llvm-project/mlir/lib/IR/AsmPrinter.cpp

1667 lines
50 KiB
C++
Raw Normal View History

//===- AsmPrinter.cpp - MLIR Assembly Printer Implementation --------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This file implements the MLIR AsmPrinter class, which is used to implement
// the various print() methods on the core IR objects.
//
//===----------------------------------------------------------------------===//
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/Operation.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/Support/STLExtras.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Regex.h"
using namespace mlir;
void Identifier::print(raw_ostream &os) const { os << str(); }
void Identifier::dump() const { print(llvm::errs()); }
void OperationName::print(raw_ostream &os) const { os << getStringRef(); }
void OperationName::dump() const { print(llvm::errs()); }
OpAsmPrinter::~OpAsmPrinter() {}
//===----------------------------------------------------------------------===//
// ModuleState
//===----------------------------------------------------------------------===//
// TODO(riverriddle) Rethink this flag when we have a pass that can remove debug
// info or when we have a system for printer flags.
static llvm::cl::opt<bool>
shouldPrintDebugInfoOpt("mlir-print-debuginfo",
llvm::cl::desc("Print debug info in MLIR output"),
llvm::cl::init(false));
static llvm::cl::opt<bool> printPrettyDebugInfo(
"mlir-pretty-debuginfo",
llvm::cl::desc("Print pretty debug info in MLIR output"),
llvm::cl::init(false));
// Use the generic op output form in the function printer even if the custom
// form is defined.
static llvm::cl::opt<bool>
printGenericOpForm("mlir-print-op-generic",
llvm::cl::desc("Print the generic op form"),
llvm::cl::init(false), llvm::cl::Hidden);
namespace {
class ModuleState {
public:
/// This is the current context if it is knowable, otherwise this is null.
MLIRContext *const context;
explicit ModuleState(MLIRContext *context) : context(context) {}
// Initializes module state, populating affine map state.
void initialize(Module *module);
StringRef getAffineMapAlias(AffineMap affineMap) const {
return affineMapToAlias.lookup(affineMap);
}
int getAffineMapId(AffineMap affineMap) const {
auto it = affineMapIds.find(affineMap);
if (it == affineMapIds.end()) {
return -1;
}
return it->second;
}
ArrayRef<AffineMap> getAffineMapIds() const { return affineMapsById; }
StringRef getIntegerSetAlias(IntegerSet integerSet) const {
return integerSetToAlias.lookup(integerSet);
}
int getIntegerSetId(IntegerSet integerSet) const {
auto it = integerSetIds.find(integerSet);
if (it == integerSetIds.end()) {
return -1;
}
return it->second;
}
ArrayRef<IntegerSet> getIntegerSetIds() const { return integerSetsById; }
StringRef getTypeAlias(Type ty) const { return typeToAlias.lookup(ty); }
ArrayRef<Type> getTypeIds() const { return usedTypes.getArrayRef(); }
private:
void recordAffineMapReference(AffineMap affineMap) {
if (affineMapIds.count(affineMap) == 0) {
affineMapIds[affineMap] = affineMapsById.size();
affineMapsById.push_back(affineMap);
}
}
void recordIntegerSetReference(IntegerSet integerSet) {
if (integerSetIds.count(integerSet) == 0) {
integerSetIds[integerSet] = integerSetsById.size();
integerSetsById.push_back(integerSet);
}
}
void recordTypeReference(Type ty) { usedTypes.insert(ty); }
// Visit functions.
void visitOperation(Operation *op);
void visitType(Type type);
void visitAttribute(Attribute attr);
// Initialize symbol aliases.
void initializeSymbolAliases();
DenseMap<AffineMap, int> affineMapIds;
std::vector<AffineMap> affineMapsById;
DenseMap<AffineMap, StringRef> affineMapToAlias;
DenseMap<IntegerSet, int> integerSetIds;
std::vector<IntegerSet> integerSetsById;
DenseMap<IntegerSet, StringRef> integerSetToAlias;
llvm::SetVector<Type> usedTypes;
DenseMap<Type, StringRef> typeToAlias;
};
} // end anonymous namespace
// TODO Support visiting other types/operations when implemented.
void ModuleState::visitType(Type type) {
recordTypeReference(type);
if (auto funcType = type.dyn_cast<FunctionType>()) {
// Visit input and result types for functions.
for (auto input : funcType.getInputs())
visitType(input);
for (auto result : funcType.getResults())
visitType(result);
} else if (auto memref = type.dyn_cast<MemRefType>()) {
// Visit affine maps in memref type.
for (auto map : memref.getAffineMaps()) {
recordAffineMapReference(map);
}
} else if (auto vecOrTensor = type.dyn_cast<VectorOrTensorType>()) {
visitType(vecOrTensor.getElementType());
}
}
void ModuleState::visitAttribute(Attribute attr) {
if (auto mapAttr = attr.dyn_cast<AffineMapAttr>()) {
recordAffineMapReference(mapAttr.getValue());
} else if (auto setAttr = attr.dyn_cast<IntegerSetAttr>()) {
recordIntegerSetReference(setAttr.getValue());
} else if (auto arrayAttr = attr.dyn_cast<ArrayAttr>()) {
for (auto elt : arrayAttr.getValue()) {
visitAttribute(elt);
}
}
}
void ModuleState::visitOperation(Operation *op) {
// Visit all the types used in the operation.
for (auto *operand : op->getOperands())
visitType(operand->getType());
for (auto *result : op->getResults())
visitType(result->getType());
// Visit each of the attributes.
for (auto elt : op->getAttrs())
visitAttribute(elt.second);
}
// Utility to generate a function to register a symbol alias.
template <typename SymbolsInModuleSetTy, typename SymbolTy>
static void registerSymbolAlias(StringRef name, SymbolTy sym,
SymbolsInModuleSetTy &symbolsInModuleSet,
llvm::StringSet<> &usedAliases,
DenseMap<SymbolTy, StringRef> &symToAlias) {
assert(!name.empty() && "expected alias name to be non-empty");
assert(sym && "expected alias symbol to be non-null");
// TODO(riverriddle) Assert that the provided alias name can be lexed as
// an identifier.
// Check if the symbol is not referenced by the module or the name is
// already used by another alias.
if (!symbolsInModuleSet.count(sym) || !usedAliases.insert(name).second)
return;
symToAlias.try_emplace(sym, name);
}
void ModuleState::initializeSymbolAliases() {
// Track the identifiers in use for each symbol so that the same identifier
// isn't used twice.
llvm::StringSet<> usedAliases;
// Get the currently registered dialects.
auto dialects = context->getRegisteredDialects();
// Collect the set of aliases from each dialect.
SmallVector<std::pair<StringRef, AffineMap>, 8> affineMapAliases;
SmallVector<std::pair<StringRef, IntegerSet>, 8> integerSetAliases;
SmallVector<std::pair<StringRef, Type>, 16> typeAliases;
for (auto *dialect : dialects) {
dialect->getAffineMapAliases(affineMapAliases);
dialect->getIntegerSetAliases(integerSetAliases);
dialect->getTypeAliases(typeAliases);
}
// Register the affine aliases.
// Create a regex for the non-alias names of sets and maps, so that an alias
// is not registered with a conflicting name.
llvm::Regex reservedAffineNames("(set|map)[0-9]+");
// AffineMap aliases
for (auto &affineAliasPair : affineMapAliases) {
if (!reservedAffineNames.match(affineAliasPair.first))
registerSymbolAlias(affineAliasPair.first, affineAliasPair.second,
affineMapIds, usedAliases, affineMapToAlias);
}
// IntegerSet aliases
for (auto &integerSetAliasPair : integerSetAliases) {
if (!reservedAffineNames.match(integerSetAliasPair.first))
registerSymbolAlias(integerSetAliasPair.first, integerSetAliasPair.second,
integerSetIds, usedAliases, integerSetToAlias);
}
// Clear the set of used identifiers as types can have the same identifiers as
// affine structures.
usedAliases.clear();
for (auto &typeAliasPair : typeAliases)
registerSymbolAlias(typeAliasPair.first, typeAliasPair.second, usedTypes,
usedAliases, typeToAlias);
}
// Initializes module state, populating affine map and integer set state.
void ModuleState::initialize(Module *module) {
for (auto &fn : *module) {
visitType(fn.getType());
fn.walk([&](Operation *op) { ModuleState::visitOperation(op); });
}
// Initialize the symbol aliases.
initializeSymbolAliases();
}
//===----------------------------------------------------------------------===//
// ModulePrinter
//===----------------------------------------------------------------------===//
namespace {
class ModulePrinter {
public:
ModulePrinter(raw_ostream &os, ModuleState &state) : os(os), state(state) {}
explicit ModulePrinter(ModulePrinter &printer)
: os(printer.os), state(printer.state) {}
template <typename Container, typename UnaryFunctor>
inline void interleaveComma(const Container &c, UnaryFunctor each_fn) const {
interleave(c.begin(), c.end(), each_fn, [&]() { os << ", "; });
}
void print(Module *module);
void printFunctionReference(Function *func);
void printAttributeAndType(Attribute attr) {
printAttributeOptionalType(attr, /*includeType=*/true);
}
void printAttribute(Attribute attr) {
printAttributeOptionalType(attr, /*includeType=*/false);
}
void printType(Type type);
void print(Function *fn);
void printLocation(Location loc);
void printAffineMap(AffineMap map);
void printAffineExpr(AffineExpr expr);
void printAffineConstraint(AffineExpr expr, bool isEq);
void printIntegerSet(IntegerSet set);
protected:
raw_ostream &os;
ModuleState &state;
void printOptionalAttrDict(ArrayRef<NamedAttribute> attrs,
ArrayRef<StringRef> elidedAttrs = {});
void printAttributeOptionalType(Attribute attr, bool includeType);
void printAffineMapId(int affineMapId) const;
void printAffineMapReference(AffineMap affineMap);
void printAffineMapAlias(StringRef alias) const;
void printIntegerSetId(int integerSetId) const;
void printIntegerSetReference(IntegerSet integerSet);
void printIntegerSetAlias(StringRef alias) const;
void printTrailingLocation(Location loc);
void printLocationInternal(Location loc, bool pretty = false);
void printDenseElementsAttr(DenseElementsAttr attr);
/// This enum is used to represent the binding stength of the enclosing
/// context that an AffineExprStorage is being printed in, so we can
/// intelligently produce parens.
enum class BindingStrength {
Weak, // + and -
Strong, // All other binary operators.
};
void printAffineExprInternal(AffineExpr expr,
BindingStrength enclosingTightness);
};
} // end anonymous namespace
// Prints affine map identifier.
void ModulePrinter::printAffineMapId(int affineMapId) const {
os << "#map" << affineMapId;
}
void ModulePrinter::printAffineMapAlias(StringRef alias) const {
os << '#' << alias;
}
void ModulePrinter::printAffineMapReference(AffineMap affineMap) {
// Check for an affine map alias.
auto alias = state.getAffineMapAlias(affineMap);
if (!alias.empty())
return printAffineMapAlias(alias);
int mapId = state.getAffineMapId(affineMap);
if (mapId >= 0) {
// Map will be printed at top of module so print reference to its id.
printAffineMapId(mapId);
} else {
// Map not in module state so print inline.
affineMap.print(os);
}
}
// Prints integer set identifier.
void ModulePrinter::printIntegerSetId(int integerSetId) const {
os << "#set" << integerSetId;
}
void ModulePrinter::printIntegerSetAlias(StringRef alias) const {
os << '#' << alias;
}
void ModulePrinter::printIntegerSetReference(IntegerSet integerSet) {
// Check for an integer set alias.
auto alias = state.getIntegerSetAlias(integerSet);
if (!alias.empty()) {
printIntegerSetAlias(alias);
return;
}
int setId;
if ((setId = state.getIntegerSetId(integerSet)) >= 0) {
// The set will be printed at top of module; so print reference to its id.
printIntegerSetId(setId);
} else {
// Set not in module state so print inline.
integerSet.print(os);
}
}
void ModulePrinter::printTrailingLocation(Location loc) {
// Check to see if we are printing debug information.
if (!shouldPrintDebugInfoOpt)
return;
os << " ";
printLocation(loc);
}
void ModulePrinter::printLocationInternal(Location loc, bool pretty) {
switch (loc.getKind()) {
case Location::Kind::Unknown:
if (pretty)
os << "[unknown]";
else
os << "unknown";
break;
case Location::Kind::FileLineCol: {
auto fileLoc = loc.cast<FileLineColLoc>();
auto mayQuote = pretty ? "" : "\"";
os << mayQuote << fileLoc.getFilename() << mayQuote << ':'
<< fileLoc.getLine() << ':' << fileLoc.getColumn();
break;
}
case Location::Kind::Name: {
os << '\"' << loc.cast<NameLoc>().getName() << '\"';
break;
}
case Location::Kind::CallSite: {
auto callLocation = loc.cast<CallSiteLoc>();
auto caller = callLocation.getCaller();
auto callee = callLocation.getCallee();
if (!pretty)
os << "callsite(";
printLocationInternal(callee, pretty);
if (pretty) {
if (callee.isa<NameLoc>()) {
if (caller.isa<FileLineColLoc>()) {
os << " at ";
} else {
os << "\n at ";
}
} else {
os << "\n at ";
}
} else {
os << " at ";
}
printLocationInternal(caller, pretty);
if (!pretty)
os << ")";
break;
}
case Location::Kind::FusedLocation: {
auto fusedLoc = loc.cast<FusedLoc>();
if (!pretty)
os << "fused";
if (auto metadata = fusedLoc.getMetadata())
os << '<' << metadata << '>';
os << '[';
interleave(
fusedLoc.getLocations(),
[&](Location loc) { printLocationInternal(loc, pretty); },
[&]() { os << ", "; });
os << ']';
break;
}
}
}
void ModulePrinter::print(Module *module) {
for (const auto &map : state.getAffineMapIds()) {
StringRef alias = state.getAffineMapAlias(map);
if (!alias.empty())
printAffineMapAlias(alias);
else
printAffineMapId(state.getAffineMapId(map));
os << " = ";
map.print(os);
os << '\n';
}
for (const auto &set : state.getIntegerSetIds()) {
StringRef alias = state.getIntegerSetAlias(set);
if (!alias.empty())
printIntegerSetAlias(alias);
else
printIntegerSetId(state.getIntegerSetId(set));
os << " = ";
set.print(os);
os << '\n';
}
for (const auto &type : state.getTypeIds()) {
StringRef alias = state.getTypeAlias(type);
if (!alias.empty())
os << '!' << alias << " = type " << type << '\n';
}
for (auto &fn : *module)
print(&fn);
}
/// Print a floating point value in a way that the parser will be able to
/// round-trip losslessly.
static void printFloatValue(const APFloat &apValue, raw_ostream &os) {
// We would like to output the FP constant value in exponential notation,
// but we cannot do this if doing so will lose precision. Check here to
// make sure that we only output it in exponential format if we can parse
// the value back and get the same value.
bool isInf = apValue.isInfinity();
bool isNaN = apValue.isNaN();
if (!isInf && !isNaN) {
SmallString<128> strValue;
apValue.toString(strValue, 6, 0, false);
// Check to make sure that the stringized number is not some string like
// "Inf" or NaN, that atof will accept, but the lexer will not. Check
// that the string matches the "[-+]?[0-9]" regex.
assert(((strValue[0] >= '0' && strValue[0] <= '9') ||
((strValue[0] == '-' || strValue[0] == '+') &&
(strValue[1] >= '0' && strValue[1] <= '9'))) &&
"[-+]?[0-9] regex does not match!");
// Reparse stringized version!
if (APFloat(apValue.getSemantics(), strValue).bitwiseIsEqual(apValue)) {
os << strValue;
return;
}
}
SmallVector<char, 16> str;
apValue.toString(str);
os << str;
}
void ModulePrinter::printFunctionReference(Function *func) {
os << '@' << func->getName();
}
void ModulePrinter::printLocation(Location loc) {
if (printPrettyDebugInfo) {
printLocationInternal(loc, /*pretty=*/true);
} else {
os << "loc(";
printLocationInternal(loc);
os << ')';
}
}
void ModulePrinter::printAttributeOptionalType(Attribute attr,
bool includeType) {
if (!attr) {
os << "<<NULL ATTRIBUTE>>";
return;
}
switch (attr.getKind()) {
case Attribute::Kind::Bool:
os << (attr.cast<BoolAttr>().getValue() ? "true" : "false");
break;
case Attribute::Kind::Integer: {
auto intAttr = attr.cast<IntegerAttr>();
// Print all integer attributes as signed unless i1.
bool isSigned = intAttr.getType().isIndex() ||
intAttr.getType().getIntOrFloatBitWidth() != 1;
intAttr.getValue().print(os, isSigned);
// Print type unless i64 (parser defaults i64 in absence of type).
if (includeType && !intAttr.getType().isInteger(64)) {
os << " : ";
printType(intAttr.getType());
}
break;
}
case Attribute::Kind::Float: {
auto floatAttr = attr.cast<FloatAttr>();
printFloatValue(floatAttr.getValue(), os);
// Print type unless f64 (parser defaults to f64 in absence of type).
if (includeType && !floatAttr.getType().isF64()) {
os << " : ";
printType(floatAttr.getType());
}
break;
}
case Attribute::Kind::String:
os << '"';
printEscapedString(attr.cast<StringAttr>().getValue(), os);
os << '"';
break;
case Attribute::Kind::Array:
os << '[';
interleaveComma(attr.cast<ArrayAttr>().getValue(),
[&](Attribute attr) { printAttribute(attr); });
os << ']';
break;
case Attribute::Kind::AffineMap:
printAffineMapReference(attr.cast<AffineMapAttr>().getValue());
break;
case Attribute::Kind::IntegerSet:
printIntegerSetReference(attr.cast<IntegerSetAttr>().getValue());
break;
case Attribute::Kind::Type:
printType(attr.cast<TypeAttr>().getValue());
break;
case Attribute::Kind::Function: {
auto *function = attr.cast<FunctionAttr>().getValue();
if (!function) {
os << "<<FUNCTION ATTR FOR DELETED FUNCTION>>";
} else {
printFunctionReference(function);
os << " : ";
printType(function->getType());
}
break;
}
case Attribute::Kind::OpaqueElements: {
auto eltsAttr = attr.cast<OpaqueElementsAttr>();
os << "opaque<";
os << '"' << eltsAttr.getDialect()->getNamespace() << "\", ";
printType(eltsAttr.getType());
os << ", " << '"' << "0x" << llvm::toHex(eltsAttr.getValue()) << '"' << '>';
break;
}
case Attribute::Kind::DenseIntElements:
case Attribute::Kind::DenseFPElements: {
auto eltsAttr = attr.cast<DenseElementsAttr>();
os << "dense<";
printType(eltsAttr.getType());
os << ", ";
printDenseElementsAttr(eltsAttr);
os << '>';
break;
}
case Attribute::Kind::SplatElements: {
auto elementsAttr = attr.cast<SplatElementsAttr>();
os << "splat<";
printType(elementsAttr.getType());
os << ", ";
printAttribute(elementsAttr.getValue());
os << '>';
break;
}
case Attribute::Kind::SparseElements: {
auto elementsAttr = attr.cast<SparseElementsAttr>();
os << "sparse<";
printType(elementsAttr.getType());
os << ", ";
printDenseElementsAttr(elementsAttr.getIndices());
os << ", ";
printDenseElementsAttr(elementsAttr.getValues());
os << '>';
break;
}
}
}
void ModulePrinter::printDenseElementsAttr(DenseElementsAttr attr) {
auto type = attr.getType();
auto shape = type.getShape();
auto rank = type.getRank();
SmallVector<Attribute, 16> elements;
attr.getValues(elements);
// Special case for degenerate tensors.
if (elements.empty()) {
for (int i = 0; i < rank; ++i)
os << '[';
for (int i = 0; i < rank; ++i)
os << ']';
return;
}
// We use a mixed-radix counter to iterate through the shape. When we bump a
// non-least-significant digit, we emit a close bracket. When we next emit an
// element we re-open all closed brackets.
// The mixed-radix counter, with radices in 'shape'.
SmallVector<unsigned, 4> counter(rank, 0);
// The number of brackets that have been opened and not closed.
unsigned openBrackets = 0;
auto bumpCounter = [&]() {
// Bump the least significant digit.
++counter[rank - 1];
// Iterate backwards bubbling back the increment.
for (unsigned i = rank - 1; i > 0; --i)
if (counter[i] >= shape[i]) {
// Index 'i' is rolled over. Bump (i-1) and close a bracket.
counter[i] = 0;
++counter[i - 1];
--openBrackets;
os << ']';
}
};
for (unsigned idx = 0, e = elements.size(); idx != e; ++idx) {
if (idx != 0)
os << ", ";
while (openBrackets++ < rank)
os << '[';
openBrackets = rank;
printAttribute(elements[idx]);
bumpCounter();
}
while (openBrackets-- > 0)
os << ']';
}
void ModulePrinter::printType(Type type) {
// Check for an alias for this type.
StringRef alias = state.getTypeAlias(type);
if (!alias.empty()) {
os << '!' << alias;
return;
}
switch (type.getKind()) {
default: {
auto &dialect = type.getDialect();
os << '!' << dialect.getNamespace() << "<\"";
dialect.printType(type, os);
os << "\">";
return;
}
case Type::Kind::Unknown: {
auto unknownTy = type.cast<UnknownType>();
os << '!' << unknownTy.getDialectNamespace() << "<\""
<< unknownTy.getTypeData() << "\">";
return;
}
case StandardTypes::Index:
os << "index";
return;
case StandardTypes::BF16:
os << "bf16";
return;
case StandardTypes::F16:
os << "f16";
return;
case StandardTypes::F32:
os << "f32";
return;
case StandardTypes::F64:
os << "f64";
return;
case StandardTypes::Integer: {
auto integer = type.cast<IntegerType>();
os << 'i' << integer.getWidth();
return;
}
case Type::Kind::Function: {
auto func = type.cast<FunctionType>();
os << '(';
interleaveComma(func.getInputs(), [&](Type type) { printType(type); });
os << ") -> ";
auto results = func.getResults();
if (results.size() == 1 && !results[0].isa<FunctionType>())
os << results[0];
else {
os << '(';
interleaveComma(results, [&](Type type) { printType(type); });
os << ')';
}
return;
}
case StandardTypes::Vector: {
auto v = type.cast<VectorType>();
os << "vector<";
for (auto dim : v.getShape())
os << dim << 'x';
os << v.getElementType() << '>';
return;
}
case StandardTypes::RankedTensor: {
auto v = type.cast<RankedTensorType>();
os << "tensor<";
for (auto dim : v.getShape()) {
if (dim < 0)
os << '?';
else
os << dim;
os << 'x';
}
os << v.getElementType() << '>';
return;
}
case StandardTypes::UnrankedTensor: {
auto v = type.cast<UnrankedTensorType>();
os << "tensor<*x";
printType(v.getElementType());
os << '>';
return;
}
case StandardTypes::MemRef: {
auto v = type.cast<MemRefType>();
os << "memref<";
for (auto dim : v.getShape()) {
if (dim < 0)
os << '?';
else
os << dim;
os << 'x';
}
printType(v.getElementType());
for (auto map : v.getAffineMaps()) {
os << ", ";
printAffineMapReference(map);
}
// Only print the memory space if it is the non-default one.
if (v.getMemorySpace())
os << ", " << v.getMemorySpace();
os << '>';
return;
}
case StandardTypes::Tuple: {
auto tuple = type.cast<TupleType>();
os << "tuple<";
interleaveComma(tuple.getTypes(), [&](Type type) { printType(type); });
os << '>';
return;
}
}
}
//===----------------------------------------------------------------------===//
// Affine expressions and maps
//===----------------------------------------------------------------------===//
void ModulePrinter::printAffineExpr(AffineExpr expr) {
printAffineExprInternal(expr, BindingStrength::Weak);
}
void ModulePrinter::printAffineExprInternal(
AffineExpr expr, BindingStrength enclosingTightness) {
const char *binopSpelling = nullptr;
switch (expr.getKind()) {
case AffineExprKind::SymbolId:
os << 's' << expr.cast<AffineSymbolExpr>().getPosition();
return;
case AffineExprKind::DimId:
os << 'd' << expr.cast<AffineDimExpr>().getPosition();
return;
case AffineExprKind::Constant:
os << expr.cast<AffineConstantExpr>().getValue();
return;
case AffineExprKind::Add:
binopSpelling = " + ";
break;
case AffineExprKind::Mul:
binopSpelling = " * ";
break;
case AffineExprKind::FloorDiv:
binopSpelling = " floordiv ";
break;
case AffineExprKind::CeilDiv:
binopSpelling = " ceildiv ";
break;
case AffineExprKind::Mod:
binopSpelling = " mod ";
break;
}
auto binOp = expr.cast<AffineBinaryOpExpr>();
AffineExpr lhsExpr = binOp.getLHS();
AffineExpr rhsExpr = binOp.getRHS();
// Handle tightly binding binary operators.
if (binOp.getKind() != AffineExprKind::Add) {
if (enclosingTightness == BindingStrength::Strong)
os << '(';
// Pretty print multiplication with -1.
auto rhsConst = rhsExpr.dyn_cast<AffineConstantExpr>();
if (rhsConst && rhsConst.getValue() == -1) {
os << "-";
printAffineExprInternal(lhsExpr, BindingStrength::Strong);
return;
}
printAffineExprInternal(lhsExpr, BindingStrength::Strong);
os << binopSpelling;
printAffineExprInternal(rhsExpr, BindingStrength::Strong);
if (enclosingTightness == BindingStrength::Strong)
os << ')';
return;
}
// Print out special "pretty" forms for add.
if (enclosingTightness == BindingStrength::Strong)
os << '(';
// Pretty print addition to a product that has a negative operand as a
// subtraction.
if (auto rhs = rhsExpr.dyn_cast<AffineBinaryOpExpr>()) {
if (rhs.getKind() == AffineExprKind::Mul) {
AffineExpr rrhsExpr = rhs.getRHS();
if (auto rrhs = rrhsExpr.dyn_cast<AffineConstantExpr>()) {
if (rrhs.getValue() == -1) {
printAffineExprInternal(lhsExpr, BindingStrength::Weak);
os << " - ";
if (rhs.getLHS().getKind() == AffineExprKind::Add) {
printAffineExprInternal(rhs.getLHS(), BindingStrength::Strong);
} else {
printAffineExprInternal(rhs.getLHS(), BindingStrength::Weak);
}
if (enclosingTightness == BindingStrength::Strong)
os << ')';
return;
}
if (rrhs.getValue() < -1) {
printAffineExprInternal(lhsExpr, BindingStrength::Weak);
os << " - ";
printAffineExprInternal(rhs.getLHS(), BindingStrength::Strong);
os << " * " << -rrhs.getValue();
if (enclosingTightness == BindingStrength::Strong)
os << ')';
return;
}
}
}
}
// Pretty print addition to a negative number as a subtraction.
if (auto rhsConst = rhsExpr.dyn_cast<AffineConstantExpr>()) {
if (rhsConst.getValue() < 0) {
printAffineExprInternal(lhsExpr, BindingStrength::Weak);
os << " - " << -rhsConst.getValue();
if (enclosingTightness == BindingStrength::Strong)
os << ')';
return;
}
}
printAffineExprInternal(lhsExpr, BindingStrength::Weak);
os << " + ";
printAffineExprInternal(rhsExpr, BindingStrength::Weak);
if (enclosingTightness == BindingStrength::Strong)
os << ')';
}
void ModulePrinter::printAffineConstraint(AffineExpr expr, bool isEq) {
printAffineExprInternal(expr, BindingStrength::Weak);
isEq ? os << " == 0" : os << " >= 0";
}
void ModulePrinter::printAffineMap(AffineMap map) {
// Dimension identifiers.
os << '(';
for (int i = 0; i < (int)map.getNumDims() - 1; ++i)
os << 'd' << i << ", ";
if (map.getNumDims() >= 1)
os << 'd' << map.getNumDims() - 1;
os << ')';
// Symbolic identifiers.
if (map.getNumSymbols() != 0) {
os << '[';
for (unsigned i = 0; i < map.getNumSymbols() - 1; ++i)
os << 's' << i << ", ";
if (map.getNumSymbols() >= 1)
os << 's' << map.getNumSymbols() - 1;
os << ']';
}
// AffineMap should have at least one result.
assert(!map.getResults().empty());
// Result affine expressions.
os << " -> (";
interleaveComma(map.getResults(),
[&](AffineExpr expr) { printAffineExpr(expr); });
os << ')';
if (!map.isBounded()) {
return;
}
// Print range sizes for bounded affine maps.
os << " size (";
interleaveComma(map.getRangeSizes(),
[&](AffineExpr expr) { printAffineExpr(expr); });
os << ')';
}
void ModulePrinter::printIntegerSet(IntegerSet set) {
// Dimension identifiers.
os << '(';
for (unsigned i = 1; i < set.getNumDims(); ++i)
os << 'd' << i - 1 << ", ";
if (set.getNumDims() >= 1)
os << 'd' << set.getNumDims() - 1;
os << ')';
// Symbolic identifiers.
if (set.getNumSymbols() != 0) {
os << '[';
for (unsigned i = 0; i < set.getNumSymbols() - 1; ++i)
os << 's' << i << ", ";
if (set.getNumSymbols() >= 1)
os << 's' << set.getNumSymbols() - 1;
os << ']';
}
// Print constraints.
os << " : (";
auto numConstraints = set.getNumConstraints();
for (int i = 1; i < numConstraints; ++i) {
printAffineConstraint(set.getConstraint(i - 1), set.isEq(i - 1));
os << ", ";
}
if (numConstraints >= 1)
printAffineConstraint(set.getConstraint(numConstraints - 1),
set.isEq(numConstraints - 1));
os << ')';
}
//===----------------------------------------------------------------------===//
// Function printing
//===----------------------------------------------------------------------===//
void ModulePrinter::printOptionalAttrDict(ArrayRef<NamedAttribute> attrs,
ArrayRef<StringRef> elidedAttrs) {
// If there are no attributes, then there is nothing to be done.
if (attrs.empty())
return;
// Filter out any attributes that shouldn't be included.
SmallVector<NamedAttribute, 8> filteredAttrs;
for (auto attr : attrs) {
// If the caller has requested that this attribute be ignored, then drop it.
if (llvm::any_of(elidedAttrs,
[&](StringRef elided) { return attr.first.is(elided); }))
continue;
// Otherwise add it to our filteredAttrs list.
filteredAttrs.push_back(attr);
}
// If there are no attributes left to print after filtering, then we're done.
if (filteredAttrs.empty())
return;
// Otherwise, print them all out in braces.
os << " {";
interleaveComma(filteredAttrs, [&](NamedAttribute attr) {
os << attr.first << ": ";
printAttributeAndType(attr.second);
});
os << '}';
}
namespace {
// FunctionPrinter contains common functionality for printing
// CFG and ML functions.
class FunctionPrinter : public ModulePrinter, private OpAsmPrinter {
public:
FunctionPrinter(Function *function, ModulePrinter &other);
// Prints the function as a whole.
void print();
// Print the function signature.
void printFunctionSignature();
// Methods to print operations.
void print(Operation *op);
void print(Block *block, bool printBlockArgs = true,
bool printBlockTerminator = true);
void printOperation(Operation *op);
void printGenericOp(Operation *op);
// Implement OpAsmPrinter.
raw_ostream &getStream() const { return os; }
void printType(Type type) { ModulePrinter::printType(type); }
void printAttribute(Attribute attr) { ModulePrinter::printAttribute(attr); }
void printAttributeAndType(Attribute attr) {
ModulePrinter::printAttributeAndType(attr);
}
void printAffineMap(AffineMap map) {
return ModulePrinter::printAffineMapReference(map);
}
void printIntegerSet(IntegerSet set) {
return ModulePrinter::printIntegerSetReference(set);
}
void printAffineExpr(AffineExpr expr) {
return ModulePrinter::printAffineExpr(expr);
}
void printFunctionReference(Function *func) {
return ModulePrinter::printFunctionReference(func);
}
void printOperand(Value *value) { printValueID(value); }
void printOptionalAttrDict(ArrayRef<NamedAttribute> attrs,
ArrayRef<StringRef> elidedAttrs = {}) {
return ModulePrinter::printOptionalAttrDict(attrs, elidedAttrs);
};
enum { nameSentinel = ~0U };
void printBlockName(Block *block) {
auto id = getBlockID(block);
if (id != ~0U)
os << "^bb" << id;
else
os << "^INVALIDBLOCK";
}
unsigned getBlockID(Block *block) {
auto it = blockIDs.find(block);
return it != blockIDs.end() ? it->second : ~0U;
}
void printSuccessorAndUseList(Operation *term, unsigned index) override;
/// Print a region.
void printRegion(Region &blocks, bool printEntryBlockArgs,
bool printBlockTerminators) override {
os << " {\n";
if (!blocks.empty()) {
auto *entryBlock = &blocks.front();
print(entryBlock,
printEntryBlockArgs && entryBlock->getNumArguments() != 0,
printBlockTerminators);
for (auto &b : llvm::drop_begin(blocks.getBlocks(), 1))
print(&b);
}
os.indent(currentIndent) << "}";
}
// Number of spaces used for indenting nested operations.
const static unsigned indentWidth = 2;
protected:
void numberValueID(Value *value);
void numberValuesInBlock(Block &block);
void printValueID(Value *value, bool printResultNo = true) const;
private:
Function *function;
/// This is the value ID for each SSA value in the current function. If this
/// returns ~0, then the valueID has an entry in valueNames.
DenseMap<Value *, unsigned> valueIDs;
DenseMap<Value *, StringRef> valueNames;
/// This is the block ID for each block in the current function.
DenseMap<Block *, unsigned> blockIDs;
/// This keeps track of all of the non-numeric names that are in flight,
/// allowing us to check for duplicates.
llvm::StringSet<> usedNames;
// This is the current indentation level for nested structures.
unsigned currentIndent = 0;
/// This is the next value ID to assign in numbering.
unsigned nextValueID = 0;
/// This is the ID to assign to the next region entry block argument.
unsigned nextRegionArgumentID = 0;
/// This is the next ID to assign to a Function argument.
unsigned nextArgumentID = 0;
/// This is the next ID to assign when a name conflict is detected.
unsigned nextConflictID = 0;
/// This is the next block ID to assign in numbering.
unsigned nextBlockID = 0;
};
} // end anonymous namespace
FunctionPrinter::FunctionPrinter(Function *function, ModulePrinter &other)
: ModulePrinter(other), function(function) {
for (auto &block : *function)
numberValuesInBlock(block);
}
/// Number all of the SSA values in the specified block. Values get numbered
/// continuously throughout regions. In particular, we traverse the regions
/// held by operations and number values in depth-first pre-order.
void FunctionPrinter::numberValuesInBlock(Block &block) {
// Each block gets a unique ID, and all of the operations within it get
// numbered as well.
blockIDs[&block] = nextBlockID++;
for (auto *arg : block.getArguments())
numberValueID(arg);
for (auto &op : block) {
// We number operation that have results, and we only number the first
// result.
if (op.getNumResults() != 0)
numberValueID(op.getResult(0));
for (auto &region : op.getRegions())
for (auto &block : region)
numberValuesInBlock(block);
}
}
void FunctionPrinter::numberValueID(Value *value) {
assert(!valueIDs.count(value) && "Value numbered multiple times");
SmallString<32> specialNameBuffer;
llvm::raw_svector_ostream specialName(specialNameBuffer);
// Give constant integers special names.
if (auto *op = value->getDefiningOp()) {
Attribute cst;
if (m_Constant(&cst).match(op)) {
Type type = op->getResult(0)->getType();
if (auto intCst = cst.dyn_cast<IntegerAttr>()) {
if (type.isIndex()) {
specialName << 'c' << intCst;
} else if (type.cast<IntegerType>().isInteger(1)) {
// i1 constants get special names.
specialName << (intCst.getInt() ? "true" : "false");
} else {
specialName << 'c' << intCst << '_' << type;
}
} else if (cst.isa<FunctionAttr>()) {
specialName << 'f';
} else {
specialName << "cst";
}
}
}
if (specialNameBuffer.empty()) {
switch (value->getKind()) {
case Value::Kind::BlockArgument:
// If this is an argument to the function, give it an 'arg' name. If the
// argument is to an entry block of an operation region, give it an 'i'
// name.
if (auto *block = cast<BlockArgument>(value)->getOwner()) {
auto *parentRegion = block->getParent();
if (parentRegion && block == &parentRegion->front()) {
if (parentRegion->getContainingFunction())
specialName << "arg" << nextArgumentID++;
else
specialName << "i" << nextRegionArgumentID++;
break;
}
}
// Otherwise number it normally.
valueIDs[value] = nextValueID++;
return;
case Value::Kind::OpResult:
// This is an uninteresting result, give it a boring number and be
// done with it.
valueIDs[value] = nextValueID++;
return;
}
}
// Ok, this value had an interesting name. Remember it with a sentinel.
valueIDs[value] = nameSentinel;
// Remember that we've used this name, checking to see if we had a conflict.
auto insertRes = usedNames.insert(specialName.str());
if (insertRes.second) {
// If this is the first use of the name, then we're successful!
valueNames[value] = insertRes.first->first();
return;
}
// Otherwise, we had a conflict - probe until we find a unique name. This
// is guaranteed to terminate (and usually in a single iteration) because it
// generates new names by incrementing nextConflictID.
while (1) {
std::string probeName =
specialName.str().str() + "_" + llvm::utostr(nextConflictID++);
insertRes = usedNames.insert(probeName);
if (insertRes.second) {
// If this is the first use of the name, then we're successful!
valueNames[value] = insertRes.first->first();
return;
}
}
}
void FunctionPrinter::print() {
printFunctionSignature();
// Print out function attributes, if present.
auto attrs = function->getAttrs();
if (!attrs.empty()) {
os << "\n attributes ";
printOptionalAttrDict(attrs);
}
// Print the trailing location.
printTrailingLocation(function->getLoc());
if (!function->empty()) {
printRegion(function->getBody(), /*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/true);
os << "\n";
}
os << '\n';
}
void FunctionPrinter::printFunctionSignature() {
os << "func @" << function->getName() << '(';
auto fnType = function->getType();
bool isExternal = function->isExternal();
for (unsigned i = 0, e = function->getNumArguments(); i != e; ++i) {
if (i > 0)
os << ", ";
// If this is an external function, don't print argument labels.
if (!isExternal) {
printOperand(function->getArgument(i));
os << ": ";
}
printType(fnType.getInput(i));
// Print the attributes for this argument.
printOptionalAttrDict(function->getArgAttrs(i));
}
os << ')';
switch (fnType.getResults().size()) {
case 0:
break;
case 1: {
os << " -> ";
auto resultType = fnType.getResults()[0];
bool resultIsFunc = resultType.isa<FunctionType>();
if (resultIsFunc)
os << '(';
printType(resultType);
if (resultIsFunc)
os << ')';
break;
}
default:
os << " -> (";
interleaveComma(fnType.getResults(),
[&](Type eltType) { printType(eltType); });
os << ')';
break;
}
}
void FunctionPrinter::print(Block *block, bool printBlockArgs,
bool printBlockTerminator) {
// Print the block label and argument list if requested.
if (printBlockArgs) {
os.indent(currentIndent);
printBlockName(block);
// Print the argument list if non-empty.
if (!block->args_empty()) {
os << '(';
interleaveComma(block->getArguments(), [&](BlockArgument *arg) {
printValueID(arg);
os << ": ";
printType(arg->getType());
});
os << ')';
}
os << ':';
// Print out some context information about the predecessors of this block.
if (!block->getFunction()) {
os << "\t// block is not in a function!";
} else if (block->hasNoPredecessors()) {
os << "\t// no predecessors";
} else if (auto *pred = block->getSinglePredecessor()) {
os << "\t// pred: ";
printBlockName(pred);
} else {
// We want to print the predecessors in increasing numeric order, not in
// whatever order the use-list is in, so gather and sort them.
SmallVector<std::pair<unsigned, Block *>, 4> predIDs;
for (auto *pred : block->getPredecessors())
predIDs.push_back({getBlockID(pred), pred});
llvm::array_pod_sort(predIDs.begin(), predIDs.end());
os << "\t// " << predIDs.size() << " preds: ";
interleaveComma(predIDs, [&](std::pair<unsigned, Block *> pred) {
printBlockName(pred.second);
});
}
os << '\n';
}
currentIndent += indentWidth;
auto range = llvm::make_range(
block->getOperations().begin(),
std::prev(block->getOperations().end(), printBlockTerminator ? 0 : 1));
for (auto &op : range) {
print(&op);
os << '\n';
}
currentIndent -= indentWidth;
}
void FunctionPrinter::print(Operation *op) {
os.indent(currentIndent);
printOperation(op);
printTrailingLocation(op->getLoc());
}
void FunctionPrinter::printValueID(Value *value, bool printResultNo) const {
int resultNo = -1;
auto lookupValue = value;
// If this is a reference to the result of a multi-result operation or
// operation, print out the # identifier and make sure to map our lookup
// to the first result of the operation.
if (auto *result = dyn_cast<OpResult>(value)) {
if (result->getOwner()->getNumResults() != 1) {
resultNo = result->getResultNumber();
lookupValue = result->getOwner()->getResult(0);
}
} else if (auto *result = dyn_cast<OpResult>(value)) {
if (result->getOwner()->getNumResults() != 1) {
resultNo = result->getResultNumber();
lookupValue = result->getOwner()->getResult(0);
}
}
auto it = valueIDs.find(lookupValue);
if (it == valueIDs.end()) {
os << "<<INVALID SSA VALUE>>";
return;
}
os << '%';
if (it->second != nameSentinel) {
os << it->second;
} else {
auto nameIt = valueNames.find(lookupValue);
assert(nameIt != valueNames.end() && "Didn't have a name entry?");
os << nameIt->second;
}
if (resultNo != -1 && printResultNo)
os << '#' << resultNo;
}
void FunctionPrinter::printOperation(Operation *op) {
if (op->getNumResults()) {
printValueID(op->getResult(0), /*printResultNo=*/false);
os << " = ";
}
if (printGenericOpForm)
return printGenericOp(op);
// Check to see if this is a known operation. If so, use the registered
// custom printer hook.
if (auto *opInfo = op->getAbstractOperation()) {
opInfo->printAssembly(op, this);
return;
}
// Otherwise print with the generic assembly form.
printGenericOp(op);
}
void FunctionPrinter::printGenericOp(Operation *op) {
os << '"';
printEscapedString(op->getName().getStringRef(), os);
os << "\"(";
// Get the list of operands that are not successor operands.
unsigned totalNumSuccessorOperands = 0;
unsigned numSuccessors = op->getNumSuccessors();
for (unsigned i = 0; i < numSuccessors; ++i)
totalNumSuccessorOperands += op->getNumSuccessorOperands(i);
unsigned numProperOperands = op->getNumOperands() - totalNumSuccessorOperands;
SmallVector<Value *, 8> properOperands(
op->operand_begin(), std::next(op->operand_begin(), numProperOperands));
interleaveComma(properOperands, [&](Value *value) { printValueID(value); });
os << ')';
// For terminators, print the list of successors and their operands.
if (numSuccessors != 0) {
os << '[';
for (unsigned i = 0; i < numSuccessors; ++i) {
if (i != 0)
os << ", ";
printSuccessorAndUseList(op, i);
}
os << ']';
}
auto attrs = op->getAttrs();
printOptionalAttrDict(attrs);
// Print the type signature of the operation.
os << " : (";
interleaveComma(properOperands,
[&](Value *value) { printType(value->getType()); });
os << ") -> ";
if (op->getNumResults() == 1 &&
!op->getResult(0)->getType().isa<FunctionType>()) {
printType(op->getResult(0)->getType());
} else {
os << '(';
interleaveComma(op->getResults(),
[&](Value *result) { printType(result->getType()); });
os << ')';
}
// Print any trailing regions.
for (auto &region : op->getRegions())
printRegion(region, /*printEntryBlockArgs=*/true,
/*printBlockTerminators=*/true);
}
void FunctionPrinter::printSuccessorAndUseList(Operation *term,
unsigned index) {
printBlockName(term->getSuccessor(index));
auto succOperands = term->getSuccessorOperands(index);
if (succOperands.begin() == succOperands.end())
return;
os << '(';
interleaveComma(succOperands,
[this](Value *operand) { printValueID(operand); });
os << " : ";
interleaveComma(succOperands,
[this](Value *operand) { printType(operand->getType()); });
os << ')';
}
// Prints function with initialized module state.
void ModulePrinter::print(Function *fn) { FunctionPrinter(fn, *this).print(); }
//===----------------------------------------------------------------------===//
// print and dump methods
//===----------------------------------------------------------------------===//
void Attribute::print(raw_ostream &os) const {
ModuleState state(/*no context is known*/ nullptr);
ModulePrinter(os, state).printAttribute(*this);
}
void Attribute::dump() const { print(llvm::errs()); }
void Type::print(raw_ostream &os) const {
ModuleState state(getContext());
ModulePrinter(os, state).printType(*this);
}
void Type::dump() const { print(llvm::errs()); }
void AffineMap::dump() const {
print(llvm::errs());
llvm::errs() << "\n";
}
void IntegerSet::dump() const {
print(llvm::errs());
llvm::errs() << "\n";
}
void AffineExpr::print(raw_ostream &os) const {
if (expr == nullptr) {
os << "null affine expr";
return;
}
ModuleState state(getContext());
ModulePrinter(os, state).printAffineExpr(*this);
}
void AffineExpr::dump() const {
print(llvm::errs());
llvm::errs() << "\n";
}
void AffineMap::print(raw_ostream &os) const {
if (map == nullptr) {
os << "null affine map";
return;
}
ModuleState state(getContext());
ModulePrinter(os, state).printAffineMap(*this);
}
void IntegerSet::print(raw_ostream &os) const {
ModuleState state(/*no context is known*/ nullptr);
ModulePrinter(os, state).printIntegerSet(*this);
}
void Value::print(raw_ostream &os) {
switch (getKind()) {
case Value::Kind::BlockArgument:
// TODO: Improve this.
os << "<block argument>\n";
return;
case Value::Kind::OpResult:
return getDefiningOp()->print(os);
}
}
void Value::dump() { print(llvm::errs()); }
void Operation::print(raw_ostream &os) {
auto *function = getFunction();
if (!function) {
os << "<<UNLINKED INSTRUCTION>>\n";
return;
}
ModuleState state(function->getContext());
ModulePrinter modulePrinter(os, state);
FunctionPrinter(function, modulePrinter).print(this);
}
void Operation::dump() {
print(llvm::errs());
llvm::errs() << "\n";
}
void Block::print(raw_ostream &os) {
auto *function = getFunction();
if (!function) {
os << "<<UNLINKED BLOCK>>\n";
return;
}
ModuleState state(function->getContext());
ModulePrinter modulePrinter(os, state);
FunctionPrinter(function, modulePrinter).print(this);
}
void Block::dump() { print(llvm::errs()); }
/// Print out the name of the block without printing its body.
void Block::printAsOperand(raw_ostream &os, bool printType) {
if (!getFunction()) {
os << "<<UNLINKED BLOCK>>\n";
return;
}
ModuleState state(getFunction()->getContext());
ModulePrinter modulePrinter(os, state);
FunctionPrinter(getFunction(), modulePrinter).printBlockName(this);
}
void Function::print(raw_ostream &os) {
ModuleState state(getContext());
ModulePrinter(os, state).print(this);
}
void Function::dump() { print(llvm::errs()); }
void Module::print(raw_ostream &os) {
ModuleState state(getContext());
state.initialize(this);
ModulePrinter(os, state).print(this);
}
void Module::dump() { print(llvm::errs()); }
void Location::print(raw_ostream &os) const {
ModuleState state(nullptr);
ModulePrinter(os, state).printLocation(*this);
}
void Location::dump() const { print(llvm::errs()); }