2014-02-06 12:37:03 +08:00
|
|
|
//===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===//
|
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#include "llvm/Analysis/LazyCallGraph.h"
|
[LCG] Add support for building persistent and connected SCCs to the
LazyCallGraph. This is the start of the whole point of this different
abstraction, but it is just the initial bits. Here is a run-down of
what's going on here. I'm planning to incorporate some (or all) of this
into comments going forward, hopefully with better editing and wording.
=]
The crux of the problem with the traditional way of building SCCs is
that they are ephemeral. The new pass manager however really needs the
ability to associate analysis passes and results of analysis passes with
SCCs in order to expose these analysis passes to the SCC passes. Making
this work is kind-of the whole point of the new pass manager. =]
So, when we're building SCCs for the call graph, we actually want to
build persistent nodes that stick around and can be reasoned about
later. We'd also like the ability to walk the SCC graph in more complex
ways than just the traditional postorder traversal of the current CGSCC
walk. That means that in addition to being persistent, the SCCs need to
be connected into a useful graph structure.
However, we still want the SCCs to be formed lazily where possible.
These constraints are quite hard to satisfy with the SCC iterator. Also,
using that would bypass our ability to actually add data to the nodes of
the call graph to facilite implementing the Tarjan walk. So I've
re-implemented things in a more direct and embedded way. This
immediately makes it easy to get the persistence and connectivity
correct, and it also allows leveraging the existing nodes to simplify
the algorithm. I've worked somewhat to make this implementation more
closely follow the traditional paper's nomenclature and strategy,
although it is still a bit obtuse because it isn't recursive, using
an explicit stack and a tail call instead, and it is interruptable,
resuming each time we need another SCC.
The other tricky bit here, and what actually took almost all the time
and trials and errors I spent building this, is exactly *what* graph
structure to build for the SCCs. The naive thing to build is the call
graph in its newly acyclic form. I wrote about 4 versions of this which
did precisely this. Inevitably, when I experimented with them across
various use cases, they became incredibly awkward. It was all
implementable, but it felt like a complete wrong fit. Square peg, round
hole. There were two overriding aspects that pushed me in a different
direction:
1) We want to discover the SCC graph in a postorder fashion. That means
the root node will be the *last* node we find. Using the call-SCC DAG
as the graph structure of the SCCs results in an orphaned graph until
we discover a root.
2) We will eventually want to walk the SCC graph in parallel, exploring
distinct sub-graphs independently, and synchronizing at merge points.
This again is not helped by the call-SCC DAG structure.
The structure which, quite surprisingly, ended up being completely
natural to use is the *inverse* of the call-SCC DAG. We add the leaf
SCCs to the graph as "roots", and have edges to the caller SCCs. Once
I switched to building this structure, everything just fell into place
elegantly.
Aside from general cleanups (there are FIXMEs and too few comments
overall) that are still needed, the other missing piece of this is
support for iterating across levels of the SCC graph. These will become
useful for implementing #2, but they aren't an immediate priority.
Once SCCs are in good shape, I'll be working on adding mutation support
for incremental updates and adding the pass manager that this analysis
enables.
llvm-svn: 206581
2014-04-18 18:50:32 +08:00
|
|
|
#include "llvm/ADT/STLExtras.h"
|
2016-12-09 08:46:44 +08:00
|
|
|
#include "llvm/ADT/ScopeExit.h"
|
2017-06-06 19:49:48 +08:00
|
|
|
#include "llvm/ADT/Sequence.h"
|
2014-03-04 19:01:28 +08:00
|
|
|
#include "llvm/IR/CallSite.h"
|
2014-03-06 11:23:41 +08:00
|
|
|
#include "llvm/IR/InstVisitor.h"
|
2014-02-06 12:37:03 +08:00
|
|
|
#include "llvm/IR/Instructions.h"
|
|
|
|
#include "llvm/IR/PassManager.h"
|
2014-04-21 13:04:24 +08:00
|
|
|
#include "llvm/Support/Debug.h"
|
2016-06-18 17:17:32 +08:00
|
|
|
#include "llvm/Support/GraphWriter.h"
|
2017-02-07 03:38:06 +08:00
|
|
|
#include <utility>
|
2014-02-06 12:37:03 +08:00
|
|
|
|
|
|
|
using namespace llvm;
|
|
|
|
|
2014-04-22 10:48:03 +08:00
|
|
|
#define DEBUG_TYPE "lcg"
|
|
|
|
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
void LazyCallGraph::EdgeSequence::insertEdgeInternal(Node &TargetN,
|
|
|
|
Edge::Kind EK) {
|
|
|
|
EdgeIndexMap.insert({&TargetN, Edges.size()});
|
|
|
|
Edges.emplace_back(TargetN, EK);
|
|
|
|
}
|
|
|
|
|
|
|
|
void LazyCallGraph::EdgeSequence::setEdgeKind(Node &TargetN, Edge::Kind EK) {
|
|
|
|
Edges[EdgeIndexMap.find(&TargetN)->second].setKind(EK);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool LazyCallGraph::EdgeSequence::removeEdgeInternal(Node &TargetN) {
|
|
|
|
auto IndexMapI = EdgeIndexMap.find(&TargetN);
|
|
|
|
if (IndexMapI == EdgeIndexMap.end())
|
|
|
|
return false;
|
|
|
|
|
|
|
|
Edges[IndexMapI->second] = Edge();
|
|
|
|
EdgeIndexMap.erase(IndexMapI);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2016-02-02 11:57:13 +08:00
|
|
|
static void addEdge(SmallVectorImpl<LazyCallGraph::Edge> &Edges,
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
DenseMap<LazyCallGraph::Node *, int> &EdgeIndexMap,
|
|
|
|
LazyCallGraph::Node &N, LazyCallGraph::Edge::Kind EK) {
|
|
|
|
if (!EdgeIndexMap.insert({&N, Edges.size()}).second)
|
2016-12-09 08:46:44 +08:00
|
|
|
return;
|
|
|
|
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
DEBUG(dbgs() << " Added callable function: " << N.getName() << "\n");
|
|
|
|
Edges.emplace_back(LazyCallGraph::Edge(N, EK));
|
2016-02-02 11:57:13 +08:00
|
|
|
}
|
|
|
|
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
LazyCallGraph::EdgeSequence &LazyCallGraph::Node::populateSlow() {
|
|
|
|
assert(!Edges && "Must not have already populated the edges for this node!");
|
|
|
|
|
|
|
|
DEBUG(dbgs() << " Adding functions called by '" << getName()
|
2014-04-21 13:04:24 +08:00
|
|
|
<< "' to the graph.\n");
|
|
|
|
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
Edges = EdgeSequence();
|
|
|
|
|
2014-02-06 12:37:03 +08:00
|
|
|
SmallVector<Constant *, 16> Worklist;
|
2016-02-02 11:57:13 +08:00
|
|
|
SmallPtrSet<Function *, 4> Callees;
|
2014-02-06 12:37:03 +08:00
|
|
|
SmallPtrSet<Constant *, 16> Visited;
|
2016-02-02 11:57:13 +08:00
|
|
|
|
|
|
|
// Find all the potential call graph edges in this function. We track both
|
|
|
|
// actual call edges and indirect references to functions. The direct calls
|
|
|
|
// are trivially added, but to accumulate the latter we walk the instructions
|
|
|
|
// and add every operand which is a constant to the worklist to process
|
|
|
|
// afterward.
|
2016-12-09 08:46:44 +08:00
|
|
|
//
|
|
|
|
// Note that we consider *any* function with a definition to be a viable
|
|
|
|
// edge. Even if the function's definition is subject to replacement by
|
|
|
|
// some other module (say, a weak definition) there may still be
|
|
|
|
// optimizations which essentially speculate based on the definition and
|
|
|
|
// a way to check that the specific definition is in fact the one being
|
|
|
|
// used. For example, this could be done by moving the weak definition to
|
|
|
|
// a strong (internal) definition and making the weak definition be an
|
|
|
|
// alias. Then a test of the address of the weak function against the new
|
|
|
|
// strong definition's address would be an effective way to determine the
|
|
|
|
// safety of optimizing a direct call edge.
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
for (BasicBlock &BB : *F)
|
2016-02-02 11:57:13 +08:00
|
|
|
for (Instruction &I : BB) {
|
|
|
|
if (auto CS = CallSite(&I))
|
|
|
|
if (Function *Callee = CS.getCalledFunction())
|
2016-12-09 08:46:44 +08:00
|
|
|
if (!Callee->isDeclaration())
|
|
|
|
if (Callees.insert(Callee).second) {
|
|
|
|
Visited.insert(Callee);
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*Callee),
|
|
|
|
LazyCallGraph::Edge::Call);
|
2016-12-09 08:46:44 +08:00
|
|
|
}
|
2016-02-02 11:57:13 +08:00
|
|
|
|
2014-03-09 20:20:34 +08:00
|
|
|
for (Value *Op : I.operand_values())
|
2014-03-03 18:42:58 +08:00
|
|
|
if (Constant *C = dyn_cast<Constant>(Op))
|
2014-11-19 15:49:26 +08:00
|
|
|
if (Visited.insert(C).second)
|
2014-02-06 12:37:03 +08:00
|
|
|
Worklist.push_back(C);
|
2016-02-02 11:57:13 +08:00
|
|
|
}
|
2014-02-06 12:37:03 +08:00
|
|
|
|
|
|
|
// We've collected all the constant (and thus potentially function or
|
|
|
|
// function containing) operands to all of the instructions in the function.
|
|
|
|
// Process them (recursively) collecting every function found.
|
[PM] Introduce basic update capabilities to the new PM's CGSCC pass
manager, including both plumbing and logic to handle function pass
updates.
There are three fundamentally tied changes here:
1) Plumbing *some* mechanism for updating the CGSCC pass manager as the
CG changes while passes are running.
2) Changing the CGSCC pass manager infrastructure to have support for
the underlying graph to mutate mid-pass run.
3) Actually updating the CG after function passes run.
I can separate them if necessary, but I think its really useful to have
them together as the needs of #3 drove #2, and that in turn drove #1.
The plumbing technique is to extend the "run" method signature with
extra arguments. We provide the call graph that intrinsically is
available as it is the basis of the pass manager's IR units, and an
output parameter that records the results of updating the call graph
during an SCC passes's run. Note that "...UpdateResult" isn't a *great*
name here... suggestions very welcome.
I tried a pretty frustrating number of different data structures and such
for the innards of the update result. Every other one failed for one
reason or another. Sometimes I just couldn't keep the layers of
complexity right in my head. The thing that really worked was to just
directly provide access to the underlying structures used to walk the
call graph so that their updates could be informed by the *particular*
nature of the change to the graph.
The technique for how to make the pass management infrastructure cope
with mutating graphs was also something that took a really, really large
number of iterations to get to a place where I was happy. Here are some
of the considerations that drove the design:
- We operate at three levels within the infrastructure: RefSCC, SCC, and
Node. In each case, we are working bottom up and so we want to
continue to iterate on the "lowest" node as the graph changes. Look at
how we iterate over nodes in an SCC running function passes as those
function passes mutate the CG. We continue to iterate on the "lowest"
SCC, which is the one that continues to contain the function just
processed.
- The call graph structure re-uses SCCs (and RefSCCs) during mutation
events for the *highest* entry in the resulting new subgraph, not the
lowest. This means that it is necessary to continually update the
current SCC or RefSCC as it shifts. This is really surprising and
subtle, and took a long time for me to work out. I actually tried
changing the call graph to provide the opposite behavior, and it
breaks *EVERYTHING*. The graph update algorithms are really deeply
tied to this particualr pattern.
- When SCCs or RefSCCs are split apart and refined and we continually
re-pin our processing to the bottom one in the subgraph, we need to
enqueue the newly formed SCCs and RefSCCs for subsequent processing.
Queuing them presents a few challenges:
1) SCCs and RefSCCs use wildly different iteration strategies at
a high level. We end up needing to converge them on worklist
approaches that can be extended in order to be able to handle the
mutations.
2) The order of the enqueuing need to remain bottom-up post-order so
that we don't get surprising order of visitation for things like
the inliner.
3) We need the worklists to have set semantics so we don't duplicate
things endlessly. We don't need a *persistent* set though because
we always keep processing the bottom node!!!! This is super, super
surprising to me and took a long time to convince myself this is
correct, but I'm pretty sure it is... Once we sink down to the
bottom node, we can't re-split out the same node in any way, and
the postorder of the current queue is fixed and unchanging.
4) We need to make sure that the "current" SCC or RefSCC actually gets
enqueued here such that we re-visit it because we continue
processing a *new*, *bottom* SCC/RefSCC.
- We also need the ability to *skip* SCCs and RefSCCs that get merged
into a larger component. We even need the ability to skip *nodes* from
an SCC that are no longer part of that SCC.
This led to the design you see in the patch which uses SetVector-based
worklists. The RefSCC worklist is always empty until an update occurs
and is just used to handle those RefSCCs created by updates as the
others don't even exist yet and are formed on-demand during the
bottom-up walk. The SCC worklist is pre-populated from the RefSCC, and
we push new SCCs onto it and blacklist existing SCCs on it to get the
desired processing.
We then *directly* update these when updating the call graph as I was
never able to find a satisfactory abstraction around the update
strategy.
Finally, we need to compute the updates for function passes. This is
mostly used as an initial customer of all the update mechanisms to drive
their design to at least cover some real set of use cases. There are
a bunch of interesting things that came out of doing this:
- It is really nice to do this a function at a time because that
function is likely hot in the cache. This means we want even the
function pass adaptor to support online updates to the call graph!
- To update the call graph after arbitrary function pass mutations is
quite hard. We have to build a fairly comprehensive set of
data structures and then process them. Fortunately, some of this code
is related to the code for building the cal graph in the first place.
Unfortunately, very little of it makes any sense to share because the
nature of what we're doing is so very different. I've factored out the
one part that made sense at least.
- We need to transfer these updates into the various structures for the
CGSCC pass manager. Once those were more sanely worked out, this
became relatively easier. But some of those needs necessitated changes
to the LazyCallGraph interface to make it significantly easier to
extract the changed SCCs from an update operation.
- We also need to update the CGSCC analysis manager as the shape of the
graph changes. When an SCC is merged away we need to clear analyses
associated with it from the analysis manager which we didn't have
support for in the analysis manager infrsatructure. New SCCs are easy!
But then we have the case that the original SCC has its shape changed
but remains in the call graph. There we need to *invalidate* the
analyses associated with it.
- We also need to invalidate analyses after we *finish* processing an
SCC. But the analyses we need to invalidate here are *only those for
the newly updated SCC*!!! Because we only continue processing the
bottom SCC, if we split SCCs apart the original one gets invalidated
once when its shape changes and is not processed farther so its
analyses will be correct. It is the bottom SCC which continues being
processed and needs to have the "normal" invalidation done based on
the preserved analyses set.
All of this is mostly background and context for the changes here.
Many thanks to all the reviewers who helped here. Especially Sanjoy who
caught several interesting bugs in the graph algorithms, David, Sean,
and others who all helped with feedback.
Differential Revision: http://reviews.llvm.org/D21464
llvm-svn: 279618
2016-08-24 17:37:14 +08:00
|
|
|
visitReferences(Worklist, Visited, [&](Function &F) {
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(F),
|
|
|
|
LazyCallGraph::Edge::Ref);
|
[PM] Introduce basic update capabilities to the new PM's CGSCC pass
manager, including both plumbing and logic to handle function pass
updates.
There are three fundamentally tied changes here:
1) Plumbing *some* mechanism for updating the CGSCC pass manager as the
CG changes while passes are running.
2) Changing the CGSCC pass manager infrastructure to have support for
the underlying graph to mutate mid-pass run.
3) Actually updating the CG after function passes run.
I can separate them if necessary, but I think its really useful to have
them together as the needs of #3 drove #2, and that in turn drove #1.
The plumbing technique is to extend the "run" method signature with
extra arguments. We provide the call graph that intrinsically is
available as it is the basis of the pass manager's IR units, and an
output parameter that records the results of updating the call graph
during an SCC passes's run. Note that "...UpdateResult" isn't a *great*
name here... suggestions very welcome.
I tried a pretty frustrating number of different data structures and such
for the innards of the update result. Every other one failed for one
reason or another. Sometimes I just couldn't keep the layers of
complexity right in my head. The thing that really worked was to just
directly provide access to the underlying structures used to walk the
call graph so that their updates could be informed by the *particular*
nature of the change to the graph.
The technique for how to make the pass management infrastructure cope
with mutating graphs was also something that took a really, really large
number of iterations to get to a place where I was happy. Here are some
of the considerations that drove the design:
- We operate at three levels within the infrastructure: RefSCC, SCC, and
Node. In each case, we are working bottom up and so we want to
continue to iterate on the "lowest" node as the graph changes. Look at
how we iterate over nodes in an SCC running function passes as those
function passes mutate the CG. We continue to iterate on the "lowest"
SCC, which is the one that continues to contain the function just
processed.
- The call graph structure re-uses SCCs (and RefSCCs) during mutation
events for the *highest* entry in the resulting new subgraph, not the
lowest. This means that it is necessary to continually update the
current SCC or RefSCC as it shifts. This is really surprising and
subtle, and took a long time for me to work out. I actually tried
changing the call graph to provide the opposite behavior, and it
breaks *EVERYTHING*. The graph update algorithms are really deeply
tied to this particualr pattern.
- When SCCs or RefSCCs are split apart and refined and we continually
re-pin our processing to the bottom one in the subgraph, we need to
enqueue the newly formed SCCs and RefSCCs for subsequent processing.
Queuing them presents a few challenges:
1) SCCs and RefSCCs use wildly different iteration strategies at
a high level. We end up needing to converge them on worklist
approaches that can be extended in order to be able to handle the
mutations.
2) The order of the enqueuing need to remain bottom-up post-order so
that we don't get surprising order of visitation for things like
the inliner.
3) We need the worklists to have set semantics so we don't duplicate
things endlessly. We don't need a *persistent* set though because
we always keep processing the bottom node!!!! This is super, super
surprising to me and took a long time to convince myself this is
correct, but I'm pretty sure it is... Once we sink down to the
bottom node, we can't re-split out the same node in any way, and
the postorder of the current queue is fixed and unchanging.
4) We need to make sure that the "current" SCC or RefSCC actually gets
enqueued here such that we re-visit it because we continue
processing a *new*, *bottom* SCC/RefSCC.
- We also need the ability to *skip* SCCs and RefSCCs that get merged
into a larger component. We even need the ability to skip *nodes* from
an SCC that are no longer part of that SCC.
This led to the design you see in the patch which uses SetVector-based
worklists. The RefSCC worklist is always empty until an update occurs
and is just used to handle those RefSCCs created by updates as the
others don't even exist yet and are formed on-demand during the
bottom-up walk. The SCC worklist is pre-populated from the RefSCC, and
we push new SCCs onto it and blacklist existing SCCs on it to get the
desired processing.
We then *directly* update these when updating the call graph as I was
never able to find a satisfactory abstraction around the update
strategy.
Finally, we need to compute the updates for function passes. This is
mostly used as an initial customer of all the update mechanisms to drive
their design to at least cover some real set of use cases. There are
a bunch of interesting things that came out of doing this:
- It is really nice to do this a function at a time because that
function is likely hot in the cache. This means we want even the
function pass adaptor to support online updates to the call graph!
- To update the call graph after arbitrary function pass mutations is
quite hard. We have to build a fairly comprehensive set of
data structures and then process them. Fortunately, some of this code
is related to the code for building the cal graph in the first place.
Unfortunately, very little of it makes any sense to share because the
nature of what we're doing is so very different. I've factored out the
one part that made sense at least.
- We need to transfer these updates into the various structures for the
CGSCC pass manager. Once those were more sanely worked out, this
became relatively easier. But some of those needs necessitated changes
to the LazyCallGraph interface to make it significantly easier to
extract the changed SCCs from an update operation.
- We also need to update the CGSCC analysis manager as the shape of the
graph changes. When an SCC is merged away we need to clear analyses
associated with it from the analysis manager which we didn't have
support for in the analysis manager infrsatructure. New SCCs are easy!
But then we have the case that the original SCC has its shape changed
but remains in the call graph. There we need to *invalidate* the
analyses associated with it.
- We also need to invalidate analyses after we *finish* processing an
SCC. But the analyses we need to invalidate here are *only those for
the newly updated SCC*!!! Because we only continue processing the
bottom SCC, if we split SCCs apart the original one gets invalidated
once when its shape changes and is not processed farther so its
analyses will be correct. It is the bottom SCC which continues being
processed and needs to have the "normal" invalidation done based on
the preserved analyses set.
All of this is mostly background and context for the changes here.
Many thanks to all the reviewers who helped here. Especially Sanjoy who
caught several interesting bugs in the graph algorithms, David, Sean,
and others who all helped with feedback.
Differential Revision: http://reviews.llvm.org/D21464
llvm-svn: 279618
2016-08-24 17:37:14 +08:00
|
|
|
});
|
2014-02-06 12:37:03 +08:00
|
|
|
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
return *Edges;
|
2014-04-30 18:48:36 +08:00
|
|
|
}
|
|
|
|
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
void LazyCallGraph::Node::replaceFunction(Function &NewF) {
|
|
|
|
assert(F != &NewF && "Must not replace a function with itself!");
|
|
|
|
F = &NewF;
|
2014-04-27 09:59:50 +08:00
|
|
|
}
|
|
|
|
|
2017-01-28 10:02:38 +08:00
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
|
|
LLVM_DUMP_METHOD void LazyCallGraph::Node::dump() const {
|
2016-06-28 07:26:08 +08:00
|
|
|
dbgs() << *this << '\n';
|
|
|
|
}
|
2017-01-28 10:02:38 +08:00
|
|
|
#endif
|
2016-06-28 07:26:08 +08:00
|
|
|
|
2017-02-07 03:38:06 +08:00
|
|
|
LazyCallGraph::LazyCallGraph(Module &M) {
|
2014-04-21 13:04:24 +08:00
|
|
|
DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier()
|
|
|
|
<< "\n");
|
2014-03-09 20:20:34 +08:00
|
|
|
for (Function &F : M)
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
if (!F.isDeclaration() && !F.hasLocalLinkage()) {
|
|
|
|
DEBUG(dbgs() << " Adding '" << F.getName()
|
|
|
|
<< "' to entry set of the graph.\n");
|
|
|
|
addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F), Edge::Ref);
|
|
|
|
}
|
2014-02-06 12:37:03 +08:00
|
|
|
|
|
|
|
// Now add entry nodes for functions reachable via initializers to globals.
|
|
|
|
SmallVector<Constant *, 16> Worklist;
|
|
|
|
SmallPtrSet<Constant *, 16> Visited;
|
2014-03-09 20:20:34 +08:00
|
|
|
for (GlobalVariable &GV : M.globals())
|
|
|
|
if (GV.hasInitializer())
|
2014-11-19 15:49:26 +08:00
|
|
|
if (Visited.insert(GV.getInitializer()).second)
|
2014-03-09 20:20:34 +08:00
|
|
|
Worklist.push_back(GV.getInitializer());
|
2014-02-06 12:37:03 +08:00
|
|
|
|
2014-04-21 13:04:24 +08:00
|
|
|
DEBUG(dbgs() << " Adding functions referenced by global initializers to the "
|
|
|
|
"entry set.\n");
|
[PM] Introduce basic update capabilities to the new PM's CGSCC pass
manager, including both plumbing and logic to handle function pass
updates.
There are three fundamentally tied changes here:
1) Plumbing *some* mechanism for updating the CGSCC pass manager as the
CG changes while passes are running.
2) Changing the CGSCC pass manager infrastructure to have support for
the underlying graph to mutate mid-pass run.
3) Actually updating the CG after function passes run.
I can separate them if necessary, but I think its really useful to have
them together as the needs of #3 drove #2, and that in turn drove #1.
The plumbing technique is to extend the "run" method signature with
extra arguments. We provide the call graph that intrinsically is
available as it is the basis of the pass manager's IR units, and an
output parameter that records the results of updating the call graph
during an SCC passes's run. Note that "...UpdateResult" isn't a *great*
name here... suggestions very welcome.
I tried a pretty frustrating number of different data structures and such
for the innards of the update result. Every other one failed for one
reason or another. Sometimes I just couldn't keep the layers of
complexity right in my head. The thing that really worked was to just
directly provide access to the underlying structures used to walk the
call graph so that their updates could be informed by the *particular*
nature of the change to the graph.
The technique for how to make the pass management infrastructure cope
with mutating graphs was also something that took a really, really large
number of iterations to get to a place where I was happy. Here are some
of the considerations that drove the design:
- We operate at three levels within the infrastructure: RefSCC, SCC, and
Node. In each case, we are working bottom up and so we want to
continue to iterate on the "lowest" node as the graph changes. Look at
how we iterate over nodes in an SCC running function passes as those
function passes mutate the CG. We continue to iterate on the "lowest"
SCC, which is the one that continues to contain the function just
processed.
- The call graph structure re-uses SCCs (and RefSCCs) during mutation
events for the *highest* entry in the resulting new subgraph, not the
lowest. This means that it is necessary to continually update the
current SCC or RefSCC as it shifts. This is really surprising and
subtle, and took a long time for me to work out. I actually tried
changing the call graph to provide the opposite behavior, and it
breaks *EVERYTHING*. The graph update algorithms are really deeply
tied to this particualr pattern.
- When SCCs or RefSCCs are split apart and refined and we continually
re-pin our processing to the bottom one in the subgraph, we need to
enqueue the newly formed SCCs and RefSCCs for subsequent processing.
Queuing them presents a few challenges:
1) SCCs and RefSCCs use wildly different iteration strategies at
a high level. We end up needing to converge them on worklist
approaches that can be extended in order to be able to handle the
mutations.
2) The order of the enqueuing need to remain bottom-up post-order so
that we don't get surprising order of visitation for things like
the inliner.
3) We need the worklists to have set semantics so we don't duplicate
things endlessly. We don't need a *persistent* set though because
we always keep processing the bottom node!!!! This is super, super
surprising to me and took a long time to convince myself this is
correct, but I'm pretty sure it is... Once we sink down to the
bottom node, we can't re-split out the same node in any way, and
the postorder of the current queue is fixed and unchanging.
4) We need to make sure that the "current" SCC or RefSCC actually gets
enqueued here such that we re-visit it because we continue
processing a *new*, *bottom* SCC/RefSCC.
- We also need the ability to *skip* SCCs and RefSCCs that get merged
into a larger component. We even need the ability to skip *nodes* from
an SCC that are no longer part of that SCC.
This led to the design you see in the patch which uses SetVector-based
worklists. The RefSCC worklist is always empty until an update occurs
and is just used to handle those RefSCCs created by updates as the
others don't even exist yet and are formed on-demand during the
bottom-up walk. The SCC worklist is pre-populated from the RefSCC, and
we push new SCCs onto it and blacklist existing SCCs on it to get the
desired processing.
We then *directly* update these when updating the call graph as I was
never able to find a satisfactory abstraction around the update
strategy.
Finally, we need to compute the updates for function passes. This is
mostly used as an initial customer of all the update mechanisms to drive
their design to at least cover some real set of use cases. There are
a bunch of interesting things that came out of doing this:
- It is really nice to do this a function at a time because that
function is likely hot in the cache. This means we want even the
function pass adaptor to support online updates to the call graph!
- To update the call graph after arbitrary function pass mutations is
quite hard. We have to build a fairly comprehensive set of
data structures and then process them. Fortunately, some of this code
is related to the code for building the cal graph in the first place.
Unfortunately, very little of it makes any sense to share because the
nature of what we're doing is so very different. I've factored out the
one part that made sense at least.
- We need to transfer these updates into the various structures for the
CGSCC pass manager. Once those were more sanely worked out, this
became relatively easier. But some of those needs necessitated changes
to the LazyCallGraph interface to make it significantly easier to
extract the changed SCCs from an update operation.
- We also need to update the CGSCC analysis manager as the shape of the
graph changes. When an SCC is merged away we need to clear analyses
associated with it from the analysis manager which we didn't have
support for in the analysis manager infrsatructure. New SCCs are easy!
But then we have the case that the original SCC has its shape changed
but remains in the call graph. There we need to *invalidate* the
analyses associated with it.
- We also need to invalidate analyses after we *finish* processing an
SCC. But the analyses we need to invalidate here are *only those for
the newly updated SCC*!!! Because we only continue processing the
bottom SCC, if we split SCCs apart the original one gets invalidated
once when its shape changes and is not processed farther so its
analyses will be correct. It is the bottom SCC which continues being
processed and needs to have the "normal" invalidation done based on
the preserved analyses set.
All of this is mostly background and context for the changes here.
Many thanks to all the reviewers who helped here. Especially Sanjoy who
caught several interesting bugs in the graph algorithms, David, Sean,
and others who all helped with feedback.
Differential Revision: http://reviews.llvm.org/D21464
llvm-svn: 279618
2016-08-24 17:37:14 +08:00
|
|
|
visitReferences(Worklist, Visited, [&](Function &F) {
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F),
|
|
|
|
LazyCallGraph::Edge::Ref);
|
[PM] Introduce basic update capabilities to the new PM's CGSCC pass
manager, including both plumbing and logic to handle function pass
updates.
There are three fundamentally tied changes here:
1) Plumbing *some* mechanism for updating the CGSCC pass manager as the
CG changes while passes are running.
2) Changing the CGSCC pass manager infrastructure to have support for
the underlying graph to mutate mid-pass run.
3) Actually updating the CG after function passes run.
I can separate them if necessary, but I think its really useful to have
them together as the needs of #3 drove #2, and that in turn drove #1.
The plumbing technique is to extend the "run" method signature with
extra arguments. We provide the call graph that intrinsically is
available as it is the basis of the pass manager's IR units, and an
output parameter that records the results of updating the call graph
during an SCC passes's run. Note that "...UpdateResult" isn't a *great*
name here... suggestions very welcome.
I tried a pretty frustrating number of different data structures and such
for the innards of the update result. Every other one failed for one
reason or another. Sometimes I just couldn't keep the layers of
complexity right in my head. The thing that really worked was to just
directly provide access to the underlying structures used to walk the
call graph so that their updates could be informed by the *particular*
nature of the change to the graph.
The technique for how to make the pass management infrastructure cope
with mutating graphs was also something that took a really, really large
number of iterations to get to a place where I was happy. Here are some
of the considerations that drove the design:
- We operate at three levels within the infrastructure: RefSCC, SCC, and
Node. In each case, we are working bottom up and so we want to
continue to iterate on the "lowest" node as the graph changes. Look at
how we iterate over nodes in an SCC running function passes as those
function passes mutate the CG. We continue to iterate on the "lowest"
SCC, which is the one that continues to contain the function just
processed.
- The call graph structure re-uses SCCs (and RefSCCs) during mutation
events for the *highest* entry in the resulting new subgraph, not the
lowest. This means that it is necessary to continually update the
current SCC or RefSCC as it shifts. This is really surprising and
subtle, and took a long time for me to work out. I actually tried
changing the call graph to provide the opposite behavior, and it
breaks *EVERYTHING*. The graph update algorithms are really deeply
tied to this particualr pattern.
- When SCCs or RefSCCs are split apart and refined and we continually
re-pin our processing to the bottom one in the subgraph, we need to
enqueue the newly formed SCCs and RefSCCs for subsequent processing.
Queuing them presents a few challenges:
1) SCCs and RefSCCs use wildly different iteration strategies at
a high level. We end up needing to converge them on worklist
approaches that can be extended in order to be able to handle the
mutations.
2) The order of the enqueuing need to remain bottom-up post-order so
that we don't get surprising order of visitation for things like
the inliner.
3) We need the worklists to have set semantics so we don't duplicate
things endlessly. We don't need a *persistent* set though because
we always keep processing the bottom node!!!! This is super, super
surprising to me and took a long time to convince myself this is
correct, but I'm pretty sure it is... Once we sink down to the
bottom node, we can't re-split out the same node in any way, and
the postorder of the current queue is fixed and unchanging.
4) We need to make sure that the "current" SCC or RefSCC actually gets
enqueued here such that we re-visit it because we continue
processing a *new*, *bottom* SCC/RefSCC.
- We also need the ability to *skip* SCCs and RefSCCs that get merged
into a larger component. We even need the ability to skip *nodes* from
an SCC that are no longer part of that SCC.
This led to the design you see in the patch which uses SetVector-based
worklists. The RefSCC worklist is always empty until an update occurs
and is just used to handle those RefSCCs created by updates as the
others don't even exist yet and are formed on-demand during the
bottom-up walk. The SCC worklist is pre-populated from the RefSCC, and
we push new SCCs onto it and blacklist existing SCCs on it to get the
desired processing.
We then *directly* update these when updating the call graph as I was
never able to find a satisfactory abstraction around the update
strategy.
Finally, we need to compute the updates for function passes. This is
mostly used as an initial customer of all the update mechanisms to drive
their design to at least cover some real set of use cases. There are
a bunch of interesting things that came out of doing this:
- It is really nice to do this a function at a time because that
function is likely hot in the cache. This means we want even the
function pass adaptor to support online updates to the call graph!
- To update the call graph after arbitrary function pass mutations is
quite hard. We have to build a fairly comprehensive set of
data structures and then process them. Fortunately, some of this code
is related to the code for building the cal graph in the first place.
Unfortunately, very little of it makes any sense to share because the
nature of what we're doing is so very different. I've factored out the
one part that made sense at least.
- We need to transfer these updates into the various structures for the
CGSCC pass manager. Once those were more sanely worked out, this
became relatively easier. But some of those needs necessitated changes
to the LazyCallGraph interface to make it significantly easier to
extract the changed SCCs from an update operation.
- We also need to update the CGSCC analysis manager as the shape of the
graph changes. When an SCC is merged away we need to clear analyses
associated with it from the analysis manager which we didn't have
support for in the analysis manager infrsatructure. New SCCs are easy!
But then we have the case that the original SCC has its shape changed
but remains in the call graph. There we need to *invalidate* the
analyses associated with it.
- We also need to invalidate analyses after we *finish* processing an
SCC. But the analyses we need to invalidate here are *only those for
the newly updated SCC*!!! Because we only continue processing the
bottom SCC, if we split SCCs apart the original one gets invalidated
once when its shape changes and is not processed farther so its
analyses will be correct. It is the bottom SCC which continues being
processed and needs to have the "normal" invalidation done based on
the preserved analyses set.
All of this is mostly background and context for the changes here.
Many thanks to all the reviewers who helped here. Especially Sanjoy who
caught several interesting bugs in the graph algorithms, David, Sean,
and others who all helped with feedback.
Differential Revision: http://reviews.llvm.org/D21464
llvm-svn: 279618
2016-08-24 17:37:14 +08:00
|
|
|
});
|
2014-02-06 12:37:03 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
LazyCallGraph::LazyCallGraph(LazyCallGraph &&G)
|
2014-04-19 04:44:16 +08:00
|
|
|
: BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)),
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
EntryEdges(std::move(G.EntryEdges)), SCCBPA(std::move(G.SCCBPA)),
|
2017-02-07 03:38:06 +08:00
|
|
|
SCCMap(std::move(G.SCCMap)), LeafRefSCCs(std::move(G.LeafRefSCCs)) {
|
2014-04-18 19:02:33 +08:00
|
|
|
updateGraphPtrs();
|
|
|
|
}
|
|
|
|
|
|
|
|
LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) {
|
|
|
|
BPA = std::move(G.BPA);
|
2014-04-19 04:44:16 +08:00
|
|
|
NodeMap = std::move(G.NodeMap);
|
2016-02-02 11:57:13 +08:00
|
|
|
EntryEdges = std::move(G.EntryEdges);
|
2014-04-18 19:02:33 +08:00
|
|
|
SCCBPA = std::move(G.SCCBPA);
|
|
|
|
SCCMap = std::move(G.SCCMap);
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
LeafRefSCCs = std::move(G.LeafRefSCCs);
|
2014-04-18 19:02:33 +08:00
|
|
|
updateGraphPtrs();
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
2017-01-28 10:02:38 +08:00
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
|
|
LLVM_DUMP_METHOD void LazyCallGraph::SCC::dump() const {
|
2016-06-28 07:26:08 +08:00
|
|
|
dbgs() << *this << '\n';
|
|
|
|
}
|
2017-01-28 10:02:38 +08:00
|
|
|
#endif
|
2016-06-28 07:26:08 +08:00
|
|
|
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
#ifndef NDEBUG
|
|
|
|
void LazyCallGraph::SCC::verify() {
|
|
|
|
assert(OuterRefSCC && "Can't have a null RefSCC!");
|
|
|
|
assert(!Nodes.empty() && "Can't have an empty SCC!");
|
|
|
|
|
|
|
|
for (Node *N : Nodes) {
|
|
|
|
assert(N && "Can't have a null node!");
|
|
|
|
assert(OuterRefSCC->G->lookupSCC(*N) == this &&
|
|
|
|
"Node does not map to this SCC!");
|
|
|
|
assert(N->DFSNumber == -1 &&
|
|
|
|
"Must set DFS numbers to -1 when adding a node to an SCC!");
|
|
|
|
assert(N->LowLink == -1 &&
|
|
|
|
"Must set low link to -1 when adding a node to an SCC!");
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
for (Edge &E : **N)
|
|
|
|
assert(E.getNode() && "Can't have an unpopulated node!");
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
}
|
2014-04-26 09:03:46 +08:00
|
|
|
}
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
#endif
|
2014-04-26 09:03:46 +08:00
|
|
|
|
2016-11-23 03:23:31 +08:00
|
|
|
bool LazyCallGraph::SCC::isParentOf(const SCC &C) const {
|
|
|
|
if (this == &C)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
for (Node &N : *this)
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
for (Edge &E : N->calls())
|
|
|
|
if (OuterRefSCC->G->lookupSCC(E.getNode()) == &C)
|
|
|
|
return true;
|
2016-11-23 03:23:31 +08:00
|
|
|
|
|
|
|
// No edges found.
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool LazyCallGraph::SCC::isAncestorOf(const SCC &TargetC) const {
|
|
|
|
if (this == &TargetC)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
LazyCallGraph &G = *OuterRefSCC->G;
|
|
|
|
|
|
|
|
// Start with this SCC.
|
|
|
|
SmallPtrSet<const SCC *, 16> Visited = {this};
|
|
|
|
SmallVector<const SCC *, 16> Worklist = {this};
|
|
|
|
|
|
|
|
// Walk down the graph until we run out of edges or find a path to TargetC.
|
|
|
|
do {
|
|
|
|
const SCC &C = *Worklist.pop_back_val();
|
|
|
|
for (Node &N : C)
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
for (Edge &E : N->calls()) {
|
|
|
|
SCC *CalleeC = G.lookupSCC(E.getNode());
|
2016-11-23 03:23:31 +08:00
|
|
|
if (!CalleeC)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
// If the callee's SCC is the TargetC, we're done.
|
|
|
|
if (CalleeC == &TargetC)
|
|
|
|
return true;
|
|
|
|
|
|
|
|
// If this is the first time we've reached this SCC, put it on the
|
|
|
|
// worklist to recurse through.
|
|
|
|
if (Visited.insert(CalleeC).second)
|
|
|
|
Worklist.push_back(CalleeC);
|
|
|
|
}
|
|
|
|
} while (!Worklist.empty());
|
|
|
|
|
|
|
|
// No paths found.
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
LazyCallGraph::RefSCC::RefSCC(LazyCallGraph &G) : G(&G) {}
|
|
|
|
|
2017-01-28 10:02:38 +08:00
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
|
|
LLVM_DUMP_METHOD void LazyCallGraph::RefSCC::dump() const {
|
2016-06-28 07:26:08 +08:00
|
|
|
dbgs() << *this << '\n';
|
|
|
|
}
|
2017-01-28 10:02:38 +08:00
|
|
|
#endif
|
2016-06-28 07:26:08 +08:00
|
|
|
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
#ifndef NDEBUG
|
|
|
|
void LazyCallGraph::RefSCC::verify() {
|
|
|
|
assert(G && "Can't have a null graph!");
|
|
|
|
assert(!SCCs.empty() && "Can't have an empty SCC!");
|
|
|
|
|
|
|
|
// Verify basic properties of the SCCs.
|
[PM] Introduce basic update capabilities to the new PM's CGSCC pass
manager, including both plumbing and logic to handle function pass
updates.
There are three fundamentally tied changes here:
1) Plumbing *some* mechanism for updating the CGSCC pass manager as the
CG changes while passes are running.
2) Changing the CGSCC pass manager infrastructure to have support for
the underlying graph to mutate mid-pass run.
3) Actually updating the CG after function passes run.
I can separate them if necessary, but I think its really useful to have
them together as the needs of #3 drove #2, and that in turn drove #1.
The plumbing technique is to extend the "run" method signature with
extra arguments. We provide the call graph that intrinsically is
available as it is the basis of the pass manager's IR units, and an
output parameter that records the results of updating the call graph
during an SCC passes's run. Note that "...UpdateResult" isn't a *great*
name here... suggestions very welcome.
I tried a pretty frustrating number of different data structures and such
for the innards of the update result. Every other one failed for one
reason or another. Sometimes I just couldn't keep the layers of
complexity right in my head. The thing that really worked was to just
directly provide access to the underlying structures used to walk the
call graph so that their updates could be informed by the *particular*
nature of the change to the graph.
The technique for how to make the pass management infrastructure cope
with mutating graphs was also something that took a really, really large
number of iterations to get to a place where I was happy. Here are some
of the considerations that drove the design:
- We operate at three levels within the infrastructure: RefSCC, SCC, and
Node. In each case, we are working bottom up and so we want to
continue to iterate on the "lowest" node as the graph changes. Look at
how we iterate over nodes in an SCC running function passes as those
function passes mutate the CG. We continue to iterate on the "lowest"
SCC, which is the one that continues to contain the function just
processed.
- The call graph structure re-uses SCCs (and RefSCCs) during mutation
events for the *highest* entry in the resulting new subgraph, not the
lowest. This means that it is necessary to continually update the
current SCC or RefSCC as it shifts. This is really surprising and
subtle, and took a long time for me to work out. I actually tried
changing the call graph to provide the opposite behavior, and it
breaks *EVERYTHING*. The graph update algorithms are really deeply
tied to this particualr pattern.
- When SCCs or RefSCCs are split apart and refined and we continually
re-pin our processing to the bottom one in the subgraph, we need to
enqueue the newly formed SCCs and RefSCCs for subsequent processing.
Queuing them presents a few challenges:
1) SCCs and RefSCCs use wildly different iteration strategies at
a high level. We end up needing to converge them on worklist
approaches that can be extended in order to be able to handle the
mutations.
2) The order of the enqueuing need to remain bottom-up post-order so
that we don't get surprising order of visitation for things like
the inliner.
3) We need the worklists to have set semantics so we don't duplicate
things endlessly. We don't need a *persistent* set though because
we always keep processing the bottom node!!!! This is super, super
surprising to me and took a long time to convince myself this is
correct, but I'm pretty sure it is... Once we sink down to the
bottom node, we can't re-split out the same node in any way, and
the postorder of the current queue is fixed and unchanging.
4) We need to make sure that the "current" SCC or RefSCC actually gets
enqueued here such that we re-visit it because we continue
processing a *new*, *bottom* SCC/RefSCC.
- We also need the ability to *skip* SCCs and RefSCCs that get merged
into a larger component. We even need the ability to skip *nodes* from
an SCC that are no longer part of that SCC.
This led to the design you see in the patch which uses SetVector-based
worklists. The RefSCC worklist is always empty until an update occurs
and is just used to handle those RefSCCs created by updates as the
others don't even exist yet and are formed on-demand during the
bottom-up walk. The SCC worklist is pre-populated from the RefSCC, and
we push new SCCs onto it and blacklist existing SCCs on it to get the
desired processing.
We then *directly* update these when updating the call graph as I was
never able to find a satisfactory abstraction around the update
strategy.
Finally, we need to compute the updates for function passes. This is
mostly used as an initial customer of all the update mechanisms to drive
their design to at least cover some real set of use cases. There are
a bunch of interesting things that came out of doing this:
- It is really nice to do this a function at a time because that
function is likely hot in the cache. This means we want even the
function pass adaptor to support online updates to the call graph!
- To update the call graph after arbitrary function pass mutations is
quite hard. We have to build a fairly comprehensive set of
data structures and then process them. Fortunately, some of this code
is related to the code for building the cal graph in the first place.
Unfortunately, very little of it makes any sense to share because the
nature of what we're doing is so very different. I've factored out the
one part that made sense at least.
- We need to transfer these updates into the various structures for the
CGSCC pass manager. Once those were more sanely worked out, this
became relatively easier. But some of those needs necessitated changes
to the LazyCallGraph interface to make it significantly easier to
extract the changed SCCs from an update operation.
- We also need to update the CGSCC analysis manager as the shape of the
graph changes. When an SCC is merged away we need to clear analyses
associated with it from the analysis manager which we didn't have
support for in the analysis manager infrsatructure. New SCCs are easy!
But then we have the case that the original SCC has its shape changed
but remains in the call graph. There we need to *invalidate* the
analyses associated with it.
- We also need to invalidate analyses after we *finish* processing an
SCC. But the analyses we need to invalidate here are *only those for
the newly updated SCC*!!! Because we only continue processing the
bottom SCC, if we split SCCs apart the original one gets invalidated
once when its shape changes and is not processed farther so its
analyses will be correct. It is the bottom SCC which continues being
processed and needs to have the "normal" invalidation done based on
the preserved analyses set.
All of this is mostly background and context for the changes here.
Many thanks to all the reviewers who helped here. Especially Sanjoy who
caught several interesting bugs in the graph algorithms, David, Sean,
and others who all helped with feedback.
Differential Revision: http://reviews.llvm.org/D21464
llvm-svn: 279618
2016-08-24 17:37:14 +08:00
|
|
|
SmallPtrSet<SCC *, 4> SCCSet;
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
for (SCC *C : SCCs) {
|
|
|
|
assert(C && "Can't have a null SCC!");
|
|
|
|
C->verify();
|
|
|
|
assert(&C->getOuterRefSCC() == this &&
|
|
|
|
"SCC doesn't think it is inside this RefSCC!");
|
[PM] Introduce basic update capabilities to the new PM's CGSCC pass
manager, including both plumbing and logic to handle function pass
updates.
There are three fundamentally tied changes here:
1) Plumbing *some* mechanism for updating the CGSCC pass manager as the
CG changes while passes are running.
2) Changing the CGSCC pass manager infrastructure to have support for
the underlying graph to mutate mid-pass run.
3) Actually updating the CG after function passes run.
I can separate them if necessary, but I think its really useful to have
them together as the needs of #3 drove #2, and that in turn drove #1.
The plumbing technique is to extend the "run" method signature with
extra arguments. We provide the call graph that intrinsically is
available as it is the basis of the pass manager's IR units, and an
output parameter that records the results of updating the call graph
during an SCC passes's run. Note that "...UpdateResult" isn't a *great*
name here... suggestions very welcome.
I tried a pretty frustrating number of different data structures and such
for the innards of the update result. Every other one failed for one
reason or another. Sometimes I just couldn't keep the layers of
complexity right in my head. The thing that really worked was to just
directly provide access to the underlying structures used to walk the
call graph so that their updates could be informed by the *particular*
nature of the change to the graph.
The technique for how to make the pass management infrastructure cope
with mutating graphs was also something that took a really, really large
number of iterations to get to a place where I was happy. Here are some
of the considerations that drove the design:
- We operate at three levels within the infrastructure: RefSCC, SCC, and
Node. In each case, we are working bottom up and so we want to
continue to iterate on the "lowest" node as the graph changes. Look at
how we iterate over nodes in an SCC running function passes as those
function passes mutate the CG. We continue to iterate on the "lowest"
SCC, which is the one that continues to contain the function just
processed.
- The call graph structure re-uses SCCs (and RefSCCs) during mutation
events for the *highest* entry in the resulting new subgraph, not the
lowest. This means that it is necessary to continually update the
current SCC or RefSCC as it shifts. This is really surprising and
subtle, and took a long time for me to work out. I actually tried
changing the call graph to provide the opposite behavior, and it
breaks *EVERYTHING*. The graph update algorithms are really deeply
tied to this particualr pattern.
- When SCCs or RefSCCs are split apart and refined and we continually
re-pin our processing to the bottom one in the subgraph, we need to
enqueue the newly formed SCCs and RefSCCs for subsequent processing.
Queuing them presents a few challenges:
1) SCCs and RefSCCs use wildly different iteration strategies at
a high level. We end up needing to converge them on worklist
approaches that can be extended in order to be able to handle the
mutations.
2) The order of the enqueuing need to remain bottom-up post-order so
that we don't get surprising order of visitation for things like
the inliner.
3) We need the worklists to have set semantics so we don't duplicate
things endlessly. We don't need a *persistent* set though because
we always keep processing the bottom node!!!! This is super, super
surprising to me and took a long time to convince myself this is
correct, but I'm pretty sure it is... Once we sink down to the
bottom node, we can't re-split out the same node in any way, and
the postorder of the current queue is fixed and unchanging.
4) We need to make sure that the "current" SCC or RefSCC actually gets
enqueued here such that we re-visit it because we continue
processing a *new*, *bottom* SCC/RefSCC.
- We also need the ability to *skip* SCCs and RefSCCs that get merged
into a larger component. We even need the ability to skip *nodes* from
an SCC that are no longer part of that SCC.
This led to the design you see in the patch which uses SetVector-based
worklists. The RefSCC worklist is always empty until an update occurs
and is just used to handle those RefSCCs created by updates as the
others don't even exist yet and are formed on-demand during the
bottom-up walk. The SCC worklist is pre-populated from the RefSCC, and
we push new SCCs onto it and blacklist existing SCCs on it to get the
desired processing.
We then *directly* update these when updating the call graph as I was
never able to find a satisfactory abstraction around the update
strategy.
Finally, we need to compute the updates for function passes. This is
mostly used as an initial customer of all the update mechanisms to drive
their design to at least cover some real set of use cases. There are
a bunch of interesting things that came out of doing this:
- It is really nice to do this a function at a time because that
function is likely hot in the cache. This means we want even the
function pass adaptor to support online updates to the call graph!
- To update the call graph after arbitrary function pass mutations is
quite hard. We have to build a fairly comprehensive set of
data structures and then process them. Fortunately, some of this code
is related to the code for building the cal graph in the first place.
Unfortunately, very little of it makes any sense to share because the
nature of what we're doing is so very different. I've factored out the
one part that made sense at least.
- We need to transfer these updates into the various structures for the
CGSCC pass manager. Once those were more sanely worked out, this
became relatively easier. But some of those needs necessitated changes
to the LazyCallGraph interface to make it significantly easier to
extract the changed SCCs from an update operation.
- We also need to update the CGSCC analysis manager as the shape of the
graph changes. When an SCC is merged away we need to clear analyses
associated with it from the analysis manager which we didn't have
support for in the analysis manager infrsatructure. New SCCs are easy!
But then we have the case that the original SCC has its shape changed
but remains in the call graph. There we need to *invalidate* the
analyses associated with it.
- We also need to invalidate analyses after we *finish* processing an
SCC. But the analyses we need to invalidate here are *only those for
the newly updated SCC*!!! Because we only continue processing the
bottom SCC, if we split SCCs apart the original one gets invalidated
once when its shape changes and is not processed farther so its
analyses will be correct. It is the bottom SCC which continues being
processed and needs to have the "normal" invalidation done based on
the preserved analyses set.
All of this is mostly background and context for the changes here.
Many thanks to all the reviewers who helped here. Especially Sanjoy who
caught several interesting bugs in the graph algorithms, David, Sean,
and others who all helped with feedback.
Differential Revision: http://reviews.llvm.org/D21464
llvm-svn: 279618
2016-08-24 17:37:14 +08:00
|
|
|
bool Inserted = SCCSet.insert(C).second;
|
|
|
|
assert(Inserted && "Found a duplicate SCC!");
|
2016-12-06 18:29:23 +08:00
|
|
|
auto IndexIt = SCCIndices.find(C);
|
|
|
|
assert(IndexIt != SCCIndices.end() &&
|
|
|
|
"Found an SCC that doesn't have an index!");
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// Check that our indices map correctly.
|
|
|
|
for (auto &SCCIndexPair : SCCIndices) {
|
|
|
|
SCC *C = SCCIndexPair.first;
|
|
|
|
int i = SCCIndexPair.second;
|
|
|
|
assert(C && "Can't have a null SCC in the indices!");
|
[PM] Introduce basic update capabilities to the new PM's CGSCC pass
manager, including both plumbing and logic to handle function pass
updates.
There are three fundamentally tied changes here:
1) Plumbing *some* mechanism for updating the CGSCC pass manager as the
CG changes while passes are running.
2) Changing the CGSCC pass manager infrastructure to have support for
the underlying graph to mutate mid-pass run.
3) Actually updating the CG after function passes run.
I can separate them if necessary, but I think its really useful to have
them together as the needs of #3 drove #2, and that in turn drove #1.
The plumbing technique is to extend the "run" method signature with
extra arguments. We provide the call graph that intrinsically is
available as it is the basis of the pass manager's IR units, and an
output parameter that records the results of updating the call graph
during an SCC passes's run. Note that "...UpdateResult" isn't a *great*
name here... suggestions very welcome.
I tried a pretty frustrating number of different data structures and such
for the innards of the update result. Every other one failed for one
reason or another. Sometimes I just couldn't keep the layers of
complexity right in my head. The thing that really worked was to just
directly provide access to the underlying structures used to walk the
call graph so that their updates could be informed by the *particular*
nature of the change to the graph.
The technique for how to make the pass management infrastructure cope
with mutating graphs was also something that took a really, really large
number of iterations to get to a place where I was happy. Here are some
of the considerations that drove the design:
- We operate at three levels within the infrastructure: RefSCC, SCC, and
Node. In each case, we are working bottom up and so we want to
continue to iterate on the "lowest" node as the graph changes. Look at
how we iterate over nodes in an SCC running function passes as those
function passes mutate the CG. We continue to iterate on the "lowest"
SCC, which is the one that continues to contain the function just
processed.
- The call graph structure re-uses SCCs (and RefSCCs) during mutation
events for the *highest* entry in the resulting new subgraph, not the
lowest. This means that it is necessary to continually update the
current SCC or RefSCC as it shifts. This is really surprising and
subtle, and took a long time for me to work out. I actually tried
changing the call graph to provide the opposite behavior, and it
breaks *EVERYTHING*. The graph update algorithms are really deeply
tied to this particualr pattern.
- When SCCs or RefSCCs are split apart and refined and we continually
re-pin our processing to the bottom one in the subgraph, we need to
enqueue the newly formed SCCs and RefSCCs for subsequent processing.
Queuing them presents a few challenges:
1) SCCs and RefSCCs use wildly different iteration strategies at
a high level. We end up needing to converge them on worklist
approaches that can be extended in order to be able to handle the
mutations.
2) The order of the enqueuing need to remain bottom-up post-order so
that we don't get surprising order of visitation for things like
the inliner.
3) We need the worklists to have set semantics so we don't duplicate
things endlessly. We don't need a *persistent* set though because
we always keep processing the bottom node!!!! This is super, super
surprising to me and took a long time to convince myself this is
correct, but I'm pretty sure it is... Once we sink down to the
bottom node, we can't re-split out the same node in any way, and
the postorder of the current queue is fixed and unchanging.
4) We need to make sure that the "current" SCC or RefSCC actually gets
enqueued here such that we re-visit it because we continue
processing a *new*, *bottom* SCC/RefSCC.
- We also need the ability to *skip* SCCs and RefSCCs that get merged
into a larger component. We even need the ability to skip *nodes* from
an SCC that are no longer part of that SCC.
This led to the design you see in the patch which uses SetVector-based
worklists. The RefSCC worklist is always empty until an update occurs
and is just used to handle those RefSCCs created by updates as the
others don't even exist yet and are formed on-demand during the
bottom-up walk. The SCC worklist is pre-populated from the RefSCC, and
we push new SCCs onto it and blacklist existing SCCs on it to get the
desired processing.
We then *directly* update these when updating the call graph as I was
never able to find a satisfactory abstraction around the update
strategy.
Finally, we need to compute the updates for function passes. This is
mostly used as an initial customer of all the update mechanisms to drive
their design to at least cover some real set of use cases. There are
a bunch of interesting things that came out of doing this:
- It is really nice to do this a function at a time because that
function is likely hot in the cache. This means we want even the
function pass adaptor to support online updates to the call graph!
- To update the call graph after arbitrary function pass mutations is
quite hard. We have to build a fairly comprehensive set of
data structures and then process them. Fortunately, some of this code
is related to the code for building the cal graph in the first place.
Unfortunately, very little of it makes any sense to share because the
nature of what we're doing is so very different. I've factored out the
one part that made sense at least.
- We need to transfer these updates into the various structures for the
CGSCC pass manager. Once those were more sanely worked out, this
became relatively easier. But some of those needs necessitated changes
to the LazyCallGraph interface to make it significantly easier to
extract the changed SCCs from an update operation.
- We also need to update the CGSCC analysis manager as the shape of the
graph changes. When an SCC is merged away we need to clear analyses
associated with it from the analysis manager which we didn't have
support for in the analysis manager infrsatructure. New SCCs are easy!
But then we have the case that the original SCC has its shape changed
but remains in the call graph. There we need to *invalidate* the
analyses associated with it.
- We also need to invalidate analyses after we *finish* processing an
SCC. But the analyses we need to invalidate here are *only those for
the newly updated SCC*!!! Because we only continue processing the
bottom SCC, if we split SCCs apart the original one gets invalidated
once when its shape changes and is not processed farther so its
analyses will be correct. It is the bottom SCC which continues being
processed and needs to have the "normal" invalidation done based on
the preserved analyses set.
All of this is mostly background and context for the changes here.
Many thanks to all the reviewers who helped here. Especially Sanjoy who
caught several interesting bugs in the graph algorithms, David, Sean,
and others who all helped with feedback.
Differential Revision: http://reviews.llvm.org/D21464
llvm-svn: 279618
2016-08-24 17:37:14 +08:00
|
|
|
assert(SCCSet.count(C) && "Found an index for an SCC not in the RefSCC!");
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
assert(SCCs[i] == C && "Index doesn't point to SCC!");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check that the SCCs are in fact in post-order.
|
|
|
|
for (int i = 0, Size = SCCs.size(); i < Size; ++i) {
|
|
|
|
SCC &SourceSCC = *SCCs[i];
|
|
|
|
for (Node &N : SourceSCC)
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
for (Edge &E : *N) {
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
if (!E.isCall())
|
|
|
|
continue;
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
SCC &TargetSCC = *G->lookupSCC(E.getNode());
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
if (&TargetSCC.getOuterRefSCC() == this) {
|
|
|
|
assert(SCCIndices.find(&TargetSCC)->second <= i &&
|
|
|
|
"Edge between SCCs violates post-order relationship.");
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
assert(TargetSCC.getOuterRefSCC().Parents.count(this) &&
|
|
|
|
"Edge to a RefSCC missing us in its parent set.");
|
|
|
|
}
|
|
|
|
}
|
2016-12-07 09:42:40 +08:00
|
|
|
|
|
|
|
// Check that our parents are actually parents.
|
|
|
|
for (RefSCC *ParentRC : Parents) {
|
|
|
|
assert(ParentRC != this && "Cannot be our own parent!");
|
|
|
|
auto HasConnectingEdge = [&] {
|
|
|
|
for (SCC &C : *ParentRC)
|
|
|
|
for (Node &N : C)
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
for (Edge &E : *N)
|
|
|
|
if (G->lookupRefSCC(E.getNode()) == this)
|
2016-12-07 09:42:40 +08:00
|
|
|
return true;
|
|
|
|
return false;
|
|
|
|
};
|
|
|
|
assert(HasConnectingEdge() && "No edge connects the parent to us!");
|
|
|
|
}
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
bool LazyCallGraph::RefSCC::isDescendantOf(const RefSCC &C) const {
|
2014-05-01 20:12:42 +08:00
|
|
|
// Walk up the parents of this SCC and verify that we eventually find C.
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
SmallVector<const RefSCC *, 4> AncestorWorklist;
|
2014-05-01 20:12:42 +08:00
|
|
|
AncestorWorklist.push_back(this);
|
|
|
|
do {
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
const RefSCC *AncestorC = AncestorWorklist.pop_back_val();
|
2014-05-01 20:12:42 +08:00
|
|
|
if (AncestorC->isChildOf(C))
|
|
|
|
return true;
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
for (const RefSCC *ParentC : AncestorC->Parents)
|
2014-05-01 20:12:42 +08:00
|
|
|
AncestorWorklist.push_back(ParentC);
|
|
|
|
} while (!AncestorWorklist.empty());
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2016-09-04 16:34:24 +08:00
|
|
|
/// Generic helper that updates a postorder sequence of SCCs for a potentially
|
|
|
|
/// cycle-introducing edge insertion.
|
|
|
|
///
|
|
|
|
/// A postorder sequence of SCCs of a directed graph has one fundamental
|
|
|
|
/// property: all deges in the DAG of SCCs point "up" the sequence. That is,
|
|
|
|
/// all edges in the SCC DAG point to prior SCCs in the sequence.
|
|
|
|
///
|
|
|
|
/// This routine both updates a postorder sequence and uses that sequence to
|
|
|
|
/// compute the set of SCCs connected into a cycle. It should only be called to
|
|
|
|
/// insert a "downward" edge which will require changing the sequence to
|
|
|
|
/// restore it to a postorder.
|
|
|
|
///
|
|
|
|
/// When inserting an edge from an earlier SCC to a later SCC in some postorder
|
|
|
|
/// sequence, all of the SCCs which may be impacted are in the closed range of
|
|
|
|
/// those two within the postorder sequence. The algorithm used here to restore
|
|
|
|
/// the state is as follows:
|
|
|
|
///
|
|
|
|
/// 1) Starting from the source SCC, construct a set of SCCs which reach the
|
|
|
|
/// source SCC consisting of just the source SCC. Then scan toward the
|
|
|
|
/// target SCC in postorder and for each SCC, if it has an edge to an SCC
|
|
|
|
/// in the set, add it to the set. Otherwise, the source SCC is not
|
|
|
|
/// a successor, move it in the postorder sequence to immediately before
|
|
|
|
/// the source SCC, shifting the source SCC and all SCCs in the set one
|
|
|
|
/// position toward the target SCC. Stop scanning after processing the
|
|
|
|
/// target SCC.
|
|
|
|
/// 2) If the source SCC is now past the target SCC in the postorder sequence,
|
|
|
|
/// and thus the new edge will flow toward the start, we are done.
|
|
|
|
/// 3) Otherwise, starting from the target SCC, walk all edges which reach an
|
|
|
|
/// SCC between the source and the target, and add them to the set of
|
|
|
|
/// connected SCCs, then recurse through them. Once a complete set of the
|
|
|
|
/// SCCs the target connects to is known, hoist the remaining SCCs between
|
|
|
|
/// the source and the target to be above the target. Note that there is no
|
|
|
|
/// need to process the source SCC, it is already known to connect.
|
|
|
|
/// 4) At this point, all of the SCCs in the closed range between the source
|
|
|
|
/// SCC and the target SCC in the postorder sequence are connected,
|
|
|
|
/// including the target SCC and the source SCC. Inserting the edge from
|
|
|
|
/// the source SCC to the target SCC will form a cycle out of precisely
|
|
|
|
/// these SCCs. Thus we can merge all of the SCCs in this closed range into
|
|
|
|
/// a single SCC.
|
|
|
|
///
|
|
|
|
/// This process has various important properties:
|
|
|
|
/// - Only mutates the SCCs when adding the edge actually changes the SCC
|
|
|
|
/// structure.
|
|
|
|
/// - Never mutates SCCs which are unaffected by the change.
|
|
|
|
/// - Updates the postorder sequence to correctly satisfy the postorder
|
|
|
|
/// constraint after the edge is inserted.
|
|
|
|
/// - Only reorders SCCs in the closed postorder sequence from the source to
|
|
|
|
/// the target, so easy to bound how much has changed even in the ordering.
|
|
|
|
/// - Big-O is the number of edges in the closed postorder range of SCCs from
|
|
|
|
/// source to target.
|
|
|
|
///
|
|
|
|
/// This helper routine, in addition to updating the postorder sequence itself
|
|
|
|
/// will also update a map from SCCs to indices within that sequecne.
|
|
|
|
///
|
|
|
|
/// The sequence and the map must operate on pointers to the SCC type.
|
|
|
|
///
|
|
|
|
/// Two callbacks must be provided. The first computes the subset of SCCs in
|
|
|
|
/// the postorder closed range from the source to the target which connect to
|
|
|
|
/// the source SCC via some (transitive) set of edges. The second computes the
|
|
|
|
/// subset of the same range which the target SCC connects to via some
|
|
|
|
/// (transitive) set of edges. Both callbacks should populate the set argument
|
|
|
|
/// provided.
|
|
|
|
template <typename SCCT, typename PostorderSequenceT, typename SCCIndexMapT,
|
|
|
|
typename ComputeSourceConnectedSetCallableT,
|
|
|
|
typename ComputeTargetConnectedSetCallableT>
|
|
|
|
static iterator_range<typename PostorderSequenceT::iterator>
|
|
|
|
updatePostorderSequenceForEdgeInsertion(
|
|
|
|
SCCT &SourceSCC, SCCT &TargetSCC, PostorderSequenceT &SCCs,
|
|
|
|
SCCIndexMapT &SCCIndices,
|
|
|
|
ComputeSourceConnectedSetCallableT ComputeSourceConnectedSet,
|
|
|
|
ComputeTargetConnectedSetCallableT ComputeTargetConnectedSet) {
|
|
|
|
int SourceIdx = SCCIndices[&SourceSCC];
|
|
|
|
int TargetIdx = SCCIndices[&TargetSCC];
|
|
|
|
assert(SourceIdx < TargetIdx && "Cannot have equal indices here!");
|
|
|
|
|
|
|
|
SmallPtrSet<SCCT *, 4> ConnectedSet;
|
|
|
|
|
|
|
|
// Compute the SCCs which (transitively) reach the source.
|
|
|
|
ComputeSourceConnectedSet(ConnectedSet);
|
|
|
|
|
|
|
|
// Partition the SCCs in this part of the port-order sequence so only SCCs
|
|
|
|
// connecting to the source remain between it and the target. This is
|
|
|
|
// a benign partition as it preserves postorder.
|
|
|
|
auto SourceI = std::stable_partition(
|
|
|
|
SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx + 1,
|
|
|
|
[&ConnectedSet](SCCT *C) { return !ConnectedSet.count(C); });
|
|
|
|
for (int i = SourceIdx, e = TargetIdx + 1; i < e; ++i)
|
|
|
|
SCCIndices.find(SCCs[i])->second = i;
|
|
|
|
|
|
|
|
// If the target doesn't connect to the source, then we've corrected the
|
|
|
|
// post-order and there are no cycles formed.
|
|
|
|
if (!ConnectedSet.count(&TargetSCC)) {
|
|
|
|
assert(SourceI > (SCCs.begin() + SourceIdx) &&
|
|
|
|
"Must have moved the source to fix the post-order.");
|
|
|
|
assert(*std::prev(SourceI) == &TargetSCC &&
|
|
|
|
"Last SCC to move should have bene the target.");
|
|
|
|
|
|
|
|
// Return an empty range at the target SCC indicating there is nothing to
|
|
|
|
// merge.
|
|
|
|
return make_range(std::prev(SourceI), std::prev(SourceI));
|
|
|
|
}
|
|
|
|
|
|
|
|
assert(SCCs[TargetIdx] == &TargetSCC &&
|
|
|
|
"Should not have moved target if connected!");
|
|
|
|
SourceIdx = SourceI - SCCs.begin();
|
|
|
|
assert(SCCs[SourceIdx] == &SourceSCC &&
|
|
|
|
"Bad updated index computation for the source SCC!");
|
|
|
|
|
|
|
|
|
|
|
|
// See whether there are any remaining intervening SCCs between the source
|
|
|
|
// and target. If so we need to make sure they all are reachable form the
|
|
|
|
// target.
|
|
|
|
if (SourceIdx + 1 < TargetIdx) {
|
|
|
|
ConnectedSet.clear();
|
|
|
|
ComputeTargetConnectedSet(ConnectedSet);
|
|
|
|
|
|
|
|
// Partition SCCs so that only SCCs reached from the target remain between
|
|
|
|
// the source and the target. This preserves postorder.
|
|
|
|
auto TargetI = std::stable_partition(
|
|
|
|
SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1,
|
|
|
|
[&ConnectedSet](SCCT *C) { return ConnectedSet.count(C); });
|
|
|
|
for (int i = SourceIdx + 1, e = TargetIdx + 1; i < e; ++i)
|
|
|
|
SCCIndices.find(SCCs[i])->second = i;
|
|
|
|
TargetIdx = std::prev(TargetI) - SCCs.begin();
|
|
|
|
assert(SCCs[TargetIdx] == &TargetSCC &&
|
|
|
|
"Should always end with the target!");
|
|
|
|
}
|
|
|
|
|
|
|
|
// At this point, we know that connecting source to target forms a cycle
|
|
|
|
// because target connects back to source, and we know that all of the SCCs
|
|
|
|
// between the source and target in the postorder sequence participate in that
|
|
|
|
// cycle.
|
|
|
|
return make_range(SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx);
|
|
|
|
}
|
|
|
|
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
SmallVector<LazyCallGraph::SCC *, 1>
|
|
|
|
LazyCallGraph::RefSCC::switchInternalEdgeToCall(Node &SourceN, Node &TargetN) {
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!");
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
SmallVector<SCC *, 1> DeletedSCCs;
|
|
|
|
|
2016-09-04 16:34:31 +08:00
|
|
|
#ifndef NDEBUG
|
|
|
|
// In a debug build, verify the RefSCC is valid to start with and when this
|
|
|
|
// routine finishes.
|
|
|
|
verify();
|
|
|
|
auto VerifyOnExit = make_scope_exit([&]() { verify(); });
|
|
|
|
#endif
|
|
|
|
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
SCC &SourceSCC = *G->lookupSCC(SourceN);
|
|
|
|
SCC &TargetSCC = *G->lookupSCC(TargetN);
|
|
|
|
|
|
|
|
// If the two nodes are already part of the same SCC, we're also done as
|
|
|
|
// we've just added more connectivity.
|
|
|
|
if (&SourceSCC == &TargetSCC) {
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
SourceN->setEdgeKind(TargetN, Edge::Call);
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
return DeletedSCCs;
|
|
|
|
}
|
2014-04-30 18:48:36 +08:00
|
|
|
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
// At this point we leverage the postorder list of SCCs to detect when the
|
|
|
|
// insertion of an edge changes the SCC structure in any way.
|
|
|
|
//
|
|
|
|
// First and foremost, we can eliminate the need for any changes when the
|
|
|
|
// edge is toward the beginning of the postorder sequence because all edges
|
|
|
|
// flow in that direction already. Thus adding a new one cannot form a cycle.
|
|
|
|
int SourceIdx = SCCIndices[&SourceSCC];
|
|
|
|
int TargetIdx = SCCIndices[&TargetSCC];
|
|
|
|
if (TargetIdx < SourceIdx) {
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
SourceN->setEdgeKind(TargetN, Edge::Call);
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
return DeletedSCCs;
|
|
|
|
}
|
2014-04-30 18:48:36 +08:00
|
|
|
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
// Compute the SCCs which (transitively) reach the source.
|
2016-09-04 16:34:24 +08:00
|
|
|
auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
#ifndef NDEBUG
|
2016-09-04 16:34:24 +08:00
|
|
|
// Check that the RefSCC is still valid before computing this as the
|
|
|
|
// results will be nonsensical of we've broken its invariants.
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
verify();
|
|
|
|
#endif
|
2016-09-04 16:34:24 +08:00
|
|
|
ConnectedSet.insert(&SourceSCC);
|
|
|
|
auto IsConnected = [&](SCC &C) {
|
|
|
|
for (Node &N : C)
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
for (Edge &E : N->calls())
|
|
|
|
if (ConnectedSet.count(G->lookupSCC(E.getNode())))
|
2016-09-04 16:34:24 +08:00
|
|
|
return true;
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
|
2016-09-04 16:34:24 +08:00
|
|
|
return false;
|
|
|
|
};
|
|
|
|
|
|
|
|
for (SCC *C :
|
|
|
|
make_range(SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1))
|
|
|
|
if (IsConnected(*C))
|
|
|
|
ConnectedSet.insert(C);
|
|
|
|
};
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
|
2016-09-04 16:34:24 +08:00
|
|
|
// Use a normal worklist to find which SCCs the target connects to. We still
|
|
|
|
// bound the search based on the range in the postorder list we care about,
|
|
|
|
// but because this is forward connectivity we just "recurse" through the
|
|
|
|
// edges.
|
|
|
|
auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
#ifndef NDEBUG
|
2016-09-04 16:34:24 +08:00
|
|
|
// Check that the RefSCC is still valid before computing this as the
|
|
|
|
// results will be nonsensical of we've broken its invariants.
|
|
|
|
verify();
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
#endif
|
|
|
|
ConnectedSet.insert(&TargetSCC);
|
|
|
|
SmallVector<SCC *, 4> Worklist;
|
|
|
|
Worklist.push_back(&TargetSCC);
|
|
|
|
do {
|
|
|
|
SCC &C = *Worklist.pop_back_val();
|
|
|
|
for (Node &N : C)
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
for (Edge &E : *N) {
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
if (!E.isCall())
|
|
|
|
continue;
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
SCC &EdgeC = *G->lookupSCC(E.getNode());
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
if (&EdgeC.getOuterRefSCC() != this)
|
|
|
|
// Not in this RefSCC...
|
|
|
|
continue;
|
|
|
|
if (SCCIndices.find(&EdgeC)->second <= SourceIdx)
|
|
|
|
// Not in the postorder sequence between source and target.
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (ConnectedSet.insert(&EdgeC).second)
|
|
|
|
Worklist.push_back(&EdgeC);
|
|
|
|
}
|
|
|
|
} while (!Worklist.empty());
|
2016-09-04 16:34:24 +08:00
|
|
|
};
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
|
2016-09-04 16:34:24 +08:00
|
|
|
// Use a generic helper to update the postorder sequence of SCCs and return
|
|
|
|
// a range of any SCCs connected into a cycle by inserting this edge. This
|
|
|
|
// routine will also take care of updating the indices into the postorder
|
|
|
|
// sequence.
|
|
|
|
auto MergeRange = updatePostorderSequenceForEdgeInsertion(
|
|
|
|
SourceSCC, TargetSCC, SCCs, SCCIndices, ComputeSourceConnectedSet,
|
|
|
|
ComputeTargetConnectedSet);
|
|
|
|
|
|
|
|
// If the merge range is empty, then adding the edge didn't actually form any
|
|
|
|
// new cycles. We're done.
|
|
|
|
if (MergeRange.begin() == MergeRange.end()) {
|
|
|
|
// Now that the SCC structure is finalized, flip the kind to call.
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
SourceN->setEdgeKind(TargetN, Edge::Call);
|
2016-09-04 16:34:24 +08:00
|
|
|
return DeletedSCCs;
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
}
|
|
|
|
|
2016-09-04 16:34:24 +08:00
|
|
|
#ifndef NDEBUG
|
|
|
|
// Before merging, check that the RefSCC remains valid after all the
|
|
|
|
// postorder updates.
|
|
|
|
verify();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Otherwise we need to merge all of the SCCs in the cycle into a single
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
// result SCC.
|
|
|
|
//
|
|
|
|
// NB: We merge into the target because all of these functions were already
|
|
|
|
// reachable from the target, meaning any SCC-wide properties deduced about it
|
|
|
|
// other than the set of functions within it will not have changed.
|
|
|
|
for (SCC *C : MergeRange) {
|
|
|
|
assert(C != &TargetSCC &&
|
|
|
|
"We merge *into* the target and shouldn't process it here!");
|
|
|
|
SCCIndices.erase(C);
|
|
|
|
TargetSCC.Nodes.append(C->Nodes.begin(), C->Nodes.end());
|
|
|
|
for (Node *N : C->Nodes)
|
|
|
|
G->SCCMap[N] = &TargetSCC;
|
|
|
|
C->clear();
|
|
|
|
DeletedSCCs.push_back(C);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Erase the merged SCCs from the list and update the indices of the
|
|
|
|
// remaining SCCs.
|
|
|
|
int IndexOffset = MergeRange.end() - MergeRange.begin();
|
|
|
|
auto EraseEnd = SCCs.erase(MergeRange.begin(), MergeRange.end());
|
|
|
|
for (SCC *C : make_range(EraseEnd, SCCs.end()))
|
|
|
|
SCCIndices[C] -= IndexOffset;
|
|
|
|
|
|
|
|
// Now that the SCC structure is finalized, flip the kind to call.
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
SourceN->setEdgeKind(TargetN, Edge::Call);
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
|
2016-09-04 16:34:31 +08:00
|
|
|
// And we're done!
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
return DeletedSCCs;
|
2014-04-30 18:48:36 +08:00
|
|
|
}
|
|
|
|
|
2016-12-28 18:34:50 +08:00
|
|
|
void LazyCallGraph::RefSCC::switchTrivialInternalEdgeToRef(Node &SourceN,
|
|
|
|
Node &TargetN) {
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
|
2016-12-28 18:34:50 +08:00
|
|
|
|
|
|
|
#ifndef NDEBUG
|
|
|
|
// In a debug build, verify the RefSCC is valid to start with and when this
|
|
|
|
// routine finishes.
|
|
|
|
verify();
|
|
|
|
auto VerifyOnExit = make_scope_exit([&]() { verify(); });
|
|
|
|
#endif
|
|
|
|
|
|
|
|
assert(G->lookupRefSCC(SourceN) == this &&
|
|
|
|
"Source must be in this RefSCC.");
|
|
|
|
assert(G->lookupRefSCC(TargetN) == this &&
|
|
|
|
"Target must be in this RefSCC.");
|
|
|
|
assert(G->lookupSCC(SourceN) != G->lookupSCC(TargetN) &&
|
|
|
|
"Source and Target must be in separate SCCs for this to be trivial!");
|
|
|
|
|
|
|
|
// Set the edge kind.
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
SourceN->setEdgeKind(TargetN, Edge::Ref);
|
2016-12-28 18:34:50 +08:00
|
|
|
}
|
|
|
|
|
[PM] Introduce basic update capabilities to the new PM's CGSCC pass
manager, including both plumbing and logic to handle function pass
updates.
There are three fundamentally tied changes here:
1) Plumbing *some* mechanism for updating the CGSCC pass manager as the
CG changes while passes are running.
2) Changing the CGSCC pass manager infrastructure to have support for
the underlying graph to mutate mid-pass run.
3) Actually updating the CG after function passes run.
I can separate them if necessary, but I think its really useful to have
them together as the needs of #3 drove #2, and that in turn drove #1.
The plumbing technique is to extend the "run" method signature with
extra arguments. We provide the call graph that intrinsically is
available as it is the basis of the pass manager's IR units, and an
output parameter that records the results of updating the call graph
during an SCC passes's run. Note that "...UpdateResult" isn't a *great*
name here... suggestions very welcome.
I tried a pretty frustrating number of different data structures and such
for the innards of the update result. Every other one failed for one
reason or another. Sometimes I just couldn't keep the layers of
complexity right in my head. The thing that really worked was to just
directly provide access to the underlying structures used to walk the
call graph so that their updates could be informed by the *particular*
nature of the change to the graph.
The technique for how to make the pass management infrastructure cope
with mutating graphs was also something that took a really, really large
number of iterations to get to a place where I was happy. Here are some
of the considerations that drove the design:
- We operate at three levels within the infrastructure: RefSCC, SCC, and
Node. In each case, we are working bottom up and so we want to
continue to iterate on the "lowest" node as the graph changes. Look at
how we iterate over nodes in an SCC running function passes as those
function passes mutate the CG. We continue to iterate on the "lowest"
SCC, which is the one that continues to contain the function just
processed.
- The call graph structure re-uses SCCs (and RefSCCs) during mutation
events for the *highest* entry in the resulting new subgraph, not the
lowest. This means that it is necessary to continually update the
current SCC or RefSCC as it shifts. This is really surprising and
subtle, and took a long time for me to work out. I actually tried
changing the call graph to provide the opposite behavior, and it
breaks *EVERYTHING*. The graph update algorithms are really deeply
tied to this particualr pattern.
- When SCCs or RefSCCs are split apart and refined and we continually
re-pin our processing to the bottom one in the subgraph, we need to
enqueue the newly formed SCCs and RefSCCs for subsequent processing.
Queuing them presents a few challenges:
1) SCCs and RefSCCs use wildly different iteration strategies at
a high level. We end up needing to converge them on worklist
approaches that can be extended in order to be able to handle the
mutations.
2) The order of the enqueuing need to remain bottom-up post-order so
that we don't get surprising order of visitation for things like
the inliner.
3) We need the worklists to have set semantics so we don't duplicate
things endlessly. We don't need a *persistent* set though because
we always keep processing the bottom node!!!! This is super, super
surprising to me and took a long time to convince myself this is
correct, but I'm pretty sure it is... Once we sink down to the
bottom node, we can't re-split out the same node in any way, and
the postorder of the current queue is fixed and unchanging.
4) We need to make sure that the "current" SCC or RefSCC actually gets
enqueued here such that we re-visit it because we continue
processing a *new*, *bottom* SCC/RefSCC.
- We also need the ability to *skip* SCCs and RefSCCs that get merged
into a larger component. We even need the ability to skip *nodes* from
an SCC that are no longer part of that SCC.
This led to the design you see in the patch which uses SetVector-based
worklists. The RefSCC worklist is always empty until an update occurs
and is just used to handle those RefSCCs created by updates as the
others don't even exist yet and are formed on-demand during the
bottom-up walk. The SCC worklist is pre-populated from the RefSCC, and
we push new SCCs onto it and blacklist existing SCCs on it to get the
desired processing.
We then *directly* update these when updating the call graph as I was
never able to find a satisfactory abstraction around the update
strategy.
Finally, we need to compute the updates for function passes. This is
mostly used as an initial customer of all the update mechanisms to drive
their design to at least cover some real set of use cases. There are
a bunch of interesting things that came out of doing this:
- It is really nice to do this a function at a time because that
function is likely hot in the cache. This means we want even the
function pass adaptor to support online updates to the call graph!
- To update the call graph after arbitrary function pass mutations is
quite hard. We have to build a fairly comprehensive set of
data structures and then process them. Fortunately, some of this code
is related to the code for building the cal graph in the first place.
Unfortunately, very little of it makes any sense to share because the
nature of what we're doing is so very different. I've factored out the
one part that made sense at least.
- We need to transfer these updates into the various structures for the
CGSCC pass manager. Once those were more sanely worked out, this
became relatively easier. But some of those needs necessitated changes
to the LazyCallGraph interface to make it significantly easier to
extract the changed SCCs from an update operation.
- We also need to update the CGSCC analysis manager as the shape of the
graph changes. When an SCC is merged away we need to clear analyses
associated with it from the analysis manager which we didn't have
support for in the analysis manager infrsatructure. New SCCs are easy!
But then we have the case that the original SCC has its shape changed
but remains in the call graph. There we need to *invalidate* the
analyses associated with it.
- We also need to invalidate analyses after we *finish* processing an
SCC. But the analyses we need to invalidate here are *only those for
the newly updated SCC*!!! Because we only continue processing the
bottom SCC, if we split SCCs apart the original one gets invalidated
once when its shape changes and is not processed farther so its
analyses will be correct. It is the bottom SCC which continues being
processed and needs to have the "normal" invalidation done based on
the preserved analyses set.
All of this is mostly background and context for the changes here.
Many thanks to all the reviewers who helped here. Especially Sanjoy who
caught several interesting bugs in the graph algorithms, David, Sean,
and others who all helped with feedback.
Differential Revision: http://reviews.llvm.org/D21464
llvm-svn: 279618
2016-08-24 17:37:14 +08:00
|
|
|
iterator_range<LazyCallGraph::RefSCC::iterator>
|
|
|
|
LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node &SourceN, Node &TargetN) {
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
|
2016-09-04 16:34:31 +08:00
|
|
|
#ifndef NDEBUG
|
|
|
|
// In a debug build, verify the RefSCC is valid to start with and when this
|
|
|
|
// routine finishes.
|
|
|
|
verify();
|
|
|
|
auto VerifyOnExit = make_scope_exit([&]() { verify(); });
|
|
|
|
#endif
|
|
|
|
|
2016-12-28 18:34:50 +08:00
|
|
|
assert(G->lookupRefSCC(SourceN) == this &&
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
"Source must be in this RefSCC.");
|
2016-12-28 18:34:50 +08:00
|
|
|
assert(G->lookupRefSCC(TargetN) == this &&
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
"Target must be in this RefSCC.");
|
|
|
|
|
2016-12-28 18:34:50 +08:00
|
|
|
SCC &TargetSCC = *G->lookupSCC(TargetN);
|
|
|
|
assert(G->lookupSCC(SourceN) == &TargetSCC && "Source and Target must be in "
|
|
|
|
"the same SCC to require the "
|
|
|
|
"full CG update.");
|
|
|
|
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
// Set the edge kind.
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
SourceN->setEdgeKind(TargetN, Edge::Ref);
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
|
|
|
|
// Otherwise we are removing a call edge from a single SCC. This may break
|
|
|
|
// the cycle. In order to compute the new set of SCCs, we need to do a small
|
|
|
|
// DFS over the nodes within the SCC to form any sub-cycles that remain as
|
|
|
|
// distinct SCCs and compute a postorder over the resulting SCCs.
|
|
|
|
//
|
|
|
|
// However, we specially handle the target node. The target node is known to
|
|
|
|
// reach all other nodes in the original SCC by definition. This means that
|
|
|
|
// we want the old SCC to be replaced with an SCC contaning that node as it
|
|
|
|
// will be the root of whatever SCC DAG results from the DFS. Assumptions
|
|
|
|
// about an SCC such as the set of functions called will continue to hold,
|
|
|
|
// etc.
|
|
|
|
|
|
|
|
SCC &OldSCC = TargetSCC;
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
SmallVector<std::pair<Node *, EdgeSequence::call_iterator>, 16> DFSStack;
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
SmallVector<Node *, 16> PendingSCCStack;
|
|
|
|
SmallVector<SCC *, 4> NewSCCs;
|
|
|
|
|
|
|
|
// Prepare the nodes for a fresh DFS.
|
|
|
|
SmallVector<Node *, 16> Worklist;
|
|
|
|
Worklist.swap(OldSCC.Nodes);
|
|
|
|
for (Node *N : Worklist) {
|
|
|
|
N->DFSNumber = N->LowLink = 0;
|
|
|
|
G->SCCMap.erase(N);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Force the target node to be in the old SCC. This also enables us to take
|
|
|
|
// a very significant short-cut in the standard Tarjan walk to re-form SCCs
|
|
|
|
// below: whenever we build an edge that reaches the target node, we know
|
|
|
|
// that the target node eventually connects back to all other nodes in our
|
|
|
|
// walk. As a consequence, we can detect and handle participants in that
|
|
|
|
// cycle without walking all the edges that form this connection, and instead
|
|
|
|
// by relying on the fundamental guarantee coming into this operation (all
|
|
|
|
// nodes are reachable from the target due to previously forming an SCC).
|
|
|
|
TargetN.DFSNumber = TargetN.LowLink = -1;
|
|
|
|
OldSCC.Nodes.push_back(&TargetN);
|
|
|
|
G->SCCMap[&TargetN] = &OldSCC;
|
|
|
|
|
|
|
|
// Scan down the stack and DFS across the call edges.
|
|
|
|
for (Node *RootN : Worklist) {
|
|
|
|
assert(DFSStack.empty() &&
|
|
|
|
"Cannot begin a new root with a non-empty DFS stack!");
|
|
|
|
assert(PendingSCCStack.empty() &&
|
|
|
|
"Cannot begin a new root with pending nodes for an SCC!");
|
|
|
|
|
|
|
|
// Skip any nodes we've already reached in the DFS.
|
|
|
|
if (RootN->DFSNumber != 0) {
|
|
|
|
assert(RootN->DFSNumber == -1 &&
|
|
|
|
"Shouldn't have any mid-DFS root nodes!");
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
RootN->DFSNumber = RootN->LowLink = 1;
|
|
|
|
int NextDFSNumber = 2;
|
|
|
|
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
DFSStack.push_back({RootN, (*RootN)->call_begin()});
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
do {
|
|
|
|
Node *N;
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
EdgeSequence::call_iterator I;
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
std::tie(N, I) = DFSStack.pop_back_val();
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
auto E = (*N)->call_end();
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
while (I != E) {
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
Node &ChildN = I->getNode();
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
if (ChildN.DFSNumber == 0) {
|
|
|
|
// We haven't yet visited this child, so descend, pushing the current
|
|
|
|
// node onto the stack.
|
|
|
|
DFSStack.push_back({N, I});
|
|
|
|
|
|
|
|
assert(!G->SCCMap.count(&ChildN) &&
|
|
|
|
"Found a node with 0 DFS number but already in an SCC!");
|
|
|
|
ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
|
|
|
|
N = &ChildN;
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
I = (*N)->call_begin();
|
|
|
|
E = (*N)->call_end();
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check for the child already being part of some component.
|
|
|
|
if (ChildN.DFSNumber == -1) {
|
|
|
|
if (G->lookupSCC(ChildN) == &OldSCC) {
|
|
|
|
// If the child is part of the old SCC, we know that it can reach
|
|
|
|
// every other node, so we have formed a cycle. Pull the entire DFS
|
|
|
|
// and pending stacks into it. See the comment above about setting
|
|
|
|
// up the old SCC for why we do this.
|
|
|
|
int OldSize = OldSCC.size();
|
|
|
|
OldSCC.Nodes.push_back(N);
|
|
|
|
OldSCC.Nodes.append(PendingSCCStack.begin(), PendingSCCStack.end());
|
|
|
|
PendingSCCStack.clear();
|
|
|
|
while (!DFSStack.empty())
|
|
|
|
OldSCC.Nodes.push_back(DFSStack.pop_back_val().first);
|
|
|
|
for (Node &N : make_range(OldSCC.begin() + OldSize, OldSCC.end())) {
|
|
|
|
N.DFSNumber = N.LowLink = -1;
|
|
|
|
G->SCCMap[&N] = &OldSCC;
|
|
|
|
}
|
|
|
|
N = nullptr;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
// If the child has already been added to some child component, it
|
|
|
|
// couldn't impact the low-link of this parent because it isn't
|
|
|
|
// connected, and thus its low-link isn't relevant so skip it.
|
|
|
|
++I;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Track the lowest linked child as the lowest link for this node.
|
|
|
|
assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
|
|
|
|
if (ChildN.LowLink < N->LowLink)
|
|
|
|
N->LowLink = ChildN.LowLink;
|
|
|
|
|
|
|
|
// Move to the next edge.
|
|
|
|
++I;
|
|
|
|
}
|
|
|
|
if (!N)
|
|
|
|
// Cleared the DFS early, start another round.
|
|
|
|
break;
|
|
|
|
|
|
|
|
// We've finished processing N and its descendents, put it on our pending
|
|
|
|
// SCC stack to eventually get merged into an SCC of nodes.
|
|
|
|
PendingSCCStack.push_back(N);
|
|
|
|
|
|
|
|
// If this node is linked to some lower entry, continue walking up the
|
|
|
|
// stack.
|
|
|
|
if (N->LowLink != N->DFSNumber)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
// Otherwise, we've completed an SCC. Append it to our post order list of
|
|
|
|
// SCCs.
|
|
|
|
int RootDFSNumber = N->DFSNumber;
|
|
|
|
// Find the range of the node stack by walking down until we pass the
|
|
|
|
// root DFS number.
|
|
|
|
auto SCCNodes = make_range(
|
|
|
|
PendingSCCStack.rbegin(),
|
2016-08-12 11:55:06 +08:00
|
|
|
find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
|
|
|
|
return N->DFSNumber < RootDFSNumber;
|
|
|
|
}));
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
|
|
|
|
// Form a new SCC out of these nodes and then clear them off our pending
|
|
|
|
// stack.
|
|
|
|
NewSCCs.push_back(G->createSCC(*this, SCCNodes));
|
|
|
|
for (Node &N : *NewSCCs.back()) {
|
|
|
|
N.DFSNumber = N.LowLink = -1;
|
|
|
|
G->SCCMap[&N] = NewSCCs.back();
|
|
|
|
}
|
|
|
|
PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
|
|
|
|
} while (!DFSStack.empty());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Insert the remaining SCCs before the old one. The old SCC can reach all
|
|
|
|
// other SCCs we form because it contains the target node of the removed edge
|
|
|
|
// of the old SCC. This means that we will have edges into all of the new
|
|
|
|
// SCCs, which means the old one must come last for postorder.
|
|
|
|
int OldIdx = SCCIndices[&OldSCC];
|
|
|
|
SCCs.insert(SCCs.begin() + OldIdx, NewSCCs.begin(), NewSCCs.end());
|
|
|
|
|
|
|
|
// Update the mapping from SCC* to index to use the new SCC*s, and remove the
|
|
|
|
// old SCC from the mapping.
|
|
|
|
for (int Idx = OldIdx, Size = SCCs.size(); Idx < Size; ++Idx)
|
|
|
|
SCCIndices[SCCs[Idx]] = Idx;
|
|
|
|
|
[PM] Introduce basic update capabilities to the new PM's CGSCC pass
manager, including both plumbing and logic to handle function pass
updates.
There are three fundamentally tied changes here:
1) Plumbing *some* mechanism for updating the CGSCC pass manager as the
CG changes while passes are running.
2) Changing the CGSCC pass manager infrastructure to have support for
the underlying graph to mutate mid-pass run.
3) Actually updating the CG after function passes run.
I can separate them if necessary, but I think its really useful to have
them together as the needs of #3 drove #2, and that in turn drove #1.
The plumbing technique is to extend the "run" method signature with
extra arguments. We provide the call graph that intrinsically is
available as it is the basis of the pass manager's IR units, and an
output parameter that records the results of updating the call graph
during an SCC passes's run. Note that "...UpdateResult" isn't a *great*
name here... suggestions very welcome.
I tried a pretty frustrating number of different data structures and such
for the innards of the update result. Every other one failed for one
reason or another. Sometimes I just couldn't keep the layers of
complexity right in my head. The thing that really worked was to just
directly provide access to the underlying structures used to walk the
call graph so that their updates could be informed by the *particular*
nature of the change to the graph.
The technique for how to make the pass management infrastructure cope
with mutating graphs was also something that took a really, really large
number of iterations to get to a place where I was happy. Here are some
of the considerations that drove the design:
- We operate at three levels within the infrastructure: RefSCC, SCC, and
Node. In each case, we are working bottom up and so we want to
continue to iterate on the "lowest" node as the graph changes. Look at
how we iterate over nodes in an SCC running function passes as those
function passes mutate the CG. We continue to iterate on the "lowest"
SCC, which is the one that continues to contain the function just
processed.
- The call graph structure re-uses SCCs (and RefSCCs) during mutation
events for the *highest* entry in the resulting new subgraph, not the
lowest. This means that it is necessary to continually update the
current SCC or RefSCC as it shifts. This is really surprising and
subtle, and took a long time for me to work out. I actually tried
changing the call graph to provide the opposite behavior, and it
breaks *EVERYTHING*. The graph update algorithms are really deeply
tied to this particualr pattern.
- When SCCs or RefSCCs are split apart and refined and we continually
re-pin our processing to the bottom one in the subgraph, we need to
enqueue the newly formed SCCs and RefSCCs for subsequent processing.
Queuing them presents a few challenges:
1) SCCs and RefSCCs use wildly different iteration strategies at
a high level. We end up needing to converge them on worklist
approaches that can be extended in order to be able to handle the
mutations.
2) The order of the enqueuing need to remain bottom-up post-order so
that we don't get surprising order of visitation for things like
the inliner.
3) We need the worklists to have set semantics so we don't duplicate
things endlessly. We don't need a *persistent* set though because
we always keep processing the bottom node!!!! This is super, super
surprising to me and took a long time to convince myself this is
correct, but I'm pretty sure it is... Once we sink down to the
bottom node, we can't re-split out the same node in any way, and
the postorder of the current queue is fixed and unchanging.
4) We need to make sure that the "current" SCC or RefSCC actually gets
enqueued here such that we re-visit it because we continue
processing a *new*, *bottom* SCC/RefSCC.
- We also need the ability to *skip* SCCs and RefSCCs that get merged
into a larger component. We even need the ability to skip *nodes* from
an SCC that are no longer part of that SCC.
This led to the design you see in the patch which uses SetVector-based
worklists. The RefSCC worklist is always empty until an update occurs
and is just used to handle those RefSCCs created by updates as the
others don't even exist yet and are formed on-demand during the
bottom-up walk. The SCC worklist is pre-populated from the RefSCC, and
we push new SCCs onto it and blacklist existing SCCs on it to get the
desired processing.
We then *directly* update these when updating the call graph as I was
never able to find a satisfactory abstraction around the update
strategy.
Finally, we need to compute the updates for function passes. This is
mostly used as an initial customer of all the update mechanisms to drive
their design to at least cover some real set of use cases. There are
a bunch of interesting things that came out of doing this:
- It is really nice to do this a function at a time because that
function is likely hot in the cache. This means we want even the
function pass adaptor to support online updates to the call graph!
- To update the call graph after arbitrary function pass mutations is
quite hard. We have to build a fairly comprehensive set of
data structures and then process them. Fortunately, some of this code
is related to the code for building the cal graph in the first place.
Unfortunately, very little of it makes any sense to share because the
nature of what we're doing is so very different. I've factored out the
one part that made sense at least.
- We need to transfer these updates into the various structures for the
CGSCC pass manager. Once those were more sanely worked out, this
became relatively easier. But some of those needs necessitated changes
to the LazyCallGraph interface to make it significantly easier to
extract the changed SCCs from an update operation.
- We also need to update the CGSCC analysis manager as the shape of the
graph changes. When an SCC is merged away we need to clear analyses
associated with it from the analysis manager which we didn't have
support for in the analysis manager infrsatructure. New SCCs are easy!
But then we have the case that the original SCC has its shape changed
but remains in the call graph. There we need to *invalidate* the
analyses associated with it.
- We also need to invalidate analyses after we *finish* processing an
SCC. But the analyses we need to invalidate here are *only those for
the newly updated SCC*!!! Because we only continue processing the
bottom SCC, if we split SCCs apart the original one gets invalidated
once when its shape changes and is not processed farther so its
analyses will be correct. It is the bottom SCC which continues being
processed and needs to have the "normal" invalidation done based on
the preserved analyses set.
All of this is mostly background and context for the changes here.
Many thanks to all the reviewers who helped here. Especially Sanjoy who
caught several interesting bugs in the graph algorithms, David, Sean,
and others who all helped with feedback.
Differential Revision: http://reviews.llvm.org/D21464
llvm-svn: 279618
2016-08-24 17:37:14 +08:00
|
|
|
return make_range(SCCs.begin() + OldIdx,
|
|
|
|
SCCs.begin() + OldIdx + NewSCCs.size());
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node &SourceN,
|
|
|
|
Node &TargetN) {
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!");
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
|
|
|
|
assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
|
|
|
|
assert(G->lookupRefSCC(TargetN) != this &&
|
|
|
|
"Target must not be in this RefSCC.");
|
2017-03-01 02:34:55 +08:00
|
|
|
#ifdef EXPENSIVE_CHECKS
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
|
|
|
|
"Target must be a descendant of the Source.");
|
2017-02-07 03:38:06 +08:00
|
|
|
#endif
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
|
|
|
|
// Edges between RefSCCs are the same regardless of call or ref, so we can
|
|
|
|
// just flip the edge here.
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
SourceN->setEdgeKind(TargetN, Edge::Call);
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
|
|
|
|
#ifndef NDEBUG
|
|
|
|
// Check that the RefSCC is still valid.
|
|
|
|
verify();
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node &SourceN,
|
|
|
|
Node &TargetN) {
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
|
|
|
|
assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
|
|
|
|
assert(G->lookupRefSCC(TargetN) != this &&
|
|
|
|
"Target must not be in this RefSCC.");
|
2017-03-01 02:34:55 +08:00
|
|
|
#ifdef EXPENSIVE_CHECKS
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
|
|
|
|
"Target must be a descendant of the Source.");
|
2017-02-07 03:38:06 +08:00
|
|
|
#endif
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
|
|
|
|
// Edges between RefSCCs are the same regardless of call or ref, so we can
|
|
|
|
// just flip the edge here.
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
SourceN->setEdgeKind(TargetN, Edge::Ref);
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
|
|
|
|
#ifndef NDEBUG
|
|
|
|
// Check that the RefSCC is still valid.
|
|
|
|
verify();
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
void LazyCallGraph::RefSCC::insertInternalRefEdge(Node &SourceN,
|
|
|
|
Node &TargetN) {
|
|
|
|
assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
|
|
|
|
assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
|
|
|
|
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
SourceN->insertEdgeInternal(TargetN, Edge::Ref);
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
|
|
|
|
#ifndef NDEBUG
|
|
|
|
// Check that the RefSCC is still valid.
|
|
|
|
verify();
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
void LazyCallGraph::RefSCC::insertOutgoingEdge(Node &SourceN, Node &TargetN,
|
|
|
|
Edge::Kind EK) {
|
2014-05-01 20:18:20 +08:00
|
|
|
// First insert it into the caller.
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
SourceN->insertEdgeInternal(TargetN, EK);
|
2014-05-01 20:18:20 +08:00
|
|
|
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
|
2014-05-01 20:18:20 +08:00
|
|
|
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
RefSCC &TargetC = *G->lookupRefSCC(TargetN);
|
|
|
|
assert(&TargetC != this && "Target must not be in this RefSCC.");
|
2017-03-01 02:34:55 +08:00
|
|
|
#ifdef EXPENSIVE_CHECKS
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
assert(TargetC.isDescendantOf(*this) &&
|
|
|
|
"Target must be a descendant of the Source.");
|
2017-02-07 03:38:06 +08:00
|
|
|
#endif
|
2014-05-01 20:18:20 +08:00
|
|
|
|
2015-12-28 09:54:20 +08:00
|
|
|
// The only change required is to add this SCC to the parent set of the
|
|
|
|
// callee.
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
TargetC.Parents.insert(this);
|
|
|
|
|
|
|
|
#ifndef NDEBUG
|
|
|
|
// Check that the RefSCC is still valid.
|
|
|
|
verify();
|
|
|
|
#endif
|
2014-05-01 20:18:20 +08:00
|
|
|
}
|
|
|
|
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
SmallVector<LazyCallGraph::RefSCC *, 1>
|
|
|
|
LazyCallGraph::RefSCC::insertIncomingRefEdge(Node &SourceN, Node &TargetN) {
|
2016-09-16 18:20:17 +08:00
|
|
|
assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
|
|
|
|
RefSCC &SourceC = *G->lookupRefSCC(SourceN);
|
|
|
|
assert(&SourceC != this && "Source must not be in this RefSCC.");
|
2017-03-01 02:34:55 +08:00
|
|
|
#ifdef EXPENSIVE_CHECKS
|
2016-09-16 18:20:17 +08:00
|
|
|
assert(SourceC.isDescendantOf(*this) &&
|
|
|
|
"Source must be a descendant of the Target.");
|
2017-02-07 03:38:06 +08:00
|
|
|
#endif
|
2016-09-16 18:20:17 +08:00
|
|
|
|
|
|
|
SmallVector<RefSCC *, 1> DeletedRefSCCs;
|
2014-05-04 17:38:32 +08:00
|
|
|
|
2016-09-04 16:34:31 +08:00
|
|
|
#ifndef NDEBUG
|
|
|
|
// In a debug build, verify the RefSCC is valid to start with and when this
|
|
|
|
// routine finishes.
|
|
|
|
verify();
|
|
|
|
auto VerifyOnExit = make_scope_exit([&]() { verify(); });
|
|
|
|
#endif
|
|
|
|
|
2016-09-16 18:20:17 +08:00
|
|
|
int SourceIdx = G->RefSCCIndices[&SourceC];
|
|
|
|
int TargetIdx = G->RefSCCIndices[this];
|
|
|
|
assert(SourceIdx < TargetIdx &&
|
|
|
|
"Postorder list doesn't see edge as incoming!");
|
|
|
|
|
|
|
|
// Compute the RefSCCs which (transitively) reach the source. We do this by
|
|
|
|
// working backwards from the source using the parent set in each RefSCC,
|
|
|
|
// skipping any RefSCCs that don't fall in the postorder range. This has the
|
|
|
|
// advantage of walking the sparser parent edge (in high fan-out graphs) but
|
|
|
|
// more importantly this removes examining all forward edges in all RefSCCs
|
|
|
|
// within the postorder range which aren't in fact connected. Only connected
|
|
|
|
// RefSCCs (and their edges) are visited here.
|
|
|
|
auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
|
|
|
|
Set.insert(&SourceC);
|
|
|
|
SmallVector<RefSCC *, 4> Worklist;
|
|
|
|
Worklist.push_back(&SourceC);
|
|
|
|
do {
|
|
|
|
RefSCC &RC = *Worklist.pop_back_val();
|
|
|
|
for (RefSCC &ParentRC : RC.parents()) {
|
|
|
|
// Skip any RefSCCs outside the range of source to target in the
|
|
|
|
// postorder sequence.
|
|
|
|
int ParentIdx = G->getRefSCCIndex(ParentRC);
|
|
|
|
assert(ParentIdx > SourceIdx && "Parent cannot precede source in postorder!");
|
|
|
|
if (ParentIdx > TargetIdx)
|
|
|
|
continue;
|
|
|
|
if (Set.insert(&ParentRC).second)
|
|
|
|
// First edge connecting to this parent, add it to our worklist.
|
|
|
|
Worklist.push_back(&ParentRC);
|
2014-05-04 17:38:32 +08:00
|
|
|
}
|
2016-09-16 18:20:17 +08:00
|
|
|
} while (!Worklist.empty());
|
|
|
|
};
|
2014-05-04 17:38:32 +08:00
|
|
|
|
2016-09-16 18:20:17 +08:00
|
|
|
// Use a normal worklist to find which SCCs the target connects to. We still
|
|
|
|
// bound the search based on the range in the postorder list we care about,
|
|
|
|
// but because this is forward connectivity we just "recurse" through the
|
|
|
|
// edges.
|
|
|
|
auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
|
|
|
|
Set.insert(this);
|
|
|
|
SmallVector<RefSCC *, 4> Worklist;
|
|
|
|
Worklist.push_back(this);
|
|
|
|
do {
|
|
|
|
RefSCC &RC = *Worklist.pop_back_val();
|
|
|
|
for (SCC &C : RC)
|
|
|
|
for (Node &N : C)
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
for (Edge &E : *N) {
|
|
|
|
RefSCC &EdgeRC = *G->lookupRefSCC(E.getNode());
|
2016-09-16 18:20:17 +08:00
|
|
|
if (G->getRefSCCIndex(EdgeRC) <= SourceIdx)
|
|
|
|
// Not in the postorder sequence between source and target.
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (Set.insert(&EdgeRC).second)
|
|
|
|
Worklist.push_back(&EdgeRC);
|
|
|
|
}
|
|
|
|
} while (!Worklist.empty());
|
|
|
|
};
|
2014-05-04 17:38:32 +08:00
|
|
|
|
2016-09-16 18:20:17 +08:00
|
|
|
// Use a generic helper to update the postorder sequence of RefSCCs and return
|
|
|
|
// a range of any RefSCCs connected into a cycle by inserting this edge. This
|
|
|
|
// routine will also take care of updating the indices into the postorder
|
|
|
|
// sequence.
|
|
|
|
iterator_range<SmallVectorImpl<RefSCC *>::iterator> MergeRange =
|
|
|
|
updatePostorderSequenceForEdgeInsertion(
|
|
|
|
SourceC, *this, G->PostOrderRefSCCs, G->RefSCCIndices,
|
|
|
|
ComputeSourceConnectedSet, ComputeTargetConnectedSet);
|
|
|
|
|
2016-12-07 09:42:40 +08:00
|
|
|
// Build a set so we can do fast tests for whether a RefSCC will end up as
|
|
|
|
// part of the merged RefSCC.
|
2016-09-16 18:20:17 +08:00
|
|
|
SmallPtrSet<RefSCC *, 16> MergeSet(MergeRange.begin(), MergeRange.end());
|
2014-05-04 17:38:32 +08:00
|
|
|
|
2016-12-07 09:42:40 +08:00
|
|
|
// This RefSCC will always be part of that set, so just insert it here.
|
|
|
|
MergeSet.insert(this);
|
|
|
|
|
2014-05-04 17:38:32 +08:00
|
|
|
// Now that we have identified all of the SCCs which need to be merged into
|
|
|
|
// a connected set with the inserted edge, merge all of them into this SCC.
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
SmallVector<SCC *, 16> MergedSCCs;
|
|
|
|
int SCCIndex = 0;
|
2016-09-16 18:20:17 +08:00
|
|
|
for (RefSCC *RC : MergeRange) {
|
|
|
|
assert(RC != this && "We're merging into the target RefSCC, so it "
|
|
|
|
"shouldn't be in the range.");
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
|
|
|
|
// Merge the parents which aren't part of the merge into the our parents.
|
2016-09-16 18:20:17 +08:00
|
|
|
for (RefSCC *ParentRC : RC->Parents)
|
|
|
|
if (!MergeSet.count(ParentRC))
|
|
|
|
Parents.insert(ParentRC);
|
|
|
|
RC->Parents.clear();
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
|
|
|
|
// Walk the inner SCCs to update their up-pointer and walk all the edges to
|
|
|
|
// update any parent sets.
|
|
|
|
// FIXME: We should try to find a way to avoid this (rather expensive) edge
|
|
|
|
// walk by updating the parent sets in some other manner.
|
2016-09-16 18:20:17 +08:00
|
|
|
for (SCC &InnerC : *RC) {
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
InnerC.OuterRefSCC = this;
|
|
|
|
SCCIndices[&InnerC] = SCCIndex++;
|
|
|
|
for (Node &N : InnerC) {
|
|
|
|
G->SCCMap[&N] = &InnerC;
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
for (Edge &E : *N) {
|
|
|
|
RefSCC &ChildRC = *G->lookupRefSCC(E.getNode());
|
2016-09-16 18:20:17 +08:00
|
|
|
if (MergeSet.count(&ChildRC))
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
continue;
|
2016-09-16 18:20:17 +08:00
|
|
|
ChildRC.Parents.erase(RC);
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
ChildRC.Parents.insert(this);
|
|
|
|
}
|
2014-05-04 17:38:32 +08:00
|
|
|
}
|
|
|
|
}
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
|
|
|
|
// Now merge in the SCCs. We can actually move here so try to reuse storage
|
|
|
|
// the first time through.
|
|
|
|
if (MergedSCCs.empty())
|
2016-09-16 18:20:17 +08:00
|
|
|
MergedSCCs = std::move(RC->SCCs);
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
else
|
2016-09-16 18:20:17 +08:00
|
|
|
MergedSCCs.append(RC->SCCs.begin(), RC->SCCs.end());
|
|
|
|
RC->SCCs.clear();
|
|
|
|
DeletedRefSCCs.push_back(RC);
|
2014-05-04 17:38:32 +08:00
|
|
|
}
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
|
2016-09-16 18:20:17 +08:00
|
|
|
// Append our original SCCs to the merged list and move it into place.
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
for (SCC &InnerC : *this)
|
|
|
|
SCCIndices[&InnerC] = SCCIndex++;
|
|
|
|
MergedSCCs.append(SCCs.begin(), SCCs.end());
|
|
|
|
SCCs = std::move(MergedSCCs);
|
|
|
|
|
2016-09-16 18:20:17 +08:00
|
|
|
// Remove the merged away RefSCCs from the post order sequence.
|
|
|
|
for (RefSCC *RC : MergeRange)
|
|
|
|
G->RefSCCIndices.erase(RC);
|
|
|
|
int IndexOffset = MergeRange.end() - MergeRange.begin();
|
|
|
|
auto EraseEnd =
|
|
|
|
G->PostOrderRefSCCs.erase(MergeRange.begin(), MergeRange.end());
|
|
|
|
for (RefSCC *RC : make_range(EraseEnd, G->PostOrderRefSCCs.end()))
|
|
|
|
G->RefSCCIndices[RC] -= IndexOffset;
|
|
|
|
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
// At this point we have a merged RefSCC with a post-order SCCs list, just
|
|
|
|
// connect the nodes to form the new edge.
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
SourceN->insertEdgeInternal(TargetN, Edge::Ref);
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
|
2014-05-04 17:38:32 +08:00
|
|
|
// We return the list of SCCs which were merged so that callers can
|
|
|
|
// invalidate any data they have associated with those SCCs. Note that these
|
|
|
|
// SCCs are no longer in an interesting state (they are totally empty) but
|
|
|
|
// the pointers will remain stable for the life of the graph itself.
|
2016-09-16 18:20:17 +08:00
|
|
|
return DeletedRefSCCs;
|
2014-05-04 17:38:32 +08:00
|
|
|
}
|
|
|
|
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
void LazyCallGraph::RefSCC::removeOutgoingEdge(Node &SourceN, Node &TargetN) {
|
|
|
|
assert(G->lookupRefSCC(SourceN) == this &&
|
|
|
|
"The source must be a member of this RefSCC.");
|
|
|
|
|
|
|
|
RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
|
|
|
|
assert(&TargetRC != this && "The target must not be a member of this RefSCC");
|
|
|
|
|
2016-08-12 06:21:41 +08:00
|
|
|
assert(!is_contained(G->LeafRefSCCs, this) &&
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
"Cannot have a leaf RefSCC source.");
|
|
|
|
|
2016-09-04 16:34:31 +08:00
|
|
|
#ifndef NDEBUG
|
|
|
|
// In a debug build, verify the RefSCC is valid to start with and when this
|
|
|
|
// routine finishes.
|
|
|
|
verify();
|
|
|
|
auto VerifyOnExit = make_scope_exit([&]() { verify(); });
|
|
|
|
#endif
|
|
|
|
|
2014-04-27 09:59:50 +08:00
|
|
|
// First remove it from the node.
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
bool Removed = SourceN->removeEdgeInternal(TargetN);
|
|
|
|
(void)Removed;
|
|
|
|
assert(Removed && "Target not in the edge set for this caller?");
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
|
|
|
|
bool HasOtherEdgeToChildRC = false;
|
|
|
|
bool HasOtherChildRC = false;
|
|
|
|
for (SCC *InnerC : SCCs) {
|
|
|
|
for (Node &N : *InnerC) {
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
for (Edge &E : *N) {
|
|
|
|
RefSCC &OtherChildRC = *G->lookupRefSCC(E.getNode());
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
if (&OtherChildRC == &TargetRC) {
|
|
|
|
HasOtherEdgeToChildRC = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (&OtherChildRC != this)
|
|
|
|
HasOtherChildRC = true;
|
2014-04-23 19:03:03 +08:00
|
|
|
}
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
if (HasOtherEdgeToChildRC)
|
|
|
|
break;
|
2014-04-23 19:03:03 +08:00
|
|
|
}
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
if (HasOtherEdgeToChildRC)
|
2014-04-23 19:03:03 +08:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
// Because the SCCs form a DAG, deleting such an edge cannot change the set
|
|
|
|
// of SCCs in the graph. However, it may cut an edge of the SCC DAG, making
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
// the source SCC no longer connected to the target SCC. If so, we need to
|
|
|
|
// update the target SCC's map of its parents.
|
|
|
|
if (!HasOtherEdgeToChildRC) {
|
|
|
|
bool Removed = TargetRC.Parents.erase(this);
|
2014-04-23 19:03:03 +08:00
|
|
|
(void)Removed;
|
|
|
|
assert(Removed &&
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
"Did not find the source SCC in the target SCC's parent list!");
|
2014-04-23 19:03:03 +08:00
|
|
|
|
|
|
|
// It may orphan an SCC if it is the last edge reaching it, but that does
|
|
|
|
// not violate any invariants of the graph.
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
if (TargetRC.Parents.empty())
|
|
|
|
DEBUG(dbgs() << "LCG: Update removing " << SourceN.getFunction().getName()
|
|
|
|
<< " -> " << TargetN.getFunction().getName()
|
2014-04-27 09:59:50 +08:00
|
|
|
<< " edge orphaned the callee's SCC!\n");
|
2014-04-23 19:03:03 +08:00
|
|
|
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
// It may make the Source SCC a leaf SCC.
|
|
|
|
if (!HasOtherChildRC)
|
|
|
|
G->LeafRefSCCs.push_back(this);
|
|
|
|
}
|
2014-04-23 19:03:03 +08:00
|
|
|
}
|
|
|
|
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
SmallVector<LazyCallGraph::RefSCC *, 1>
|
|
|
|
LazyCallGraph::RefSCC::removeInternalRefEdge(Node &SourceN, Node &TargetN) {
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
assert(!(*SourceN)[TargetN].isCall() &&
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
"Cannot remove a call edge, it must first be made a ref edge");
|
2014-04-23 19:03:03 +08:00
|
|
|
|
2016-09-04 16:34:31 +08:00
|
|
|
#ifndef NDEBUG
|
|
|
|
// In a debug build, verify the RefSCC is valid to start with and when this
|
|
|
|
// routine finishes.
|
|
|
|
verify();
|
|
|
|
auto VerifyOnExit = make_scope_exit([&]() { verify(); });
|
|
|
|
#endif
|
|
|
|
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
// First remove the actual edge.
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
bool Removed = SourceN->removeEdgeInternal(TargetN);
|
|
|
|
(void)Removed;
|
|
|
|
assert(Removed && "Target not in the edge set for this caller?");
|
2014-04-25 17:52:44 +08:00
|
|
|
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
// We return a list of the resulting *new* RefSCCs in post-order.
|
|
|
|
SmallVector<RefSCC *, 1> Result;
|
2014-04-23 19:03:03 +08:00
|
|
|
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
// Direct recursion doesn't impact the SCC graph at all.
|
|
|
|
if (&SourceN == &TargetN)
|
|
|
|
return Result;
|
|
|
|
|
2016-12-28 10:24:58 +08:00
|
|
|
// If this ref edge is within an SCC then there are sufficient other edges to
|
|
|
|
// form a cycle without this edge so removing it is a no-op.
|
|
|
|
SCC &SourceC = *G->lookupSCC(SourceN);
|
|
|
|
SCC &TargetC = *G->lookupSCC(TargetN);
|
|
|
|
if (&SourceC == &TargetC)
|
|
|
|
return Result;
|
|
|
|
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
// We build somewhat synthetic new RefSCCs by providing a postorder mapping
|
|
|
|
// for each inner SCC. We also store these associated with *nodes* rather
|
|
|
|
// than SCCs because this saves a round-trip through the node->SCC map and in
|
|
|
|
// the common case, SCCs are small. We will verify that we always give the
|
|
|
|
// same number to every node in the SCC such that these are equivalent.
|
|
|
|
const int RootPostOrderNumber = 0;
|
|
|
|
int PostOrderNumber = RootPostOrderNumber + 1;
|
|
|
|
SmallDenseMap<Node *, int> PostOrderMapping;
|
|
|
|
|
|
|
|
// Every node in the target SCC can already reach every node in this RefSCC
|
|
|
|
// (by definition). It is the only node we know will stay inside this RefSCC.
|
|
|
|
// Everything which transitively reaches Target will also remain in the
|
|
|
|
// RefSCC. We handle this by pre-marking that the nodes in the target SCC map
|
|
|
|
// back to the root post order number.
|
|
|
|
//
|
|
|
|
// This also enables us to take a very significant short-cut in the standard
|
|
|
|
// Tarjan walk to re-form RefSCCs below: whenever we build an edge that
|
|
|
|
// references the target node, we know that the target node eventually
|
|
|
|
// references all other nodes in our walk. As a consequence, we can detect
|
|
|
|
// and handle participants in that cycle without walking all the edges that
|
|
|
|
// form the connections, and instead by relying on the fundamental guarantee
|
|
|
|
// coming into this operation.
|
|
|
|
for (Node &N : TargetC)
|
|
|
|
PostOrderMapping[&N] = RootPostOrderNumber;
|
|
|
|
|
|
|
|
// Reset all the other nodes to prepare for a DFS over them, and add them to
|
|
|
|
// our worklist.
|
|
|
|
SmallVector<Node *, 8> Worklist;
|
|
|
|
for (SCC *C : SCCs) {
|
|
|
|
if (C == &TargetC)
|
|
|
|
continue;
|
2014-04-25 14:45:06 +08:00
|
|
|
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
for (Node &N : *C)
|
|
|
|
N.DFSNumber = N.LowLink = 0;
|
2014-04-23 19:03:03 +08:00
|
|
|
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
Worklist.append(C->Nodes.begin(), C->Nodes.end());
|
|
|
|
}
|
2014-04-25 14:45:06 +08:00
|
|
|
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
auto MarkNodeForSCCNumber = [&PostOrderMapping](Node &N, int Number) {
|
|
|
|
N.DFSNumber = N.LowLink = -1;
|
|
|
|
PostOrderMapping[&N] = Number;
|
|
|
|
};
|
2014-04-25 14:45:06 +08:00
|
|
|
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
SmallVector<std::pair<Node *, EdgeSequence::iterator>, 4> DFSStack;
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
SmallVector<Node *, 4> PendingRefSCCStack;
|
|
|
|
do {
|
|
|
|
assert(DFSStack.empty() &&
|
|
|
|
"Cannot begin a new root with a non-empty DFS stack!");
|
|
|
|
assert(PendingRefSCCStack.empty() &&
|
|
|
|
"Cannot begin a new root with pending nodes for an SCC!");
|
|
|
|
|
|
|
|
Node *RootN = Worklist.pop_back_val();
|
|
|
|
// Skip any nodes we've already reached in the DFS.
|
|
|
|
if (RootN->DFSNumber != 0) {
|
|
|
|
assert(RootN->DFSNumber == -1 &&
|
|
|
|
"Shouldn't have any mid-DFS root nodes!");
|
|
|
|
continue;
|
2014-04-25 14:45:06 +08:00
|
|
|
}
|
2014-04-24 19:05:20 +08:00
|
|
|
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
RootN->DFSNumber = RootN->LowLink = 1;
|
|
|
|
int NextDFSNumber = 2;
|
2014-04-26 17:06:53 +08:00
|
|
|
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
DFSStack.push_back({RootN, (*RootN)->begin()});
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
do {
|
|
|
|
Node *N;
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
EdgeSequence::iterator I;
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
std::tie(N, I) = DFSStack.pop_back_val();
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
auto E = (*N)->end();
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
|
|
|
|
assert(N->DFSNumber != 0 && "We should always assign a DFS number "
|
|
|
|
"before processing a node.");
|
|
|
|
|
|
|
|
while (I != E) {
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
Node &ChildN = I->getNode();
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
if (ChildN.DFSNumber == 0) {
|
|
|
|
// Mark that we should start at this child when next this node is the
|
|
|
|
// top of the stack. We don't start at the next child to ensure this
|
|
|
|
// child's lowlink is reflected.
|
|
|
|
DFSStack.push_back({N, I});
|
|
|
|
|
|
|
|
// Continue, resetting to the child node.
|
|
|
|
ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
|
|
|
|
N = &ChildN;
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
I = ChildN->begin();
|
|
|
|
E = ChildN->end();
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
continue;
|
|
|
|
}
|
|
|
|
if (ChildN.DFSNumber == -1) {
|
|
|
|
// Check if this edge's target node connects to the deleted edge's
|
|
|
|
// target node. If so, we know that every node connected will end up
|
|
|
|
// in this RefSCC, so collapse the entire current stack into the root
|
|
|
|
// slot in our SCC numbering. See above for the motivation of
|
|
|
|
// optimizing the target connected nodes in this way.
|
|
|
|
auto PostOrderI = PostOrderMapping.find(&ChildN);
|
|
|
|
if (PostOrderI != PostOrderMapping.end() &&
|
|
|
|
PostOrderI->second == RootPostOrderNumber) {
|
|
|
|
MarkNodeForSCCNumber(*N, RootPostOrderNumber);
|
|
|
|
while (!PendingRefSCCStack.empty())
|
|
|
|
MarkNodeForSCCNumber(*PendingRefSCCStack.pop_back_val(),
|
|
|
|
RootPostOrderNumber);
|
|
|
|
while (!DFSStack.empty())
|
|
|
|
MarkNodeForSCCNumber(*DFSStack.pop_back_val().first,
|
|
|
|
RootPostOrderNumber);
|
|
|
|
// Ensure we break all the way out of the enclosing loop.
|
|
|
|
N = nullptr;
|
|
|
|
break;
|
|
|
|
}
|
2014-04-27 09:59:50 +08:00
|
|
|
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
// If this child isn't currently in this RefSCC, no need to process
|
2016-12-06 18:29:23 +08:00
|
|
|
// it. However, we do need to remove this RefSCC from its RefSCC's
|
|
|
|
// parent set.
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
RefSCC &ChildRC = *G->lookupRefSCC(ChildN);
|
|
|
|
ChildRC.Parents.erase(this);
|
|
|
|
++I;
|
|
|
|
continue;
|
|
|
|
}
|
2014-04-26 17:06:53 +08:00
|
|
|
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
// Track the lowest link of the children, if any are still in the stack.
|
|
|
|
// Any child not on the stack will have a LowLink of -1.
|
|
|
|
assert(ChildN.LowLink != 0 &&
|
|
|
|
"Low-link must not be zero with a non-zero DFS number.");
|
|
|
|
if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink)
|
|
|
|
N->LowLink = ChildN.LowLink;
|
|
|
|
++I;
|
|
|
|
}
|
|
|
|
if (!N)
|
|
|
|
// We short-circuited this node.
|
|
|
|
break;
|
2014-04-26 17:06:53 +08:00
|
|
|
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
// We've finished processing N and its descendents, put it on our pending
|
|
|
|
// stack to eventually get merged into a RefSCC.
|
|
|
|
PendingRefSCCStack.push_back(N);
|
|
|
|
|
|
|
|
// If this node is linked to some lower entry, continue walking up the
|
|
|
|
// stack.
|
|
|
|
if (N->LowLink != N->DFSNumber) {
|
|
|
|
assert(!DFSStack.empty() &&
|
|
|
|
"We never found a viable root for a RefSCC to pop off!");
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Otherwise, form a new RefSCC from the top of the pending node stack.
|
|
|
|
int RootDFSNumber = N->DFSNumber;
|
|
|
|
// Find the range of the node stack by walking down until we pass the
|
|
|
|
// root DFS number.
|
|
|
|
auto RefSCCNodes = make_range(
|
|
|
|
PendingRefSCCStack.rbegin(),
|
2016-08-12 11:55:06 +08:00
|
|
|
find_if(reverse(PendingRefSCCStack), [RootDFSNumber](const Node *N) {
|
|
|
|
return N->DFSNumber < RootDFSNumber;
|
|
|
|
}));
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
|
|
|
|
// Mark the postorder number for these nodes and clear them off the
|
|
|
|
// stack. We'll use the postorder number to pull them into RefSCCs at the
|
|
|
|
// end. FIXME: Fuse with the loop above.
|
|
|
|
int RefSCCNumber = PostOrderNumber++;
|
|
|
|
for (Node *N : RefSCCNodes)
|
|
|
|
MarkNodeForSCCNumber(*N, RefSCCNumber);
|
|
|
|
|
|
|
|
PendingRefSCCStack.erase(RefSCCNodes.end().base(),
|
|
|
|
PendingRefSCCStack.end());
|
|
|
|
} while (!DFSStack.empty());
|
2014-04-26 17:06:53 +08:00
|
|
|
|
|
|
|
assert(DFSStack.empty() && "Didn't flush the entire DFS stack!");
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
assert(PendingRefSCCStack.empty() && "Didn't flush all pending nodes!");
|
2014-04-26 17:06:53 +08:00
|
|
|
} while (!Worklist.empty());
|
2014-04-23 19:03:03 +08:00
|
|
|
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
// We now have a post-order numbering for RefSCCs and a mapping from each
|
|
|
|
// node in this RefSCC to its final RefSCC. We create each new RefSCC node
|
|
|
|
// (re-using this RefSCC node for the root) and build a radix-sort style map
|
|
|
|
// from postorder number to the RefSCC. We then append SCCs to each of these
|
|
|
|
// RefSCCs in the order they occured in the original SCCs container.
|
|
|
|
for (int i = 1; i < PostOrderNumber; ++i)
|
|
|
|
Result.push_back(G->createRefSCC(*G));
|
|
|
|
|
2016-09-16 18:20:17 +08:00
|
|
|
// Insert the resulting postorder sequence into the global graph postorder
|
|
|
|
// sequence before the current RefSCC in that sequence. The idea being that
|
|
|
|
// this RefSCC is the target of the reference edge removed, and thus has
|
|
|
|
// a direct or indirect edge to every other RefSCC formed and so must be at
|
|
|
|
// the end of any postorder traversal.
|
|
|
|
//
|
|
|
|
// FIXME: It'd be nice to change the APIs so that we returned an iterator
|
|
|
|
// range over the global postorder sequence and generally use that sequence
|
|
|
|
// rather than building a separate result vector here.
|
|
|
|
if (!Result.empty()) {
|
|
|
|
int Idx = G->getRefSCCIndex(*this);
|
|
|
|
G->PostOrderRefSCCs.insert(G->PostOrderRefSCCs.begin() + Idx,
|
|
|
|
Result.begin(), Result.end());
|
|
|
|
for (int i : seq<int>(Idx, G->PostOrderRefSCCs.size()))
|
|
|
|
G->RefSCCIndices[G->PostOrderRefSCCs[i]] = i;
|
|
|
|
assert(G->PostOrderRefSCCs[G->getRefSCCIndex(*this)] == this &&
|
|
|
|
"Failed to update this RefSCC's index after insertion!");
|
|
|
|
}
|
|
|
|
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
for (SCC *C : SCCs) {
|
|
|
|
auto PostOrderI = PostOrderMapping.find(&*C->begin());
|
|
|
|
assert(PostOrderI != PostOrderMapping.end() &&
|
|
|
|
"Cannot have missing mappings for nodes!");
|
|
|
|
int SCCNumber = PostOrderI->second;
|
|
|
|
#ifndef NDEBUG
|
|
|
|
for (Node &N : *C)
|
|
|
|
assert(PostOrderMapping.find(&N)->second == SCCNumber &&
|
|
|
|
"Cannot have different numbers for nodes in the same SCC!");
|
|
|
|
#endif
|
|
|
|
if (SCCNumber == 0)
|
|
|
|
// The root node is handled separately by removing the SCCs.
|
|
|
|
continue;
|
|
|
|
|
|
|
|
RefSCC &RC = *Result[SCCNumber - 1];
|
|
|
|
int SCCIndex = RC.SCCs.size();
|
|
|
|
RC.SCCs.push_back(C);
|
2016-12-06 18:29:23 +08:00
|
|
|
RC.SCCIndices[C] = SCCIndex;
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
C->OuterRefSCC = &RC;
|
2014-04-23 19:03:03 +08:00
|
|
|
}
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
|
|
|
|
// FIXME: We re-walk the edges in each RefSCC to establish whether it is
|
|
|
|
// a leaf and connect it to the rest of the graph's parents lists. This is
|
|
|
|
// really wasteful. We should instead do this during the DFS to avoid yet
|
|
|
|
// another edge walk.
|
|
|
|
for (RefSCC *RC : Result)
|
|
|
|
G->connectRefSCC(*RC);
|
|
|
|
|
|
|
|
// Now erase all but the root's SCCs.
|
2016-08-12 11:55:06 +08:00
|
|
|
SCCs.erase(remove_if(SCCs,
|
|
|
|
[&](SCC *C) {
|
|
|
|
return PostOrderMapping.lookup(&*C->begin()) !=
|
|
|
|
RootPostOrderNumber;
|
|
|
|
}),
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
SCCs.end());
|
[PM] Introduce basic update capabilities to the new PM's CGSCC pass
manager, including both plumbing and logic to handle function pass
updates.
There are three fundamentally tied changes here:
1) Plumbing *some* mechanism for updating the CGSCC pass manager as the
CG changes while passes are running.
2) Changing the CGSCC pass manager infrastructure to have support for
the underlying graph to mutate mid-pass run.
3) Actually updating the CG after function passes run.
I can separate them if necessary, but I think its really useful to have
them together as the needs of #3 drove #2, and that in turn drove #1.
The plumbing technique is to extend the "run" method signature with
extra arguments. We provide the call graph that intrinsically is
available as it is the basis of the pass manager's IR units, and an
output parameter that records the results of updating the call graph
during an SCC passes's run. Note that "...UpdateResult" isn't a *great*
name here... suggestions very welcome.
I tried a pretty frustrating number of different data structures and such
for the innards of the update result. Every other one failed for one
reason or another. Sometimes I just couldn't keep the layers of
complexity right in my head. The thing that really worked was to just
directly provide access to the underlying structures used to walk the
call graph so that their updates could be informed by the *particular*
nature of the change to the graph.
The technique for how to make the pass management infrastructure cope
with mutating graphs was also something that took a really, really large
number of iterations to get to a place where I was happy. Here are some
of the considerations that drove the design:
- We operate at three levels within the infrastructure: RefSCC, SCC, and
Node. In each case, we are working bottom up and so we want to
continue to iterate on the "lowest" node as the graph changes. Look at
how we iterate over nodes in an SCC running function passes as those
function passes mutate the CG. We continue to iterate on the "lowest"
SCC, which is the one that continues to contain the function just
processed.
- The call graph structure re-uses SCCs (and RefSCCs) during mutation
events for the *highest* entry in the resulting new subgraph, not the
lowest. This means that it is necessary to continually update the
current SCC or RefSCC as it shifts. This is really surprising and
subtle, and took a long time for me to work out. I actually tried
changing the call graph to provide the opposite behavior, and it
breaks *EVERYTHING*. The graph update algorithms are really deeply
tied to this particualr pattern.
- When SCCs or RefSCCs are split apart and refined and we continually
re-pin our processing to the bottom one in the subgraph, we need to
enqueue the newly formed SCCs and RefSCCs for subsequent processing.
Queuing them presents a few challenges:
1) SCCs and RefSCCs use wildly different iteration strategies at
a high level. We end up needing to converge them on worklist
approaches that can be extended in order to be able to handle the
mutations.
2) The order of the enqueuing need to remain bottom-up post-order so
that we don't get surprising order of visitation for things like
the inliner.
3) We need the worklists to have set semantics so we don't duplicate
things endlessly. We don't need a *persistent* set though because
we always keep processing the bottom node!!!! This is super, super
surprising to me and took a long time to convince myself this is
correct, but I'm pretty sure it is... Once we sink down to the
bottom node, we can't re-split out the same node in any way, and
the postorder of the current queue is fixed and unchanging.
4) We need to make sure that the "current" SCC or RefSCC actually gets
enqueued here such that we re-visit it because we continue
processing a *new*, *bottom* SCC/RefSCC.
- We also need the ability to *skip* SCCs and RefSCCs that get merged
into a larger component. We even need the ability to skip *nodes* from
an SCC that are no longer part of that SCC.
This led to the design you see in the patch which uses SetVector-based
worklists. The RefSCC worklist is always empty until an update occurs
and is just used to handle those RefSCCs created by updates as the
others don't even exist yet and are formed on-demand during the
bottom-up walk. The SCC worklist is pre-populated from the RefSCC, and
we push new SCCs onto it and blacklist existing SCCs on it to get the
desired processing.
We then *directly* update these when updating the call graph as I was
never able to find a satisfactory abstraction around the update
strategy.
Finally, we need to compute the updates for function passes. This is
mostly used as an initial customer of all the update mechanisms to drive
their design to at least cover some real set of use cases. There are
a bunch of interesting things that came out of doing this:
- It is really nice to do this a function at a time because that
function is likely hot in the cache. This means we want even the
function pass adaptor to support online updates to the call graph!
- To update the call graph after arbitrary function pass mutations is
quite hard. We have to build a fairly comprehensive set of
data structures and then process them. Fortunately, some of this code
is related to the code for building the cal graph in the first place.
Unfortunately, very little of it makes any sense to share because the
nature of what we're doing is so very different. I've factored out the
one part that made sense at least.
- We need to transfer these updates into the various structures for the
CGSCC pass manager. Once those were more sanely worked out, this
became relatively easier. But some of those needs necessitated changes
to the LazyCallGraph interface to make it significantly easier to
extract the changed SCCs from an update operation.
- We also need to update the CGSCC analysis manager as the shape of the
graph changes. When an SCC is merged away we need to clear analyses
associated with it from the analysis manager which we didn't have
support for in the analysis manager infrsatructure. New SCCs are easy!
But then we have the case that the original SCC has its shape changed
but remains in the call graph. There we need to *invalidate* the
analyses associated with it.
- We also need to invalidate analyses after we *finish* processing an
SCC. But the analyses we need to invalidate here are *only those for
the newly updated SCC*!!! Because we only continue processing the
bottom SCC, if we split SCCs apart the original one gets invalidated
once when its shape changes and is not processed farther so its
analyses will be correct. It is the bottom SCC which continues being
processed and needs to have the "normal" invalidation done based on
the preserved analyses set.
All of this is mostly background and context for the changes here.
Many thanks to all the reviewers who helped here. Especially Sanjoy who
caught several interesting bugs in the graph algorithms, David, Sean,
and others who all helped with feedback.
Differential Revision: http://reviews.llvm.org/D21464
llvm-svn: 279618
2016-08-24 17:37:14 +08:00
|
|
|
SCCIndices.clear();
|
|
|
|
for (int i = 0, Size = SCCs.size(); i < Size; ++i)
|
|
|
|
SCCIndices[SCCs[i]] = i;
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
|
|
|
|
#ifndef NDEBUG
|
|
|
|
// Now we need to reconnect the current (root) SCC to the graph. We do this
|
|
|
|
// manually because we can special case our leaf handling and detect errors.
|
|
|
|
bool IsLeaf = true;
|
|
|
|
#endif
|
|
|
|
for (SCC *C : SCCs)
|
|
|
|
for (Node &N : *C) {
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
for (Edge &E : *N) {
|
|
|
|
RefSCC &ChildRC = *G->lookupRefSCC(E.getNode());
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
if (&ChildRC == this)
|
|
|
|
continue;
|
|
|
|
ChildRC.Parents.insert(this);
|
|
|
|
#ifndef NDEBUG
|
|
|
|
IsLeaf = false;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
2014-04-23 19:03:03 +08:00
|
|
|
#ifndef NDEBUG
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
if (!Result.empty())
|
|
|
|
assert(!IsLeaf && "This SCC cannot be a leaf as we have split out new "
|
|
|
|
"SCCs by removing this edge.");
|
2016-08-12 05:15:00 +08:00
|
|
|
if (none_of(G->LeafRefSCCs, [&](RefSCC *C) { return C == this; }))
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
assert(!IsLeaf && "This SCC cannot be a leaf as it already had child "
|
|
|
|
"SCCs before we removed this edge.");
|
2014-04-23 19:03:03 +08:00
|
|
|
#endif
|
2016-10-12 15:59:56 +08:00
|
|
|
// And connect both this RefSCC and all the new ones to the correct parents.
|
|
|
|
// The easiest way to do this is just to re-analyze the old parent set.
|
|
|
|
SmallVector<RefSCC *, 4> OldParents(Parents.begin(), Parents.end());
|
|
|
|
Parents.clear();
|
|
|
|
for (RefSCC *ParentRC : OldParents)
|
2016-12-07 09:42:40 +08:00
|
|
|
for (SCC &ParentC : *ParentRC)
|
|
|
|
for (Node &ParentN : ParentC)
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
for (Edge &E : *ParentN) {
|
|
|
|
RefSCC &RC = *G->lookupRefSCC(E.getNode());
|
2016-12-07 09:42:40 +08:00
|
|
|
if (&RC != ParentRC)
|
|
|
|
RC.Parents.insert(ParentRC);
|
2016-10-12 15:59:56 +08:00
|
|
|
}
|
|
|
|
|
2014-04-23 19:03:03 +08:00
|
|
|
// If this SCC stopped being a leaf through this edge removal, remove it from
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
// the leaf SCC list. Note that this DTRT in the case where this was never
|
|
|
|
// a leaf.
|
|
|
|
// FIXME: As LeafRefSCCs could be very large, we might want to not walk the
|
|
|
|
// entire list if this RefSCC wasn't a leaf before the edge removal.
|
|
|
|
if (!Result.empty())
|
|
|
|
G->LeafRefSCCs.erase(
|
|
|
|
std::remove(G->LeafRefSCCs.begin(), G->LeafRefSCCs.end(), this),
|
|
|
|
G->LeafRefSCCs.end());
|
2014-04-23 19:03:03 +08:00
|
|
|
|
2016-12-06 18:29:23 +08:00
|
|
|
#ifndef NDEBUG
|
|
|
|
// Verify all of the new RefSCCs.
|
|
|
|
for (RefSCC *RC : Result)
|
|
|
|
RC->verify();
|
|
|
|
#endif
|
|
|
|
|
2014-04-23 19:03:03 +08:00
|
|
|
// Return the new list of SCCs.
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
return Result;
|
2014-04-23 19:03:03 +08:00
|
|
|
}
|
|
|
|
|
2016-10-12 15:59:56 +08:00
|
|
|
void LazyCallGraph::RefSCC::handleTrivialEdgeInsertion(Node &SourceN,
|
|
|
|
Node &TargetN) {
|
|
|
|
// The only trivial case that requires any graph updates is when we add new
|
|
|
|
// ref edge and may connect different RefSCCs along that path. This is only
|
|
|
|
// because of the parents set. Every other part of the graph remains constant
|
|
|
|
// after this edge insertion.
|
|
|
|
assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
|
|
|
|
RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
|
|
|
|
if (&TargetRC == this) {
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2017-03-01 02:34:55 +08:00
|
|
|
#ifdef EXPENSIVE_CHECKS
|
2016-10-12 15:59:56 +08:00
|
|
|
assert(TargetRC.isDescendantOf(*this) &&
|
|
|
|
"Target must be a descendant of the Source.");
|
2017-02-07 03:38:06 +08:00
|
|
|
#endif
|
2016-10-12 15:59:56 +08:00
|
|
|
// The only change required is to add this RefSCC to the parent set of the
|
|
|
|
// target. This is a set and so idempotent if the edge already existed.
|
|
|
|
TargetRC.Parents.insert(this);
|
|
|
|
}
|
|
|
|
|
|
|
|
void LazyCallGraph::RefSCC::insertTrivialCallEdge(Node &SourceN,
|
|
|
|
Node &TargetN) {
|
|
|
|
#ifndef NDEBUG
|
|
|
|
// Check that the RefSCC is still valid when we finish.
|
|
|
|
auto ExitVerifier = make_scope_exit([this] { verify(); });
|
2016-11-23 03:23:31 +08:00
|
|
|
|
2017-02-07 03:38:06 +08:00
|
|
|
#ifdef EXPENSIVE_CHECKS
|
|
|
|
// Check that we aren't breaking some invariants of the SCC graph. Note that
|
|
|
|
// this is quadratic in the number of edges in the call graph!
|
2016-11-23 03:23:31 +08:00
|
|
|
SCC &SourceC = *G->lookupSCC(SourceN);
|
|
|
|
SCC &TargetC = *G->lookupSCC(TargetN);
|
|
|
|
if (&SourceC != &TargetC)
|
|
|
|
assert(SourceC.isAncestorOf(TargetC) &&
|
|
|
|
"Call edge is not trivial in the SCC graph!");
|
2017-02-07 03:38:06 +08:00
|
|
|
#endif // EXPENSIVE_CHECKS
|
|
|
|
#endif // NDEBUG
|
|
|
|
|
2016-10-12 15:59:56 +08:00
|
|
|
// First insert it into the source or find the existing edge.
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
auto InsertResult =
|
|
|
|
SourceN->EdgeIndexMap.insert({&TargetN, SourceN->Edges.size()});
|
2016-10-12 15:59:56 +08:00
|
|
|
if (!InsertResult.second) {
|
|
|
|
// Already an edge, just update it.
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
Edge &E = SourceN->Edges[InsertResult.first->second];
|
2016-10-12 15:59:56 +08:00
|
|
|
if (E.isCall())
|
|
|
|
return; // Nothing to do!
|
|
|
|
E.setKind(Edge::Call);
|
|
|
|
} else {
|
|
|
|
// Create the new edge.
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
SourceN->Edges.emplace_back(TargetN, Edge::Call);
|
2016-10-12 15:59:56 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// Now that we have the edge, handle the graph fallout.
|
|
|
|
handleTrivialEdgeInsertion(SourceN, TargetN);
|
|
|
|
}
|
|
|
|
|
|
|
|
void LazyCallGraph::RefSCC::insertTrivialRefEdge(Node &SourceN, Node &TargetN) {
|
|
|
|
#ifndef NDEBUG
|
|
|
|
// Check that the RefSCC is still valid when we finish.
|
|
|
|
auto ExitVerifier = make_scope_exit([this] { verify(); });
|
2016-11-23 05:40:10 +08:00
|
|
|
|
2017-02-07 03:38:06 +08:00
|
|
|
#ifdef EXPENSIVE_CHECKS
|
2016-11-23 05:40:10 +08:00
|
|
|
// Check that we aren't breaking some invariants of the RefSCC graph.
|
|
|
|
RefSCC &SourceRC = *G->lookupRefSCC(SourceN);
|
|
|
|
RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
|
|
|
|
if (&SourceRC != &TargetRC)
|
|
|
|
assert(SourceRC.isAncestorOf(TargetRC) &&
|
|
|
|
"Ref edge is not trivial in the RefSCC graph!");
|
2017-02-07 03:38:06 +08:00
|
|
|
#endif // EXPENSIVE_CHECKS
|
|
|
|
#endif // NDEBUG
|
|
|
|
|
2016-10-12 15:59:56 +08:00
|
|
|
// First insert it into the source or find the existing edge.
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
auto InsertResult =
|
|
|
|
SourceN->EdgeIndexMap.insert({&TargetN, SourceN->Edges.size()});
|
2016-10-12 15:59:56 +08:00
|
|
|
if (!InsertResult.second)
|
|
|
|
// Already an edge, we're done.
|
|
|
|
return;
|
|
|
|
|
|
|
|
// Create the new edge.
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
SourceN->Edges.emplace_back(TargetN, Edge::Ref);
|
2016-10-12 15:59:56 +08:00
|
|
|
|
|
|
|
// Now that we have the edge, handle the graph fallout.
|
|
|
|
handleTrivialEdgeInsertion(SourceN, TargetN);
|
|
|
|
}
|
|
|
|
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
void LazyCallGraph::RefSCC::replaceNodeFunction(Node &N, Function &NewF) {
|
|
|
|
Function &OldF = N.getFunction();
|
|
|
|
|
|
|
|
#ifndef NDEBUG
|
|
|
|
// Check that the RefSCC is still valid when we finish.
|
|
|
|
auto ExitVerifier = make_scope_exit([this] { verify(); });
|
|
|
|
|
|
|
|
assert(G->lookupRefSCC(N) == this &&
|
|
|
|
"Cannot replace the function of a node outside this RefSCC.");
|
|
|
|
|
|
|
|
assert(G->NodeMap.find(&NewF) == G->NodeMap.end() &&
|
|
|
|
"Must not have already walked the new function!'");
|
|
|
|
|
|
|
|
// It is important that this replacement not introduce graph changes so we
|
|
|
|
// insist that the caller has already removed every use of the original
|
|
|
|
// function and that all uses of the new function correspond to existing
|
|
|
|
// edges in the graph. The common and expected way to use this is when
|
|
|
|
// replacing the function itself in the IR without changing the call graph
|
|
|
|
// shape and just updating the analysis based on that.
|
|
|
|
assert(&OldF != &NewF && "Cannot replace a function with itself!");
|
|
|
|
assert(OldF.use_empty() &&
|
|
|
|
"Must have moved all uses from the old function to the new!");
|
|
|
|
#endif
|
|
|
|
|
|
|
|
N.replaceFunction(NewF);
|
|
|
|
|
|
|
|
// Update various call graph maps.
|
|
|
|
G->NodeMap.erase(&OldF);
|
|
|
|
G->NodeMap[&NewF] = &N;
|
|
|
|
}
|
|
|
|
|
|
|
|
void LazyCallGraph::insertEdge(Node &SourceN, Node &TargetN, Edge::Kind EK) {
|
2017-02-07 03:38:06 +08:00
|
|
|
assert(SCCMap.empty() &&
|
2014-04-28 19:10:23 +08:00
|
|
|
"This method cannot be called after SCCs have been formed!");
|
|
|
|
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
return SourceN->insertEdgeInternal(TargetN, EK);
|
2014-04-28 19:10:23 +08:00
|
|
|
}
|
|
|
|
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
void LazyCallGraph::removeEdge(Node &SourceN, Node &TargetN) {
|
2017-02-07 03:38:06 +08:00
|
|
|
assert(SCCMap.empty() &&
|
2014-04-27 09:59:50 +08:00
|
|
|
"This method cannot be called after SCCs have been formed!");
|
2014-04-23 19:03:03 +08:00
|
|
|
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
bool Removed = SourceN->removeEdgeInternal(TargetN);
|
|
|
|
(void)Removed;
|
|
|
|
assert(Removed && "Target not in the edge set for this caller?");
|
2014-04-23 19:03:03 +08:00
|
|
|
}
|
|
|
|
|
2016-10-12 15:59:56 +08:00
|
|
|
void LazyCallGraph::removeDeadFunction(Function &F) {
|
|
|
|
// FIXME: This is unnecessarily restrictive. We should be able to remove
|
|
|
|
// functions which recursively call themselves.
|
|
|
|
assert(F.use_empty() &&
|
|
|
|
"This routine should only be called on trivially dead functions!");
|
|
|
|
|
|
|
|
auto NI = NodeMap.find(&F);
|
|
|
|
if (NI == NodeMap.end())
|
|
|
|
// Not in the graph at all!
|
|
|
|
return;
|
|
|
|
|
|
|
|
Node &N = *NI->second;
|
|
|
|
NodeMap.erase(NI);
|
|
|
|
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
// Remove this from the entry edges if present.
|
|
|
|
EntryEdges.removeEdgeInternal(N);
|
|
|
|
|
2017-02-07 03:38:06 +08:00
|
|
|
if (SCCMap.empty()) {
|
|
|
|
// No SCCs have been formed, so removing this is fine and there is nothing
|
2016-10-12 15:59:56 +08:00
|
|
|
// else necessary at this point but clearing out the node.
|
|
|
|
N.clear();
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Cannot remove a function which has yet to be visited in the DFS walk, so
|
|
|
|
// if we have a node at all then we must have an SCC and RefSCC.
|
|
|
|
auto CI = SCCMap.find(&N);
|
|
|
|
assert(CI != SCCMap.end() &&
|
|
|
|
"Tried to remove a node without an SCC after DFS walk started!");
|
|
|
|
SCC &C = *CI->second;
|
|
|
|
SCCMap.erase(CI);
|
|
|
|
RefSCC &RC = C.getOuterRefSCC();
|
|
|
|
|
|
|
|
// This node must be the only member of its SCC as it has no callers, and
|
|
|
|
// that SCC must be the only member of a RefSCC as it has no references.
|
|
|
|
// Validate these properties first.
|
|
|
|
assert(C.size() == 1 && "Dead functions must be in a singular SCC");
|
|
|
|
assert(RC.size() == 1 && "Dead functions must be in a singular RefSCC");
|
2017-02-10 07:30:14 +08:00
|
|
|
|
|
|
|
// Clean up any remaining reference edges. Note that we walk an unordered set
|
|
|
|
// here but are just removing and so the order doesn't matter.
|
|
|
|
for (RefSCC &ParentRC : RC.parents())
|
|
|
|
for (SCC &ParentC : ParentRC)
|
|
|
|
for (Node &ParentN : ParentC)
|
|
|
|
if (ParentN)
|
|
|
|
ParentN->removeEdgeInternal(N);
|
2016-10-12 15:59:56 +08:00
|
|
|
|
|
|
|
// Now remove this RefSCC from any parents sets and the leaf list.
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
for (Edge &E : *N)
|
|
|
|
if (RefSCC *TargetRC = lookupRefSCC(E.getNode()))
|
|
|
|
TargetRC->Parents.erase(&RC);
|
2016-10-12 15:59:56 +08:00
|
|
|
// FIXME: This is a linear operation which could become hot and benefit from
|
|
|
|
// an index map.
|
|
|
|
auto LRI = find(LeafRefSCCs, &RC);
|
|
|
|
if (LRI != LeafRefSCCs.end())
|
|
|
|
LeafRefSCCs.erase(LRI);
|
|
|
|
|
|
|
|
auto RCIndexI = RefSCCIndices.find(&RC);
|
|
|
|
int RCIndex = RCIndexI->second;
|
|
|
|
PostOrderRefSCCs.erase(PostOrderRefSCCs.begin() + RCIndex);
|
|
|
|
RefSCCIndices.erase(RCIndexI);
|
|
|
|
for (int i = RCIndex, Size = PostOrderRefSCCs.size(); i < Size; ++i)
|
|
|
|
RefSCCIndices[PostOrderRefSCCs[i]] = i;
|
|
|
|
|
|
|
|
// Finally clear out all the data structures from the node down through the
|
|
|
|
// components.
|
|
|
|
N.clear();
|
|
|
|
C.clear();
|
|
|
|
RC.clear();
|
|
|
|
|
|
|
|
// Nothing to delete as all the objects are allocated in stable bump pointer
|
|
|
|
// allocators.
|
|
|
|
}
|
|
|
|
|
2014-04-24 07:20:36 +08:00
|
|
|
LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) {
|
|
|
|
return *new (MappedN = BPA.Allocate()) Node(*this, F);
|
2014-04-18 19:02:33 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
void LazyCallGraph::updateGraphPtrs() {
|
2014-04-17 15:25:59 +08:00
|
|
|
// Process all nodes updating the graph pointers.
|
2014-04-27 09:59:50 +08:00
|
|
|
{
|
|
|
|
SmallVector<Node *, 16> Worklist;
|
2016-02-02 11:57:13 +08:00
|
|
|
for (Edge &E : EntryEdges)
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
Worklist.push_back(&E.getNode());
|
2014-04-27 09:59:50 +08:00
|
|
|
|
|
|
|
while (!Worklist.empty()) {
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
Node &N = *Worklist.pop_back_val();
|
|
|
|
N.G = this;
|
|
|
|
if (N)
|
|
|
|
for (Edge &E : *N)
|
|
|
|
Worklist.push_back(&E.getNode());
|
2014-04-27 09:59:50 +08:00
|
|
|
}
|
|
|
|
}
|
2014-04-17 15:25:59 +08:00
|
|
|
|
2014-04-27 09:59:50 +08:00
|
|
|
// Process all SCCs updating the graph pointers.
|
|
|
|
{
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
SmallVector<RefSCC *, 16> Worklist(LeafRefSCCs.begin(), LeafRefSCCs.end());
|
2014-04-27 09:59:50 +08:00
|
|
|
|
|
|
|
while (!Worklist.empty()) {
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
RefSCC &C = *Worklist.pop_back_val();
|
|
|
|
C.G = this;
|
|
|
|
for (RefSCC &ParentC : C.parents())
|
|
|
|
Worklist.push_back(&ParentC);
|
2014-04-27 09:59:50 +08:00
|
|
|
}
|
2014-04-17 15:25:59 +08:00
|
|
|
}
|
2014-02-06 12:37:03 +08:00
|
|
|
}
|
|
|
|
|
2017-02-07 03:38:06 +08:00
|
|
|
template <typename RootsT, typename GetBeginT, typename GetEndT,
|
|
|
|
typename GetNodeT, typename FormSCCCallbackT>
|
|
|
|
void LazyCallGraph::buildGenericSCCs(RootsT &&Roots, GetBeginT &&GetBegin,
|
|
|
|
GetEndT &&GetEnd, GetNodeT &&GetNode,
|
|
|
|
FormSCCCallbackT &&FormSCC) {
|
|
|
|
typedef decltype(GetBegin(std::declval<Node &>())) EdgeItT;
|
[LCG] Add support for building persistent and connected SCCs to the
LazyCallGraph. This is the start of the whole point of this different
abstraction, but it is just the initial bits. Here is a run-down of
what's going on here. I'm planning to incorporate some (or all) of this
into comments going forward, hopefully with better editing and wording.
=]
The crux of the problem with the traditional way of building SCCs is
that they are ephemeral. The new pass manager however really needs the
ability to associate analysis passes and results of analysis passes with
SCCs in order to expose these analysis passes to the SCC passes. Making
this work is kind-of the whole point of the new pass manager. =]
So, when we're building SCCs for the call graph, we actually want to
build persistent nodes that stick around and can be reasoned about
later. We'd also like the ability to walk the SCC graph in more complex
ways than just the traditional postorder traversal of the current CGSCC
walk. That means that in addition to being persistent, the SCCs need to
be connected into a useful graph structure.
However, we still want the SCCs to be formed lazily where possible.
These constraints are quite hard to satisfy with the SCC iterator. Also,
using that would bypass our ability to actually add data to the nodes of
the call graph to facilite implementing the Tarjan walk. So I've
re-implemented things in a more direct and embedded way. This
immediately makes it easy to get the persistence and connectivity
correct, and it also allows leveraging the existing nodes to simplify
the algorithm. I've worked somewhat to make this implementation more
closely follow the traditional paper's nomenclature and strategy,
although it is still a bit obtuse because it isn't recursive, using
an explicit stack and a tail call instead, and it is interruptable,
resuming each time we need another SCC.
The other tricky bit here, and what actually took almost all the time
and trials and errors I spent building this, is exactly *what* graph
structure to build for the SCCs. The naive thing to build is the call
graph in its newly acyclic form. I wrote about 4 versions of this which
did precisely this. Inevitably, when I experimented with them across
various use cases, they became incredibly awkward. It was all
implementable, but it felt like a complete wrong fit. Square peg, round
hole. There were two overriding aspects that pushed me in a different
direction:
1) We want to discover the SCC graph in a postorder fashion. That means
the root node will be the *last* node we find. Using the call-SCC DAG
as the graph structure of the SCCs results in an orphaned graph until
we discover a root.
2) We will eventually want to walk the SCC graph in parallel, exploring
distinct sub-graphs independently, and synchronizing at merge points.
This again is not helped by the call-SCC DAG structure.
The structure which, quite surprisingly, ended up being completely
natural to use is the *inverse* of the call-SCC DAG. We add the leaf
SCCs to the graph as "roots", and have edges to the caller SCCs. Once
I switched to building this structure, everything just fell into place
elegantly.
Aside from general cleanups (there are FIXMEs and too few comments
overall) that are still needed, the other missing piece of this is
support for iterating across levels of the SCC graph. These will become
useful for implementing #2, but they aren't an immediate priority.
Once SCCs are in good shape, I'll be working on adding mutation support
for incremental updates and adding the pass manager that this analysis
enables.
llvm-svn: 206581
2014-04-18 18:50:32 +08:00
|
|
|
|
2017-02-07 03:38:06 +08:00
|
|
|
SmallVector<std::pair<Node *, EdgeItT>, 16> DFSStack;
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
SmallVector<Node *, 16> PendingSCCStack;
|
|
|
|
|
|
|
|
// Scan down the stack and DFS across the call edges.
|
2017-02-07 03:38:06 +08:00
|
|
|
for (Node *RootN : Roots) {
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
assert(DFSStack.empty() &&
|
|
|
|
"Cannot begin a new root with a non-empty DFS stack!");
|
|
|
|
assert(PendingSCCStack.empty() &&
|
|
|
|
"Cannot begin a new root with pending nodes for an SCC!");
|
|
|
|
|
|
|
|
// Skip any nodes we've already reached in the DFS.
|
|
|
|
if (RootN->DFSNumber != 0) {
|
|
|
|
assert(RootN->DFSNumber == -1 &&
|
|
|
|
"Shouldn't have any mid-DFS root nodes!");
|
|
|
|
continue;
|
[LCG] Add support for building persistent and connected SCCs to the
LazyCallGraph. This is the start of the whole point of this different
abstraction, but it is just the initial bits. Here is a run-down of
what's going on here. I'm planning to incorporate some (or all) of this
into comments going forward, hopefully with better editing and wording.
=]
The crux of the problem with the traditional way of building SCCs is
that they are ephemeral. The new pass manager however really needs the
ability to associate analysis passes and results of analysis passes with
SCCs in order to expose these analysis passes to the SCC passes. Making
this work is kind-of the whole point of the new pass manager. =]
So, when we're building SCCs for the call graph, we actually want to
build persistent nodes that stick around and can be reasoned about
later. We'd also like the ability to walk the SCC graph in more complex
ways than just the traditional postorder traversal of the current CGSCC
walk. That means that in addition to being persistent, the SCCs need to
be connected into a useful graph structure.
However, we still want the SCCs to be formed lazily where possible.
These constraints are quite hard to satisfy with the SCC iterator. Also,
using that would bypass our ability to actually add data to the nodes of
the call graph to facilite implementing the Tarjan walk. So I've
re-implemented things in a more direct and embedded way. This
immediately makes it easy to get the persistence and connectivity
correct, and it also allows leveraging the existing nodes to simplify
the algorithm. I've worked somewhat to make this implementation more
closely follow the traditional paper's nomenclature and strategy,
although it is still a bit obtuse because it isn't recursive, using
an explicit stack and a tail call instead, and it is interruptable,
resuming each time we need another SCC.
The other tricky bit here, and what actually took almost all the time
and trials and errors I spent building this, is exactly *what* graph
structure to build for the SCCs. The naive thing to build is the call
graph in its newly acyclic form. I wrote about 4 versions of this which
did precisely this. Inevitably, when I experimented with them across
various use cases, they became incredibly awkward. It was all
implementable, but it felt like a complete wrong fit. Square peg, round
hole. There were two overriding aspects that pushed me in a different
direction:
1) We want to discover the SCC graph in a postorder fashion. That means
the root node will be the *last* node we find. Using the call-SCC DAG
as the graph structure of the SCCs results in an orphaned graph until
we discover a root.
2) We will eventually want to walk the SCC graph in parallel, exploring
distinct sub-graphs independently, and synchronizing at merge points.
This again is not helped by the call-SCC DAG structure.
The structure which, quite surprisingly, ended up being completely
natural to use is the *inverse* of the call-SCC DAG. We add the leaf
SCCs to the graph as "roots", and have edges to the caller SCCs. Once
I switched to building this structure, everything just fell into place
elegantly.
Aside from general cleanups (there are FIXMEs and too few comments
overall) that are still needed, the other missing piece of this is
support for iterating across levels of the SCC graph. These will become
useful for implementing #2, but they aren't an immediate priority.
Once SCCs are in good shape, I'll be working on adding mutation support
for incremental updates and adding the pass manager that this analysis
enables.
llvm-svn: 206581
2014-04-18 18:50:32 +08:00
|
|
|
}
|
|
|
|
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
RootN->DFSNumber = RootN->LowLink = 1;
|
|
|
|
int NextDFSNumber = 2;
|
|
|
|
|
2017-02-07 03:38:06 +08:00
|
|
|
DFSStack.push_back({RootN, GetBegin(*RootN)});
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
do {
|
|
|
|
Node *N;
|
2017-02-07 03:38:06 +08:00
|
|
|
EdgeItT I;
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
std::tie(N, I) = DFSStack.pop_back_val();
|
2017-02-07 03:38:06 +08:00
|
|
|
auto E = GetEnd(*N);
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
while (I != E) {
|
2017-02-07 03:38:06 +08:00
|
|
|
Node &ChildN = GetNode(I);
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
if (ChildN.DFSNumber == 0) {
|
|
|
|
// We haven't yet visited this child, so descend, pushing the current
|
|
|
|
// node onto the stack.
|
|
|
|
DFSStack.push_back({N, I});
|
|
|
|
|
|
|
|
ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
|
|
|
|
N = &ChildN;
|
2017-02-07 03:38:06 +08:00
|
|
|
I = GetBegin(*N);
|
|
|
|
E = GetEnd(*N);
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
// If the child has already been added to some child component, it
|
|
|
|
// couldn't impact the low-link of this parent because it isn't
|
|
|
|
// connected, and thus its low-link isn't relevant so skip it.
|
|
|
|
if (ChildN.DFSNumber == -1) {
|
|
|
|
++I;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Track the lowest linked child as the lowest link for this node.
|
|
|
|
assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
|
|
|
|
if (ChildN.LowLink < N->LowLink)
|
|
|
|
N->LowLink = ChildN.LowLink;
|
|
|
|
|
|
|
|
// Move to the next edge.
|
|
|
|
++I;
|
|
|
|
}
|
|
|
|
|
|
|
|
// We've finished processing N and its descendents, put it on our pending
|
|
|
|
// SCC stack to eventually get merged into an SCC of nodes.
|
|
|
|
PendingSCCStack.push_back(N);
|
|
|
|
|
|
|
|
// If this node is linked to some lower entry, continue walking up the
|
|
|
|
// stack.
|
|
|
|
if (N->LowLink != N->DFSNumber)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
// Otherwise, we've completed an SCC. Append it to our post order list of
|
|
|
|
// SCCs.
|
|
|
|
int RootDFSNumber = N->DFSNumber;
|
|
|
|
// Find the range of the node stack by walking down until we pass the
|
|
|
|
// root DFS number.
|
|
|
|
auto SCCNodes = make_range(
|
|
|
|
PendingSCCStack.rbegin(),
|
2016-08-12 11:55:06 +08:00
|
|
|
find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
|
|
|
|
return N->DFSNumber < RootDFSNumber;
|
|
|
|
}));
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
// Form a new SCC out of these nodes and then clear them off our pending
|
|
|
|
// stack.
|
2017-02-07 03:38:06 +08:00
|
|
|
FormSCC(SCCNodes);
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
|
|
|
|
} while (!DFSStack.empty());
|
|
|
|
}
|
2017-02-07 03:38:06 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/// Build the internal SCCs for a RefSCC from a sequence of nodes.
|
|
|
|
///
|
|
|
|
/// Appends the SCCs to the provided vector and updates the map with their
|
|
|
|
/// indices. Both the vector and map must be empty when passed into this
|
|
|
|
/// routine.
|
|
|
|
void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) {
|
|
|
|
assert(RC.SCCs.empty() && "Already built SCCs!");
|
|
|
|
assert(RC.SCCIndices.empty() && "Already mapped SCC indices!");
|
|
|
|
|
|
|
|
for (Node *N : Nodes) {
|
|
|
|
assert(N->LowLink >= (*Nodes.begin())->LowLink &&
|
|
|
|
"We cannot have a low link in an SCC lower than its root on the "
|
|
|
|
"stack!");
|
|
|
|
|
|
|
|
// This node will go into the next RefSCC, clear out its DFS and low link
|
|
|
|
// as we scan.
|
|
|
|
N->DFSNumber = N->LowLink = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Each RefSCC contains a DAG of the call SCCs. To build these, we do
|
|
|
|
// a direct walk of the call edges using Tarjan's algorithm. We reuse the
|
|
|
|
// internal storage as we won't need it for the outer graph's DFS any longer.
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
buildGenericSCCs(
|
|
|
|
Nodes, [](Node &N) { return N->call_begin(); },
|
|
|
|
[](Node &N) { return N->call_end(); },
|
|
|
|
[](EdgeSequence::call_iterator I) -> Node & { return I->getNode(); },
|
|
|
|
[this, &RC](node_stack_range Nodes) {
|
|
|
|
RC.SCCs.push_back(createSCC(RC, Nodes));
|
|
|
|
for (Node &N : *RC.SCCs.back()) {
|
|
|
|
N.DFSNumber = N.LowLink = -1;
|
|
|
|
SCCMap[&N] = RC.SCCs.back();
|
|
|
|
}
|
|
|
|
});
|
[LCG] Add support for building persistent and connected SCCs to the
LazyCallGraph. This is the start of the whole point of this different
abstraction, but it is just the initial bits. Here is a run-down of
what's going on here. I'm planning to incorporate some (or all) of this
into comments going forward, hopefully with better editing and wording.
=]
The crux of the problem with the traditional way of building SCCs is
that they are ephemeral. The new pass manager however really needs the
ability to associate analysis passes and results of analysis passes with
SCCs in order to expose these analysis passes to the SCC passes. Making
this work is kind-of the whole point of the new pass manager. =]
So, when we're building SCCs for the call graph, we actually want to
build persistent nodes that stick around and can be reasoned about
later. We'd also like the ability to walk the SCC graph in more complex
ways than just the traditional postorder traversal of the current CGSCC
walk. That means that in addition to being persistent, the SCCs need to
be connected into a useful graph structure.
However, we still want the SCCs to be formed lazily where possible.
These constraints are quite hard to satisfy with the SCC iterator. Also,
using that would bypass our ability to actually add data to the nodes of
the call graph to facilite implementing the Tarjan walk. So I've
re-implemented things in a more direct and embedded way. This
immediately makes it easy to get the persistence and connectivity
correct, and it also allows leveraging the existing nodes to simplify
the algorithm. I've worked somewhat to make this implementation more
closely follow the traditional paper's nomenclature and strategy,
although it is still a bit obtuse because it isn't recursive, using
an explicit stack and a tail call instead, and it is interruptable,
resuming each time we need another SCC.
The other tricky bit here, and what actually took almost all the time
and trials and errors I spent building this, is exactly *what* graph
structure to build for the SCCs. The naive thing to build is the call
graph in its newly acyclic form. I wrote about 4 versions of this which
did precisely this. Inevitably, when I experimented with them across
various use cases, they became incredibly awkward. It was all
implementable, but it felt like a complete wrong fit. Square peg, round
hole. There were two overriding aspects that pushed me in a different
direction:
1) We want to discover the SCC graph in a postorder fashion. That means
the root node will be the *last* node we find. Using the call-SCC DAG
as the graph structure of the SCCs results in an orphaned graph until
we discover a root.
2) We will eventually want to walk the SCC graph in parallel, exploring
distinct sub-graphs independently, and synchronizing at merge points.
This again is not helped by the call-SCC DAG structure.
The structure which, quite surprisingly, ended up being completely
natural to use is the *inverse* of the call-SCC DAG. We add the leaf
SCCs to the graph as "roots", and have edges to the caller SCCs. Once
I switched to building this structure, everything just fell into place
elegantly.
Aside from general cleanups (there are FIXMEs and too few comments
overall) that are still needed, the other missing piece of this is
support for iterating across levels of the SCC graph. These will become
useful for implementing #2, but they aren't an immediate priority.
Once SCCs are in good shape, I'll be working on adding mutation support
for incremental updates and adding the pass manager that this analysis
enables.
llvm-svn: 206581
2014-04-18 18:50:32 +08:00
|
|
|
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
// Wire up the SCC indices.
|
|
|
|
for (int i = 0, Size = RC.SCCs.size(); i < Size; ++i)
|
|
|
|
RC.SCCIndices[RC.SCCs[i]] = i;
|
[LCG] Add support for building persistent and connected SCCs to the
LazyCallGraph. This is the start of the whole point of this different
abstraction, but it is just the initial bits. Here is a run-down of
what's going on here. I'm planning to incorporate some (or all) of this
into comments going forward, hopefully with better editing and wording.
=]
The crux of the problem with the traditional way of building SCCs is
that they are ephemeral. The new pass manager however really needs the
ability to associate analysis passes and results of analysis passes with
SCCs in order to expose these analysis passes to the SCC passes. Making
this work is kind-of the whole point of the new pass manager. =]
So, when we're building SCCs for the call graph, we actually want to
build persistent nodes that stick around and can be reasoned about
later. We'd also like the ability to walk the SCC graph in more complex
ways than just the traditional postorder traversal of the current CGSCC
walk. That means that in addition to being persistent, the SCCs need to
be connected into a useful graph structure.
However, we still want the SCCs to be formed lazily where possible.
These constraints are quite hard to satisfy with the SCC iterator. Also,
using that would bypass our ability to actually add data to the nodes of
the call graph to facilite implementing the Tarjan walk. So I've
re-implemented things in a more direct and embedded way. This
immediately makes it easy to get the persistence and connectivity
correct, and it also allows leveraging the existing nodes to simplify
the algorithm. I've worked somewhat to make this implementation more
closely follow the traditional paper's nomenclature and strategy,
although it is still a bit obtuse because it isn't recursive, using
an explicit stack and a tail call instead, and it is interruptable,
resuming each time we need another SCC.
The other tricky bit here, and what actually took almost all the time
and trials and errors I spent building this, is exactly *what* graph
structure to build for the SCCs. The naive thing to build is the call
graph in its newly acyclic form. I wrote about 4 versions of this which
did precisely this. Inevitably, when I experimented with them across
various use cases, they became incredibly awkward. It was all
implementable, but it felt like a complete wrong fit. Square peg, round
hole. There were two overriding aspects that pushed me in a different
direction:
1) We want to discover the SCC graph in a postorder fashion. That means
the root node will be the *last* node we find. Using the call-SCC DAG
as the graph structure of the SCCs results in an orphaned graph until
we discover a root.
2) We will eventually want to walk the SCC graph in parallel, exploring
distinct sub-graphs independently, and synchronizing at merge points.
This again is not helped by the call-SCC DAG structure.
The structure which, quite surprisingly, ended up being completely
natural to use is the *inverse* of the call-SCC DAG. We add the leaf
SCCs to the graph as "roots", and have edges to the caller SCCs. Once
I switched to building this structure, everything just fell into place
elegantly.
Aside from general cleanups (there are FIXMEs and too few comments
overall) that are still needed, the other missing piece of this is
support for iterating across levels of the SCC graph. These will become
useful for implementing #2, but they aren't an immediate priority.
Once SCCs are in good shape, I'll be working on adding mutation support
for incremental updates and adding the pass manager that this analysis
enables.
llvm-svn: 206581
2014-04-18 18:50:32 +08:00
|
|
|
}
|
|
|
|
|
2017-02-07 03:38:06 +08:00
|
|
|
void LazyCallGraph::buildRefSCCs() {
|
|
|
|
if (EntryEdges.empty() || !PostOrderRefSCCs.empty())
|
|
|
|
// RefSCCs are either non-existent or already built!
|
|
|
|
return;
|
|
|
|
|
|
|
|
assert(RefSCCIndices.empty() && "Already mapped RefSCC indices!");
|
|
|
|
|
|
|
|
SmallVector<Node *, 16> Roots;
|
|
|
|
for (Edge &E : *this)
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
Roots.push_back(&E.getNode());
|
2017-02-07 03:38:06 +08:00
|
|
|
|
|
|
|
// The roots will be popped of a stack, so use reverse to get a less
|
|
|
|
// surprising order. This doesn't change any of the semantics anywhere.
|
|
|
|
std::reverse(Roots.begin(), Roots.end());
|
|
|
|
|
|
|
|
buildGenericSCCs(
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
Roots,
|
|
|
|
[](Node &N) {
|
|
|
|
// We need to populate each node as we begin to walk its edges.
|
|
|
|
N.populate();
|
|
|
|
return N->begin();
|
2017-02-07 03:38:06 +08:00
|
|
|
},
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
[](Node &N) { return N->end(); },
|
|
|
|
[](EdgeSequence::iterator I) -> Node & { return I->getNode(); },
|
2017-02-07 03:38:06 +08:00
|
|
|
[this](node_stack_range Nodes) {
|
|
|
|
RefSCC *NewRC = createRefSCC(*this);
|
|
|
|
buildSCCs(*NewRC, Nodes);
|
|
|
|
connectRefSCC(*NewRC);
|
|
|
|
|
|
|
|
// Push the new node into the postorder list and remember its position
|
|
|
|
// in the index map.
|
|
|
|
bool Inserted =
|
|
|
|
RefSCCIndices.insert({NewRC, PostOrderRefSCCs.size()}).second;
|
|
|
|
(void)Inserted;
|
|
|
|
assert(Inserted && "Cannot already have this RefSCC in the index map!");
|
|
|
|
PostOrderRefSCCs.push_back(NewRC);
|
2017-02-07 04:59:07 +08:00
|
|
|
#ifndef NDEBUG
|
2017-02-07 03:38:06 +08:00
|
|
|
NewRC->verify();
|
2017-02-07 04:59:07 +08:00
|
|
|
#endif
|
2017-02-07 03:38:06 +08:00
|
|
|
});
|
|
|
|
}
|
|
|
|
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
// FIXME: We should move callers of this to embed the parent linking and leaf
|
|
|
|
// tracking into their DFS in order to remove a full walk of all edges.
|
|
|
|
void LazyCallGraph::connectRefSCC(RefSCC &RC) {
|
|
|
|
// Walk all edges in the RefSCC (this remains linear as we only do this once
|
|
|
|
// when we build the RefSCC) to connect it to the parent sets of its
|
|
|
|
// children.
|
|
|
|
bool IsLeaf = true;
|
|
|
|
for (SCC &C : RC)
|
|
|
|
for (Node &N : C)
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
for (Edge &E : *N) {
|
|
|
|
RefSCC &ChildRC = *lookupRefSCC(E.getNode());
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
if (&ChildRC == &RC)
|
|
|
|
continue;
|
|
|
|
ChildRC.Parents.insert(&RC);
|
|
|
|
IsLeaf = false;
|
|
|
|
}
|
|
|
|
|
2016-10-12 15:59:56 +08:00
|
|
|
// For the SCCs where we find no child SCCs, add them to the leaf list.
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
if (IsLeaf)
|
|
|
|
LeafRefSCCs.push_back(&RC);
|
|
|
|
}
|
|
|
|
|
2016-11-24 01:53:26 +08:00
|
|
|
AnalysisKey LazyCallGraphAnalysis::Key;
|
2016-02-29 01:17:00 +08:00
|
|
|
|
2014-02-06 12:37:03 +08:00
|
|
|
LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}
|
|
|
|
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
static void printNode(raw_ostream &OS, LazyCallGraph::Node &N) {
|
2016-02-02 11:57:13 +08:00
|
|
|
OS << " Edges in function: " << N.getFunction().getName() << "\n";
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
for (LazyCallGraph::Edge &E : N.populate())
|
2016-02-02 11:57:13 +08:00
|
|
|
OS << " " << (E.isCall() ? "call" : "ref ") << " -> "
|
|
|
|
<< E.getFunction().getName() << "\n";
|
2015-01-14 08:27:45 +08:00
|
|
|
|
|
|
|
OS << "\n";
|
|
|
|
}
|
|
|
|
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &C) {
|
|
|
|
ptrdiff_t Size = std::distance(C.begin(), C.end());
|
|
|
|
OS << " SCC with " << Size << " functions:\n";
|
|
|
|
|
|
|
|
for (LazyCallGraph::Node &N : C)
|
|
|
|
OS << " " << N.getFunction().getName() << "\n";
|
|
|
|
}
|
|
|
|
|
|
|
|
static void printRefSCC(raw_ostream &OS, LazyCallGraph::RefSCC &C) {
|
|
|
|
ptrdiff_t Size = std::distance(C.begin(), C.end());
|
|
|
|
OS << " RefSCC with " << Size << " call SCCs:\n";
|
2015-01-14 08:27:45 +08:00
|
|
|
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
for (LazyCallGraph::SCC &InnerC : C)
|
|
|
|
printSCC(OS, InnerC);
|
2015-01-14 08:27:45 +08:00
|
|
|
|
|
|
|
OS << "\n";
|
|
|
|
}
|
|
|
|
|
2015-01-05 10:47:05 +08:00
|
|
|
PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M,
|
2016-03-11 19:05:24 +08:00
|
|
|
ModuleAnalysisManager &AM) {
|
|
|
|
LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
|
2015-01-14 08:27:45 +08:00
|
|
|
|
|
|
|
OS << "Printing the call graph for module: " << M.getModuleIdentifier()
|
|
|
|
<< "\n\n";
|
|
|
|
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
for (Function &F : M)
|
|
|
|
printNode(OS, G.get(F));
|
2015-01-14 08:27:45 +08:00
|
|
|
|
2017-02-07 03:38:06 +08:00
|
|
|
G.buildRefSCCs();
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
for (LazyCallGraph::RefSCC &C : G.postorder_ref_sccs())
|
|
|
|
printRefSCC(OS, C);
|
[LCG] Add support for building persistent and connected SCCs to the
LazyCallGraph. This is the start of the whole point of this different
abstraction, but it is just the initial bits. Here is a run-down of
what's going on here. I'm planning to incorporate some (or all) of this
into comments going forward, hopefully with better editing and wording.
=]
The crux of the problem with the traditional way of building SCCs is
that they are ephemeral. The new pass manager however really needs the
ability to associate analysis passes and results of analysis passes with
SCCs in order to expose these analysis passes to the SCC passes. Making
this work is kind-of the whole point of the new pass manager. =]
So, when we're building SCCs for the call graph, we actually want to
build persistent nodes that stick around and can be reasoned about
later. We'd also like the ability to walk the SCC graph in more complex
ways than just the traditional postorder traversal of the current CGSCC
walk. That means that in addition to being persistent, the SCCs need to
be connected into a useful graph structure.
However, we still want the SCCs to be formed lazily where possible.
These constraints are quite hard to satisfy with the SCC iterator. Also,
using that would bypass our ability to actually add data to the nodes of
the call graph to facilite implementing the Tarjan walk. So I've
re-implemented things in a more direct and embedded way. This
immediately makes it easy to get the persistence and connectivity
correct, and it also allows leveraging the existing nodes to simplify
the algorithm. I've worked somewhat to make this implementation more
closely follow the traditional paper's nomenclature and strategy,
although it is still a bit obtuse because it isn't recursive, using
an explicit stack and a tail call instead, and it is interruptable,
resuming each time we need another SCC.
The other tricky bit here, and what actually took almost all the time
and trials and errors I spent building this, is exactly *what* graph
structure to build for the SCCs. The naive thing to build is the call
graph in its newly acyclic form. I wrote about 4 versions of this which
did precisely this. Inevitably, when I experimented with them across
various use cases, they became incredibly awkward. It was all
implementable, but it felt like a complete wrong fit. Square peg, round
hole. There were two overriding aspects that pushed me in a different
direction:
1) We want to discover the SCC graph in a postorder fashion. That means
the root node will be the *last* node we find. Using the call-SCC DAG
as the graph structure of the SCCs results in an orphaned graph until
we discover a root.
2) We will eventually want to walk the SCC graph in parallel, exploring
distinct sub-graphs independently, and synchronizing at merge points.
This again is not helped by the call-SCC DAG structure.
The structure which, quite surprisingly, ended up being completely
natural to use is the *inverse* of the call-SCC DAG. We add the leaf
SCCs to the graph as "roots", and have edges to the caller SCCs. Once
I switched to building this structure, everything just fell into place
elegantly.
Aside from general cleanups (there are FIXMEs and too few comments
overall) that are still needed, the other missing piece of this is
support for iterating across levels of the SCC graph. These will become
useful for implementing #2, but they aren't an immediate priority.
Once SCCs are in good shape, I'll be working on adding mutation support
for incremental updates and adding the pass manager that this analysis
enables.
llvm-svn: 206581
2014-04-18 18:50:32 +08:00
|
|
|
|
2014-02-06 12:37:03 +08:00
|
|
|
return PreservedAnalyses::all();
|
|
|
|
}
|
2016-06-18 17:17:32 +08:00
|
|
|
|
|
|
|
LazyCallGraphDOTPrinterPass::LazyCallGraphDOTPrinterPass(raw_ostream &OS)
|
|
|
|
: OS(OS) {}
|
|
|
|
|
|
|
|
static void printNodeDOT(raw_ostream &OS, LazyCallGraph::Node &N) {
|
|
|
|
std::string Name = "\"" + DOT::EscapeString(N.getFunction().getName()) + "\"";
|
|
|
|
|
[PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
2017-02-10 07:24:13 +08:00
|
|
|
for (LazyCallGraph::Edge &E : N.populate()) {
|
2016-06-18 17:17:32 +08:00
|
|
|
OS << " " << Name << " -> \""
|
|
|
|
<< DOT::EscapeString(E.getFunction().getName()) << "\"";
|
|
|
|
if (!E.isCall()) // It is a ref edge.
|
|
|
|
OS << " [style=dashed,label=\"ref\"]";
|
|
|
|
OS << ";\n";
|
|
|
|
}
|
|
|
|
|
|
|
|
OS << "\n";
|
|
|
|
}
|
|
|
|
|
|
|
|
PreservedAnalyses LazyCallGraphDOTPrinterPass::run(Module &M,
|
|
|
|
ModuleAnalysisManager &AM) {
|
|
|
|
LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
|
|
|
|
|
|
|
|
OS << "digraph \"" << DOT::EscapeString(M.getModuleIdentifier()) << "\" {\n";
|
|
|
|
|
|
|
|
for (Function &F : M)
|
|
|
|
printNodeDOT(OS, G.get(F));
|
|
|
|
|
|
|
|
OS << "}\n";
|
|
|
|
|
|
|
|
return PreservedAnalyses::all();
|
|
|
|
}
|