llvm-project/lldb/source/API/SBProcess.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1450 lines
49 KiB
C++
Raw Normal View History

//===-- SBProcess.cpp -----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "lldb/API/SBProcess.h"
#include "SBReproducerPrivate.h"
#include <inttypes.h>
#include "lldb/lldb-defines.h"
#include "lldb/lldb-types.h"
#include "lldb/Core/Debugger.h"
<rdar://problem/11757916> Make breakpoint setting by file and line much more efficient by only looking for inlined breakpoint locations if we are setting a breakpoint in anything but a source implementation file. Implementing this complex for a many reasons. Turns out that parsing compile units lazily had some issues with respect to how we need to do things with DWARF in .o files. So the fixes in the checkin for this makes these changes: - Add a new setting called "target.inline-breakpoint-strategy" which can be set to "never", "always", or "headers". "never" will never try and set any inlined breakpoints (fastest). "always" always looks for inlined breakpoint locations (slowest, but most accurate). "headers", which is the default setting, will only look for inlined breakpoint locations if the breakpoint is set in what are consudered to be header files, which is realy defined as "not in an implementation source file". - modify the breakpoint setting by file and line to check the current "target.inline-breakpoint-strategy" setting and act accordingly - Modify compile units to be able to get their language and other info lazily. This allows us to create compile units from the debug map and not have to fill all of the details in, and then lazily discover this information as we go on debuggging. This is needed to avoid parsing all .o files when setting breakpoints in implementation only files (no inlines). Otherwise we would need to parse the .o file, the object file (mach-o in our case) and the symbol file (DWARF in the object file) just to see what the compile unit was. - modify the "SymbolFileDWARFDebugMap" to subclass lldb_private::Module so that the virtual "GetObjectFile()" and "GetSymbolVendor()" functions can be intercepted when the .o file contenst are later lazilly needed. Prior to this fix, when we first instantiated the "SymbolFileDWARFDebugMap" class, we would also make modules, object files and symbol files for every .o file in the debug map because we needed to fix up the sections in the .o files with information that is in the executable debug map. Now we lazily do this in the DebugMapModule::GetObjectFile() Cleaned up header includes a bit as well. llvm-svn: 162860
2012-08-30 05:13:06 +08:00
#include "lldb/Core/Module.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/StreamFile.h"
#include "lldb/Core/StructuredDataImpl.h"
#include "lldb/Target/MemoryRegionInfo.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/SystemRuntime.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
#include "lldb/Utility/Args.h"
#include "lldb/Utility/ProcessInfo.h"
#include "lldb/Utility/State.h"
#include "lldb/Utility/Stream.h"
#include "lldb/API/SBBroadcaster.h"
#include "lldb/API/SBCommandReturnObject.h"
#include "lldb/API/SBDebugger.h"
#include "lldb/API/SBEvent.h"
#include "lldb/API/SBFile.h"
#include "lldb/API/SBFileSpec.h"
#include "lldb/API/SBMemoryRegionInfo.h"
#include "lldb/API/SBMemoryRegionInfoList.h"
#include "lldb/API/SBStream.h"
#include "lldb/API/SBStringList.h"
#include "lldb/API/SBStructuredData.h"
#include "lldb/API/SBThread.h"
#include "lldb/API/SBThreadCollection.h"
#include "lldb/API/SBTrace.h"
#include "lldb/API/SBTraceOptions.h"
#include "lldb/API/SBUnixSignals.h"
using namespace lldb;
using namespace lldb_private;
SBProcess::SBProcess() : m_opaque_wp() {
LLDB_RECORD_CONSTRUCTOR_NO_ARGS(SBProcess);
}
// SBProcess constructor
SBProcess::SBProcess(const SBProcess &rhs) : m_opaque_wp(rhs.m_opaque_wp) {
LLDB_RECORD_CONSTRUCTOR(SBProcess, (const lldb::SBProcess &), rhs);
}
SBProcess::SBProcess(const lldb::ProcessSP &process_sp)
: m_opaque_wp(process_sp) {
LLDB_RECORD_CONSTRUCTOR(SBProcess, (const lldb::ProcessSP &), process_sp);
}
const SBProcess &SBProcess::operator=(const SBProcess &rhs) {
LLDB_RECORD_METHOD(const lldb::SBProcess &,
SBProcess, operator=,(const lldb::SBProcess &), rhs);
if (this != &rhs)
m_opaque_wp = rhs.m_opaque_wp;
return LLDB_RECORD_RESULT(*this);
}
// Destructor
SBProcess::~SBProcess() = default;
const char *SBProcess::GetBroadcasterClassName() {
LLDB_RECORD_STATIC_METHOD_NO_ARGS(const char *, SBProcess,
GetBroadcasterClassName);
return Process::GetStaticBroadcasterClass().AsCString();
}
const char *SBProcess::GetPluginName() {
LLDB_RECORD_METHOD_NO_ARGS(const char *, SBProcess, GetPluginName);
ProcessSP process_sp(GetSP());
if (process_sp) {
return process_sp->GetPluginName().GetCString();
}
return "<Unknown>";
}
const char *SBProcess::GetShortPluginName() {
LLDB_RECORD_METHOD_NO_ARGS(const char *, SBProcess, GetShortPluginName);
ProcessSP process_sp(GetSP());
if (process_sp) {
return process_sp->GetPluginName().GetCString();
}
return "<Unknown>";
}
lldb::ProcessSP SBProcess::GetSP() const { return m_opaque_wp.lock(); }
SBFrame is now threadsafe using some extra tricks. One issue is that stack frames might go away (the object itself, not the actual logical frame) when we are single stepping due to the way we currently sometimes end up flushing frames when stepping in/out/over. They later will come back to life represented by another object yet they have the same StackID. Now when you get a lldb::SBFrame object, it will track the frame it is initialized with until the thread goes away or the StackID no longer exists in the stack for the thread it was created on. It uses a weak_ptr to both the frame and thread and also stores the StackID. These three items allow us to determine when the stack frame object has gone away (the weak_ptr will be NULL) and allows us to find the correct frame again. In our test suite we had such cases where we were just getting lucky when something like this happened: 1 - stop at breakpoint 2 - get first frame in thread where we stopped 3 - run an expression that causes the program to JIT and run code 4 - run more expressions on the frame from step 2 which was very very luckily still around inside a shared pointer, yet, not part of the current thread (a new stack frame object had appeared with the same stack ID and depth). We now avoid all such issues and properly keep up to date, or we start returning errors when the frame doesn't exist and always responds with invalid answers. Also fixed the UserSettingsController (not going to rewrite this just yet) so that it doesn't crash on shutdown. Using weak_ptr's came in real handy to track when the master controller has already gone away and this allowed me to pull out the previous NotifyOwnerIsShuttingDown() patch as it is no longer needed. llvm-svn: 149231
2012-01-30 15:41:31 +08:00
void SBProcess::SetSP(const ProcessSP &process_sp) { m_opaque_wp = process_sp; }
void SBProcess::Clear() {
LLDB_RECORD_METHOD_NO_ARGS(void, SBProcess, Clear);
m_opaque_wp.reset();
}
bool SBProcess::IsValid() const {
LLDB_RECORD_METHOD_CONST_NO_ARGS(bool, SBProcess, IsValid);
return this->operator bool();
}
SBProcess::operator bool() const {
LLDB_RECORD_METHOD_CONST_NO_ARGS(bool, SBProcess, operator bool);
ProcessSP process_sp(m_opaque_wp.lock());
return ((bool)process_sp && process_sp->IsValid());
}
bool SBProcess::RemoteLaunch(char const **argv, char const **envp,
const char *stdin_path, const char *stdout_path,
const char *stderr_path,
const char *working_directory,
uint32_t launch_flags, bool stop_at_entry,
lldb::SBError &error) {
LLDB_RECORD_METHOD(bool, SBProcess, RemoteLaunch,
(const char **, const char **, const char *, const char *,
const char *, const char *, uint32_t, bool,
lldb::SBError &),
argv, envp, stdin_path, stdout_path, stderr_path,
working_directory, launch_flags, stop_at_entry, error);
ProcessSP process_sp(GetSP());
if (process_sp) {
std::lock_guard<std::recursive_mutex> guard(
process_sp->GetTarget().GetAPIMutex());
if (process_sp->GetState() == eStateConnected) {
if (stop_at_entry)
launch_flags |= eLaunchFlagStopAtEntry;
ProcessLaunchInfo launch_info(FileSpec(stdin_path), FileSpec(stdout_path),
FileSpec(stderr_path),
FileSpec(working_directory), launch_flags);
Module *exe_module = process_sp->GetTarget().GetExecutableModulePointer();
if (exe_module)
launch_info.SetExecutableFile(exe_module->GetPlatformFileSpec(), true);
if (argv)
launch_info.GetArguments().AppendArguments(argv);
if (envp)
Add Utility/Environment class for handling... environments Summary: There was some confusion in the code about how to represent process environment. Most of the code (ab)used the Args class for this purpose, but some of it used a more basic StringList class instead. In either case, the fact that the underlying abstraction did not provide primitive operations for the typical environment operations meant that even a simple operation like checking for an environment variable value was several lines of code. This patch adds a separate Environment class, which is essentialy a llvm::StringMap<std::string> in disguise. To standard StringMap functionality, it adds a couple of new functions, which are specific to the environment use case: - (most important) envp conversion for passing into execve() and likes. Instead of trying to maintain a constantly up-to-date envp view, it provides a function which creates a envp view on demand, with the expectation that this will be called as the very last thing before handing the value to the system function. - insert(StringRef KeyEqValue) - splits KeyEqValue into (key, value) pair and inserts it into the environment map. - compose(value_type KeyValue) - takes a map entry and converts in back into "KEY=VALUE" representation. With this interface most of the environment-manipulating code becomes one-liners. The only tricky part was maintaining compatibility in SBLaunchInfo, which expects that the environment entries are accessible by index and that the returned const char* is backed by the launch info object (random access into maps is hard and the map stores the entry in a deconstructed form, so we cannot just return a .c_str() value). To solve this, I have the SBLaunchInfo convert the environment into the "envp" form, and use it to answer the environment queries. Extra code is added to make sure the envp version is always in sync. (This also improves the layering situation as Args was in the Interpreter module whereas Environment is in Utility.) Reviewers: zturner, davide, jingham, clayborg Subscribers: emaste, lldb-commits, mgorny Differential Revision: https://reviews.llvm.org/D41359 llvm-svn: 322174
2018-01-10 19:57:31 +08:00
launch_info.GetEnvironment() = Environment(envp);
error.SetError(process_sp->Launch(launch_info));
} else {
error.SetErrorString("must be in eStateConnected to call RemoteLaunch");
}
} else {
error.SetErrorString("unable to attach pid");
}
return error.Success();
}
bool SBProcess::RemoteAttachToProcessWithID(lldb::pid_t pid,
lldb::SBError &error) {
LLDB_RECORD_METHOD(bool, SBProcess, RemoteAttachToProcessWithID,
(lldb::pid_t, lldb::SBError &), pid, error);
ProcessSP process_sp(GetSP());
if (process_sp) {
std::lock_guard<std::recursive_mutex> guard(
process_sp->GetTarget().GetAPIMutex());
if (process_sp->GetState() == eStateConnected) {
ProcessAttachInfo attach_info;
attach_info.SetProcessID(pid);
error.SetError(process_sp->Attach(attach_info));
} else {
error.SetErrorString(
"must be in eStateConnected to call RemoteAttachToProcessWithID");
}
} else {
error.SetErrorString("unable to attach pid");
}
return error.Success();
<rdar://problem/13010007> Added the ability for OS plug-ins to lazily populate the thread this. The python OS plug-in classes can now implement the following method: class OperatingSystemPlugin: def create_thread(self, tid, context): # Return a dictionary for a new thread to create it on demand This will add a new thread to the thread list if it doesn't already exist. The example code in lldb/examples/python/operating_system.py has been updated to show how this call us used. Cleaned up the code in PythonDataObjects.cpp/h: - renamed all classes that started with PythonData* to be Python*. - renamed PythonArray to PythonList. Cleaned up the code to use inheritance where - Centralized the code that does ref counting in the PythonObject class to a single function. - Made the "bool PythonObject::Reset(PyObject *)" function be virtual so each subclass can correctly check to ensure a PyObject is of the right type before adopting the object. - Cleaned up all APIs and added new constructors for the Python* classes to they can all construct form: - PyObject * - const PythonObject & - const lldb::ScriptInterpreterObjectSP & Cleaned up code in ScriptInterpreterPython: - Made calling python functions safer by templatizing the production of value formats. Python specifies the value formats based on built in C types (long, long long, etc), and code often uses typedefs for uint32_t, uint64_t, etc when passing arguments down to python. We will now always produce correct value formats as the templatized code will "do the right thing" all the time. - Fixed issues with the ScriptInterpreterPython::Locker where entering the session and leaving the session had a bunch of issues that could cause the "lldb" module globals lldb.debugger, lldb.target, lldb.process, lldb.thread, and lldb.frame to not be initialized. llvm-svn: 172873
2013-01-19 07:41:08 +08:00
}
uint32_t SBProcess::GetNumThreads() {
LLDB_RECORD_METHOD_NO_ARGS(uint32_t, SBProcess, GetNumThreads);
uint32_t num_threads = 0;
ProcessSP process_sp(GetSP());
if (process_sp) {
Process::StopLocker stop_locker;
const bool can_update = stop_locker.TryLock(&process_sp->GetRunLock());
std::lock_guard<std::recursive_mutex> guard(
process_sp->GetTarget().GetAPIMutex());
num_threads = process_sp->GetThreadList().GetSize(can_update);
SBFrame is now threadsafe using some extra tricks. One issue is that stack frames might go away (the object itself, not the actual logical frame) when we are single stepping due to the way we currently sometimes end up flushing frames when stepping in/out/over. They later will come back to life represented by another object yet they have the same StackID. Now when you get a lldb::SBFrame object, it will track the frame it is initialized with until the thread goes away or the StackID no longer exists in the stack for the thread it was created on. It uses a weak_ptr to both the frame and thread and also stores the StackID. These three items allow us to determine when the stack frame object has gone away (the weak_ptr will be NULL) and allows us to find the correct frame again. In our test suite we had such cases where we were just getting lucky when something like this happened: 1 - stop at breakpoint 2 - get first frame in thread where we stopped 3 - run an expression that causes the program to JIT and run code 4 - run more expressions on the frame from step 2 which was very very luckily still around inside a shared pointer, yet, not part of the current thread (a new stack frame object had appeared with the same stack ID and depth). We now avoid all such issues and properly keep up to date, or we start returning errors when the frame doesn't exist and always responds with invalid answers. Also fixed the UserSettingsController (not going to rewrite this just yet) so that it doesn't crash on shutdown. Using weak_ptr's came in real handy to track when the master controller has already gone away and this allowed me to pull out the previous NotifyOwnerIsShuttingDown() patch as it is no longer needed. llvm-svn: 149231
2012-01-30 15:41:31 +08:00
}
return num_threads;
}
SBThread SBProcess::GetSelectedThread() const {
LLDB_RECORD_METHOD_CONST_NO_ARGS(lldb::SBThread, SBProcess,
GetSelectedThread);
SBThread sb_thread;
ThreadSP thread_sp;
ProcessSP process_sp(GetSP());
if (process_sp) {
std::lock_guard<std::recursive_mutex> guard(
process_sp->GetTarget().GetAPIMutex());
thread_sp = process_sp->GetThreadList().GetSelectedThread();
sb_thread.SetThread(thread_sp);
}
return LLDB_RECORD_RESULT(sb_thread);
}
SBThread SBProcess::CreateOSPluginThread(lldb::tid_t tid,
lldb::addr_t context) {
LLDB_RECORD_METHOD(lldb::SBThread, SBProcess, CreateOSPluginThread,
(lldb::tid_t, lldb::addr_t), tid, context);
SBThread sb_thread;
ThreadSP thread_sp;
ProcessSP process_sp(GetSP());
if (process_sp) {
std::lock_guard<std::recursive_mutex> guard(
process_sp->GetTarget().GetAPIMutex());
thread_sp = process_sp->CreateOSPluginThread(tid, context);
sb_thread.SetThread(thread_sp);
}
return LLDB_RECORD_RESULT(sb_thread);
}
SBTarget SBProcess::GetTarget() const {
LLDB_RECORD_METHOD_CONST_NO_ARGS(lldb::SBTarget, SBProcess, GetTarget);
SBTarget sb_target;
SBFrame is now threadsafe using some extra tricks. One issue is that stack frames might go away (the object itself, not the actual logical frame) when we are single stepping due to the way we currently sometimes end up flushing frames when stepping in/out/over. They later will come back to life represented by another object yet they have the same StackID. Now when you get a lldb::SBFrame object, it will track the frame it is initialized with until the thread goes away or the StackID no longer exists in the stack for the thread it was created on. It uses a weak_ptr to both the frame and thread and also stores the StackID. These three items allow us to determine when the stack frame object has gone away (the weak_ptr will be NULL) and allows us to find the correct frame again. In our test suite we had such cases where we were just getting lucky when something like this happened: 1 - stop at breakpoint 2 - get first frame in thread where we stopped 3 - run an expression that causes the program to JIT and run code 4 - run more expressions on the frame from step 2 which was very very luckily still around inside a shared pointer, yet, not part of the current thread (a new stack frame object had appeared with the same stack ID and depth). We now avoid all such issues and properly keep up to date, or we start returning errors when the frame doesn't exist and always responds with invalid answers. Also fixed the UserSettingsController (not going to rewrite this just yet) so that it doesn't crash on shutdown. Using weak_ptr's came in real handy to track when the master controller has already gone away and this allowed me to pull out the previous NotifyOwnerIsShuttingDown() patch as it is no longer needed. llvm-svn: 149231
2012-01-30 15:41:31 +08:00
TargetSP target_sp;
ProcessSP process_sp(GetSP());
if (process_sp) {
target_sp = process_sp->GetTarget().shared_from_this();
sb_target.SetSP(target_sp);
}
return LLDB_RECORD_RESULT(sb_target);
}
size_t SBProcess::PutSTDIN(const char *src, size_t src_len) {
LLDB_RECORD_METHOD(size_t, SBProcess, PutSTDIN, (const char *, size_t), src,
src_len);
size_t ret_val = 0;
ProcessSP process_sp(GetSP());
if (process_sp) {
Status error;
ret_val = process_sp->PutSTDIN(src, src_len, error);
}
return ret_val;
}
size_t SBProcess::GetSTDOUT(char *dst, size_t dst_len) const {
LLDB_RECORD_METHOD_CONST(size_t, SBProcess, GetSTDOUT, (char *, size_t), "",
dst_len);
size_t bytes_read = 0;
<rdar://problem/13010007> Added the ability for OS plug-ins to lazily populate the thread this. The python OS plug-in classes can now implement the following method: class OperatingSystemPlugin: def create_thread(self, tid, context): # Return a dictionary for a new thread to create it on demand This will add a new thread to the thread list if it doesn't already exist. The example code in lldb/examples/python/operating_system.py has been updated to show how this call us used. Cleaned up the code in PythonDataObjects.cpp/h: - renamed all classes that started with PythonData* to be Python*. - renamed PythonArray to PythonList. Cleaned up the code to use inheritance where - Centralized the code that does ref counting in the PythonObject class to a single function. - Made the "bool PythonObject::Reset(PyObject *)" function be virtual so each subclass can correctly check to ensure a PyObject is of the right type before adopting the object. - Cleaned up all APIs and added new constructors for the Python* classes to they can all construct form: - PyObject * - const PythonObject & - const lldb::ScriptInterpreterObjectSP & Cleaned up code in ScriptInterpreterPython: - Made calling python functions safer by templatizing the production of value formats. Python specifies the value formats based on built in C types (long, long long, etc), and code often uses typedefs for uint32_t, uint64_t, etc when passing arguments down to python. We will now always produce correct value formats as the templatized code will "do the right thing" all the time. - Fixed issues with the ScriptInterpreterPython::Locker where entering the session and leaving the session had a bunch of issues that could cause the "lldb" module globals lldb.debugger, lldb.target, lldb.process, lldb.thread, and lldb.frame to not be initialized. llvm-svn: 172873
2013-01-19 07:41:08 +08:00
ProcessSP process_sp(GetSP());
if (process_sp) {
Status error;
bytes_read = process_sp->GetSTDOUT(dst, dst_len, error);
}
return bytes_read;
}
size_t SBProcess::GetSTDERR(char *dst, size_t dst_len) const {
LLDB_RECORD_METHOD_CONST(size_t, SBProcess, GetSTDERR, (char *, size_t), "",
dst_len);
Removed the "lldb-forward-rtti.h" header file as it was designed to contain all RTTI types, and since we don't use RTTI anymore since clang and llvm don't we don't really need this header file. All shared pointer definitions have been moved into "lldb-forward.h". Defined std::tr1::weak_ptr definitions for all of the types that inherit from enable_shared_from_this() in "lldb-forward.h" in preparation for thread hardening our public API. The first in the thread hardening check-ins. First we start with SBThread. We have issues in our lldb::SB API right now where if you have one object that is being used by two threads we have a race condition. Consider the following code: 1 int 2 SBThread::SomeFunction() 3 { 4 int result = -1; 5 if (m_opaque_sp) 6 { 7 result = m_opaque_sp->DoSomething(); 8 } 9 return result; 10 } And now this happens: Thread 1 enters any SBThread function and checks its m_opaque_sp and is about to execute the code on line 7 but hasn't yet Thread 2 gets to run and class sb_thread.Clear() which calls m_opaque_sp.clear() and clears the contents of the shared pointer member Thread 1 now crashes when it resumes. The solution is to use std::tr1::weak_ptr. Now the SBThread class contains a lldb::ThreadWP (weak pointer to our lldb_private::Thread class) and this function would look like: 1 int 2 SBThread::SomeFunction() 3 { 4 int result = -1; 5 ThreadSP thread_sp(m_opaque_wp.lock()); 6 if (thread_sp) 7 { 8 result = m_opaque_sp->DoSomething(); 9 } 10 return result; 11 } Now we have a solid thread safe API where we get a local copy of our thread shared pointer from our weak_ptr and then we are guaranteed it can't go away during our function. So lldb::SBThread has been thread hardened, more checkins to follow shortly. llvm-svn: 149218
2012-01-30 10:53:15 +08:00
size_t bytes_read = 0;
ProcessSP process_sp(GetSP());
if (process_sp) {
Status error;
bytes_read = process_sp->GetSTDERR(dst, dst_len, error);
}
return bytes_read;
}
size_t SBProcess::GetAsyncProfileData(char *dst, size_t dst_len) const {
LLDB_RECORD_METHOD_CONST(size_t, SBProcess, GetAsyncProfileData,
(char *, size_t), "", dst_len);
size_t bytes_read = 0;
<rdar://problem/13010007> Added the ability for OS plug-ins to lazily populate the thread this. The python OS plug-in classes can now implement the following method: class OperatingSystemPlugin: def create_thread(self, tid, context): # Return a dictionary for a new thread to create it on demand This will add a new thread to the thread list if it doesn't already exist. The example code in lldb/examples/python/operating_system.py has been updated to show how this call us used. Cleaned up the code in PythonDataObjects.cpp/h: - renamed all classes that started with PythonData* to be Python*. - renamed PythonArray to PythonList. Cleaned up the code to use inheritance where - Centralized the code that does ref counting in the PythonObject class to a single function. - Made the "bool PythonObject::Reset(PyObject *)" function be virtual so each subclass can correctly check to ensure a PyObject is of the right type before adopting the object. - Cleaned up all APIs and added new constructors for the Python* classes to they can all construct form: - PyObject * - const PythonObject & - const lldb::ScriptInterpreterObjectSP & Cleaned up code in ScriptInterpreterPython: - Made calling python functions safer by templatizing the production of value formats. Python specifies the value formats based on built in C types (long, long long, etc), and code often uses typedefs for uint32_t, uint64_t, etc when passing arguments down to python. We will now always produce correct value formats as the templatized code will "do the right thing" all the time. - Fixed issues with the ScriptInterpreterPython::Locker where entering the session and leaving the session had a bunch of issues that could cause the "lldb" module globals lldb.debugger, lldb.target, lldb.process, lldb.thread, and lldb.frame to not be initialized. llvm-svn: 172873
2013-01-19 07:41:08 +08:00
ProcessSP process_sp(GetSP());
if (process_sp) {
Status error;
bytes_read = process_sp->GetAsyncProfileData(dst, dst_len, error);
}
return bytes_read;
}
lldb::SBTrace SBProcess::StartTrace(SBTraceOptions &options,
lldb::SBError &error) {
LLDB_RECORD_METHOD(lldb::SBTrace, SBProcess, StartTrace,
(lldb::SBTraceOptions &, lldb::SBError &), options, error);
ProcessSP process_sp(GetSP());
error.Clear();
SBTrace trace_instance;
trace_instance.SetSP(process_sp);
lldb::user_id_t uid = LLDB_INVALID_UID;
if (!process_sp) {
error.SetErrorString("invalid process");
} else {
uid = process_sp->StartTrace(*(options.m_traceoptions_sp), error.ref());
trace_instance.SetTraceUID(uid);
}
return LLDB_RECORD_RESULT(trace_instance);
}
void SBProcess::ReportEventState(const SBEvent &event, SBFile out) const {
LLDB_RECORD_METHOD_CONST(void, SBProcess, ReportEventState,
(const SBEvent &, SBFile), event, out);
return ReportEventState(event, out.m_opaque_sp);
}
void SBProcess::ReportEventState(const SBEvent &event, FILE *out) const {
LLDB_RECORD_METHOD_CONST(void, SBProcess, ReportEventState,
(const lldb::SBEvent &, FILE *), event, out);
FileSP outfile = std::make_shared<NativeFile>(out, false);
return ReportEventState(event, outfile);
}
void SBProcess::ReportEventState(const SBEvent &event, FileSP out) const {
LLDB_RECORD_METHOD_CONST(void, SBProcess, ReportEventState,
(const SBEvent &, FileSP), event, out);
if (!out || !out->IsValid())
return;
ProcessSP process_sp(GetSP());
if (process_sp) {
StreamFile stream(out);
const StateType event_state = SBProcess::GetStateFromEvent(event);
stream.Printf("Process %" PRIu64 " %s\n",
process_sp->GetID(), SBDebugger::StateAsCString(event_state));
}
}
void SBProcess::AppendEventStateReport(const SBEvent &event,
SBCommandReturnObject &result) {
LLDB_RECORD_METHOD(void, SBProcess, AppendEventStateReport,
(const lldb::SBEvent &, lldb::SBCommandReturnObject &),
event, result);
ProcessSP process_sp(GetSP());
if (process_sp) {
const StateType event_state = SBProcess::GetStateFromEvent(event);
char message[1024];
::snprintf(message, sizeof(message), "Process %" PRIu64 " %s\n",
process_sp->GetID(), SBDebugger::StateAsCString(event_state));
result.AppendMessage(message);
}
}
bool SBProcess::SetSelectedThread(const SBThread &thread) {
LLDB_RECORD_METHOD(bool, SBProcess, SetSelectedThread,
(const lldb::SBThread &), thread);
ProcessSP process_sp(GetSP());
if (process_sp) {
std::lock_guard<std::recursive_mutex> guard(
process_sp->GetTarget().GetAPIMutex());
return process_sp->GetThreadList().SetSelectedThreadByID(
thread.GetThreadID());
}
return false;
}
bool SBProcess::SetSelectedThreadByID(lldb::tid_t tid) {
LLDB_RECORD_METHOD(bool, SBProcess, SetSelectedThreadByID, (lldb::tid_t),
tid);
2010-10-30 12:51:46 +08:00
bool ret_val = false;
ProcessSP process_sp(GetSP());
if (process_sp) {
std::lock_guard<std::recursive_mutex> guard(
process_sp->GetTarget().GetAPIMutex());
ret_val = process_sp->GetThreadList().SetSelectedThreadByID(tid);
}
return ret_val;
}
bool SBProcess::SetSelectedThreadByIndexID(uint32_t index_id) {
LLDB_RECORD_METHOD(bool, SBProcess, SetSelectedThreadByIndexID, (uint32_t),
index_id);
bool ret_val = false;
ProcessSP process_sp(GetSP());
if (process_sp) {
std::lock_guard<std::recursive_mutex> guard(
process_sp->GetTarget().GetAPIMutex());
ret_val = process_sp->GetThreadList().SetSelectedThreadByIndexID(index_id);
}
return ret_val;
}
SBThread SBProcess::GetThreadAtIndex(size_t index) {
LLDB_RECORD_METHOD(lldb::SBThread, SBProcess, GetThreadAtIndex, (size_t),
index);
SBThread sb_thread;
Removed the "lldb-forward-rtti.h" header file as it was designed to contain all RTTI types, and since we don't use RTTI anymore since clang and llvm don't we don't really need this header file. All shared pointer definitions have been moved into "lldb-forward.h". Defined std::tr1::weak_ptr definitions for all of the types that inherit from enable_shared_from_this() in "lldb-forward.h" in preparation for thread hardening our public API. The first in the thread hardening check-ins. First we start with SBThread. We have issues in our lldb::SB API right now where if you have one object that is being used by two threads we have a race condition. Consider the following code: 1 int 2 SBThread::SomeFunction() 3 { 4 int result = -1; 5 if (m_opaque_sp) 6 { 7 result = m_opaque_sp->DoSomething(); 8 } 9 return result; 10 } And now this happens: Thread 1 enters any SBThread function and checks its m_opaque_sp and is about to execute the code on line 7 but hasn't yet Thread 2 gets to run and class sb_thread.Clear() which calls m_opaque_sp.clear() and clears the contents of the shared pointer member Thread 1 now crashes when it resumes. The solution is to use std::tr1::weak_ptr. Now the SBThread class contains a lldb::ThreadWP (weak pointer to our lldb_private::Thread class) and this function would look like: 1 int 2 SBThread::SomeFunction() 3 { 4 int result = -1; 5 ThreadSP thread_sp(m_opaque_wp.lock()); 6 if (thread_sp) 7 { 8 result = m_opaque_sp->DoSomething(); 9 } 10 return result; 11 } Now we have a solid thread safe API where we get a local copy of our thread shared pointer from our weak_ptr and then we are guaranteed it can't go away during our function. So lldb::SBThread has been thread hardened, more checkins to follow shortly. llvm-svn: 149218
2012-01-30 10:53:15 +08:00
ThreadSP thread_sp;
ProcessSP process_sp(GetSP());
if (process_sp) {
Process::StopLocker stop_locker;
const bool can_update = stop_locker.TryLock(&process_sp->GetRunLock());
std::lock_guard<std::recursive_mutex> guard(
process_sp->GetTarget().GetAPIMutex());
thread_sp = process_sp->GetThreadList().GetThreadAtIndex(index, can_update);
sb_thread.SetThread(thread_sp);
}
return LLDB_RECORD_RESULT(sb_thread);
}
uint32_t SBProcess::GetNumQueues() {
LLDB_RECORD_METHOD_NO_ARGS(uint32_t, SBProcess, GetNumQueues);
uint32_t num_queues = 0;
ProcessSP process_sp(GetSP());
if (process_sp) {
Process::StopLocker stop_locker;
if (stop_locker.TryLock(&process_sp->GetRunLock())) {
std::lock_guard<std::recursive_mutex> guard(
process_sp->GetTarget().GetAPIMutex());
num_queues = process_sp->GetQueueList().GetSize();
}
}
return num_queues;
}
SBQueue SBProcess::GetQueueAtIndex(size_t index) {
LLDB_RECORD_METHOD(lldb::SBQueue, SBProcess, GetQueueAtIndex, (size_t),
index);
SBQueue sb_queue;
QueueSP queue_sp;
ProcessSP process_sp(GetSP());
if (process_sp) {
Process::StopLocker stop_locker;
if (stop_locker.TryLock(&process_sp->GetRunLock())) {
std::lock_guard<std::recursive_mutex> guard(
process_sp->GetTarget().GetAPIMutex());
queue_sp = process_sp->GetQueueList().GetQueueAtIndex(index);
sb_queue.SetQueue(queue_sp);
}
}
return LLDB_RECORD_RESULT(sb_queue);
}
uint32_t SBProcess::GetStopID(bool include_expression_stops) {
LLDB_RECORD_METHOD(uint32_t, SBProcess, GetStopID, (bool),
include_expression_stops);
ProcessSP process_sp(GetSP());
if (process_sp) {
std::lock_guard<std::recursive_mutex> guard(
process_sp->GetTarget().GetAPIMutex());
if (include_expression_stops)
return process_sp->GetStopID();
else
return process_sp->GetLastNaturalStopID();
}
return 0;
}
SBEvent SBProcess::GetStopEventForStopID(uint32_t stop_id) {
LLDB_RECORD_METHOD(lldb::SBEvent, SBProcess, GetStopEventForStopID,
(uint32_t), stop_id);
SBEvent sb_event;
EventSP event_sp;
ProcessSP process_sp(GetSP());
if (process_sp) {
std::lock_guard<std::recursive_mutex> guard(
process_sp->GetTarget().GetAPIMutex());
event_sp = process_sp->GetStopEventForStopID(stop_id);
sb_event.reset(event_sp);
}
return LLDB_RECORD_RESULT(sb_event);
}
StateType SBProcess::GetState() {
LLDB_RECORD_METHOD_NO_ARGS(lldb::StateType, SBProcess, GetState);
StateType ret_val = eStateInvalid;
ProcessSP process_sp(GetSP());
if (process_sp) {
std::lock_guard<std::recursive_mutex> guard(
process_sp->GetTarget().GetAPIMutex());
ret_val = process_sp->GetState();
}
return ret_val;
}
int SBProcess::GetExitStatus() {
LLDB_RECORD_METHOD_NO_ARGS(int, SBProcess, GetExitStatus);
2010-10-30 12:51:46 +08:00
int exit_status = 0;
ProcessSP process_sp(GetSP());
if (process_sp) {
std::lock_guard<std::recursive_mutex> guard(
process_sp->GetTarget().GetAPIMutex());
exit_status = process_sp->GetExitStatus();
}
2010-10-30 12:51:46 +08:00
return exit_status;
}
const char *SBProcess::GetExitDescription() {
LLDB_RECORD_METHOD_NO_ARGS(const char *, SBProcess, GetExitDescription);
const char *exit_desc = nullptr;
ProcessSP process_sp(GetSP());
if (process_sp) {
std::lock_guard<std::recursive_mutex> guard(
process_sp->GetTarget().GetAPIMutex());
exit_desc = process_sp->GetExitDescription();
}
2010-10-30 12:51:46 +08:00
return exit_desc;
}
lldb::pid_t SBProcess::GetProcessID() {
LLDB_RECORD_METHOD_NO_ARGS(lldb::pid_t, SBProcess, GetProcessID);
lldb::pid_t ret_val = LLDB_INVALID_PROCESS_ID;
ProcessSP process_sp(GetSP());
if (process_sp)
ret_val = process_sp->GetID();
return ret_val;
}
uint32_t SBProcess::GetUniqueID() {
LLDB_RECORD_METHOD_NO_ARGS(uint32_t, SBProcess, GetUniqueID);
uint32_t ret_val = 0;
ProcessSP process_sp(GetSP());
if (process_sp)
ret_val = process_sp->GetUniqueID();
return ret_val;
}
ByteOrder SBProcess::GetByteOrder() const {
LLDB_RECORD_METHOD_CONST_NO_ARGS(lldb::ByteOrder, SBProcess, GetByteOrder);
ByteOrder byteOrder = eByteOrderInvalid;
ProcessSP process_sp(GetSP());
if (process_sp)
byteOrder = process_sp->GetTarget().GetArchitecture().GetByteOrder();
return byteOrder;
}
uint32_t SBProcess::GetAddressByteSize() const {
LLDB_RECORD_METHOD_CONST_NO_ARGS(uint32_t, SBProcess, GetAddressByteSize);
uint32_t size = 0;
ProcessSP process_sp(GetSP());
if (process_sp)
size = process_sp->GetTarget().GetArchitecture().GetAddressByteSize();
return size;
}
SBError SBProcess::Continue() {
LLDB_RECORD_METHOD_NO_ARGS(lldb::SBError, SBProcess, Continue);
SBError sb_error;
ProcessSP process_sp(GetSP());
if (process_sp) {
std::lock_guard<std::recursive_mutex> guard(
process_sp->GetTarget().GetAPIMutex());
if (process_sp->GetTarget().GetDebugger().GetAsyncExecution())
sb_error.ref() = process_sp->Resume();
else
sb_error.ref() = process_sp->ResumeSynchronous(nullptr);
} else
sb_error.SetErrorString("SBProcess is invalid");
return LLDB_RECORD_RESULT(sb_error);
}
SBError SBProcess::Destroy() {
LLDB_RECORD_METHOD_NO_ARGS(lldb::SBError, SBProcess, Destroy);
SBError sb_error;
ProcessSP process_sp(GetSP());
if (process_sp) {
std::lock_guard<std::recursive_mutex> guard(
process_sp->GetTarget().GetAPIMutex());
sb_error.SetError(process_sp->Destroy(false));
} else
sb_error.SetErrorString("SBProcess is invalid");
return LLDB_RECORD_RESULT(sb_error);
}
2010-10-30 12:51:46 +08:00
SBError SBProcess::Stop() {
LLDB_RECORD_METHOD_NO_ARGS(lldb::SBError, SBProcess, Stop);
SBError sb_error;
ProcessSP process_sp(GetSP());
if (process_sp) {
std::lock_guard<std::recursive_mutex> guard(
process_sp->GetTarget().GetAPIMutex());
sb_error.SetError(process_sp->Halt());
} else
sb_error.SetErrorString("SBProcess is invalid");
return LLDB_RECORD_RESULT(sb_error);
}
SBError SBProcess::Kill() {
LLDB_RECORD_METHOD_NO_ARGS(lldb::SBError, SBProcess, Kill);
SBError sb_error;
ProcessSP process_sp(GetSP());
2010-10-30 12:51:46 +08:00
if (process_sp) {
std::lock_guard<std::recursive_mutex> guard(
process_sp->GetTarget().GetAPIMutex());
sb_error.SetError(process_sp->Destroy(true));
} else
sb_error.SetErrorString("SBProcess is invalid");
return LLDB_RECORD_RESULT(sb_error);
}
SBError SBProcess::Detach() {
LLDB_RECORD_METHOD_NO_ARGS(lldb::SBError, SBProcess, Detach);
// FIXME: This should come from a process default.
bool keep_stopped = false;
return LLDB_RECORD_RESULT(Detach(keep_stopped));
}
SBError SBProcess::Detach(bool keep_stopped) {
LLDB_RECORD_METHOD(lldb::SBError, SBProcess, Detach, (bool), keep_stopped);
SBError sb_error;
ProcessSP process_sp(GetSP());
if (process_sp) {
std::lock_guard<std::recursive_mutex> guard(
process_sp->GetTarget().GetAPIMutex());
sb_error.SetError(process_sp->Detach(keep_stopped));
} else
sb_error.SetErrorString("SBProcess is invalid");
return LLDB_RECORD_RESULT(sb_error);
}
2010-10-30 12:51:46 +08:00
SBError SBProcess::Signal(int signo) {
LLDB_RECORD_METHOD(lldb::SBError, SBProcess, Signal, (int), signo);
SBError sb_error;
ProcessSP process_sp(GetSP());
if (process_sp) {
std::lock_guard<std::recursive_mutex> guard(
process_sp->GetTarget().GetAPIMutex());
sb_error.SetError(process_sp->Signal(signo));
} else
sb_error.SetErrorString("SBProcess is invalid");
return LLDB_RECORD_RESULT(sb_error);
}
SBUnixSignals SBProcess::GetUnixSignals() {
LLDB_RECORD_METHOD_NO_ARGS(lldb::SBUnixSignals, SBProcess, GetUnixSignals);
if (auto process_sp = GetSP())
return LLDB_RECORD_RESULT(SBUnixSignals{process_sp});
return LLDB_RECORD_RESULT(SBUnixSignals{});
}
void SBProcess::SendAsyncInterrupt() {
LLDB_RECORD_METHOD_NO_ARGS(void, SBProcess, SendAsyncInterrupt);
ProcessSP process_sp(GetSP());
if (process_sp) {
process_sp->SendAsyncInterrupt();
}
}
2010-10-30 12:51:46 +08:00
SBThread SBProcess::GetThreadByID(tid_t tid) {
LLDB_RECORD_METHOD(lldb::SBThread, SBProcess, GetThreadByID, (lldb::tid_t),
tid);
2010-10-30 12:51:46 +08:00
SBThread sb_thread;
Removed the "lldb-forward-rtti.h" header file as it was designed to contain all RTTI types, and since we don't use RTTI anymore since clang and llvm don't we don't really need this header file. All shared pointer definitions have been moved into "lldb-forward.h". Defined std::tr1::weak_ptr definitions for all of the types that inherit from enable_shared_from_this() in "lldb-forward.h" in preparation for thread hardening our public API. The first in the thread hardening check-ins. First we start with SBThread. We have issues in our lldb::SB API right now where if you have one object that is being used by two threads we have a race condition. Consider the following code: 1 int 2 SBThread::SomeFunction() 3 { 4 int result = -1; 5 if (m_opaque_sp) 6 { 7 result = m_opaque_sp->DoSomething(); 8 } 9 return result; 10 } And now this happens: Thread 1 enters any SBThread function and checks its m_opaque_sp and is about to execute the code on line 7 but hasn't yet Thread 2 gets to run and class sb_thread.Clear() which calls m_opaque_sp.clear() and clears the contents of the shared pointer member Thread 1 now crashes when it resumes. The solution is to use std::tr1::weak_ptr. Now the SBThread class contains a lldb::ThreadWP (weak pointer to our lldb_private::Thread class) and this function would look like: 1 int 2 SBThread::SomeFunction() 3 { 4 int result = -1; 5 ThreadSP thread_sp(m_opaque_wp.lock()); 6 if (thread_sp) 7 { 8 result = m_opaque_sp->DoSomething(); 9 } 10 return result; 11 } Now we have a solid thread safe API where we get a local copy of our thread shared pointer from our weak_ptr and then we are guaranteed it can't go away during our function. So lldb::SBThread has been thread hardened, more checkins to follow shortly. llvm-svn: 149218
2012-01-30 10:53:15 +08:00
ThreadSP thread_sp;
ProcessSP process_sp(GetSP());
if (process_sp) {
Process::StopLocker stop_locker;
const bool can_update = stop_locker.TryLock(&process_sp->GetRunLock());
std::lock_guard<std::recursive_mutex> guard(
process_sp->GetTarget().GetAPIMutex());
thread_sp = process_sp->GetThreadList().FindThreadByID(tid, can_update);
Removed the "lldb-forward-rtti.h" header file as it was designed to contain all RTTI types, and since we don't use RTTI anymore since clang and llvm don't we don't really need this header file. All shared pointer definitions have been moved into "lldb-forward.h". Defined std::tr1::weak_ptr definitions for all of the types that inherit from enable_shared_from_this() in "lldb-forward.h" in preparation for thread hardening our public API. The first in the thread hardening check-ins. First we start with SBThread. We have issues in our lldb::SB API right now where if you have one object that is being used by two threads we have a race condition. Consider the following code: 1 int 2 SBThread::SomeFunction() 3 { 4 int result = -1; 5 if (m_opaque_sp) 6 { 7 result = m_opaque_sp->DoSomething(); 8 } 9 return result; 10 } And now this happens: Thread 1 enters any SBThread function and checks its m_opaque_sp and is about to execute the code on line 7 but hasn't yet Thread 2 gets to run and class sb_thread.Clear() which calls m_opaque_sp.clear() and clears the contents of the shared pointer member Thread 1 now crashes when it resumes. The solution is to use std::tr1::weak_ptr. Now the SBThread class contains a lldb::ThreadWP (weak pointer to our lldb_private::Thread class) and this function would look like: 1 int 2 SBThread::SomeFunction() 3 { 4 int result = -1; 5 ThreadSP thread_sp(m_opaque_wp.lock()); 6 if (thread_sp) 7 { 8 result = m_opaque_sp->DoSomething(); 9 } 10 return result; 11 } Now we have a solid thread safe API where we get a local copy of our thread shared pointer from our weak_ptr and then we are guaranteed it can't go away during our function. So lldb::SBThread has been thread hardened, more checkins to follow shortly. llvm-svn: 149218
2012-01-30 10:53:15 +08:00
sb_thread.SetThread(thread_sp);
}
return LLDB_RECORD_RESULT(sb_thread);
}
2010-10-30 12:51:46 +08:00
SBThread SBProcess::GetThreadByIndexID(uint32_t index_id) {
LLDB_RECORD_METHOD(lldb::SBThread, SBProcess, GetThreadByIndexID, (uint32_t),
index_id);
2010-10-30 12:51:46 +08:00
SBThread sb_thread;
Removed the "lldb-forward-rtti.h" header file as it was designed to contain all RTTI types, and since we don't use RTTI anymore since clang and llvm don't we don't really need this header file. All shared pointer definitions have been moved into "lldb-forward.h". Defined std::tr1::weak_ptr definitions for all of the types that inherit from enable_shared_from_this() in "lldb-forward.h" in preparation for thread hardening our public API. The first in the thread hardening check-ins. First we start with SBThread. We have issues in our lldb::SB API right now where if you have one object that is being used by two threads we have a race condition. Consider the following code: 1 int 2 SBThread::SomeFunction() 3 { 4 int result = -1; 5 if (m_opaque_sp) 6 { 7 result = m_opaque_sp->DoSomething(); 8 } 9 return result; 10 } And now this happens: Thread 1 enters any SBThread function and checks its m_opaque_sp and is about to execute the code on line 7 but hasn't yet Thread 2 gets to run and class sb_thread.Clear() which calls m_opaque_sp.clear() and clears the contents of the shared pointer member Thread 1 now crashes when it resumes. The solution is to use std::tr1::weak_ptr. Now the SBThread class contains a lldb::ThreadWP (weak pointer to our lldb_private::Thread class) and this function would look like: 1 int 2 SBThread::SomeFunction() 3 { 4 int result = -1; 5 ThreadSP thread_sp(m_opaque_wp.lock()); 6 if (thread_sp) 7 { 8 result = m_opaque_sp->DoSomething(); 9 } 10 return result; 11 } Now we have a solid thread safe API where we get a local copy of our thread shared pointer from our weak_ptr and then we are guaranteed it can't go away during our function. So lldb::SBThread has been thread hardened, more checkins to follow shortly. llvm-svn: 149218
2012-01-30 10:53:15 +08:00
ThreadSP thread_sp;
ProcessSP process_sp(GetSP());
if (process_sp) {
Process::StopLocker stop_locker;
const bool can_update = stop_locker.TryLock(&process_sp->GetRunLock());
std::lock_guard<std::recursive_mutex> guard(
process_sp->GetTarget().GetAPIMutex());
thread_sp =
process_sp->GetThreadList().FindThreadByIndexID(index_id, can_update);
sb_thread.SetThread(thread_sp);
}
return LLDB_RECORD_RESULT(sb_thread);
}
StateType SBProcess::GetStateFromEvent(const SBEvent &event) {
LLDB_RECORD_STATIC_METHOD(lldb::StateType, SBProcess, GetStateFromEvent,
(const lldb::SBEvent &), event);
StateType ret_val = Process::ProcessEventData::GetStateFromEvent(event.get());
return ret_val;
}
bool SBProcess::GetRestartedFromEvent(const SBEvent &event) {
LLDB_RECORD_STATIC_METHOD(bool, SBProcess, GetRestartedFromEvent,
(const lldb::SBEvent &), event);
bool ret_val = Process::ProcessEventData::GetRestartedFromEvent(event.get());
return ret_val;
}
size_t SBProcess::GetNumRestartedReasonsFromEvent(const lldb::SBEvent &event) {
LLDB_RECORD_STATIC_METHOD(size_t, SBProcess, GetNumRestartedReasonsFromEvent,
(const lldb::SBEvent &), event);
return Process::ProcessEventData::GetNumRestartedReasons(event.get());
}
const char *
SBProcess::GetRestartedReasonAtIndexFromEvent(const lldb::SBEvent &event,
size_t idx) {
LLDB_RECORD_STATIC_METHOD(const char *, SBProcess,
GetRestartedReasonAtIndexFromEvent,
(const lldb::SBEvent &, size_t), event, idx);
return Process::ProcessEventData::GetRestartedReasonAtIndex(event.get(), idx);
}
SBProcess SBProcess::GetProcessFromEvent(const SBEvent &event) {
LLDB_RECORD_STATIC_METHOD(lldb::SBProcess, SBProcess, GetProcessFromEvent,
(const lldb::SBEvent &), event);
ProcessSP process_sp =
Process::ProcessEventData::GetProcessFromEvent(event.get());
if (!process_sp) {
// StructuredData events also know the process they come from. Try that.
process_sp = EventDataStructuredData::GetProcessFromEvent(event.get());
}
return LLDB_RECORD_RESULT(SBProcess(process_sp));
}
bool SBProcess::GetInterruptedFromEvent(const SBEvent &event) {
LLDB_RECORD_STATIC_METHOD(bool, SBProcess, GetInterruptedFromEvent,
(const lldb::SBEvent &), event);
return Process::ProcessEventData::GetInterruptedFromEvent(event.get());
}
lldb::SBStructuredData
SBProcess::GetStructuredDataFromEvent(const lldb::SBEvent &event) {
LLDB_RECORD_STATIC_METHOD(lldb::SBStructuredData, SBProcess,
GetStructuredDataFromEvent, (const lldb::SBEvent &),
event);
return LLDB_RECORD_RESULT(SBStructuredData(event.GetSP()));
}
bool SBProcess::EventIsProcessEvent(const SBEvent &event) {
LLDB_RECORD_STATIC_METHOD(bool, SBProcess, EventIsProcessEvent,
(const lldb::SBEvent &), event);
return (event.GetBroadcasterClass() == SBProcess::GetBroadcasterClass()) &&
!EventIsStructuredDataEvent(event);
}
bool SBProcess::EventIsStructuredDataEvent(const lldb::SBEvent &event) {
LLDB_RECORD_STATIC_METHOD(bool, SBProcess, EventIsStructuredDataEvent,
(const lldb::SBEvent &), event);
EventSP event_sp = event.GetSP();
EventData *event_data = event_sp ? event_sp->GetData() : nullptr;
return event_data && (event_data->GetFlavor() ==
EventDataStructuredData::GetFlavorString());
}
SBBroadcaster SBProcess::GetBroadcaster() const {
LLDB_RECORD_METHOD_CONST_NO_ARGS(lldb::SBBroadcaster, SBProcess,
GetBroadcaster);
ProcessSP process_sp(GetSP());
SBBroadcaster broadcaster(process_sp.get(), false);
return LLDB_RECORD_RESULT(broadcaster);
}
const char *SBProcess::GetBroadcasterClass() {
LLDB_RECORD_STATIC_METHOD_NO_ARGS(const char *, SBProcess,
GetBroadcasterClass);
return Process::GetStaticBroadcasterClass().AsCString();
}
size_t SBProcess::ReadMemory(addr_t addr, void *dst, size_t dst_len,
SBError &sb_error) {
LLDB_RECORD_DUMMY(size_t, SBProcess, ReadMemory,
(lldb::addr_t, void *, size_t, lldb::SBError &), addr, dst,
dst_len, sb_error);
size_t bytes_read = 0;
ProcessSP process_sp(GetSP());
if (process_sp) {
Process::StopLocker stop_locker;
if (stop_locker.TryLock(&process_sp->GetRunLock())) {
std::lock_guard<std::recursive_mutex> guard(
process_sp->GetTarget().GetAPIMutex());
bytes_read = process_sp->ReadMemory(addr, dst, dst_len, sb_error.ref());
} else {
sb_error.SetErrorString("process is running");
}
} else {
sb_error.SetErrorString("SBProcess is invalid");
}
return bytes_read;
}
size_t SBProcess::ReadCStringFromMemory(addr_t addr, void *buf, size_t size,
lldb::SBError &sb_error) {
LLDB_RECORD_DUMMY(size_t, SBProcess, ReadCStringFromMemory,
(lldb::addr_t, void *, size_t, lldb::SBError &), addr, buf,
size, sb_error);
size_t bytes_read = 0;
ProcessSP process_sp(GetSP());
if (process_sp) {
Process::StopLocker stop_locker;
if (stop_locker.TryLock(&process_sp->GetRunLock())) {
std::lock_guard<std::recursive_mutex> guard(
process_sp->GetTarget().GetAPIMutex());
bytes_read = process_sp->ReadCStringFromMemory(addr, (char *)buf, size,
sb_error.ref());
} else {
sb_error.SetErrorString("process is running");
}
} else {
sb_error.SetErrorString("SBProcess is invalid");
}
return bytes_read;
}
uint64_t SBProcess::ReadUnsignedFromMemory(addr_t addr, uint32_t byte_size,
lldb::SBError &sb_error) {
LLDB_RECORD_METHOD(uint64_t, SBProcess, ReadUnsignedFromMemory,
(lldb::addr_t, uint32_t, lldb::SBError &), addr, byte_size,
sb_error);
uint64_t value = 0;
ProcessSP process_sp(GetSP());
if (process_sp) {
Process::StopLocker stop_locker;
if (stop_locker.TryLock(&process_sp->GetRunLock())) {
std::lock_guard<std::recursive_mutex> guard(
process_sp->GetTarget().GetAPIMutex());
value = process_sp->ReadUnsignedIntegerFromMemory(addr, byte_size, 0,
sb_error.ref());
} else {
sb_error.SetErrorString("process is running");
}
} else {
sb_error.SetErrorString("SBProcess is invalid");
2010-10-30 12:51:46 +08:00
}
return value;
}
lldb::addr_t SBProcess::ReadPointerFromMemory(addr_t addr,
lldb::SBError &sb_error) {
LLDB_RECORD_METHOD(lldb::addr_t, SBProcess, ReadPointerFromMemory,
(lldb::addr_t, lldb::SBError &), addr, sb_error);
lldb::addr_t ptr = LLDB_INVALID_ADDRESS;
ProcessSP process_sp(GetSP());
if (process_sp) {
Process::StopLocker stop_locker;
if (stop_locker.TryLock(&process_sp->GetRunLock())) {
std::lock_guard<std::recursive_mutex> guard(
process_sp->GetTarget().GetAPIMutex());
ptr = process_sp->ReadPointerFromMemory(addr, sb_error.ref());
} else {
sb_error.SetErrorString("process is running");
}
} else {
sb_error.SetErrorString("SBProcess is invalid");
}
return ptr;
}
size_t SBProcess::WriteMemory(addr_t addr, const void *src, size_t src_len,
SBError &sb_error) {
LLDB_RECORD_DUMMY(size_t, SBProcess, WriteMemory,
(lldb::addr_t, const void *, size_t, lldb::SBError &), addr,
src, src_len, sb_error);
size_t bytes_written = 0;
ProcessSP process_sp(GetSP());
if (process_sp) {
Process::StopLocker stop_locker;
if (stop_locker.TryLock(&process_sp->GetRunLock())) {
std::lock_guard<std::recursive_mutex> guard(
process_sp->GetTarget().GetAPIMutex());
bytes_written =
process_sp->WriteMemory(addr, src, src_len, sb_error.ref());
} else {
sb_error.SetErrorString("process is running");
}
}
return bytes_written;
}
bool SBProcess::GetDescription(SBStream &description) {
LLDB_RECORD_METHOD(bool, SBProcess, GetDescription, (lldb::SBStream &),
description);
Stream &strm = description.ref();
ProcessSP process_sp(GetSP());
if (process_sp) {
char path[PATH_MAX];
GetTarget().GetExecutable().GetPath(path, sizeof(path));
Module *exe_module = process_sp->GetTarget().GetExecutableModulePointer();
const char *exe_name = nullptr;
if (exe_module)
exe_name = exe_module->GetFileSpec().GetFilename().AsCString();
strm.Printf("SBProcess: pid = %" PRIu64 ", state = %s, threads = %d%s%s",
process_sp->GetID(), lldb_private::StateAsCString(GetState()),
GetNumThreads(), exe_name ? ", executable = " : "",
exe_name ? exe_name : "");
} else
strm.PutCString("No value");
return true;
}
SBStructuredData SBProcess::GetExtendedCrashInformation() {
LLDB_RECORD_METHOD_NO_ARGS(lldb::SBStructuredData, SBProcess,
GetExtendedCrashInformation);
SBStructuredData data;
ProcessSP process_sp(GetSP());
if (!process_sp)
return LLDB_RECORD_RESULT(data);
PlatformSP platform_sp = process_sp->GetTarget().GetPlatform();
if (!platform_sp)
return LLDB_RECORD_RESULT(data);
auto expected_data =
platform_sp->FetchExtendedCrashInformation(*process_sp.get());
if (!expected_data)
return LLDB_RECORD_RESULT(data);
StructuredData::ObjectSP fetched_data = *expected_data;
data.m_impl_up->SetObjectSP(fetched_data);
return LLDB_RECORD_RESULT(data);
}
uint32_t
SBProcess::GetNumSupportedHardwareWatchpoints(lldb::SBError &sb_error) const {
LLDB_RECORD_METHOD_CONST(uint32_t, SBProcess,
GetNumSupportedHardwareWatchpoints,
(lldb::SBError &), sb_error);
uint32_t num = 0;
ProcessSP process_sp(GetSP());
if (process_sp) {
std::lock_guard<std::recursive_mutex> guard(
process_sp->GetTarget().GetAPIMutex());
sb_error.SetError(process_sp->GetWatchpointSupportInfo(num));
} else {
sb_error.SetErrorString("SBProcess is invalid");
}
return num;
}
uint32_t SBProcess::LoadImage(lldb::SBFileSpec &sb_remote_image_spec,
lldb::SBError &sb_error) {
LLDB_RECORD_METHOD(uint32_t, SBProcess, LoadImage,
(lldb::SBFileSpec &, lldb::SBError &),
sb_remote_image_spec, sb_error);
return LoadImage(SBFileSpec(), sb_remote_image_spec, sb_error);
}
uint32_t SBProcess::LoadImage(const lldb::SBFileSpec &sb_local_image_spec,
const lldb::SBFileSpec &sb_remote_image_spec,
lldb::SBError &sb_error) {
LLDB_RECORD_METHOD(
uint32_t, SBProcess, LoadImage,
(const lldb::SBFileSpec &, const lldb::SBFileSpec &, lldb::SBError &),
sb_local_image_spec, sb_remote_image_spec, sb_error);
ProcessSP process_sp(GetSP());
if (process_sp) {
Process::StopLocker stop_locker;
if (stop_locker.TryLock(&process_sp->GetRunLock())) {
std::lock_guard<std::recursive_mutex> guard(
process_sp->GetTarget().GetAPIMutex());
PlatformSP platform_sp = process_sp->GetTarget().GetPlatform();
return platform_sp->LoadImage(process_sp.get(), *sb_local_image_spec,
*sb_remote_image_spec, sb_error.ref());
} else {
sb_error.SetErrorString("process is running");
}
} else {
sb_error.SetErrorString("process is invalid");
}
return LLDB_INVALID_IMAGE_TOKEN;
}
uint32_t SBProcess::LoadImageUsingPaths(const lldb::SBFileSpec &image_spec,
SBStringList &paths,
lldb::SBFileSpec &loaded_path,
lldb::SBError &error) {
LLDB_RECORD_METHOD(uint32_t, SBProcess, LoadImageUsingPaths,
(const lldb::SBFileSpec &, lldb::SBStringList &,
lldb::SBFileSpec &, lldb::SBError &),
image_spec, paths, loaded_path, error);
ProcessSP process_sp(GetSP());
if (process_sp) {
Process::StopLocker stop_locker;
if (stop_locker.TryLock(&process_sp->GetRunLock())) {
std::lock_guard<std::recursive_mutex> guard(
process_sp->GetTarget().GetAPIMutex());
PlatformSP platform_sp = process_sp->GetTarget().GetPlatform();
size_t num_paths = paths.GetSize();
std::vector<std::string> paths_vec;
paths_vec.reserve(num_paths);
for (size_t i = 0; i < num_paths; i++)
paths_vec.push_back(paths.GetStringAtIndex(i));
FileSpec loaded_spec;
uint32_t token = platform_sp->LoadImageUsingPaths(
process_sp.get(), *image_spec, paths_vec, error.ref(), &loaded_spec);
if (token != LLDB_INVALID_IMAGE_TOKEN)
loaded_path = loaded_spec;
return token;
} else {
error.SetErrorString("process is running");
}
} else {
error.SetErrorString("process is invalid");
}
return LLDB_INVALID_IMAGE_TOKEN;
}
lldb::SBError SBProcess::UnloadImage(uint32_t image_token) {
LLDB_RECORD_METHOD(lldb::SBError, SBProcess, UnloadImage, (uint32_t),
image_token);
lldb::SBError sb_error;
ProcessSP process_sp(GetSP());
if (process_sp) {
Process::StopLocker stop_locker;
if (stop_locker.TryLock(&process_sp->GetRunLock())) {
std::lock_guard<std::recursive_mutex> guard(
process_sp->GetTarget().GetAPIMutex());
PlatformSP platform_sp = process_sp->GetTarget().GetPlatform();
sb_error.SetError(
platform_sp->UnloadImage(process_sp.get(), image_token));
} else {
sb_error.SetErrorString("process is running");
}
} else
sb_error.SetErrorString("invalid process");
return LLDB_RECORD_RESULT(sb_error);
}
lldb::SBError SBProcess::SendEventData(const char *event_data) {
LLDB_RECORD_METHOD(lldb::SBError, SBProcess, SendEventData, (const char *),
event_data);
lldb::SBError sb_error;
ProcessSP process_sp(GetSP());
if (process_sp) {
Process::StopLocker stop_locker;
if (stop_locker.TryLock(&process_sp->GetRunLock())) {
std::lock_guard<std::recursive_mutex> guard(
process_sp->GetTarget().GetAPIMutex());
sb_error.SetError(process_sp->SendEventData(event_data));
} else {
sb_error.SetErrorString("process is running");
}
} else
sb_error.SetErrorString("invalid process");
return LLDB_RECORD_RESULT(sb_error);
}
uint32_t SBProcess::GetNumExtendedBacktraceTypes() {
LLDB_RECORD_METHOD_NO_ARGS(uint32_t, SBProcess, GetNumExtendedBacktraceTypes);
ProcessSP process_sp(GetSP());
if (process_sp && process_sp->GetSystemRuntime()) {
SystemRuntime *runtime = process_sp->GetSystemRuntime();
return runtime->GetExtendedBacktraceTypes().size();
}
return 0;
}
const char *SBProcess::GetExtendedBacktraceTypeAtIndex(uint32_t idx) {
LLDB_RECORD_METHOD(const char *, SBProcess, GetExtendedBacktraceTypeAtIndex,
(uint32_t), idx);
ProcessSP process_sp(GetSP());
if (process_sp && process_sp->GetSystemRuntime()) {
SystemRuntime *runtime = process_sp->GetSystemRuntime();
const std::vector<ConstString> &names =
runtime->GetExtendedBacktraceTypes();
if (idx < names.size()) {
return names[idx].AsCString();
}
}
return nullptr;
}
SBThreadCollection SBProcess::GetHistoryThreads(addr_t addr) {
LLDB_RECORD_METHOD(lldb::SBThreadCollection, SBProcess, GetHistoryThreads,
(lldb::addr_t), addr);
ProcessSP process_sp(GetSP());
SBThreadCollection threads;
if (process_sp) {
threads = SBThreadCollection(process_sp->GetHistoryThreads(addr));
}
return LLDB_RECORD_RESULT(threads);
}
bool SBProcess::IsInstrumentationRuntimePresent(
InstrumentationRuntimeType type) {
LLDB_RECORD_METHOD(bool, SBProcess, IsInstrumentationRuntimePresent,
(lldb::InstrumentationRuntimeType), type);
ProcessSP process_sp(GetSP());
if (!process_sp)
return false;
std::lock_guard<std::recursive_mutex> guard(
process_sp->GetTarget().GetAPIMutex());
InstrumentationRuntimeSP runtime_sp =
process_sp->GetInstrumentationRuntime(type);
if (!runtime_sp.get())
return false;
return runtime_sp->IsActive();
}
lldb::SBError SBProcess::SaveCore(const char *file_name) {
LLDB_RECORD_METHOD(lldb::SBError, SBProcess, SaveCore, (const char *),
file_name);
lldb::SBError error;
ProcessSP process_sp(GetSP());
if (!process_sp) {
error.SetErrorString("SBProcess is invalid");
return LLDB_RECORD_RESULT(error);
}
std::lock_guard<std::recursive_mutex> guard(
process_sp->GetTarget().GetAPIMutex());
if (process_sp->GetState() != eStateStopped) {
error.SetErrorString("the process is not stopped");
return LLDB_RECORD_RESULT(error);
}
FileSpec core_file(file_name);
error.ref() = PluginManager::SaveCore(process_sp, core_file);
return LLDB_RECORD_RESULT(error);
}
lldb::SBError
SBProcess::GetMemoryRegionInfo(lldb::addr_t load_addr,
SBMemoryRegionInfo &sb_region_info) {
LLDB_RECORD_METHOD(lldb::SBError, SBProcess, GetMemoryRegionInfo,
(lldb::addr_t, lldb::SBMemoryRegionInfo &), load_addr,
sb_region_info);
lldb::SBError sb_error;
ProcessSP process_sp(GetSP());
if (process_sp) {
Process::StopLocker stop_locker;
if (stop_locker.TryLock(&process_sp->GetRunLock())) {
std::lock_guard<std::recursive_mutex> guard(
process_sp->GetTarget().GetAPIMutex());
sb_error.ref() =
process_sp->GetMemoryRegionInfo(load_addr, sb_region_info.ref());
} else {
sb_error.SetErrorString("process is running");
}
} else {
sb_error.SetErrorString("SBProcess is invalid");
}
return LLDB_RECORD_RESULT(sb_error);
}
lldb::SBMemoryRegionInfoList SBProcess::GetMemoryRegions() {
LLDB_RECORD_METHOD_NO_ARGS(lldb::SBMemoryRegionInfoList, SBProcess,
GetMemoryRegions);
lldb::SBMemoryRegionInfoList sb_region_list;
ProcessSP process_sp(GetSP());
Process::StopLocker stop_locker;
if (process_sp && stop_locker.TryLock(&process_sp->GetRunLock())) {
std::lock_guard<std::recursive_mutex> guard(
process_sp->GetTarget().GetAPIMutex());
process_sp->GetMemoryRegions(sb_region_list.ref());
}
return LLDB_RECORD_RESULT(sb_region_list);
}
lldb::SBProcessInfo SBProcess::GetProcessInfo() {
LLDB_RECORD_METHOD_NO_ARGS(lldb::SBProcessInfo, SBProcess, GetProcessInfo);
lldb::SBProcessInfo sb_proc_info;
ProcessSP process_sp(GetSP());
ProcessInstanceInfo proc_info;
if (process_sp && process_sp->GetProcessInfo(proc_info)) {
sb_proc_info.SetProcessInfo(proc_info);
}
return LLDB_RECORD_RESULT(sb_proc_info);
}
namespace lldb_private {
namespace repro {
template <>
void RegisterMethods<SBProcess>(Registry &R) {
LLDB_REGISTER_CONSTRUCTOR(SBProcess, ());
LLDB_REGISTER_CONSTRUCTOR(SBProcess, (const lldb::SBProcess &));
LLDB_REGISTER_CONSTRUCTOR(SBProcess, (const lldb::ProcessSP &));
LLDB_REGISTER_METHOD(const lldb::SBProcess &,
SBProcess, operator=,(const lldb::SBProcess &));
LLDB_REGISTER_STATIC_METHOD(const char *, SBProcess,
GetBroadcasterClassName, ());
LLDB_REGISTER_METHOD(const char *, SBProcess, GetPluginName, ());
LLDB_REGISTER_METHOD(const char *, SBProcess, GetShortPluginName, ());
LLDB_REGISTER_METHOD(void, SBProcess, Clear, ());
LLDB_REGISTER_METHOD_CONST(bool, SBProcess, IsValid, ());
LLDB_REGISTER_METHOD_CONST(bool, SBProcess, operator bool, ());
LLDB_REGISTER_METHOD(bool, SBProcess, RemoteLaunch,
(const char **, const char **, const char *,
const char *, const char *, const char *, uint32_t,
bool, lldb::SBError &));
LLDB_REGISTER_METHOD(bool, SBProcess, RemoteAttachToProcessWithID,
(lldb::pid_t, lldb::SBError &));
LLDB_REGISTER_METHOD(uint32_t, SBProcess, GetNumThreads, ());
LLDB_REGISTER_METHOD_CONST(lldb::SBThread, SBProcess, GetSelectedThread,
());
LLDB_REGISTER_METHOD(lldb::SBThread, SBProcess, CreateOSPluginThread,
(lldb::tid_t, lldb::addr_t));
LLDB_REGISTER_METHOD_CONST(lldb::SBTarget, SBProcess, GetTarget, ());
LLDB_REGISTER_METHOD(size_t, SBProcess, PutSTDIN, (const char *, size_t));
LLDB_REGISTER_METHOD(lldb::SBTrace, SBProcess, StartTrace,
(lldb::SBTraceOptions &, lldb::SBError &));
LLDB_REGISTER_METHOD_CONST(void, SBProcess, ReportEventState,
(const lldb::SBEvent &, FILE *));
LLDB_REGISTER_METHOD_CONST(void, SBProcess, ReportEventState,
(const lldb::SBEvent &, FileSP));
LLDB_REGISTER_METHOD_CONST(void, SBProcess, ReportEventState,
(const lldb::SBEvent &, SBFile));
LLDB_REGISTER_METHOD(
void, SBProcess, AppendEventStateReport,
(const lldb::SBEvent &, lldb::SBCommandReturnObject &));
LLDB_REGISTER_METHOD(bool, SBProcess, SetSelectedThread,
(const lldb::SBThread &));
LLDB_REGISTER_METHOD(bool, SBProcess, SetSelectedThreadByID, (lldb::tid_t));
LLDB_REGISTER_METHOD(bool, SBProcess, SetSelectedThreadByIndexID,
(uint32_t));
LLDB_REGISTER_METHOD(lldb::SBThread, SBProcess, GetThreadAtIndex, (size_t));
LLDB_REGISTER_METHOD(uint32_t, SBProcess, GetNumQueues, ());
LLDB_REGISTER_METHOD(lldb::SBQueue, SBProcess, GetQueueAtIndex, (size_t));
LLDB_REGISTER_METHOD(uint32_t, SBProcess, GetStopID, (bool));
LLDB_REGISTER_METHOD(lldb::SBEvent, SBProcess, GetStopEventForStopID,
(uint32_t));
LLDB_REGISTER_METHOD(lldb::StateType, SBProcess, GetState, ());
LLDB_REGISTER_METHOD(int, SBProcess, GetExitStatus, ());
LLDB_REGISTER_METHOD(const char *, SBProcess, GetExitDescription, ());
LLDB_REGISTER_METHOD(lldb::pid_t, SBProcess, GetProcessID, ());
LLDB_REGISTER_METHOD(uint32_t, SBProcess, GetUniqueID, ());
LLDB_REGISTER_METHOD_CONST(lldb::ByteOrder, SBProcess, GetByteOrder, ());
LLDB_REGISTER_METHOD_CONST(uint32_t, SBProcess, GetAddressByteSize, ());
LLDB_REGISTER_METHOD(lldb::SBError, SBProcess, Continue, ());
LLDB_REGISTER_METHOD(lldb::SBError, SBProcess, Destroy, ());
LLDB_REGISTER_METHOD(lldb::SBError, SBProcess, Stop, ());
LLDB_REGISTER_METHOD(lldb::SBError, SBProcess, Kill, ());
LLDB_REGISTER_METHOD(lldb::SBError, SBProcess, Detach, ());
LLDB_REGISTER_METHOD(lldb::SBError, SBProcess, Detach, (bool));
LLDB_REGISTER_METHOD(lldb::SBError, SBProcess, Signal, (int));
LLDB_REGISTER_METHOD(lldb::SBUnixSignals, SBProcess, GetUnixSignals, ());
LLDB_REGISTER_METHOD(void, SBProcess, SendAsyncInterrupt, ());
LLDB_REGISTER_METHOD(lldb::SBThread, SBProcess, GetThreadByID,
(lldb::tid_t));
LLDB_REGISTER_METHOD(lldb::SBThread, SBProcess, GetThreadByIndexID,
(uint32_t));
LLDB_REGISTER_STATIC_METHOD(lldb::StateType, SBProcess, GetStateFromEvent,
(const lldb::SBEvent &));
LLDB_REGISTER_STATIC_METHOD(bool, SBProcess, GetRestartedFromEvent,
(const lldb::SBEvent &));
LLDB_REGISTER_STATIC_METHOD(size_t, SBProcess,
GetNumRestartedReasonsFromEvent,
(const lldb::SBEvent &));
LLDB_REGISTER_STATIC_METHOD(const char *, SBProcess,
GetRestartedReasonAtIndexFromEvent,
(const lldb::SBEvent &, size_t));
LLDB_REGISTER_STATIC_METHOD(lldb::SBProcess, SBProcess, GetProcessFromEvent,
(const lldb::SBEvent &));
LLDB_REGISTER_STATIC_METHOD(bool, SBProcess, GetInterruptedFromEvent,
(const lldb::SBEvent &));
LLDB_REGISTER_STATIC_METHOD(lldb::SBStructuredData, SBProcess,
GetStructuredDataFromEvent,
(const lldb::SBEvent &));
LLDB_REGISTER_STATIC_METHOD(bool, SBProcess, EventIsProcessEvent,
(const lldb::SBEvent &));
LLDB_REGISTER_STATIC_METHOD(bool, SBProcess, EventIsStructuredDataEvent,
(const lldb::SBEvent &));
LLDB_REGISTER_METHOD_CONST(lldb::SBBroadcaster, SBProcess, GetBroadcaster,
());
LLDB_REGISTER_STATIC_METHOD(const char *, SBProcess, GetBroadcasterClass,
());
LLDB_REGISTER_METHOD(uint64_t, SBProcess, ReadUnsignedFromMemory,
(lldb::addr_t, uint32_t, lldb::SBError &));
LLDB_REGISTER_METHOD(lldb::addr_t, SBProcess, ReadPointerFromMemory,
(lldb::addr_t, lldb::SBError &));
LLDB_REGISTER_METHOD(bool, SBProcess, GetDescription, (lldb::SBStream &));
LLDB_REGISTER_METHOD(lldb::SBStructuredData, SBProcess,
GetExtendedCrashInformation, ());
LLDB_REGISTER_METHOD_CONST(uint32_t, SBProcess,
GetNumSupportedHardwareWatchpoints,
(lldb::SBError &));
LLDB_REGISTER_METHOD(uint32_t, SBProcess, LoadImage,
(lldb::SBFileSpec &, lldb::SBError &));
LLDB_REGISTER_METHOD(
uint32_t, SBProcess, LoadImage,
(const lldb::SBFileSpec &, const lldb::SBFileSpec &, lldb::SBError &));
LLDB_REGISTER_METHOD(uint32_t, SBProcess, LoadImageUsingPaths,
(const lldb::SBFileSpec &, lldb::SBStringList &,
lldb::SBFileSpec &, lldb::SBError &));
LLDB_REGISTER_METHOD(lldb::SBError, SBProcess, UnloadImage, (uint32_t));
LLDB_REGISTER_METHOD(lldb::SBError, SBProcess, SendEventData,
(const char *));
LLDB_REGISTER_METHOD(uint32_t, SBProcess, GetNumExtendedBacktraceTypes, ());
LLDB_REGISTER_METHOD(const char *, SBProcess,
GetExtendedBacktraceTypeAtIndex, (uint32_t));
LLDB_REGISTER_METHOD(lldb::SBThreadCollection, SBProcess, GetHistoryThreads,
(lldb::addr_t));
LLDB_REGISTER_METHOD(bool, SBProcess, IsInstrumentationRuntimePresent,
(lldb::InstrumentationRuntimeType));
LLDB_REGISTER_METHOD(lldb::SBError, SBProcess, SaveCore, (const char *));
LLDB_REGISTER_METHOD(lldb::SBError, SBProcess, GetMemoryRegionInfo,
(lldb::addr_t, lldb::SBMemoryRegionInfo &));
LLDB_REGISTER_METHOD(lldb::SBMemoryRegionInfoList, SBProcess,
GetMemoryRegions, ());
LLDB_REGISTER_METHOD(lldb::SBProcessInfo, SBProcess, GetProcessInfo, ());
LLDB_REGISTER_CHAR_PTR_REDIRECT_CONST(size_t, SBProcess, GetSTDOUT);
LLDB_REGISTER_CHAR_PTR_REDIRECT_CONST(size_t, SBProcess, GetSTDERR);
LLDB_REGISTER_CHAR_PTR_REDIRECT_CONST(size_t, SBProcess, GetAsyncProfileData);
}
}
}