump());
assert(pos < getNumIds() && "invalid position");
assert(hasConsistentState());
// Check if this identifier can be eliminated through a substitution.
for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
if (atEq(r, pos) != 0) {
// Use Gaussian elimination here (since we have an equality).
LogicalResult ret = gaussianEliminateId(pos);
(void)ret;
assert(succeeded(ret) && "Gaussian elimination guaranteed to succeed");
LLVM_DEBUG(llvm::dbgs() << "FM output (through Gaussian elimination):\n");
LLVM_DEBUG(dump());
return;
}
}
// A fast linear time tightening.
GCDTightenInequalities();
// Check if the identifier appears at all in any of the inequalities.
unsigned r, e;
for (r = 0, e = getNumInequalities(); r < e; r++) {
if (atIneq(r, pos) != 0)
break;
}
if (r == getNumInequalities()) {
// If it doesn't appear, just remove the column and return.
// TODO(andydavis,bondhugula): refactor removeColumns to use it from here.
removeId(pos);
LLVM_DEBUG(llvm::dbgs() << "FM output:\n");
LLVM_DEBUG(dump());
return;
}
// Positions of constraints that are lower bounds on the variable.
SmallVector<unsigned, 4> lbIndices;
// Positions of constraints that are lower bounds on the variable.
SmallVector<unsigned, 4> ubIndices;
// Positions of constraints that do not involve the variable.
std::vector<unsigned> nbIndices;
nbIndices.reserve(getNumInequalities());
// Gather all lower bounds and upper bounds of the variable. Since the
// canonical form c_1*x_1 + c_2*x_2 + ... + c_0 >= 0, a constraint is a lower
// bound for x_i if c_i >= 1, and an upper bound if c_i <= -1.
for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
if (atIneq(r, pos) == 0) {
// Id does not appear in bound.
nbIndices.push_back(r);
} else if (atIneq(r, pos) >= 1) {
// Lower bound.
lbIndices.push_back(r);
} else {
// Upper bound.
ubIndices.push_back(r);
}
}
// Set the number of dimensions, symbols in the resulting system.
const auto &dimsSymbols = getNewNumDimsSymbols(pos, *this);
unsigned newNumDims = dimsSymbols.first;
unsigned newNumSymbols = dimsSymbols.second;
SmallVector<Optional<Value *>, 8> newIds;
newIds.reserve(numIds - 1);
newIds.append(ids.begin(), ids.begin() + pos);
newIds.append(ids.begin() + pos + 1, ids.end());
/// Create the new system which has one identifier less.
FlatAffineConstraints newFac(
lbIndices.size() * ubIndices.size() + nbIndices.size(),
getNumEqualities(), getNumCols() - 1, newNumDims, newNumSymbols,
/*numLocals=*/getNumIds() - 1 - newNumDims - newNumSymbols, newIds);
assert(newFac.getIds().size() == newFac.getNumIds());
// This will be used to check if the elimination was integer exact.
unsigned lcmProducts = 1;
// Let x be the variable we are eliminating.
// For each lower bound, lb <= c_l*x, and each upper bound c_u*x <= ub, (note
// that c_l, c_u >= 1) we have:
// lb*lcm(c_l, c_u)/c_l <= lcm(c_l, c_u)*x <= ub*lcm(c_l, c_u)/c_u
// We thus generate a constraint:
// lcm(c_l, c_u)/c_l*lb <= lcm(c_l, c_u)/c_u*ub.
// Note if c_l = c_u = 1, all integer points captured by the resulting
// constraint correspond to integer points in the original system (i.e., they
// have integer pre-images). Hence, if the lcm's are all 1, the elimination is
// integer exact.
for (auto ubPos : ubIndices) {
for (auto lbPos : lbIndices) {
SmallVector<int64_t, 4> ineq;
ineq.reserve(newFac.getNumCols());
int64_t lbCoeff = atIneq(lbPos, pos);
// Note that in the comments above, ubCoeff is the negation of the
// coefficient in the canonical form as the view taken here is that of the
// term being moved to the other size of '>='.
int64_t ubCoeff = -atIneq(ubPos, pos);
// TODO(bondhugula): refactor this loop to avoid all branches inside.
for (unsigned l = 0, e = getNumCols(); l < e; l++) {
if (l == pos)
continue;
assert(lbCoeff >= 1 && ubCoeff >= 1 && "bounds wrongly identified");
int64_t lcm = mlir::lcm(lbCoeff, ubCoeff);
ineq.push_back(atIneq(ubPos, l) * (lcm / ubCoeff) +
atIneq(lbPos, l) * (lcm / lbCoeff));
lcmProducts *= lcm;
}
if (darkShadow) {
// The dark shadow is a convex subset of the exact integer shadow. If
// there is a point here, it proves the existence of a solution.
ineq[ineq.size() - 1] += lbCoeff * ubCoeff - lbCoeff - ubCoeff + 1;
}
// TODO: we need to have a way to add inequalities in-place in
// FlatAffineConstraints instead of creating and copying over.
newFac.addInequality(ineq);
}
}
if (lcmProducts == 1 && isResultIntegerExact)
*isResultIntegerExact = 1;
// Copy over the constraints not involving this variable.
for (auto nbPos : nbIndices) {
SmallVector<int64_t, 4> ineq;
ineq.reserve(getNumCols() - 1);
for (unsigned l = 0, e = getNumCols(); l < e; l++) {
if (l == pos)
continue;
ineq.push_back(atIneq(nbPos, l));
}
newFac.addInequality(ineq);
}
assert(newFac.getNumConstraints() ==
lbIndices.size() * ubIndices.size() + nbIndices.size());
// Copy over the equalities.
for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
SmallVector<int64_t, 4> eq;
eq.reserve(newFac.getNumCols());
for (unsigned l = 0, e = getNumCols(); l < e; l++) {
if (l == pos)
continue;
eq.push_back(atEq(r, l));
}
newFac.addEquality(eq);
}
// GCD tightening and normalization allows detection of more trivially
// redundant constraints.
newFac.GCDTightenInequalities();
newFac.normalizeConstraintsByGCD();
newFac.removeTrivialRedundancy();
clearAndCopyFrom(newFac);
LLVM_DEBUG(llvm::dbgs() << "FM output:\n");
LLVM_DEBUG(dump());
}
#undef DEBUG_TYPE
#define DEBUG_TYPE "affine-structures"
void FlatAffineConstraints::projectOut(unsigned pos, unsigned num) {
if (num == 0)
return;
// 'pos' can be at most getNumCols() - 2 if num > 0.
assert(getNumCols() < 2 || pos <= getNumCols() - 2 && "invalid position");
assert(pos + num < getNumCols() && "invalid range");
// Eliminate as many identifiers as possible using Gaussian elimination.
unsigned currentPos = pos;
unsigned numToEliminate = num;
unsigned numGaussianEliminated = 0;
while (currentPos < getNumIds()) {
unsigned curNumEliminated =
gaussianEliminateIds(currentPos, currentPos + numToEliminate);
++currentPos;
numToEliminate -= curNumEliminated + 1;
numGaussianEliminated += curNumEliminated;
}
// Eliminate the remaining using Fourier-Motzkin.
for (unsigned i = 0; i < num - numGaussianEliminated; i++) {
unsigned numToEliminate = num - numGaussianEliminated - i;
FourierMotzkinEliminate(
getBestIdToEliminate(*this, pos, pos + numToEliminate));
}
// Fast/trivial simplifications.
GCDTightenInequalities();
// Normalize constraints after tightening since the latter impacts this, but
// not the other way round.
normalizeConstraintsByGCD();
}
void FlatAffineConstraints::projectOut(Value *id) {
unsigned pos;
bool ret = findId(*id, &pos);
assert(ret);
(void)ret;
FourierMotzkinEliminate(pos);
}
bool FlatAffineConstraints::isRangeOneToOne(unsigned start,
unsigned limit) const {
assert(start <= getNumIds() - 1 && "invalid start position");
assert(limit > start && limit <= getNumIds() && "invalid limit");
FlatAffineConstraints tmpCst(*this);
if (start != 0) {
// Move [start, limit) to the left.
for (unsigned r = 0, e = getNumInequalities(); r < e; ++r) {
for (unsigned c = 0, f = getNumCols(); c < f; ++c) {
if (c >= start && c < limit)
tmpCst.atIneq(r, c - start) = atIneq(r, c);
else if (c < start)
tmpCst.atIneq(r, c + limit - start) = atIneq(r, c);
else
tmpCst.atIneq(r, c) = atIneq(r, c);
}
}
for (unsigned r = 0, e = getNumEqualities(); r < e; ++r) {
for (unsigned c = 0, f = getNumCols(); c < f; ++c) {
if (c >= start && c < limit)
tmpCst.atEq(r, c - start) = atEq(r, c);
else if (c < start)
tmpCst.atEq(r, c + limit - start) = atEq(r, c);
else
tmpCst.atEq(r, c) = atEq(r, c);
}
}
}
// Mark everything to the right as symbols so that we can check the extents in
// a symbolic way below.
tmpCst.setDimSymbolSeparation(getNumIds() - (limit - start));
// Check if the extents of all the specified dimensions are just one (when
// treating the rest as symbols).
for (unsigned pos = 0, e = tmpCst.getNumDimIds(); pos < e; ++pos) {
auto extent = tmpCst.getConstantBoundOnDimSize(pos);
if (!extent.hasValue() || extent.getValue() != 1)
return false;
}
return true;
}
void FlatAffineConstraints::clearConstraints() {
equalities.clear();
inequalities.clear();
}
namespace {
enum BoundCmpResult { Greater, Less, Equal, Unknown };
/// Compares two affine bounds whose coefficients are provided in 'first' and
/// 'second'. The last coefficient is the constant term.
static BoundCmpResult compareBounds(ArrayRef<int64_t> a, ArrayRef<int64_t> b) {
assert(a.size() == b.size());
// For the bounds to be comparable, their corresponding identifier
// coefficients should be equal; the constant terms are then compared to
// determine less/greater/equal.
if (!std::equal(a.begin(), a.end() - 1, b.begin()))
return Unknown;
if (a.back() == b.back())
return Equal;
return a.back() < b.back() ? Less : Greater;
}
}; // namespace
// Computes the bounding box with respect to 'other' by finding the min of the
// lower bounds and the max of the upper bounds along each of the dimensions.
LogicalResult
FlatAffineConstraints::unionBoundingBox(const FlatAffineConstraints &otherCst) {
assert(otherCst.getNumDimIds() == numDims && "dims mismatch");
assert(otherCst.getIds()
.slice(0, getNumDimIds())
.equals(getIds().slice(0, getNumDimIds())) &&
"dim values mismatch");
assert(otherCst.getNumLocalIds() == 0 && "local ids not supported here");
assert(getNumLocalIds() == 0 && "local ids not supported yet here");
Optional<FlatAffineConstraints> otherCopy;
if (!areIdsAligned(*this, otherCst)) {
otherCopy.emplace(FlatAffineConstraints(otherCst));
mergeAndAlignIds(/*offset=*/numDims, this, &otherCopy.getValue());
}
const auto &other = otherCopy ? *otherCopy : otherCst;
std::vector<SmallVector<int64_t, 8>> boundingLbs;
std::vector<SmallVector<int64_t, 8>> boundingUbs;
boundingLbs.reserve(2 * getNumDimIds());
boundingUbs.reserve(2 * getNumDimIds());
// To hold lower and upper bounds for each dimension.
SmallVector<int64_t, 4> lb, otherLb, ub, otherUb;
// To compute min of lower bounds and max of upper bounds for each dimension.
SmallVector<int64_t, 4> minLb(getNumSymbolIds() + 1);
SmallVector<int64_t, 4> maxUb(getNumSymbolIds() + 1);
// To compute final new lower and upper bounds for the union.
SmallVector<int64_t, 8> newLb(getNumCols()), newUb(getNumCols());
int64_t lbFloorDivisor, otherLbFloorDivisor;
for (unsigned d = 0, e = getNumDimIds(); d < e; ++d) {
auto extent = getConstantBoundOnDimSize(d, &lb, &lbFloorDivisor, &ub);
if (!extent.hasValue())
// TODO(bondhugula): symbolic extents when necessary.
// TODO(bondhugula): handle union if a dimension is unbounded.
return failure();
auto otherExtent = other.getConstantBoundOnDimSize(
d, &otherLb, &otherLbFloorDivisor, &otherUb);
if (!otherExtent.hasValue() || lbFloorDivisor != otherLbFloorDivisor)
// TODO(bondhugula): symbolic extents when necessary.
return failure();
assert(lbFloorDivisor > 0 && "divisor always expected to be positive");
auto res = compareBounds(lb, otherLb);
// Identify min.
if (res == BoundCmpResult::Less || res == BoundCmpResult::Equal) {
minLb = lb;
// Since the divisor is for a floordiv, we need to convert to ceildiv,
// i.e., i >= expr floordiv div <=> i >= (expr - div + 1) ceildiv div <=>
// div * i >= expr - div + 1.
minLb.back() -= lbFloorDivisor - 1;
} else if (res == BoundCmpResult::Greater) {
minLb = otherLb;
minLb.back() -= otherLbFloorDivisor - 1;
} else {
// Uncomparable - check for constant lower/upper bounds.
auto constLb = getConstantLowerBound(d);
auto constOtherLb = other.getConstantLowerBound(d);
if (!constLb.hasValue() || !constOtherLb.hasValue())
return failure();
std::fill(minLb.begin(), minLb.end(), 0);
minLb.back() = std::min(constLb.getValue(), constOtherLb.getValue());
}
// Do the same for ub's but max of upper bounds. Identify max.
auto uRes = compareBounds(ub, otherUb);
Update dma-generate pass to (1) work on blocks of instructions (instead of just loops), (2) take into account fast memory space capacity and lower 'dmaDepth' to fit, (3) add location information for debug info / errors - change dma-generate pass to work on blocks of instructions (start/end iterators) instead of 'for' loops; complete TODOs - allows DMA generation for straightline blocks of operation instructions interspersed b/w loops - take into account fast memory capacity: check whether memory footprint fits in fastMemoryCapacity parameter, and recurse/lower the depth at which DMA generation is performed until it does fit in the provided memory - add location information to MemRefRegion; any insufficient fast memory capacity errors or debug info w.r.t dma generation shows location information - allow DMA generation pass to be instantiated with a fast memory capacity option (besides command line flag) - change getMemRefRegion to return unique_ptr's - change getMemRefFootprintBytes to work on a 'Block' instead of 'ForInst' - other helper methods; add postDomInstFilter option for replaceAllMemRefUsesWith; drop forInst->walkOps, add Block::walkOps methods Eg. output $ mlir-opt -dma-generate -dma-fast-mem-capacity=1 /tmp/single.mlir /tmp/single.mlir:9:13: error: Total size of all DMA buffers' for this block exceeds fast memory capacity for %i3 = (d0) -> (d0)(%i1) to (d0) -> (d0 + 32)(%i1) { ^ $ mlir-opt -debug-only=dma-generate -dma-generate -dma-fast-mem-capacity=400 /tmp/single.mlir /tmp/single.mlir:9:13: note: 8 KiB of DMA buffers in fast memory space for this block for %i3 = (d0) -> (d0)(%i1) to (d0) -> (d0 + 32)(%i1) { PiperOrigin-RevId: 232297044
2019-02-04 23:58:42 +08:00
if (uRes == BoundCmpResult::Greater || uRes == BoundCmpResult::Equal) {
maxUb = ub;
} else if (uRes == BoundCmpResult::Less) {
maxUb = otherUb;
} else {
// Uncomparable - check for constant lower/upper bounds.
auto constUb = getConstantUpperBound(d);
auto constOtherUb = other.getConstantUpperBound(d);
if (!constUb.hasValue() || !constOtherUb.hasValue())
return failure();
std::fill(maxUb.begin(), maxUb.end(), 0);
maxUb.back() = std::max(constUb.getValue(), constOtherUb.getValue());
}
std::fill(newLb.begin(), newLb.end(), 0);
std::fill(newUb.begin(), newUb.end(), 0);
// The divisor for lb, ub, otherLb, otherUb at this point is lbDivisor,
// and so it's the divisor for newLb and newUb as well.
newLb[d] = lbFloorDivisor;
newUb[d] = -lbFloorDivisor;
// Copy over the symbolic part + constant term.
std::copy(minLb.begin(), minLb.end(), newLb.begin() + getNumDimIds());
std::transform(newLb.begin() + getNumDimIds(), newLb.end(),
newLb.begin() + getNumDimIds(), std::negate<int64_t>());
std::copy(maxUb.begin(), maxUb.end(), newUb.begin() + getNumDimIds());
boundingLbs.push_back(newLb);
boundingUbs.push_back(newUb);
}
// Clear all constraints and add the lower/upper bounds for the bounding box.
clearConstraints();
for (unsigned d = 0, e = getNumDimIds(); d < e; ++d) {
addInequality(boundingLbs[d]);
addInequality(boundingUbs[d]);
}
// TODO(mlir-team): copy over pure symbolic constraints from this and 'other'
// over to the union (since the above are just the union along dimensions); we
// shouldn't be discarding any other constraints on the symbols.
return success();
}