2017-10-20 05:37:38 +08:00
|
|
|
//===-- RISCVISelDAGToDAG.cpp - A dag to dag inst selector for RISCV ------===//
|
|
|
|
//
|
2019-01-19 16:50:56 +08:00
|
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
2017-10-20 05:37:38 +08:00
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// This file defines an instruction selector for the RISCV target.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
2020-03-31 14:28:24 +08:00
|
|
|
#include "RISCVISelDAGToDAG.h"
|
2017-10-20 05:37:38 +08:00
|
|
|
#include "MCTargetDesc/RISCVMCTargetDesc.h"
|
2018-11-16 18:14:16 +08:00
|
|
|
#include "Utils/RISCVMatInt.h"
|
2017-12-11 19:53:54 +08:00
|
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
2020-06-24 20:53:27 +08:00
|
|
|
#include "llvm/Support/Alignment.h"
|
2017-10-20 05:37:38 +08:00
|
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
#include "llvm/Support/MathExtras.h"
|
|
|
|
#include "llvm/Support/raw_ostream.h"
|
2020-03-31 14:28:24 +08:00
|
|
|
|
2017-10-20 05:37:38 +08:00
|
|
|
using namespace llvm;
|
|
|
|
|
|
|
|
#define DEBUG_TYPE "riscv-isel"
|
|
|
|
|
2018-04-12 13:34:25 +08:00
|
|
|
void RISCVDAGToDAGISel::PostprocessISelDAG() {
|
|
|
|
doPeepholeLoadStoreADDI();
|
|
|
|
}
|
2018-03-19 19:54:28 +08:00
|
|
|
|
2018-11-16 18:14:16 +08:00
|
|
|
static SDNode *selectImm(SelectionDAG *CurDAG, const SDLoc &DL, int64_t Imm,
|
|
|
|
MVT XLenVT) {
|
|
|
|
RISCVMatInt::InstSeq Seq;
|
|
|
|
RISCVMatInt::generateInstSeq(Imm, XLenVT == MVT::i64, Seq);
|
|
|
|
|
2019-09-20 21:48:02 +08:00
|
|
|
SDNode *Result = nullptr;
|
2018-11-16 18:14:16 +08:00
|
|
|
SDValue SrcReg = CurDAG->getRegister(RISCV::X0, XLenVT);
|
|
|
|
for (RISCVMatInt::Inst &Inst : Seq) {
|
|
|
|
SDValue SDImm = CurDAG->getTargetConstant(Inst.Imm, DL, XLenVT);
|
|
|
|
if (Inst.Opc == RISCV::LUI)
|
|
|
|
Result = CurDAG->getMachineNode(RISCV::LUI, DL, XLenVT, SDImm);
|
|
|
|
else
|
|
|
|
Result = CurDAG->getMachineNode(Inst.Opc, DL, XLenVT, SrcReg, SDImm);
|
|
|
|
|
|
|
|
// Only the first instruction has X0 as its source.
|
|
|
|
SrcReg = SDValue(Result, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
return Result;
|
|
|
|
}
|
|
|
|
|
[RISCV] Introduce codegen patterns for instructions introduced in RV64I
As discussed in the RFC
<http://lists.llvm.org/pipermail/llvm-dev/2018-October/126690.html>, 64-bit
RISC-V has i64 as the only legal integer type. This patch introduces patterns
to support codegen of the new instructions
introduced in RV64I: addiw, addiw, subw, sllw, slliw, srlw, srliw, sraw,
sraiw, ld, sd.
Custom selection code is needed for srliw as SimplifyDemandedBits will remove
lower bits from the mask, meaning the obvious pattern won't work:
def : Pat<(sext_inreg (srl (and GPR:$rs1, 0xffffffff), uimm5:$shamt), i32),
(SRLIW GPR:$rs1, uimm5:$shamt)>;
This is sufficient to compile and execute all of the GCC torture suite for
RV64I other than those files using frameaddr or returnaddr intrinsics
(LegalizeDAG doesn't know how to promote the operands - a future patch
addresses this).
When promoting i32 sltu/sltiu operands, it would be more efficient to use
sign-extension rather than zero-extension for RV64. A future patch adds a hook
to allow this.
Differential Revision: https://reviews.llvm.org/D52977
llvm-svn: 347973
2018-11-30 17:38:44 +08:00
|
|
|
// Returns true if the Node is an ISD::AND with a constant argument. If so,
|
|
|
|
// set Mask to that constant value.
|
|
|
|
static bool isConstantMask(SDNode *Node, uint64_t &Mask) {
|
|
|
|
if (Node->getOpcode() == ISD::AND &&
|
|
|
|
Node->getOperand(1).getOpcode() == ISD::Constant) {
|
|
|
|
Mask = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2017-10-20 05:37:38 +08:00
|
|
|
void RISCVDAGToDAGISel::Select(SDNode *Node) {
|
2018-10-03 21:13:13 +08:00
|
|
|
// If we have a custom node, we have already selected.
|
2017-10-20 05:37:38 +08:00
|
|
|
if (Node->isMachineOpcode()) {
|
2018-05-14 20:53:11 +08:00
|
|
|
LLVM_DEBUG(dbgs() << "== "; Node->dump(CurDAG); dbgs() << "\n");
|
2017-10-20 05:37:38 +08:00
|
|
|
Node->setNodeId(-1);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2017-11-21 16:23:08 +08:00
|
|
|
// Instruction Selection not handled by the auto-generated tablegen selection
|
|
|
|
// should be handled here.
|
2018-10-03 21:13:13 +08:00
|
|
|
unsigned Opcode = Node->getOpcode();
|
|
|
|
MVT XLenVT = Subtarget->getXLenVT();
|
|
|
|
SDLoc DL(Node);
|
2017-11-21 16:23:08 +08:00
|
|
|
EVT VT = Node->getValueType(0);
|
2018-10-03 21:13:13 +08:00
|
|
|
|
|
|
|
switch (Opcode) {
|
2020-07-08 09:54:22 +08:00
|
|
|
case ISD::ADD: {
|
|
|
|
// Optimize (add r, imm) to (addi (addi r, imm0) imm1) if applicable. The
|
|
|
|
// immediate must be in specific ranges and have a single use.
|
|
|
|
if (auto *ConstOp = dyn_cast<ConstantSDNode>(Node->getOperand(1))) {
|
|
|
|
if (!(ConstOp->hasOneUse()))
|
|
|
|
break;
|
|
|
|
// The imm must be in range [-4096,-2049] or [2048,4094].
|
|
|
|
int64_t Imm = ConstOp->getSExtValue();
|
|
|
|
if (!(-4096 <= Imm && Imm <= -2049) && !(2048 <= Imm && Imm <= 4094))
|
|
|
|
break;
|
|
|
|
// Break the imm to imm0+imm1.
|
|
|
|
EVT VT = Node->getValueType(0);
|
|
|
|
const SDValue ImmOp0 = CurDAG->getTargetConstant(Imm - Imm / 2, DL, VT);
|
|
|
|
const SDValue ImmOp1 = CurDAG->getTargetConstant(Imm / 2, DL, VT);
|
|
|
|
auto *NodeAddi0 = CurDAG->getMachineNode(RISCV::ADDI, DL, VT,
|
|
|
|
Node->getOperand(0), ImmOp0);
|
|
|
|
auto *NodeAddi1 = CurDAG->getMachineNode(RISCV::ADDI, DL, VT,
|
|
|
|
SDValue(NodeAddi0, 0), ImmOp1);
|
|
|
|
ReplaceNode(Node, NodeAddi1);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
2018-10-03 21:13:13 +08:00
|
|
|
case ISD::Constant: {
|
|
|
|
auto ConstNode = cast<ConstantSDNode>(Node);
|
|
|
|
if (VT == XLenVT && ConstNode->isNullValue()) {
|
2020-12-09 13:12:34 +08:00
|
|
|
SDValue New =
|
|
|
|
CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL, RISCV::X0, XLenVT);
|
2017-11-21 20:00:19 +08:00
|
|
|
ReplaceNode(Node, New.getNode());
|
|
|
|
return;
|
2017-11-21 16:23:08 +08:00
|
|
|
}
|
2018-11-16 18:14:16 +08:00
|
|
|
int64_t Imm = ConstNode->getSExtValue();
|
|
|
|
if (XLenVT == MVT::i64) {
|
2020-12-09 13:12:34 +08:00
|
|
|
ReplaceNode(Node, selectImm(CurDAG, DL, Imm, XLenVT));
|
2018-11-16 18:14:16 +08:00
|
|
|
return;
|
|
|
|
}
|
2018-10-03 21:13:13 +08:00
|
|
|
break;
|
2017-11-21 16:23:08 +08:00
|
|
|
}
|
2018-10-03 21:13:13 +08:00
|
|
|
case ISD::FrameIndex: {
|
2017-12-11 19:53:54 +08:00
|
|
|
SDValue Imm = CurDAG->getTargetConstant(0, DL, XLenVT);
|
2018-05-05 09:57:00 +08:00
|
|
|
int FI = cast<FrameIndexSDNode>(Node)->getIndex();
|
2017-12-11 19:53:54 +08:00
|
|
|
SDValue TFI = CurDAG->getTargetFrameIndex(FI, VT);
|
|
|
|
ReplaceNode(Node, CurDAG->getMachineNode(RISCV::ADDI, DL, VT, TFI, Imm));
|
|
|
|
return;
|
|
|
|
}
|
[RISCV] Introduce codegen patterns for instructions introduced in RV64I
As discussed in the RFC
<http://lists.llvm.org/pipermail/llvm-dev/2018-October/126690.html>, 64-bit
RISC-V has i64 as the only legal integer type. This patch introduces patterns
to support codegen of the new instructions
introduced in RV64I: addiw, addiw, subw, sllw, slliw, srlw, srliw, sraw,
sraiw, ld, sd.
Custom selection code is needed for srliw as SimplifyDemandedBits will remove
lower bits from the mask, meaning the obvious pattern won't work:
def : Pat<(sext_inreg (srl (and GPR:$rs1, 0xffffffff), uimm5:$shamt), i32),
(SRLIW GPR:$rs1, uimm5:$shamt)>;
This is sufficient to compile and execute all of the GCC torture suite for
RV64I other than those files using frameaddr or returnaddr intrinsics
(LegalizeDAG doesn't know how to promote the operands - a future patch
addresses this).
When promoting i32 sltu/sltiu operands, it would be more efficient to use
sign-extension rather than zero-extension for RV64. A future patch adds a hook
to allow this.
Differential Revision: https://reviews.llvm.org/D52977
llvm-svn: 347973
2018-11-30 17:38:44 +08:00
|
|
|
case ISD::SRL: {
|
|
|
|
if (!Subtarget->is64Bit())
|
|
|
|
break;
|
2020-04-01 00:24:07 +08:00
|
|
|
SDNode *Op0 = Node->getOperand(0).getNode();
|
[RISCV] Introduce codegen patterns for instructions introduced in RV64I
As discussed in the RFC
<http://lists.llvm.org/pipermail/llvm-dev/2018-October/126690.html>, 64-bit
RISC-V has i64 as the only legal integer type. This patch introduces patterns
to support codegen of the new instructions
introduced in RV64I: addiw, addiw, subw, sllw, slliw, srlw, srliw, sraw,
sraiw, ld, sd.
Custom selection code is needed for srliw as SimplifyDemandedBits will remove
lower bits from the mask, meaning the obvious pattern won't work:
def : Pat<(sext_inreg (srl (and GPR:$rs1, 0xffffffff), uimm5:$shamt), i32),
(SRLIW GPR:$rs1, uimm5:$shamt)>;
This is sufficient to compile and execute all of the GCC torture suite for
RV64I other than those files using frameaddr or returnaddr intrinsics
(LegalizeDAG doesn't know how to promote the operands - a future patch
addresses this).
When promoting i32 sltu/sltiu operands, it would be more efficient to use
sign-extension rather than zero-extension for RV64. A future patch adds a hook
to allow this.
Differential Revision: https://reviews.llvm.org/D52977
llvm-svn: 347973
2018-11-30 17:38:44 +08:00
|
|
|
uint64_t Mask;
|
|
|
|
// Match (srl (and val, mask), imm) where the result would be a
|
|
|
|
// zero-extended 32-bit integer. i.e. the mask is 0xffffffff or the result
|
|
|
|
// is equivalent to this (SimplifyDemandedBits may have removed lower bits
|
|
|
|
// from the mask that aren't necessary due to the right-shifting).
|
2020-04-01 00:24:07 +08:00
|
|
|
if (isa<ConstantSDNode>(Node->getOperand(1)) && isConstantMask(Op0, Mask)) {
|
|
|
|
uint64_t ShAmt = Node->getConstantOperandVal(1);
|
[RISCV] Introduce codegen patterns for instructions introduced in RV64I
As discussed in the RFC
<http://lists.llvm.org/pipermail/llvm-dev/2018-October/126690.html>, 64-bit
RISC-V has i64 as the only legal integer type. This patch introduces patterns
to support codegen of the new instructions
introduced in RV64I: addiw, addiw, subw, sllw, slliw, srlw, srliw, sraw,
sraiw, ld, sd.
Custom selection code is needed for srliw as SimplifyDemandedBits will remove
lower bits from the mask, meaning the obvious pattern won't work:
def : Pat<(sext_inreg (srl (and GPR:$rs1, 0xffffffff), uimm5:$shamt), i32),
(SRLIW GPR:$rs1, uimm5:$shamt)>;
This is sufficient to compile and execute all of the GCC torture suite for
RV64I other than those files using frameaddr or returnaddr intrinsics
(LegalizeDAG doesn't know how to promote the operands - a future patch
addresses this).
When promoting i32 sltu/sltiu operands, it would be more efficient to use
sign-extension rather than zero-extension for RV64. A future patch adds a hook
to allow this.
Differential Revision: https://reviews.llvm.org/D52977
llvm-svn: 347973
2018-11-30 17:38:44 +08:00
|
|
|
|
|
|
|
if ((Mask | maskTrailingOnes<uint64_t>(ShAmt)) == 0xffffffff) {
|
2020-12-09 13:12:34 +08:00
|
|
|
SDValue ShAmtVal = CurDAG->getTargetConstant(ShAmt, DL, XLenVT);
|
2020-04-01 00:24:07 +08:00
|
|
|
CurDAG->SelectNodeTo(Node, RISCV::SRLIW, XLenVT, Op0->getOperand(0),
|
[RISCV] Introduce codegen patterns for instructions introduced in RV64I
As discussed in the RFC
<http://lists.llvm.org/pipermail/llvm-dev/2018-October/126690.html>, 64-bit
RISC-V has i64 as the only legal integer type. This patch introduces patterns
to support codegen of the new instructions
introduced in RV64I: addiw, addiw, subw, sllw, slliw, srlw, srliw, sraw,
sraiw, ld, sd.
Custom selection code is needed for srliw as SimplifyDemandedBits will remove
lower bits from the mask, meaning the obvious pattern won't work:
def : Pat<(sext_inreg (srl (and GPR:$rs1, 0xffffffff), uimm5:$shamt), i32),
(SRLIW GPR:$rs1, uimm5:$shamt)>;
This is sufficient to compile and execute all of the GCC torture suite for
RV64I other than those files using frameaddr or returnaddr intrinsics
(LegalizeDAG doesn't know how to promote the operands - a future patch
addresses this).
When promoting i32 sltu/sltiu operands, it would be more efficient to use
sign-extension rather than zero-extension for RV64. A future patch adds a hook
to allow this.
Differential Revision: https://reviews.llvm.org/D52977
llvm-svn: 347973
2018-11-30 17:38:44 +08:00
|
|
|
ShAmtVal);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
2019-01-22 15:22:00 +08:00
|
|
|
break;
|
[RISCV] Introduce codegen patterns for instructions introduced in RV64I
As discussed in the RFC
<http://lists.llvm.org/pipermail/llvm-dev/2018-October/126690.html>, 64-bit
RISC-V has i64 as the only legal integer type. This patch introduces patterns
to support codegen of the new instructions
introduced in RV64I: addiw, addiw, subw, sllw, slliw, srlw, srliw, sraw,
sraiw, ld, sd.
Custom selection code is needed for srliw as SimplifyDemandedBits will remove
lower bits from the mask, meaning the obvious pattern won't work:
def : Pat<(sext_inreg (srl (and GPR:$rs1, 0xffffffff), uimm5:$shamt), i32),
(SRLIW GPR:$rs1, uimm5:$shamt)>;
This is sufficient to compile and execute all of the GCC torture suite for
RV64I other than those files using frameaddr or returnaddr intrinsics
(LegalizeDAG doesn't know how to promote the operands - a future patch
addresses this).
When promoting i32 sltu/sltiu operands, it would be more efficient to use
sign-extension rather than zero-extension for RV64. A future patch adds a hook
to allow this.
Differential Revision: https://reviews.llvm.org/D52977
llvm-svn: 347973
2018-11-30 17:38:44 +08:00
|
|
|
}
|
2018-10-03 21:13:13 +08:00
|
|
|
}
|
2017-11-21 16:23:08 +08:00
|
|
|
|
2017-10-20 05:37:38 +08:00
|
|
|
// Select the default instruction.
|
|
|
|
SelectCode(Node);
|
|
|
|
}
|
|
|
|
|
2018-01-11 04:05:09 +08:00
|
|
|
bool RISCVDAGToDAGISel::SelectInlineAsmMemoryOperand(
|
|
|
|
const SDValue &Op, unsigned ConstraintID, std::vector<SDValue> &OutOps) {
|
|
|
|
switch (ConstraintID) {
|
|
|
|
case InlineAsm::Constraint_m:
|
|
|
|
// We just support simple memory operands that have a single address
|
|
|
|
// operand and need no special handling.
|
|
|
|
OutOps.push_back(Op);
|
|
|
|
return false;
|
2019-08-16 18:28:34 +08:00
|
|
|
case InlineAsm::Constraint_A:
|
|
|
|
OutOps.push_back(Op);
|
|
|
|
return false;
|
2018-01-11 04:05:09 +08:00
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2017-12-11 19:53:54 +08:00
|
|
|
bool RISCVDAGToDAGISel::SelectAddrFI(SDValue Addr, SDValue &Base) {
|
|
|
|
if (auto FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
|
|
|
|
Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), Subtarget->getXLenVT());
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2020-07-15 18:50:03 +08:00
|
|
|
// Check that it is a SLOI (Shift Left Ones Immediate). We first check that
|
|
|
|
// it is the right node tree:
|
|
|
|
//
|
|
|
|
// (OR (SHL RS1, VC2), VC1)
|
|
|
|
//
|
|
|
|
// and then we check that VC1, the mask used to fill with ones, is compatible
|
|
|
|
// with VC2, the shamt:
|
|
|
|
//
|
|
|
|
// VC1 == maskTrailingOnes<uint64_t>(VC2)
|
|
|
|
|
|
|
|
bool RISCVDAGToDAGISel::SelectSLOI(SDValue N, SDValue &RS1, SDValue &Shamt) {
|
|
|
|
MVT XLenVT = Subtarget->getXLenVT();
|
|
|
|
if (N.getOpcode() == ISD::OR) {
|
|
|
|
SDValue Or = N;
|
|
|
|
if (Or.getOperand(0).getOpcode() == ISD::SHL) {
|
|
|
|
SDValue Shl = Or.getOperand(0);
|
|
|
|
if (isa<ConstantSDNode>(Shl.getOperand(1)) &&
|
|
|
|
isa<ConstantSDNode>(Or.getOperand(1))) {
|
|
|
|
if (XLenVT == MVT::i64) {
|
|
|
|
uint64_t VC1 = Or.getConstantOperandVal(1);
|
|
|
|
uint64_t VC2 = Shl.getConstantOperandVal(1);
|
|
|
|
if (VC1 == maskTrailingOnes<uint64_t>(VC2)) {
|
|
|
|
RS1 = Shl.getOperand(0);
|
|
|
|
Shamt = CurDAG->getTargetConstant(VC2, SDLoc(N),
|
|
|
|
Shl.getOperand(1).getValueType());
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (XLenVT == MVT::i32) {
|
|
|
|
uint32_t VC1 = Or.getConstantOperandVal(1);
|
|
|
|
uint32_t VC2 = Shl.getConstantOperandVal(1);
|
|
|
|
if (VC1 == maskTrailingOnes<uint32_t>(VC2)) {
|
|
|
|
RS1 = Shl.getOperand(0);
|
|
|
|
Shamt = CurDAG->getTargetConstant(VC2, SDLoc(N),
|
|
|
|
Shl.getOperand(1).getValueType());
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check that it is a SROI (Shift Right Ones Immediate). We first check that
|
|
|
|
// it is the right node tree:
|
|
|
|
//
|
|
|
|
// (OR (SRL RS1, VC2), VC1)
|
|
|
|
//
|
|
|
|
// and then we check that VC1, the mask used to fill with ones, is compatible
|
|
|
|
// with VC2, the shamt:
|
|
|
|
//
|
|
|
|
// VC1 == maskLeadingOnes<uint64_t>(VC2)
|
|
|
|
|
|
|
|
bool RISCVDAGToDAGISel::SelectSROI(SDValue N, SDValue &RS1, SDValue &Shamt) {
|
|
|
|
MVT XLenVT = Subtarget->getXLenVT();
|
|
|
|
if (N.getOpcode() == ISD::OR) {
|
|
|
|
SDValue Or = N;
|
|
|
|
if (Or.getOperand(0).getOpcode() == ISD::SRL) {
|
|
|
|
SDValue Srl = Or.getOperand(0);
|
|
|
|
if (isa<ConstantSDNode>(Srl.getOperand(1)) &&
|
|
|
|
isa<ConstantSDNode>(Or.getOperand(1))) {
|
|
|
|
if (XLenVT == MVT::i64) {
|
|
|
|
uint64_t VC1 = Or.getConstantOperandVal(1);
|
|
|
|
uint64_t VC2 = Srl.getConstantOperandVal(1);
|
|
|
|
if (VC1 == maskLeadingOnes<uint64_t>(VC2)) {
|
|
|
|
RS1 = Srl.getOperand(0);
|
|
|
|
Shamt = CurDAG->getTargetConstant(VC2, SDLoc(N),
|
|
|
|
Srl.getOperand(1).getValueType());
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (XLenVT == MVT::i32) {
|
|
|
|
uint32_t VC1 = Or.getConstantOperandVal(1);
|
|
|
|
uint32_t VC2 = Srl.getConstantOperandVal(1);
|
|
|
|
if (VC1 == maskLeadingOnes<uint32_t>(VC2)) {
|
|
|
|
RS1 = Srl.getOperand(0);
|
|
|
|
Shamt = CurDAG->getTargetConstant(VC2, SDLoc(N),
|
|
|
|
Srl.getOperand(1).getValueType());
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check that it is a SLLIUW (Shift Logical Left Immediate Unsigned i32
|
|
|
|
// on RV64).
|
|
|
|
// SLLIUW is the same as SLLI except for the fact that it clears the bits
|
|
|
|
// XLEN-1:32 of the input RS1 before shifting.
|
|
|
|
// We first check that it is the right node tree:
|
|
|
|
//
|
|
|
|
// (AND (SHL RS1, VC2), VC1)
|
|
|
|
//
|
|
|
|
// We check that VC2, the shamt is less than 32, otherwise the pattern is
|
|
|
|
// exactly the same as SLLI and we give priority to that.
|
|
|
|
// Eventually we check that that VC1, the mask used to clear the upper 32 bits
|
|
|
|
// of RS1, is correct:
|
|
|
|
//
|
|
|
|
// VC1 == (0xFFFFFFFF << VC2)
|
|
|
|
|
|
|
|
bool RISCVDAGToDAGISel::SelectSLLIUW(SDValue N, SDValue &RS1, SDValue &Shamt) {
|
|
|
|
if (N.getOpcode() == ISD::AND && Subtarget->getXLenVT() == MVT::i64) {
|
|
|
|
SDValue And = N;
|
|
|
|
if (And.getOperand(0).getOpcode() == ISD::SHL) {
|
|
|
|
SDValue Shl = And.getOperand(0);
|
|
|
|
if (isa<ConstantSDNode>(Shl.getOperand(1)) &&
|
|
|
|
isa<ConstantSDNode>(And.getOperand(1))) {
|
|
|
|
uint64_t VC1 = And.getConstantOperandVal(1);
|
|
|
|
uint64_t VC2 = Shl.getConstantOperandVal(1);
|
|
|
|
if (VC2 < 32 && VC1 == ((uint64_t)0xFFFFFFFF << VC2)) {
|
|
|
|
RS1 = Shl.getOperand(0);
|
|
|
|
Shamt = CurDAG->getTargetConstant(VC2, SDLoc(N),
|
|
|
|
Shl.getOperand(1).getValueType());
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check that it is a SLOIW (Shift Left Ones Immediate i32 on RV64).
|
|
|
|
// We first check that it is the right node tree:
|
|
|
|
//
|
|
|
|
// (SIGN_EXTEND_INREG (OR (SHL RS1, VC2), VC1))
|
|
|
|
//
|
|
|
|
// and then we check that VC1, the mask used to fill with ones, is compatible
|
|
|
|
// with VC2, the shamt:
|
|
|
|
//
|
2020-11-17 01:22:42 +08:00
|
|
|
// VC2 < 32
|
|
|
|
// VC1 == maskTrailingOnes<uint64_t>(VC2)
|
2020-07-15 18:50:03 +08:00
|
|
|
|
|
|
|
bool RISCVDAGToDAGISel::SelectSLOIW(SDValue N, SDValue &RS1, SDValue &Shamt) {
|
2020-11-17 01:22:42 +08:00
|
|
|
assert(Subtarget->is64Bit() && "SLOIW should only be matched on RV64");
|
|
|
|
if (N.getOpcode() != ISD::SIGN_EXTEND_INREG ||
|
|
|
|
cast<VTSDNode>(N.getOperand(1))->getVT() != MVT::i32)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
SDValue Or = N.getOperand(0);
|
|
|
|
|
|
|
|
if (Or.getOpcode() != ISD::OR || !isa<ConstantSDNode>(Or.getOperand(1)))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
SDValue Shl = Or.getOperand(0);
|
|
|
|
if (Shl.getOpcode() != ISD::SHL || !isa<ConstantSDNode>(Shl.getOperand(1)))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
uint64_t VC1 = Or.getConstantOperandVal(1);
|
|
|
|
uint64_t VC2 = Shl.getConstantOperandVal(1);
|
|
|
|
|
|
|
|
if (VC2 >= 32 || VC1 != maskTrailingOnes<uint64_t>(VC2))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
RS1 = Shl.getOperand(0);
|
|
|
|
Shamt = CurDAG->getTargetConstant(VC2, SDLoc(N),
|
|
|
|
Shl.getOperand(1).getValueType());
|
|
|
|
return true;
|
2020-07-15 18:50:03 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// Check that it is a SROIW (Shift Right Ones Immediate i32 on RV64).
|
|
|
|
// We first check that it is the right node tree:
|
|
|
|
//
|
2020-11-17 01:22:42 +08:00
|
|
|
// (OR (SRL RS1, VC2), VC1)
|
2020-07-15 18:50:03 +08:00
|
|
|
//
|
|
|
|
// and then we check that VC1, the mask used to fill with ones, is compatible
|
|
|
|
// with VC2, the shamt:
|
|
|
|
//
|
2020-11-17 01:22:42 +08:00
|
|
|
// VC2 < 32
|
|
|
|
// VC1 == maskTrailingZeros<uint64_t>(32 - VC2)
|
|
|
|
//
|
2020-07-15 18:50:03 +08:00
|
|
|
bool RISCVDAGToDAGISel::SelectSROIW(SDValue N, SDValue &RS1, SDValue &Shamt) {
|
2020-11-17 01:22:42 +08:00
|
|
|
assert(Subtarget->is64Bit() && "SROIW should only be matched on RV64");
|
|
|
|
if (N.getOpcode() != ISD::OR || !isa<ConstantSDNode>(N.getOperand(1)))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
SDValue Srl = N.getOperand(0);
|
|
|
|
if (Srl.getOpcode() != ISD::SRL || !isa<ConstantSDNode>(Srl.getOperand(1)))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
uint64_t VC1 = N.getConstantOperandVal(1);
|
|
|
|
uint64_t VC2 = Srl.getConstantOperandVal(1);
|
|
|
|
|
|
|
|
if (VC2 >= 32 || VC1 != maskTrailingZeros<uint64_t>(32 - VC2))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
RS1 = Srl.getOperand(0);
|
|
|
|
Shamt = CurDAG->getTargetConstant(VC2, SDLoc(N),
|
|
|
|
Srl.getOperand(1).getValueType());
|
|
|
|
return true;
|
2020-07-15 18:50:03 +08:00
|
|
|
}
|
|
|
|
|
2018-03-19 19:54:28 +08:00
|
|
|
// Merge an ADDI into the offset of a load/store instruction where possible.
|
2020-06-24 20:53:27 +08:00
|
|
|
// (load (addi base, off1), off2) -> (load base, off1+off2)
|
|
|
|
// (store val, (addi base, off1), off2) -> (store val, base, off1+off2)
|
|
|
|
// This is possible when off1+off2 fits a 12-bit immediate.
|
2018-03-19 19:54:28 +08:00
|
|
|
void RISCVDAGToDAGISel::doPeepholeLoadStoreADDI() {
|
|
|
|
SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
|
|
|
|
++Position;
|
|
|
|
|
|
|
|
while (Position != CurDAG->allnodes_begin()) {
|
|
|
|
SDNode *N = &*--Position;
|
|
|
|
// Skip dead nodes and any non-machine opcodes.
|
|
|
|
if (N->use_empty() || !N->isMachineOpcode())
|
|
|
|
continue;
|
|
|
|
|
|
|
|
int OffsetOpIdx;
|
|
|
|
int BaseOpIdx;
|
|
|
|
|
|
|
|
// Only attempt this optimisation for I-type loads and S-type stores.
|
|
|
|
switch (N->getMachineOpcode()) {
|
|
|
|
default:
|
|
|
|
continue;
|
|
|
|
case RISCV::LB:
|
|
|
|
case RISCV::LH:
|
|
|
|
case RISCV::LW:
|
|
|
|
case RISCV::LBU:
|
|
|
|
case RISCV::LHU:
|
|
|
|
case RISCV::LWU:
|
|
|
|
case RISCV::LD:
|
2020-07-03 22:57:59 +08:00
|
|
|
case RISCV::FLH:
|
2018-03-19 19:54:28 +08:00
|
|
|
case RISCV::FLW:
|
|
|
|
case RISCV::FLD:
|
|
|
|
BaseOpIdx = 0;
|
|
|
|
OffsetOpIdx = 1;
|
|
|
|
break;
|
|
|
|
case RISCV::SB:
|
|
|
|
case RISCV::SH:
|
|
|
|
case RISCV::SW:
|
|
|
|
case RISCV::SD:
|
2020-07-03 22:57:59 +08:00
|
|
|
case RISCV::FSH:
|
2018-03-19 19:54:28 +08:00
|
|
|
case RISCV::FSW:
|
|
|
|
case RISCV::FSD:
|
|
|
|
BaseOpIdx = 1;
|
|
|
|
OffsetOpIdx = 2;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2020-06-24 20:53:27 +08:00
|
|
|
if (!isa<ConstantSDNode>(N->getOperand(OffsetOpIdx)))
|
2018-03-19 19:54:28 +08:00
|
|
|
continue;
|
|
|
|
|
|
|
|
SDValue Base = N->getOperand(BaseOpIdx);
|
|
|
|
|
2018-04-19 03:02:31 +08:00
|
|
|
// If the base is an ADDI, we can merge it in to the load/store.
|
|
|
|
if (!Base.isMachineOpcode() || Base.getMachineOpcode() != RISCV::ADDI)
|
2018-03-19 19:54:28 +08:00
|
|
|
continue;
|
|
|
|
|
2018-04-19 03:02:31 +08:00
|
|
|
SDValue ImmOperand = Base.getOperand(1);
|
2020-06-24 20:53:27 +08:00
|
|
|
uint64_t Offset2 = N->getConstantOperandVal(OffsetOpIdx);
|
2018-04-19 03:02:31 +08:00
|
|
|
|
|
|
|
if (auto Const = dyn_cast<ConstantSDNode>(ImmOperand)) {
|
2020-06-24 20:53:27 +08:00
|
|
|
int64_t Offset1 = Const->getSExtValue();
|
|
|
|
int64_t CombinedOffset = Offset1 + Offset2;
|
|
|
|
if (!isInt<12>(CombinedOffset))
|
|
|
|
continue;
|
|
|
|
ImmOperand = CurDAG->getTargetConstant(CombinedOffset, SDLoc(ImmOperand),
|
|
|
|
ImmOperand.getValueType());
|
2018-04-19 03:02:31 +08:00
|
|
|
} else if (auto GA = dyn_cast<GlobalAddressSDNode>(ImmOperand)) {
|
2020-06-24 20:53:27 +08:00
|
|
|
// If the off1 in (addi base, off1) is a global variable's address (its
|
|
|
|
// low part, really), then we can rely on the alignment of that variable
|
|
|
|
// to provide a margin of safety before off1 can overflow the 12 bits.
|
|
|
|
// Check if off2 falls within that margin; if so off1+off2 can't overflow.
|
|
|
|
const DataLayout &DL = CurDAG->getDataLayout();
|
|
|
|
Align Alignment = GA->getGlobal()->getPointerAlignment(DL);
|
|
|
|
if (Offset2 != 0 && Alignment <= Offset2)
|
|
|
|
continue;
|
|
|
|
int64_t Offset1 = GA->getOffset();
|
|
|
|
int64_t CombinedOffset = Offset1 + Offset2;
|
2018-04-19 03:02:31 +08:00
|
|
|
ImmOperand = CurDAG->getTargetGlobalAddress(
|
|
|
|
GA->getGlobal(), SDLoc(ImmOperand), ImmOperand.getValueType(),
|
2020-06-24 20:53:27 +08:00
|
|
|
CombinedOffset, GA->getTargetFlags());
|
2020-05-12 01:52:42 +08:00
|
|
|
} else if (auto CP = dyn_cast<ConstantPoolSDNode>(ImmOperand)) {
|
2020-06-24 20:53:27 +08:00
|
|
|
// Ditto.
|
|
|
|
Align Alignment = CP->getAlign();
|
|
|
|
if (Offset2 != 0 && Alignment <= Offset2)
|
|
|
|
continue;
|
|
|
|
int64_t Offset1 = CP->getOffset();
|
|
|
|
int64_t CombinedOffset = Offset1 + Offset2;
|
2020-05-12 01:52:42 +08:00
|
|
|
ImmOperand = CurDAG->getTargetConstantPool(
|
|
|
|
CP->getConstVal(), ImmOperand.getValueType(), CP->getAlign(),
|
2020-06-24 20:53:27 +08:00
|
|
|
CombinedOffset, CP->getTargetFlags());
|
2018-03-19 19:54:28 +08:00
|
|
|
} else {
|
2018-04-19 03:02:31 +08:00
|
|
|
continue;
|
2018-03-19 19:54:28 +08:00
|
|
|
}
|
|
|
|
|
2018-05-14 20:53:11 +08:00
|
|
|
LLVM_DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase: ");
|
|
|
|
LLVM_DEBUG(Base->dump(CurDAG));
|
|
|
|
LLVM_DEBUG(dbgs() << "\nN: ");
|
|
|
|
LLVM_DEBUG(N->dump(CurDAG));
|
|
|
|
LLVM_DEBUG(dbgs() << "\n");
|
2018-03-19 19:54:28 +08:00
|
|
|
|
|
|
|
// Modify the offset operand of the load/store.
|
|
|
|
if (BaseOpIdx == 0) // Load
|
2018-04-19 03:02:31 +08:00
|
|
|
CurDAG->UpdateNodeOperands(N, Base.getOperand(0), ImmOperand,
|
|
|
|
N->getOperand(2));
|
2018-03-19 19:54:28 +08:00
|
|
|
else // Store
|
2018-04-19 03:02:31 +08:00
|
|
|
CurDAG->UpdateNodeOperands(N, N->getOperand(0), Base.getOperand(0),
|
|
|
|
ImmOperand, N->getOperand(3));
|
|
|
|
|
|
|
|
// The add-immediate may now be dead, in which case remove it.
|
|
|
|
if (Base.getNode()->use_empty())
|
|
|
|
CurDAG->RemoveDeadNode(Base.getNode());
|
2018-03-19 19:54:28 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-10-20 05:37:38 +08:00
|
|
|
// This pass converts a legalized DAG into a RISCV-specific DAG, ready
|
|
|
|
// for instruction scheduling.
|
|
|
|
FunctionPass *llvm::createRISCVISelDag(RISCVTargetMachine &TM) {
|
|
|
|
return new RISCVDAGToDAGISel(TM);
|
|
|
|
}
|