llvm-project/clang/lib/Analysis/ValueState.cpp

596 lines
16 KiB
C++
Raw Normal View History

//= ValueState*cpp - Path-Sens. "State" for tracking valuues -----*- C++ -*--=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
2008-03-06 18:40:09 +08:00
// This file defines SymbolID, ExprBindKey, and ValueState*
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/PathSensitive/ValueState.h"
#include "llvm/ADT/SmallSet.h"
using namespace clang;
bool ValueState::isNotEqual(SymbolID sym, const llvm::APSInt& V) const {
// Retrieve the NE-set associated with the given symbol.
ConstNotEqTy::TreeTy* T = ConstNotEq.SlimFind(sym);
// See if V is present in the NE-set.
return T ? T->getValue().second.contains(&V) : false;
}
const llvm::APSInt* ValueState::getSymVal(SymbolID sym) const {
ConstEqTy::TreeTy* T = ConstEq.SlimFind(sym);
return T ? T->getValue().second : NULL;
}
ValueState*
ValueStateManager::RemoveDeadBindings(ValueState* St, Stmt* Loc,
const LiveVariables& Liveness) {
// This code essentially performs a "mark-and-sweep" of the VariableBindings.
// The roots are any Block-level exprs and Decls that our liveness algorithm
// tells us are live. We then see what Decls they may reference, and keep
// those around. This code more than likely can be made faster, and the
// frequency of which this method is called should be experimented with
// for optimum performance.
llvm::SmallVector<ValueDecl*, 10> WList;
llvm::SmallPtrSet<ValueDecl*, 10> Marked;
llvm::SmallSet<SymbolID, 20> MarkedSymbols;
ValueState NewSt = *St;
// Drop bindings for subexpressions.
NewSt.SubExprBindings = EXFactory.GetEmptyMap();
// Iterate over the block-expr bindings.
for (ValueState::beb_iterator I = St->beb_begin(), E = St->beb_end();
I!=E ; ++I) {
Expr* BlkExpr = I.getKey();
if (Liveness.isLive(Loc, BlkExpr)) {
RVal X = I.getData();
if (isa<lval::DeclVal>(X)) {
lval::DeclVal LV = cast<lval::DeclVal>(X);
WList.push_back(LV.getDecl());
}
for (RVal::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end();
SI != SE; ++SI) {
MarkedSymbols.insert(*SI);
}
}
else {
RVal X = I.getData();
if (X.isUndef() && cast<UndefinedVal>(X).getData())
continue;
NewSt.BlockExprBindings = Remove(NewSt, BlkExpr);
}
}
// Iterate over the variable bindings.
for (ValueState::vb_iterator I = St->vb_begin(), E = St->vb_end(); I!=E ; ++I)
if (Liveness.isLive(Loc, I.getKey())) {
WList.push_back(I.getKey());
RVal X = I.getData();
for (RVal::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end();
SI != SE; ++SI) {
MarkedSymbols.insert(*SI);
}
}
// Perform the mark-and-sweep.
while (!WList.empty()) {
ValueDecl* V = WList.back();
WList.pop_back();
if (Marked.count(V))
continue;
Marked.insert(V);
if (V->getType()->isPointerType()) {
RVal X = GetRVal(St, lval::DeclVal(cast<VarDecl>(V)));
if (X.isUnknownOrUndef())
continue;
LVal LV = cast<LVal>(X);
for (RVal::symbol_iterator SI = LV.symbol_begin(), SE = LV.symbol_end();
SI != SE; ++SI) {
MarkedSymbols.insert(*SI);
}
if (!isa<lval::DeclVal>(LV))
continue;
const lval::DeclVal& LVD = cast<lval::DeclVal>(LV);
WList.push_back(LVD.getDecl());
}
}
// Remove dead variable bindings.
for (ValueState::vb_iterator I = St->vb_begin(), E = St->vb_end(); I!=E ; ++I)
if (!Marked.count(I.getKey()))
NewSt.VarBindings = Remove(NewSt, I.getKey());
// Remove dead symbols.
for (ValueState::ce_iterator I = St->ce_begin(), E=St->ce_end(); I!=E; ++I)
if (!MarkedSymbols.count(I.getKey()))
NewSt.ConstEq = CEFactory.Remove(NewSt.ConstEq, I.getKey());
for (ValueState::cne_iterator I = St->cne_begin(), E=St->cne_end(); I!=E; ++I)
if (!MarkedSymbols.count(I.getKey()))
NewSt.ConstNotEq = CNEFactory.Remove(NewSt.ConstNotEq, I.getKey());
return getPersistentState(NewSt);
}
RVal ValueStateManager::GetRVal(ValueState* St, LVal LV, QualType T) {
if (isa<UnknownVal>(LV))
return UnknownVal();
assert (!isa<UndefinedVal>(LV));
switch (LV.getSubKind()) {
case lval::DeclValKind: {
ValueState::VarBindingsTy::TreeTy* T =
St->VarBindings.SlimFind(cast<lval::DeclVal>(LV).getDecl());
return T ? T->getValue().second : UnknownVal();
}
// FIXME: We should limit how far a "ContentsOf" will go...
case lval::SymbolValKind: {
// FIXME: This is a broken representation of memory, and is prone
// to crashing the analyzer when addresses to symbolic values are
// passed through casts. We need a better representation of symbolic
// memory (or just memory in general); probably we should do this
// as a plugin class (similar to GRTransferFuncs).
#if 0
const lval::SymbolVal& SV = cast<lval::SymbolVal>(LV);
assert (T.getTypePtr());
// Punt on "symbolic" function pointers.
if (T->isFunctionType())
return UnknownVal();
if (T->isPointerType())
return lval::SymbolVal(SymMgr.getContentsOfSymbol(SV.getSymbol()));
else
return nonlval::SymbolVal(SymMgr.getContentsOfSymbol(SV.getSymbol()));
#endif
return UnknownVal();
}
default:
assert (false && "Invalid LVal.");
break;
}
return UnknownVal();
}
ValueState* ValueStateManager::AddNE(ValueState* St, SymbolID sym,
const llvm::APSInt& V) {
// First, retrieve the NE-set associated with the given symbol.
ValueState::ConstNotEqTy::TreeTy* T = St->ConstNotEq.SlimFind(sym);
ValueState::IntSetTy S = T ? T->getValue().second : ISetFactory.GetEmptySet();
// Now add V to the NE set.
S = ISetFactory.Add(S, &V);
// Create a new state with the old binding replaced.
ValueState NewSt = *St;
NewSt.ConstNotEq = CNEFactory.Add(NewSt.ConstNotEq, sym, S);
// Get the persistent copy.
return getPersistentState(NewSt);
}
ValueState* ValueStateManager::AddEQ(ValueState* St, SymbolID sym,
const llvm::APSInt& V) {
// Create a new state with the old binding replaced.
ValueState NewSt = *St;
NewSt.ConstEq = CEFactory.Add(NewSt.ConstEq, sym, &V);
// Get the persistent copy.
return getPersistentState(NewSt);
}
RVal ValueStateManager::GetRVal(ValueState* St, Expr* E) {
for (;;) {
switch (E->getStmtClass()) {
case Stmt::AddrLabelExprClass:
return LVal::MakeVal(cast<AddrLabelExpr>(E));
// ParenExprs are no-ops.
case Stmt::ParenExprClass:
E = cast<ParenExpr>(E)->getSubExpr();
continue;
// DeclRefExprs can either evaluate to an LVal or a Non-LVal
// (assuming an implicit "load") depending on the context. In this
// context we assume that we are retrieving the value contained
// within the referenced variables.
case Stmt::DeclRefExprClass: {
// Check if this expression is a block-level expression. If so,
// return its value.
ValueState::ExprBindingsTy::TreeTy* T=St->BlockExprBindings.SlimFind(E);
if (T) return T->getValue().second;
RVal X = RVal::MakeVal(BasicVals, cast<DeclRefExpr>(E));
return isa<lval::DeclVal>(X) ? GetRVal(St, cast<lval::DeclVal>(X)) : X;
}
case Stmt::CharacterLiteralClass: {
CharacterLiteral* C = cast<CharacterLiteral>(E);
return NonLVal::MakeVal(BasicVals, C->getValue(), C->getType());
}
case Stmt::IntegerLiteralClass: {
return NonLVal::MakeVal(BasicVals, cast<IntegerLiteral>(E));
}
// Casts where the source and target type are the same
// are no-ops. We blast through these to get the descendant
// subexpression that has a value.
case Stmt::ImplicitCastExprClass: {
ImplicitCastExpr* C = cast<ImplicitCastExpr>(E);
QualType CT = C->getType();
if (CT->isVoidType())
return UnknownVal();
QualType ST = C->getSubExpr()->getType();
if (CT == ST || (CT->isPointerType() && ST->isFunctionType())) {
E = C->getSubExpr();
continue;
}
break;
}
case Stmt::CastExprClass: {
CastExpr* C = cast<CastExpr>(E);
QualType CT = C->getType();
QualType ST = C->getSubExpr()->getType();
if (CT->isVoidType())
return UnknownVal();
if (CT == ST || (CT->isPointerType() && ST->isFunctionType())) {
E = C->getSubExpr();
continue;
}
break;
}
case Stmt::UnaryOperatorClass: {
UnaryOperator* U = cast<UnaryOperator>(E);
if (U->getOpcode() == UnaryOperator::Plus) {
E = U->getSubExpr();
continue;
}
break;
}
// Handle all other Expr* using a lookup.
default:
break;
};
break;
}
ValueState::ExprBindingsTy::TreeTy* T = St->SubExprBindings.SlimFind(E);
if (T)
return T->getValue().second;
T = St->BlockExprBindings.SlimFind(E);
return T ? T->getValue().second : UnknownVal();
}
RVal ValueStateManager::GetBlkExprRVal(ValueState* St, Expr* E) {
E = E->IgnoreParens();
switch (E->getStmtClass()) {
case Stmt::CharacterLiteralClass: {
CharacterLiteral* C = cast<CharacterLiteral>(E);
return NonLVal::MakeVal(BasicVals, C->getValue(), C->getType());
}
case Stmt::IntegerLiteralClass: {
return NonLVal::MakeVal(BasicVals, cast<IntegerLiteral>(E));
}
default: {
ValueState::ExprBindingsTy::TreeTy* T = St->BlockExprBindings.SlimFind(E);
return T ? T->getValue().second : UnknownVal();
}
}
}
RVal ValueStateManager::GetLVal(ValueState* St, Expr* E) {
E = E->IgnoreParens();
if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(E)) {
ValueDecl* VD = DR->getDecl();
if (FunctionDecl* FD = dyn_cast<FunctionDecl>(VD))
return lval::FuncVal(FD);
else
return lval::DeclVal(cast<VarDecl>(DR->getDecl()));
}
if (UnaryOperator* U = dyn_cast<UnaryOperator>(E))
if (U->getOpcode() == UnaryOperator::Deref) {
E = U->getSubExpr()->IgnoreParens();
if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(E)) {
lval::DeclVal X(cast<VarDecl>(DR->getDecl()));
return GetRVal(St, X);
}
else
return GetRVal(St, E);
}
return GetRVal(St, E);
}
ValueState*
ValueStateManager::SetRVal(ValueState* St, Expr* E, RVal V,
bool isBlkExpr, bool Invalidate) {
assert (E);
if (V.isUnknown()) {
if (Invalidate) {
ValueState NewSt = *St;
if (isBlkExpr)
NewSt.BlockExprBindings = EXFactory.Remove(NewSt.BlockExprBindings, E);
else
NewSt.SubExprBindings = EXFactory.Remove(NewSt.SubExprBindings, E);
return getPersistentState(NewSt);
}
return St;
}
ValueState NewSt = *St;
if (isBlkExpr) {
NewSt.BlockExprBindings = EXFactory.Add(NewSt.BlockExprBindings, E, V);
}
else {
NewSt.SubExprBindings = EXFactory.Add(NewSt.SubExprBindings, E, V);
}
return getPersistentState(NewSt);
}
ValueState* ValueStateManager::SetRVal(ValueState* St, LVal LV, RVal V) {
switch (LV.getSubKind()) {
case lval::DeclValKind:
return V.isUnknown()
? UnbindVar(St, cast<lval::DeclVal>(LV).getDecl())
: BindVar(St, cast<lval::DeclVal>(LV).getDecl(), V);
default:
assert ("SetRVal for given LVal type not yet implemented.");
return St;
}
}
void ValueStateManager::BindVar(ValueState& StImpl, VarDecl* D, RVal V) {
StImpl.VarBindings = VBFactory.Add(StImpl.VarBindings, D, V);
}
ValueState* ValueStateManager::BindVar(ValueState* St, VarDecl* D, RVal V) {
// Create a new state with the old binding removed.
ValueState NewSt = *St;
NewSt.VarBindings = VBFactory.Add(NewSt.VarBindings, D, V);
// Get the persistent copy.
return getPersistentState(NewSt);
}
ValueState* ValueStateManager::UnbindVar(ValueState* St, VarDecl* D) {
// Create a new state with the old binding removed.
ValueState NewSt = *St;
NewSt.VarBindings = VBFactory.Remove(NewSt.VarBindings, D);
// Get the persistent copy.
return getPersistentState(NewSt);
}
void ValueStateManager::Unbind(ValueState& StImpl, LVal LV) {
if (isa<lval::DeclVal>(LV))
StImpl.VarBindings = VBFactory.Remove(StImpl.VarBindings,
cast<lval::DeclVal>(LV).getDecl());
}
ValueState* ValueStateManager::getInitialState() {
// Create a state with empty variable bindings.
ValueState StateImpl(EXFactory.GetEmptyMap(),
VBFactory.GetEmptyMap(),
CNEFactory.GetEmptyMap(),
CEFactory.GetEmptyMap());
return getPersistentState(StateImpl);
}
ValueState* ValueStateManager::getPersistentState(ValueState& State) {
llvm::FoldingSetNodeID ID;
State.Profile(ID);
void* InsertPos;
if (ValueState* I = StateSet.FindNodeOrInsertPos(ID, InsertPos))
return I;
ValueState* I = (ValueState*) Alloc.Allocate<ValueState>();
new (I) ValueState(State);
StateSet.InsertNode(I, InsertPos);
return I;
}
void ValueState::printDOT(std::ostream& Out, CheckerStatePrinter* P) const {
print(Out, P, "\\l", "\\|");
}
void ValueState::printStdErr(CheckerStatePrinter* P) const {
print(*llvm::cerr, P);
}
void ValueState::print(std::ostream& Out, CheckerStatePrinter* P,
const char* nl, const char* sep) const {
// Print Variable Bindings
Out << "Variables:" << nl;
bool isFirst = true;
for (vb_iterator I = vb_begin(), E = vb_end(); I != E; ++I) {
if (isFirst) isFirst = false;
else Out << nl;
Out << ' ' << I.getKey()->getName() << " : ";
I.getData().print(Out);
}
// Print Subexpression bindings.
isFirst = true;
for (seb_iterator I = seb_begin(), E = seb_end(); I != E; ++I) {
if (isFirst) {
Out << nl << nl << "Sub-Expressions:" << nl;
isFirst = false;
}
else { Out << nl; }
Out << " (" << (void*) I.getKey() << ") ";
I.getKey()->printPretty(Out);
Out << " : ";
I.getData().print(Out);
}
// Print block-expression bindings.
isFirst = true;
for (beb_iterator I = beb_begin(), E = beb_end(); I != E; ++I) {
if (isFirst) {
Out << nl << nl << "Block-level Expressions:" << nl;
isFirst = false;
}
else { Out << nl; }
Out << " (" << (void*) I.getKey() << ") ";
I.getKey()->printPretty(Out);
Out << " : ";
I.getData().print(Out);
}
// Print equality constraints.
if (!ConstEq.isEmpty()) {
Out << nl << sep << "'==' constraints:";
for (ConstEqTy::iterator I = ConstEq.begin(),
E = ConstEq.end(); I!=E; ++I) {
Out << nl << " $" << I.getKey()
<< " : " << I.getData()->toString();
}
}
// Print != constraints.
if (!ConstNotEq.isEmpty()) {
Out << nl << sep << "'!=' constraints:";
for (ConstNotEqTy::iterator I = ConstNotEq.begin(),
EI = ConstNotEq.end(); I != EI; ++I) {
Out << nl << " $" << I.getKey() << " : ";
isFirst = true;
IntSetTy::iterator J = I.getData().begin(), EJ = I.getData().end();
for ( ; J != EJ; ++J) {
if (isFirst) isFirst = false;
else Out << ", ";
Out << (*J)->toString();
}
}
}
// Print checker-specific data.
if (P && CheckerState)
P->PrintCheckerState(Out, CheckerState, nl, sep);
}