llvm-project/compiler-rt/lib/msan/msan_interceptors.cc

1613 lines
49 KiB
C++
Raw Normal View History

//===-- msan_interceptors.cc ----------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of MemorySanitizer.
//
// Interceptors for standard library functions.
//
// FIXME: move as many interceptors as possible into
// sanitizer_common/sanitizer_common_interceptors.h
//===----------------------------------------------------------------------===//
#include "msan.h"
#include "msan_thread.h"
#include "sanitizer_common/sanitizer_platform_limits_posix.h"
#include "sanitizer_common/sanitizer_allocator.h"
#include "sanitizer_common/sanitizer_allocator_internal.h"
#include "sanitizer_common/sanitizer_atomic.h"
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_interception.h"
#include "sanitizer_common/sanitizer_stackdepot.h"
#include "sanitizer_common/sanitizer_libc.h"
#include "sanitizer_common/sanitizer_linux.h"
#include <stdarg.h>
// ACHTUNG! No other system header includes in this file.
// Ideally, we should get rid of stdarg.h as well.
using namespace __msan;
using __sanitizer::memory_order;
using __sanitizer::atomic_load;
using __sanitizer::atomic_store;
using __sanitizer::atomic_uintptr_t;
// True if this is a nested interceptor.
static THREADLOCAL int in_interceptor_scope;
extern "C" int *__errno_location(void);
struct InterceptorScope {
InterceptorScope() { ++in_interceptor_scope; }
~InterceptorScope() { --in_interceptor_scope; }
};
bool IsInInterceptorScope() {
return in_interceptor_scope;
}
#define ENSURE_MSAN_INITED() do { \
CHECK(!msan_init_is_running); \
if (!msan_inited) { \
__msan_init(); \
} \
} while (0)
// Check that [x, x+n) range is unpoisoned.
#define CHECK_UNPOISONED_0(x, n) \
do { \
sptr offset = __msan_test_shadow(x, n); \
if (__msan::IsInSymbolizer()) break; \
if (offset >= 0 && __msan::flags()->report_umrs) { \
GET_CALLER_PC_BP_SP; \
(void) sp; \
ReportUMRInsideAddressRange(__func__, x, n, offset); \
__msan::PrintWarningWithOrigin(pc, bp, \
__msan_get_origin((char *)x + offset)); \
if (__msan::flags()->halt_on_error) { \
Printf("Exiting\n"); \
Die(); \
} \
} \
} while (0)
// Check that [x, x+n) range is unpoisoned unless we are in a nested
// interceptor.
#define CHECK_UNPOISONED(x, n) \
do { \
if (!IsInInterceptorScope()) CHECK_UNPOISONED_0(x, n); \
} while (0);
static void *fast_memset(void *ptr, int c, SIZE_T n);
static void *fast_memcpy(void *dst, const void *src, SIZE_T n);
INTERCEPTOR(SIZE_T, fread, void *ptr, SIZE_T size, SIZE_T nmemb, void *file) {
ENSURE_MSAN_INITED();
SIZE_T res = REAL(fread)(ptr, size, nmemb, file);
if (res > 0)
__msan_unpoison(ptr, res *size);
return res;
}
INTERCEPTOR(SIZE_T, fread_unlocked, void *ptr, SIZE_T size, SIZE_T nmemb,
void *file) {
ENSURE_MSAN_INITED();
SIZE_T res = REAL(fread_unlocked)(ptr, size, nmemb, file);
if (res > 0)
__msan_unpoison(ptr, res *size);
return res;
}
INTERCEPTOR(SSIZE_T, readlink, const char *path, char *buf, SIZE_T bufsiz) {
ENSURE_MSAN_INITED();
SSIZE_T res = REAL(readlink)(path, buf, bufsiz);
if (res > 0)
__msan_unpoison(buf, res);
return res;
}
INTERCEPTOR(void *, memcpy, void *dest, const void *src, SIZE_T n) {
return __msan_memcpy(dest, src, n);
}
INTERCEPTOR(void *, mempcpy, void *dest, const void *src, SIZE_T n) {
return (char *)__msan_memcpy(dest, src, n) + n;
}
INTERCEPTOR(void *, memccpy, void *dest, const void *src, int c, SIZE_T n) {
ENSURE_MSAN_INITED();
void *res = REAL(memccpy)(dest, src, c, n);
CHECK(!res || (res >= dest && res <= (char *)dest + n));
SIZE_T sz = res ? (char *)res - (char *)dest : n;
CHECK_UNPOISONED(src, sz);
__msan_unpoison(dest, sz);
return res;
}
INTERCEPTOR(void *, memmove, void *dest, const void *src, SIZE_T n) {
return __msan_memmove(dest, src, n);
}
INTERCEPTOR(void *, memset, void *s, int c, SIZE_T n) {
return __msan_memset(s, c, n);
}
INTERCEPTOR(void *, bcopy, const void *src, void *dest, SIZE_T n) {
return __msan_memmove(dest, src, n);
}
INTERCEPTOR(int, posix_memalign, void **memptr, SIZE_T alignment, SIZE_T size) {
GET_MALLOC_STACK_TRACE;
CHECK_EQ(alignment & (alignment - 1), 0);
CHECK_NE(memptr, 0);
*memptr = MsanReallocate(&stack, 0, size, alignment, false);
CHECK_NE(*memptr, 0);
__msan_unpoison(memptr, sizeof(*memptr));
return 0;
}
INTERCEPTOR(void *, memalign, SIZE_T boundary, SIZE_T size) {
GET_MALLOC_STACK_TRACE;
CHECK_EQ(boundary & (boundary - 1), 0);
void *ptr = MsanReallocate(&stack, 0, size, boundary, false);
return ptr;
}
Avoid aliases to weak aliases in interceptors. The interceptors had code that after macro expansion ended up looking like extern "C" void memalign() __attribute__((weak, alias("__interceptor_memalign"))); extern "C" void __interceptor_memalign() {} extern "C" void __interceptor___libc_memalign() __attribute__((alias("memalign"))); That is, * __interceptor_memalign is a function * memalign is a weak alias to __interceptor_memalign * __interceptor___libc_memalign is an alias to memalign Both gcc and clang produce assembly that look like __interceptor_memalign: ... .weak memalign memalign = __interceptor_memalign .globl __interceptor___libc_memalign __interceptor___libc_memalign = memalign What it means in the end is that we have 3 symbols pointing to the same position in the file, one of which is weak: 8: 0000000000000000 1 FUNC GLOBAL DEFAULT 1 __interceptor_memalign 9: 0000000000000000 1 FUNC WEAK DEFAULT 1 memalign 10: 0000000000000000 1 FUNC GLOBAL DEFAULT 1 __interceptor___libc_memalign In particular, note that __interceptor___libc_memalign will always point to __interceptor_memalign, even if we do link in a strong symbol for memalign. In fact, the above code produces exactly the same binary as extern "C" void memalign() __attribute__((weak, alias("__interceptor_memalign"))); extern "C" void __interceptor_memalign() {} extern "C" void __interceptor___libc_memalign() __attribute__((alias("__interceptor_memalign"))); If nothing else, this patch makes it more obvious what is going on. llvm-svn: 204823
2014-03-26 23:48:59 +08:00
INTERCEPTOR(void *, __libc_memalign, uptr align, uptr s)
ALIAS(WRAPPER_NAME(memalign));
INTERCEPTOR(void *, valloc, SIZE_T size) {
GET_MALLOC_STACK_TRACE;
void *ptr = MsanReallocate(&stack, 0, size, GetPageSizeCached(), false);
return ptr;
}
INTERCEPTOR(void *, pvalloc, SIZE_T size) {
GET_MALLOC_STACK_TRACE;
uptr PageSize = GetPageSizeCached();
size = RoundUpTo(size, PageSize);
if (size == 0) {
// pvalloc(0) should allocate one page.
size = PageSize;
}
void *ptr = MsanReallocate(&stack, 0, size, PageSize, false);
return ptr;
}
INTERCEPTOR(void, free, void *ptr) {
GET_MALLOC_STACK_TRACE;
if (ptr == 0) return;
MsanDeallocate(&stack, ptr);
}
INTERCEPTOR(void, cfree, void *ptr) {
GET_MALLOC_STACK_TRACE;
if (ptr == 0) return;
MsanDeallocate(&stack, ptr);
}
INTERCEPTOR(uptr, malloc_usable_size, void *ptr) {
return __msan_get_allocated_size(ptr);
}
// This function actually returns a struct by value, but we can't unpoison a
// temporary! The following is equivalent on all supported platforms, and we
// have a test to confirm that.
INTERCEPTOR(void, mallinfo, __sanitizer_mallinfo *sret) {
REAL(memset)(sret, 0, sizeof(*sret));
__msan_unpoison(sret, sizeof(*sret));
}
INTERCEPTOR(int, mallopt, int cmd, int value) {
return -1;
}
INTERCEPTOR(void, malloc_stats, void) {
// FIXME: implement, but don't call REAL(malloc_stats)!
}
INTERCEPTOR(SIZE_T, strlen, const char *s) {
ENSURE_MSAN_INITED();
SIZE_T res = REAL(strlen)(s);
CHECK_UNPOISONED(s, res + 1);
return res;
}
INTERCEPTOR(SIZE_T, strnlen, const char *s, SIZE_T n) {
ENSURE_MSAN_INITED();
SIZE_T res = REAL(strnlen)(s, n);
SIZE_T scan_size = (res == n) ? res : res + 1;
CHECK_UNPOISONED(s, scan_size);
return res;
}
// FIXME: Add stricter shadow checks in str* interceptors (ex.: strcpy should
// check the shadow of the terminating \0 byte).
INTERCEPTOR(char *, strcpy, char *dest, const char *src) { // NOLINT
ENSURE_MSAN_INITED();
GET_STORE_STACK_TRACE;
SIZE_T n = REAL(strlen)(src);
char *res = REAL(strcpy)(dest, src); // NOLINT
CopyPoison(dest, src, n + 1, &stack);
return res;
}
INTERCEPTOR(char *, strncpy, char *dest, const char *src, SIZE_T n) { // NOLINT
ENSURE_MSAN_INITED();
GET_STORE_STACK_TRACE;
SIZE_T copy_size = REAL(strnlen)(src, n);
if (copy_size < n)
copy_size++; // trailing \0
char *res = REAL(strncpy)(dest, src, n); // NOLINT
CopyPoison(dest, src, copy_size, &stack);
return res;
}
INTERCEPTOR(char *, stpcpy, char *dest, const char *src) { // NOLINT
ENSURE_MSAN_INITED();
GET_STORE_STACK_TRACE;
SIZE_T n = REAL(strlen)(src);
char *res = REAL(stpcpy)(dest, src); // NOLINT
CopyPoison(dest, src, n + 1, &stack);
return res;
}
INTERCEPTOR(char *, strdup, char *src) {
ENSURE_MSAN_INITED();
GET_STORE_STACK_TRACE;
SIZE_T n = REAL(strlen)(src);
char *res = REAL(strdup)(src);
CopyPoison(res, src, n + 1, &stack);
return res;
}
INTERCEPTOR(char *, __strdup, char *src) {
ENSURE_MSAN_INITED();
GET_STORE_STACK_TRACE;
SIZE_T n = REAL(strlen)(src);
char *res = REAL(__strdup)(src);
CopyPoison(res, src, n + 1, &stack);
return res;
}
INTERCEPTOR(char *, strndup, char *src, SIZE_T n) {
ENSURE_MSAN_INITED();
GET_STORE_STACK_TRACE;
SIZE_T copy_size = REAL(strnlen)(src, n);
char *res = REAL(strndup)(src, n);
CopyPoison(res, src, copy_size, &stack);
__msan_unpoison(res + copy_size, 1); // \0
return res;
}
INTERCEPTOR(char *, __strndup, char *src, SIZE_T n) {
ENSURE_MSAN_INITED();
GET_STORE_STACK_TRACE;
SIZE_T copy_size = REAL(strnlen)(src, n);
char *res = REAL(__strndup)(src, n);
CopyPoison(res, src, copy_size, &stack);
__msan_unpoison(res + copy_size, 1); // \0
return res;
}
INTERCEPTOR(char *, gcvt, double number, SIZE_T ndigit, char *buf) {
ENSURE_MSAN_INITED();
char *res = REAL(gcvt)(number, ndigit, buf);
// DynamoRio tool will take care of unpoisoning gcvt result for us.
if (!__msan_has_dynamic_component()) {
SIZE_T n = REAL(strlen)(buf);
__msan_unpoison(buf, n + 1);
}
return res;
}
INTERCEPTOR(char *, strcat, char *dest, const char *src) { // NOLINT
ENSURE_MSAN_INITED();
GET_STORE_STACK_TRACE;
SIZE_T src_size = REAL(strlen)(src);
SIZE_T dest_size = REAL(strlen)(dest);
char *res = REAL(strcat)(dest, src); // NOLINT
CopyPoison(dest + dest_size, src, src_size + 1, &stack);
return res;
}
INTERCEPTOR(char *, strncat, char *dest, const char *src, SIZE_T n) { // NOLINT
ENSURE_MSAN_INITED();
GET_STORE_STACK_TRACE;
SIZE_T dest_size = REAL(strlen)(dest);
SIZE_T copy_size = REAL(strnlen)(src, n);
char *res = REAL(strncat)(dest, src, n); // NOLINT
CopyPoison(dest + dest_size, src, copy_size, &stack);
__msan_unpoison(dest + dest_size + copy_size, 1); // \0
return res;
}
// Hack: always pass nptr and endptr as part of __VA_ARGS_ to avoid having to
// deal with empty __VA_ARGS__ in the case of INTERCEPTOR_STRTO.
#define INTERCEPTOR_STRTO_BODY(ret_type, func, ...) \
ENSURE_MSAN_INITED(); \
ret_type res = REAL(func)(__VA_ARGS__); \
if (!__msan_has_dynamic_component()) { \
__msan_unpoison(endptr, sizeof(*endptr)); \
} \
return res;
#define INTERCEPTOR_STRTO(ret_type, func) \
INTERCEPTOR(ret_type, func, const char *nptr, char **endptr) { \
INTERCEPTOR_STRTO_BODY(ret_type, func, nptr, endptr); \
}
#define INTERCEPTOR_STRTO_BASE(ret_type, func) \
INTERCEPTOR(ret_type, func, const char *nptr, char **endptr, int base) { \
INTERCEPTOR_STRTO_BODY(ret_type, func, nptr, endptr, base); \
}
#define INTERCEPTOR_STRTO_LOC(ret_type, func) \
INTERCEPTOR(ret_type, func, const char *nptr, char **endptr, void *loc) { \
INTERCEPTOR_STRTO_BODY(ret_type, func, nptr, endptr, loc); \
}
#define INTERCEPTOR_STRTO_BASE_LOC(ret_type, func) \
INTERCEPTOR(ret_type, func, const char *nptr, char **endptr, int base, \
void *loc) { \
INTERCEPTOR_STRTO_BODY(ret_type, func, nptr, endptr, base, loc); \
}
INTERCEPTOR_STRTO(double, strtod) // NOLINT
INTERCEPTOR_STRTO(float, strtof) // NOLINT
INTERCEPTOR_STRTO(long double, strtold) // NOLINT
INTERCEPTOR_STRTO_BASE(long, strtol) // NOLINT
INTERCEPTOR_STRTO_BASE(long long, strtoll) // NOLINT
INTERCEPTOR_STRTO_BASE(unsigned long, strtoul) // NOLINT
INTERCEPTOR_STRTO_BASE(unsigned long long, strtoull) // NOLINT
INTERCEPTOR_STRTO_LOC(double, strtod_l) // NOLINT
INTERCEPTOR_STRTO_LOC(double, __strtod_l) // NOLINT
INTERCEPTOR_STRTO_LOC(float, strtof_l) // NOLINT
INTERCEPTOR_STRTO_LOC(float, __strtof_l) // NOLINT
INTERCEPTOR_STRTO_LOC(long double, strtold_l) // NOLINT
INTERCEPTOR_STRTO_LOC(long double, __strtold_l) // NOLINT
INTERCEPTOR_STRTO_BASE_LOC(long, strtol_l) // NOLINT
INTERCEPTOR_STRTO_BASE_LOC(long long, strtoll_l) // NOLINT
INTERCEPTOR_STRTO_BASE_LOC(unsigned long, strtoul_l) // NOLINT
INTERCEPTOR_STRTO_BASE_LOC(unsigned long long, strtoull_l) // NOLINT
INTERCEPTOR(int, vasprintf, char **strp, const char *format, va_list ap) {
ENSURE_MSAN_INITED();
int res = REAL(vasprintf)(strp, format, ap);
if (res >= 0 && !__msan_has_dynamic_component()) {
__msan_unpoison(strp, sizeof(*strp));
__msan_unpoison(*strp, res + 1);
}
return res;
}
INTERCEPTOR(int, asprintf, char **strp, const char *format, ...) { // NOLINT
ENSURE_MSAN_INITED();
va_list ap;
va_start(ap, format);
int res = vasprintf(strp, format, ap); // NOLINT
va_end(ap);
return res;
}
INTERCEPTOR(int, vsnprintf, char *str, uptr size,
const char *format, va_list ap) {
ENSURE_MSAN_INITED();
int res = REAL(vsnprintf)(str, size, format, ap);
if (res >= 0 && !__msan_has_dynamic_component()) {
__msan_unpoison(str, res + 1);
}
return res;
}
INTERCEPTOR(int, vsprintf, char *str, const char *format, va_list ap) {
ENSURE_MSAN_INITED();
int res = REAL(vsprintf)(str, format, ap);
if (res >= 0 && !__msan_has_dynamic_component()) {
__msan_unpoison(str, res + 1);
}
return res;
}
INTERCEPTOR(int, vswprintf, void *str, uptr size, void *format, va_list ap) {
ENSURE_MSAN_INITED();
int res = REAL(vswprintf)(str, size, format, ap);
if (res >= 0 && !__msan_has_dynamic_component()) {
__msan_unpoison(str, 4 * (res + 1));
}
return res;
}
INTERCEPTOR(int, sprintf, char *str, const char *format, ...) { // NOLINT
ENSURE_MSAN_INITED();
va_list ap;
va_start(ap, format);
int res = vsprintf(str, format, ap); // NOLINT
va_end(ap);
return res;
}
INTERCEPTOR(int, snprintf, char *str, uptr size, const char *format, ...) {
ENSURE_MSAN_INITED();
va_list ap;
va_start(ap, format);
int res = vsnprintf(str, size, format, ap);
va_end(ap);
return res;
}
INTERCEPTOR(int, swprintf, void *str, uptr size, void *format, ...) {
ENSURE_MSAN_INITED();
va_list ap;
va_start(ap, format);
int res = vswprintf(str, size, format, ap);
va_end(ap);
return res;
}
#define INTERCEPTOR_STRFTIME_BODY(char_type, ret_type, func, s, ...) \
ENSURE_MSAN_INITED(); \
ret_type res = REAL(func)(s, __VA_ARGS__); \
if (s) __msan_unpoison(s, sizeof(char_type) * (res + 1)); \
return res;
INTERCEPTOR(SIZE_T, strftime, char *s, SIZE_T max, const char *format,
__sanitizer_tm *tm) {
INTERCEPTOR_STRFTIME_BODY(char, SIZE_T, strftime, s, max, format, tm);
}
INTERCEPTOR(SIZE_T, strftime_l, char *s, SIZE_T max, const char *format,
__sanitizer_tm *tm, void *loc) {
INTERCEPTOR_STRFTIME_BODY(char, SIZE_T, strftime_l, s, max, format, tm, loc);
}
INTERCEPTOR(SIZE_T, __strftime_l, char *s, SIZE_T max, const char *format,
__sanitizer_tm *tm, void *loc) {
INTERCEPTOR_STRFTIME_BODY(char, SIZE_T, __strftime_l, s, max, format, tm,
loc);
}
INTERCEPTOR(SIZE_T, wcsftime, wchar_t *s, SIZE_T max, const wchar_t *format,
__sanitizer_tm *tm) {
INTERCEPTOR_STRFTIME_BODY(wchar_t, SIZE_T, wcsftime, s, max, format, tm);
}
INTERCEPTOR(SIZE_T, wcsftime_l, wchar_t *s, SIZE_T max, const wchar_t *format,
__sanitizer_tm *tm, void *loc) {
INTERCEPTOR_STRFTIME_BODY(wchar_t, SIZE_T, wcsftime_l, s, max, format, tm,
loc);
}
INTERCEPTOR(SIZE_T, __wcsftime_l, wchar_t *s, SIZE_T max, const wchar_t *format,
__sanitizer_tm *tm, void *loc) {
INTERCEPTOR_STRFTIME_BODY(wchar_t, SIZE_T, __wcsftime_l, s, max, format, tm,
loc);
}
INTERCEPTOR(int, mbtowc, wchar_t *dest, const char *src, SIZE_T n) {
ENSURE_MSAN_INITED();
int res = REAL(mbtowc)(dest, src, n);
if (res != -1 && dest) __msan_unpoison(dest, sizeof(wchar_t));
return res;
}
INTERCEPTOR(int, mbrtowc, wchar_t *dest, const char *src, SIZE_T n, void *ps) {
ENSURE_MSAN_INITED();
SIZE_T res = REAL(mbrtowc)(dest, src, n, ps);
if (res != (SIZE_T)-1 && dest) __msan_unpoison(dest, sizeof(wchar_t));
return res;
}
INTERCEPTOR(SIZE_T, wcslen, const wchar_t *s) {
ENSURE_MSAN_INITED();
SIZE_T res = REAL(wcslen)(s);
CHECK_UNPOISONED(s, sizeof(wchar_t) * (res + 1));
return res;
}
// wchar_t *wcschr(const wchar_t *wcs, wchar_t wc);
INTERCEPTOR(wchar_t *, wcschr, void *s, wchar_t wc, void *ps) {
ENSURE_MSAN_INITED();
wchar_t *res = REAL(wcschr)(s, wc, ps);
return res;
}
// wchar_t *wcscpy(wchar_t *dest, const wchar_t *src);
INTERCEPTOR(wchar_t *, wcscpy, wchar_t *dest, const wchar_t *src) {
ENSURE_MSAN_INITED();
GET_STORE_STACK_TRACE;
wchar_t *res = REAL(wcscpy)(dest, src);
CopyPoison(dest, src, sizeof(wchar_t) * (REAL(wcslen)(src) + 1), &stack);
return res;
}
// wchar_t *wmemcpy(wchar_t *dest, const wchar_t *src, SIZE_T n);
INTERCEPTOR(wchar_t *, wmemcpy, wchar_t *dest, const wchar_t *src, SIZE_T n) {
ENSURE_MSAN_INITED();
GET_STORE_STACK_TRACE;
wchar_t *res = REAL(wmemcpy)(dest, src, n);
CopyPoison(dest, src, n * sizeof(wchar_t), &stack);
return res;
}
INTERCEPTOR(wchar_t *, wmempcpy, wchar_t *dest, const wchar_t *src, SIZE_T n) {
ENSURE_MSAN_INITED();
GET_STORE_STACK_TRACE;
wchar_t *res = REAL(wmempcpy)(dest, src, n);
CopyPoison(dest, src, n * sizeof(wchar_t), &stack);
return res;
}
INTERCEPTOR(wchar_t *, wmemset, wchar_t *s, wchar_t c, SIZE_T n) {
CHECK(MEM_IS_APP(s));
ENSURE_MSAN_INITED();
wchar_t *res = (wchar_t *)fast_memset(s, c, n * sizeof(wchar_t));
__msan_unpoison(s, n * sizeof(wchar_t));
return res;
}
INTERCEPTOR(wchar_t *, wmemmove, wchar_t *dest, const wchar_t *src, SIZE_T n) {
ENSURE_MSAN_INITED();
GET_STORE_STACK_TRACE;
wchar_t *res = REAL(wmemmove)(dest, src, n);
MovePoison(dest, src, n * sizeof(wchar_t), &stack);
return res;
}
INTERCEPTOR(int, wcscmp, const wchar_t *s1, const wchar_t *s2) {
ENSURE_MSAN_INITED();
int res = REAL(wcscmp)(s1, s2);
return res;
}
INTERCEPTOR(double, wcstod, const wchar_t *nptr, wchar_t **endptr) {
ENSURE_MSAN_INITED();
double res = REAL(wcstod)(nptr, endptr);
__msan_unpoison(endptr, sizeof(*endptr));
return res;
}
INTERCEPTOR(int, gettimeofday, void *tv, void *tz) {
ENSURE_MSAN_INITED();
int res = REAL(gettimeofday)(tv, tz);
if (tv)
__msan_unpoison(tv, 16);
if (tz)
__msan_unpoison(tz, 8);
return res;
}
INTERCEPTOR(char *, fcvt, double x, int a, int *b, int *c) {
ENSURE_MSAN_INITED();
char *res = REAL(fcvt)(x, a, b, c);
if (!__msan_has_dynamic_component()) {
__msan_unpoison(b, sizeof(*b));
__msan_unpoison(c, sizeof(*c));
}
return res;
}
INTERCEPTOR(char *, getenv, char *name) {
ENSURE_MSAN_INITED();
char *res = REAL(getenv)(name);
if (!__msan_has_dynamic_component()) {
if (res)
__msan_unpoison(res, REAL(strlen)(res) + 1);
}
return res;
}
extern char **environ;
static void UnpoisonEnviron() {
char **envp = environ;
for (; *envp; ++envp) {
__msan_unpoison(envp, sizeof(*envp));
__msan_unpoison(*envp, REAL(strlen)(*envp) + 1);
}
// Trailing NULL pointer.
__msan_unpoison(envp, sizeof(*envp));
}
INTERCEPTOR(int, setenv, const char *name, const char *value, int overwrite) {
ENSURE_MSAN_INITED();
int res = REAL(setenv)(name, value, overwrite);
if (!res) UnpoisonEnviron();
return res;
}
INTERCEPTOR(int, putenv, char *string) {
ENSURE_MSAN_INITED();
int res = REAL(putenv)(string);
if (!res) UnpoisonEnviron();
return res;
}
INTERCEPTOR(int, __fxstat, int magic, int fd, void *buf) {
ENSURE_MSAN_INITED();
int res = REAL(__fxstat)(magic, fd, buf);
if (!res)
__msan_unpoison(buf, __sanitizer::struct_stat_sz);
return res;
}
INTERCEPTOR(int, __fxstat64, int magic, int fd, void *buf) {
ENSURE_MSAN_INITED();
int res = REAL(__fxstat64)(magic, fd, buf);
if (!res)
__msan_unpoison(buf, __sanitizer::struct_stat64_sz);
return res;
}
INTERCEPTOR(int, __fxstatat, int magic, int fd, char *pathname, void *buf,
int flags) {
ENSURE_MSAN_INITED();
int res = REAL(__fxstatat)(magic, fd, pathname, buf, flags);
if (!res) __msan_unpoison(buf, __sanitizer::struct_stat_sz);
return res;
}
INTERCEPTOR(int, __fxstatat64, int magic, int fd, char *pathname, void *buf,
int flags) {
ENSURE_MSAN_INITED();
int res = REAL(__fxstatat64)(magic, fd, pathname, buf, flags);
if (!res) __msan_unpoison(buf, __sanitizer::struct_stat64_sz);
return res;
}
INTERCEPTOR(int, __xstat, int magic, char *path, void *buf) {
ENSURE_MSAN_INITED();
int res = REAL(__xstat)(magic, path, buf);
if (!res)
__msan_unpoison(buf, __sanitizer::struct_stat_sz);
return res;
}
INTERCEPTOR(int, __xstat64, int magic, char *path, void *buf) {
ENSURE_MSAN_INITED();
int res = REAL(__xstat64)(magic, path, buf);
if (!res)
__msan_unpoison(buf, __sanitizer::struct_stat64_sz);
return res;
}
INTERCEPTOR(int, __lxstat, int magic, char *path, void *buf) {
ENSURE_MSAN_INITED();
int res = REAL(__lxstat)(magic, path, buf);
if (!res)
__msan_unpoison(buf, __sanitizer::struct_stat_sz);
return res;
}
INTERCEPTOR(int, __lxstat64, int magic, char *path, void *buf) {
ENSURE_MSAN_INITED();
int res = REAL(__lxstat64)(magic, path, buf);
if (!res)
__msan_unpoison(buf, __sanitizer::struct_stat64_sz);
return res;
}
INTERCEPTOR(int, pipe, int pipefd[2]) {
if (msan_init_is_running)
return REAL(pipe)(pipefd);
ENSURE_MSAN_INITED();
int res = REAL(pipe)(pipefd);
if (!res)
__msan_unpoison(pipefd, sizeof(int[2]));
return res;
}
INTERCEPTOR(int, pipe2, int pipefd[2], int flags) {
ENSURE_MSAN_INITED();
int res = REAL(pipe2)(pipefd, flags);
if (!res)
__msan_unpoison(pipefd, sizeof(int[2]));
return res;
}
INTERCEPTOR(int, socketpair, int domain, int type, int protocol, int sv[2]) {
ENSURE_MSAN_INITED();
int res = REAL(socketpair)(domain, type, protocol, sv);
if (!res)
__msan_unpoison(sv, sizeof(int[2]));
return res;
}
INTERCEPTOR(char *, fgets, char *s, int size, void *stream) {
ENSURE_MSAN_INITED();
char *res = REAL(fgets)(s, size, stream);
if (res)
__msan_unpoison(s, REAL(strlen)(s) + 1);
return res;
}
INTERCEPTOR(char *, fgets_unlocked, char *s, int size, void *stream) {
ENSURE_MSAN_INITED();
char *res = REAL(fgets_unlocked)(s, size, stream);
if (res)
__msan_unpoison(s, REAL(strlen)(s) + 1);
return res;
}
INTERCEPTOR(int, getrlimit, int resource, void *rlim) {
if (msan_init_is_running)
return REAL(getrlimit)(resource, rlim);
ENSURE_MSAN_INITED();
int res = REAL(getrlimit)(resource, rlim);
if (!res)
__msan_unpoison(rlim, __sanitizer::struct_rlimit_sz);
return res;
}
INTERCEPTOR(int, getrlimit64, int resource, void *rlim) {
if (msan_init_is_running)
return REAL(getrlimit64)(resource, rlim);
ENSURE_MSAN_INITED();
int res = REAL(getrlimit64)(resource, rlim);
if (!res)
__msan_unpoison(rlim, __sanitizer::struct_rlimit64_sz);
return res;
}
INTERCEPTOR(int, uname, void *utsname) {
ENSURE_MSAN_INITED();
int res = REAL(uname)(utsname);
if (!res) {
__msan_unpoison(utsname, __sanitizer::struct_utsname_sz);
}
return res;
}
INTERCEPTOR(int, gethostname, char *name, SIZE_T len) {
ENSURE_MSAN_INITED();
int res = REAL(gethostname)(name, len);
if (!res) {
SIZE_T real_len = REAL(strnlen)(name, len);
if (real_len < len)
++real_len;
__msan_unpoison(name, real_len);
}
return res;
}
INTERCEPTOR(int, epoll_wait, int epfd, void *events, int maxevents,
int timeout) {
ENSURE_MSAN_INITED();
int res = REAL(epoll_wait)(epfd, events, maxevents, timeout);
if (res > 0) {
__msan_unpoison(events, __sanitizer::struct_epoll_event_sz * res);
}
return res;
}
INTERCEPTOR(int, epoll_pwait, int epfd, void *events, int maxevents,
int timeout, void *sigmask) {
ENSURE_MSAN_INITED();
int res = REAL(epoll_pwait)(epfd, events, maxevents, timeout, sigmask);
if (res > 0) {
__msan_unpoison(events, __sanitizer::struct_epoll_event_sz * res);
}
return res;
}
INTERCEPTOR(SSIZE_T, recv, int fd, void *buf, SIZE_T len, int flags) {
ENSURE_MSAN_INITED();
SSIZE_T res = REAL(recv)(fd, buf, len, flags);
if (res > 0)
__msan_unpoison(buf, res);
return res;
}
INTERCEPTOR(SSIZE_T, recvfrom, int fd, void *buf, SIZE_T len, int flags,
void *srcaddr, int *addrlen) {
ENSURE_MSAN_INITED();
SIZE_T srcaddr_sz;
if (srcaddr) srcaddr_sz = *addrlen;
SSIZE_T res = REAL(recvfrom)(fd, buf, len, flags, srcaddr, addrlen);
if (res > 0) {
__msan_unpoison(buf, res);
if (srcaddr) {
SIZE_T sz = *addrlen;
__msan_unpoison(srcaddr, (sz < srcaddr_sz) ? sz : srcaddr_sz);
}
}
return res;
}
INTERCEPTOR(void *, calloc, SIZE_T nmemb, SIZE_T size) {
if (CallocShouldReturnNullDueToOverflow(size, nmemb))
return AllocatorReturnNull();
GET_MALLOC_STACK_TRACE;
if (!msan_inited) {
// Hack: dlsym calls calloc before REAL(calloc) is retrieved from dlsym.
const SIZE_T kCallocPoolSize = 1024;
static uptr calloc_memory_for_dlsym[kCallocPoolSize];
static SIZE_T allocated;
SIZE_T size_in_words = ((nmemb * size) + kWordSize - 1) / kWordSize;
void *mem = (void*)&calloc_memory_for_dlsym[allocated];
allocated += size_in_words;
CHECK(allocated < kCallocPoolSize);
return mem;
}
return MsanReallocate(&stack, 0, nmemb * size, sizeof(u64), true);
}
INTERCEPTOR(void *, realloc, void *ptr, SIZE_T size) {
GET_MALLOC_STACK_TRACE;
return MsanReallocate(&stack, ptr, size, sizeof(u64), false);
}
INTERCEPTOR(void *, malloc, SIZE_T size) {
GET_MALLOC_STACK_TRACE;
return MsanReallocate(&stack, 0, size, sizeof(u64), false);
}
void __msan_allocated_memory(const void* data, uptr size) {
GET_MALLOC_STACK_TRACE;
if (flags()->poison_in_malloc)
__msan_poison(data, size);
if (__msan_get_track_origins()) {
u32 stack_id = StackDepotPut(stack.trace, stack.size);
CHECK(stack_id);
CHECK_EQ((stack_id >> 31), 0); // Higher bit is occupied by stack origins.
__msan_set_origin(data, size, stack_id);
}
}
INTERCEPTOR(void *, mmap, void *addr, SIZE_T length, int prot, int flags,
int fd, OFF_T offset) {
ENSURE_MSAN_INITED();
if (addr && !MEM_IS_APP(addr)) {
if (flags & map_fixed) {
*__errno_location() = errno_EINVAL;
return (void *)-1;
} else {
addr = 0;
}
}
void *res = REAL(mmap)(addr, length, prot, flags, fd, offset);
if (res != (void*)-1)
__msan_unpoison(res, RoundUpTo(length, GetPageSize()));
return res;
}
INTERCEPTOR(void *, mmap64, void *addr, SIZE_T length, int prot, int flags,
int fd, OFF64_T offset) {
ENSURE_MSAN_INITED();
if (addr && !MEM_IS_APP(addr)) {
if (flags & map_fixed) {
*__errno_location() = errno_EINVAL;
return (void *)-1;
} else {
addr = 0;
}
}
void *res = REAL(mmap64)(addr, length, prot, flags, fd, offset);
if (res != (void*)-1)
__msan_unpoison(res, RoundUpTo(length, GetPageSize()));
return res;
}
struct dlinfo {
char *dli_fname;
void *dli_fbase;
char *dli_sname;
void *dli_saddr;
};
INTERCEPTOR(int, dladdr, void *addr, dlinfo *info) {
ENSURE_MSAN_INITED();
int res = REAL(dladdr)(addr, info);
if (res != 0) {
__msan_unpoison(info, sizeof(*info));
if (info->dli_fname)
__msan_unpoison(info->dli_fname, REAL(strlen)(info->dli_fname) + 1);
if (info->dli_sname)
__msan_unpoison(info->dli_sname, REAL(strlen)(info->dli_sname) + 1);
}
return res;
}
INTERCEPTOR(char *, dlerror, int fake) {
ENSURE_MSAN_INITED();
char *res = REAL(dlerror)(fake);
if (res != 0) __msan_unpoison(res, REAL(strlen)(res) + 1);
return res;
}
// dlopen() ultimately calls mmap() down inside the loader, which generally
// doesn't participate in dynamic symbol resolution. Therefore we won't
// intercept its calls to mmap, and we have to hook it here. The loader
// initializes the module before returning, so without the dynamic component, we
// won't be able to clear the shadow before the initializers. Fixing this would
// require putting our own initializer first to clear the shadow.
INTERCEPTOR(void *, dlopen, const char *filename, int flag) {
ENSURE_MSAN_INITED();
EnterLoader();
link_map *map = (link_map *)REAL(dlopen)(filename, flag);
ExitLoader();
if (!__msan_has_dynamic_component() && map) {
// If msandr didn't clear the shadow before the initializers ran, we do it
// ourselves afterwards.
ForEachMappedRegion(map, __msan_unpoison);
}
return (void *)map;
}
typedef int (*dl_iterate_phdr_cb)(__sanitizer_dl_phdr_info *info, SIZE_T size,
void *data);
struct dl_iterate_phdr_data {
dl_iterate_phdr_cb callback;
void *data;
};
static int msan_dl_iterate_phdr_cb(__sanitizer_dl_phdr_info *info, SIZE_T size,
void *data) {
if (info) {
__msan_unpoison(info, size);
if (info->dlpi_name)
__msan_unpoison(info->dlpi_name, REAL(strlen)(info->dlpi_name) + 1);
}
dl_iterate_phdr_data *cbdata = (dl_iterate_phdr_data *)data;
UnpoisonParam(3);
return IndirectExternCall(cbdata->callback)(info, size, cbdata->data);
}
INTERCEPTOR(int, dl_iterate_phdr, dl_iterate_phdr_cb callback, void *data) {
ENSURE_MSAN_INITED();
EnterLoader();
dl_iterate_phdr_data cbdata;
cbdata.callback = callback;
cbdata.data = data;
int res = REAL(dl_iterate_phdr)(msan_dl_iterate_phdr_cb, (void *)&cbdata);
ExitLoader();
return res;
}
INTERCEPTOR(int, getrusage, int who, void *usage) {
ENSURE_MSAN_INITED();
int res = REAL(getrusage)(who, usage);
if (res == 0) {
__msan_unpoison(usage, __sanitizer::struct_rusage_sz);
}
return res;
}
class SignalHandlerScope {
public:
SignalHandlerScope() { GetCurrentThread()->EnterSignalHandler(); }
~SignalHandlerScope() { GetCurrentThread()->LeaveSignalHandler(); }
};
// sigactions_mu guarantees atomicity of sigaction() and signal() calls.
// Access to sigactions[] is gone with relaxed atomics to avoid data race with
// the signal handler.
const int kMaxSignals = 1024;
static atomic_uintptr_t sigactions[kMaxSignals];
static StaticSpinMutex sigactions_mu;
static void SignalHandler(int signo) {
SignalHandlerScope signal_handler_scope;
ScopedThreadLocalStateBackup stlsb;
UnpoisonParam(1);
typedef void (*signal_cb)(int x);
signal_cb cb =
(signal_cb)atomic_load(&sigactions[signo], memory_order_relaxed);
IndirectExternCall(cb)(signo);
}
static void SignalAction(int signo, void *si, void *uc) {
SignalHandlerScope signal_handler_scope;
ScopedThreadLocalStateBackup stlsb;
UnpoisonParam(3);
__msan_unpoison(si, sizeof(__sanitizer_sigaction));
__msan_unpoison(uc, __sanitizer::ucontext_t_sz);
typedef void (*sigaction_cb)(int, void *, void *);
sigaction_cb cb =
(sigaction_cb)atomic_load(&sigactions[signo], memory_order_relaxed);
IndirectExternCall(cb)(signo, si, uc);
}
INTERCEPTOR(int, sigaction, int signo, const __sanitizer_sigaction *act,
__sanitizer_sigaction *oldact) {
ENSURE_MSAN_INITED();
// FIXME: check that *act is unpoisoned.
// That requires intercepting all of sigemptyset, sigfillset, etc.
int res;
if (flags()->wrap_signals) {
SpinMutexLock lock(&sigactions_mu);
CHECK_LT(signo, kMaxSignals);
uptr old_cb = atomic_load(&sigactions[signo], memory_order_relaxed);
__sanitizer_sigaction new_act;
__sanitizer_sigaction *pnew_act = act ? &new_act : 0;
if (act) {
internal_memcpy(pnew_act, act, sizeof(__sanitizer_sigaction));
uptr cb = (uptr)pnew_act->sigaction;
uptr new_cb = (pnew_act->sa_flags & __sanitizer::sa_siginfo)
? (uptr)SignalAction
: (uptr)SignalHandler;
if (cb != __sanitizer::sig_ign && cb != __sanitizer::sig_dfl) {
atomic_store(&sigactions[signo], cb, memory_order_relaxed);
pnew_act->sigaction = (void (*)(int, void *, void *))new_cb;
}
}
res = REAL(sigaction)(signo, pnew_act, oldact);
if (res == 0 && oldact) {
uptr cb = (uptr)oldact->sigaction;
if (cb != __sanitizer::sig_ign && cb != __sanitizer::sig_dfl) {
oldact->sigaction = (void (*)(int, void *, void *))old_cb;
}
}
} else {
res = REAL(sigaction)(signo, act, oldact);
}
if (res == 0 && oldact) {
__msan_unpoison(oldact, sizeof(__sanitizer_sigaction));
}
return res;
}
INTERCEPTOR(int, signal, int signo, uptr cb) {
ENSURE_MSAN_INITED();
if (flags()->wrap_signals) {
CHECK_LT(signo, kMaxSignals);
SpinMutexLock lock(&sigactions_mu);
if (cb != __sanitizer::sig_ign && cb != __sanitizer::sig_dfl) {
atomic_store(&sigactions[signo], cb, memory_order_relaxed);
cb = (uptr) SignalHandler;
}
return REAL(signal)(signo, cb);
} else {
return REAL(signal)(signo, cb);
}
}
extern "C" int pthread_attr_init(void *attr);
extern "C" int pthread_attr_destroy(void *attr);
static void *MsanThreadStartFunc(void *arg) {
MsanThread *t = (MsanThread *)arg;
SetCurrentThread(t);
return t->ThreadStart();
}
INTERCEPTOR(int, pthread_create, void *th, void *attr, void *(*callback)(void*),
void * param) {
ENSURE_MSAN_INITED(); // for GetTlsSize()
__sanitizer_pthread_attr_t myattr;
if (attr == 0) {
pthread_attr_init(&myattr);
attr = &myattr;
}
AdjustStackSize(attr);
MsanThread *t = MsanThread::Create(callback, param);
int res = REAL(pthread_create)(th, attr, MsanThreadStartFunc, t);
if (attr == &myattr)
pthread_attr_destroy(&myattr);
if (!res) {
__msan_unpoison(th, __sanitizer::pthread_t_sz);
}
return res;
}
INTERCEPTOR(int, pthread_key_create, __sanitizer_pthread_key_t *key,
void (*dtor)(void *value)) {
if (msan_init_is_running) return REAL(pthread_key_create)(key, dtor);
ENSURE_MSAN_INITED();
int res = REAL(pthread_key_create)(key, dtor);
if (!res && key)
__msan_unpoison(key, sizeof(*key));
return res;
}
INTERCEPTOR(int, pthread_join, void *th, void **retval) {
ENSURE_MSAN_INITED();
int res = REAL(pthread_join)(th, retval);
if (!res && retval)
__msan_unpoison(retval, sizeof(*retval));
return res;
}
extern char *tzname[2];
INTERCEPTOR(void, tzset, int fake) {
ENSURE_MSAN_INITED();
REAL(tzset)(fake);
if (tzname[0])
__msan_unpoison(tzname[0], REAL(strlen)(tzname[0]) + 1);
if (tzname[1])
__msan_unpoison(tzname[1], REAL(strlen)(tzname[1]) + 1);
return;
}
struct MSanAtExitRecord {
void (*func)(void *arg);
void *arg;
};
void MSanAtExitWrapper(void *arg) {
UnpoisonParam(1);
MSanAtExitRecord *r = (MSanAtExitRecord *)arg;
IndirectExternCall(r->func)(r->arg);
InternalFree(r);
}
// Unpoison argument shadow for C++ module destructors.
INTERCEPTOR(int, __cxa_atexit, void (*func)(void *), void *arg,
void *dso_handle) {
if (msan_init_is_running) return REAL(__cxa_atexit)(func, arg, dso_handle);
ENSURE_MSAN_INITED();
MSanAtExitRecord *r =
(MSanAtExitRecord *)InternalAlloc(sizeof(MSanAtExitRecord));
r->func = func;
r->arg = arg;
return REAL(__cxa_atexit)(MSanAtExitWrapper, r, dso_handle);
}
DECLARE_REAL(int, shmctl, int shmid, int cmd, void *buf)
INTERCEPTOR(void *, shmat, int shmid, const void *shmaddr, int shmflg) {
ENSURE_MSAN_INITED();
void *p = REAL(shmat)(shmid, shmaddr, shmflg);
if (p != (void *)-1) {
__sanitizer_shmid_ds ds;
int res = REAL(shmctl)(shmid, shmctl_ipc_stat, &ds);
if (!res) {
__msan_unpoison(p, ds.shm_segsz);
}
}
return p;
}
// Linux kernel has a bug that leads to kernel deadlock if a process
// maps TBs of memory and then calls mlock().
static void MlockIsUnsupported() {
static atomic_uint8_t printed;
if (atomic_exchange(&printed, 1, memory_order_relaxed))
return;
VPrintf(1,
"INFO: MemorySanitizer ignores mlock/mlockall/munlock/munlockall\n");
}
INTERCEPTOR(int, mlock, const void *addr, uptr len) {
MlockIsUnsupported();
return 0;
}
INTERCEPTOR(int, munlock, const void *addr, uptr len) {
MlockIsUnsupported();
return 0;
}
INTERCEPTOR(int, mlockall, int flags) {
MlockIsUnsupported();
return 0;
}
INTERCEPTOR(int, munlockall, void) {
MlockIsUnsupported();
return 0;
}
struct MSanInterceptorContext {
bool in_interceptor_scope;
};
namespace __msan {
int OnExit() {
// FIXME: ask frontend whether we need to return failure.
return 0;
}
} // namespace __msan
// A version of CHECK_UNPOISONED using a saved scope value. Used in common
// interceptors.
#define CHECK_UNPOISONED_CTX(ctx, x, n) \
do { \
if (!((MSanInterceptorContext *)ctx)->in_interceptor_scope) \
CHECK_UNPOISONED_0(x, n); \
} while (0)
#define MSAN_INTERCEPT_FUNC(name) \
do { \
if ((!INTERCEPT_FUNCTION(name) || !REAL(name))) \
VReport(1, "MemorySanitizer: failed to intercept '" #name "'\n"); \
} while (0)
#define COMMON_INTERCEPT_FUNCTION(name) MSAN_INTERCEPT_FUNC(name)
#define COMMON_INTERCEPTOR_UNPOISON_PARAM(count) \
UnpoisonParam(count)
#define COMMON_INTERCEPTOR_WRITE_RANGE(ctx, ptr, size) \
__msan_unpoison(ptr, size)
#define COMMON_INTERCEPTOR_READ_RANGE(ctx, ptr, size) \
CHECK_UNPOISONED_CTX(ctx, ptr, size)
#define COMMON_INTERCEPTOR_INITIALIZE_RANGE(ptr, size) \
__msan_unpoison(ptr, size)
#define COMMON_INTERCEPTOR_ENTER(ctx, func, ...) \
if (msan_init_is_running) return REAL(func)(__VA_ARGS__); \
MSanInterceptorContext msan_ctx = {IsInInterceptorScope()}; \
ctx = (void *)&msan_ctx; \
(void)ctx; \
InterceptorScope interceptor_scope; \
__msan_unpoison(__errno_location(), sizeof(int)); /* NOLINT */ \
ENSURE_MSAN_INITED();
#define COMMON_INTERCEPTOR_FD_ACQUIRE(ctx, fd) \
do { \
2013-01-18 21:12:56 +08:00
} while (false)
#define COMMON_INTERCEPTOR_FD_RELEASE(ctx, fd) \
do { \
} while (false)
#define COMMON_INTERCEPTOR_FD_SOCKET_ACCEPT(ctx, fd, newfd) \
do { \
} while (false)
2013-01-18 21:12:56 +08:00
#define COMMON_INTERCEPTOR_SET_THREAD_NAME(ctx, name) \
do { \
} while (false) // FIXME
#define COMMON_INTERCEPTOR_SET_PTHREAD_NAME(ctx, thread, name) \
do { \
} while (false) // FIXME
#define COMMON_INTERCEPTOR_BLOCK_REAL(name) REAL(name)
#define COMMON_INTERCEPTOR_ON_EXIT(ctx) OnExit()
// FIXME: update Msan to use common printf interceptors
#define SANITIZER_INTERCEPT_PRINTF 0
#include "sanitizer_common/sanitizer_common_interceptors.inc"
#define COMMON_SYSCALL_PRE_READ_RANGE(p, s) CHECK_UNPOISONED(p, s)
#define COMMON_SYSCALL_PRE_WRITE_RANGE(p, s) \
do { \
} while (false)
#define COMMON_SYSCALL_POST_READ_RANGE(p, s) \
do { \
} while (false)
#define COMMON_SYSCALL_POST_WRITE_RANGE(p, s) __msan_unpoison(p, s)
#include "sanitizer_common/sanitizer_common_syscalls.inc"
// static
void *fast_memset(void *ptr, int c, SIZE_T n) {
// hack until we have a really fast internal_memset
if (sizeof(uptr) == 8 &&
(n % 8) == 0 &&
((uptr)ptr % 8) == 0 &&
(c == 0 || c == -1)) {
// Printf("memset %p %zd %x\n", ptr, n, c);
uptr to_store = c ? -1L : 0L;
uptr *p = (uptr*)ptr;
for (SIZE_T i = 0; i < n / 8; i++)
p[i] = to_store;
return ptr;
}
return internal_memset(ptr, c, n);
}
// static
void *fast_memcpy(void *dst, const void *src, SIZE_T n) {
// Same hack as in fast_memset above.
if (sizeof(uptr) == 8 &&
(n % 8) == 0 &&
((uptr)dst % 8) == 0 &&
((uptr)src % 8) == 0) {
uptr *d = (uptr*)dst;
uptr *s = (uptr*)src;
for (SIZE_T i = 0; i < n / 8; i++)
d[i] = s[i];
return dst;
}
return internal_memcpy(dst, src, n);
}
static void PoisonShadow(uptr ptr, uptr size, u8 value) {
uptr PageSize = GetPageSizeCached();
uptr shadow_beg = MEM_TO_SHADOW(ptr);
uptr shadow_end = MEM_TO_SHADOW(ptr + size);
if (value ||
shadow_end - shadow_beg < common_flags()->clear_shadow_mmap_threshold) {
fast_memset((void*)shadow_beg, value, shadow_end - shadow_beg);
} else {
uptr page_beg = RoundUpTo(shadow_beg, PageSize);
uptr page_end = RoundDownTo(shadow_end, PageSize);
if (page_beg >= page_end) {
fast_memset((void *)shadow_beg, 0, shadow_end - shadow_beg);
} else {
if (page_beg != shadow_beg) {
fast_memset((void *)shadow_beg, 0, page_beg - shadow_beg);
}
if (page_end != shadow_end) {
fast_memset((void *)page_end, 0, shadow_end - page_end);
}
MmapFixedNoReserve(page_beg, page_end - page_beg);
}
}
}
// These interface functions reside here so that they can use
// fast_memset, etc.
void __msan_unpoison(const void *a, uptr size) {
if (!MEM_IS_APP(a)) return;
PoisonShadow((uptr)a, size, 0);
}
void __msan_poison(const void *a, uptr size) {
if (!MEM_IS_APP(a)) return;
PoisonShadow((uptr)a, size,
__msan::flags()->poison_heap_with_zeroes ? 0 : -1);
}
void __msan_poison_stack(void *a, uptr size) {
if (!MEM_IS_APP(a)) return;
PoisonShadow((uptr)a, size,
__msan::flags()->poison_stack_with_zeroes ? 0 : -1);
}
void __msan_clear_and_unpoison(void *a, uptr size) {
fast_memset(a, 0, size);
PoisonShadow((uptr)a, size, 0);
}
void *__msan_memcpy(void *dest, const void *src, SIZE_T n) {
if (!msan_inited) return internal_memcpy(dest, src, n);
if (msan_init_is_running) return REAL(memcpy)(dest, src, n);
ENSURE_MSAN_INITED();
GET_STORE_STACK_TRACE;
void *res = fast_memcpy(dest, src, n);
CopyPoison(dest, src, n, &stack);
return res;
}
void *__msan_memset(void *s, int c, SIZE_T n) {
if (!msan_inited) return internal_memset(s, c, n);
if (msan_init_is_running) return REAL(memset)(s, c, n);
ENSURE_MSAN_INITED();
void *res = fast_memset(s, c, n);
__msan_unpoison(s, n);
return res;
}
void *__msan_memmove(void *dest, const void *src, SIZE_T n) {
if (!msan_inited) return internal_memmove(dest, src, n);
if (msan_init_is_running) return REAL(memmove)(dest, src, n);
ENSURE_MSAN_INITED();
GET_STORE_STACK_TRACE;
void *res = REAL(memmove)(dest, src, n);
MovePoison(dest, src, n, &stack);
return res;
}
void __msan_unpoison_string(const char* s) {
if (!MEM_IS_APP(s)) return;
__msan_unpoison(s, REAL(strlen)(s) + 1);
}
namespace __msan {
u32 GetOriginIfPoisoned(uptr addr, uptr size) {
unsigned char *s = (unsigned char *)MEM_TO_SHADOW(addr);
for (uptr i = 0; i < size; ++i)
if (s[i])
return *(u32 *)SHADOW_TO_ORIGIN((s + i) & ~3UL);
return 0;
}
void SetOriginIfPoisoned(uptr addr, uptr src_shadow, uptr size,
u32 src_origin) {
uptr dst_s = MEM_TO_SHADOW(addr);
uptr src_s = src_shadow;
uptr src_s_end = src_s + size;
for (; src_s < src_s_end; ++dst_s, ++src_s)
if (*(u8 *)src_s) *(u32 *)SHADOW_TO_ORIGIN(dst_s &~3UL) = src_origin;
}
void CopyOrigin(void *dst, const void *src, uptr size, StackTrace *stack) {
if (!__msan_get_track_origins()) return;
if (!MEM_IS_APP(dst) || !MEM_IS_APP(src)) return;
uptr d = (uptr)dst;
uptr beg = d & ~3UL;
// Copy left unaligned origin if that memory is poisoned.
if (beg < d) {
u32 o = GetOriginIfPoisoned(beg, d - beg);
if (o) {
if (__msan_get_track_origins() > 1) o = ChainOrigin(o, stack);
*(u32 *)MEM_TO_ORIGIN(beg) = o;
}
beg += 4;
}
uptr end = (d + size + 3) & ~3UL;
// Copy right unaligned origin if that memory is poisoned.
if (end > d + size) {
u32 o = GetOriginIfPoisoned(d + size, end - d - size);
if (o) {
if (__msan_get_track_origins() > 1) o = ChainOrigin(o, stack);
*(u32 *)MEM_TO_ORIGIN(end - 4) = o;
}
end -= 4;
}
if (beg < end) {
// Align src up.
uptr s = ((uptr)src + 3) & ~3UL;
// FIXME: factor out to msan_copy_origin_aligned
if (__msan_get_track_origins() > 1) {
u32 *src = (u32 *)MEM_TO_ORIGIN(s);
u32 *src_s = (u32 *)MEM_TO_SHADOW(s);
u32 *src_end = src + (end - beg);
u32 *dst = (u32 *)MEM_TO_ORIGIN(beg);
u32 src_o = 0;
u32 dst_o = 0;
for (; src < src_end; ++src, ++src_s, ++dst) {
if (!*src_s) continue;
if (*src != src_o) {
src_o = *src;
dst_o = ChainOrigin(src_o, stack);
}
*dst = dst_o;
}
} else {
fast_memcpy((void *)MEM_TO_ORIGIN(beg), (void *)MEM_TO_ORIGIN(s),
end - beg);
}
}
}
void MovePoison(void *dst, const void *src, uptr size, StackTrace *stack) {
if (!MEM_IS_APP(dst)) return;
if (!MEM_IS_APP(src)) return;
if (src == dst) return;
internal_memmove((void *)MEM_TO_SHADOW((uptr)dst),
(void *)MEM_TO_SHADOW((uptr)src), size);
CopyOrigin(dst, src, size, stack);
}
void CopyPoison(void *dst, const void *src, uptr size, StackTrace *stack) {
if (!MEM_IS_APP(dst)) return;
if (!MEM_IS_APP(src)) return;
fast_memcpy((void *)MEM_TO_SHADOW((uptr)dst),
(void *)MEM_TO_SHADOW((uptr)src), size);
CopyOrigin(dst, src, size, stack);
}
void InitializeInterceptors() {
static int inited = 0;
CHECK_EQ(inited, 0);
SANITIZER_COMMON_INTERCEPTORS_INIT;
INTERCEPT_FUNCTION(mmap);
INTERCEPT_FUNCTION(mmap64);
INTERCEPT_FUNCTION(posix_memalign);
INTERCEPT_FUNCTION(memalign);
INTERCEPT_FUNCTION(valloc);
INTERCEPT_FUNCTION(pvalloc);
INTERCEPT_FUNCTION(malloc);
INTERCEPT_FUNCTION(calloc);
INTERCEPT_FUNCTION(realloc);
INTERCEPT_FUNCTION(free);
INTERCEPT_FUNCTION(cfree);
INTERCEPT_FUNCTION(malloc_usable_size);
INTERCEPT_FUNCTION(mallinfo);
INTERCEPT_FUNCTION(mallopt);
INTERCEPT_FUNCTION(malloc_stats);
INTERCEPT_FUNCTION(fread);
INTERCEPT_FUNCTION(fread_unlocked);
INTERCEPT_FUNCTION(readlink);
INTERCEPT_FUNCTION(memcpy);
INTERCEPT_FUNCTION(memccpy);
INTERCEPT_FUNCTION(mempcpy);
INTERCEPT_FUNCTION(memset);
INTERCEPT_FUNCTION(memmove);
INTERCEPT_FUNCTION(bcopy);
INTERCEPT_FUNCTION(wmemset);
INTERCEPT_FUNCTION(wmemcpy);
INTERCEPT_FUNCTION(wmempcpy);
INTERCEPT_FUNCTION(wmemmove);
INTERCEPT_FUNCTION(strcpy); // NOLINT
INTERCEPT_FUNCTION(stpcpy); // NOLINT
INTERCEPT_FUNCTION(strdup);
INTERCEPT_FUNCTION(__strdup);
INTERCEPT_FUNCTION(strndup);
INTERCEPT_FUNCTION(__strndup);
INTERCEPT_FUNCTION(strncpy); // NOLINT
INTERCEPT_FUNCTION(strlen);
INTERCEPT_FUNCTION(strnlen);
INTERCEPT_FUNCTION(gcvt);
INTERCEPT_FUNCTION(strcat); // NOLINT
INTERCEPT_FUNCTION(strncat); // NOLINT
INTERCEPT_FUNCTION(strtol);
INTERCEPT_FUNCTION(strtoll);
INTERCEPT_FUNCTION(strtoul);
INTERCEPT_FUNCTION(strtoull);
INTERCEPT_FUNCTION(strtod);
INTERCEPT_FUNCTION(strtod_l);
INTERCEPT_FUNCTION(__strtod_l);
INTERCEPT_FUNCTION(strtof);
INTERCEPT_FUNCTION(strtof_l);
INTERCEPT_FUNCTION(__strtof_l);
INTERCEPT_FUNCTION(strtold);
INTERCEPT_FUNCTION(strtold_l);
INTERCEPT_FUNCTION(__strtold_l);
INTERCEPT_FUNCTION(strtol_l);
INTERCEPT_FUNCTION(strtoll_l);
INTERCEPT_FUNCTION(strtoul_l);
INTERCEPT_FUNCTION(strtoull_l);
INTERCEPT_FUNCTION(vasprintf);
INTERCEPT_FUNCTION(asprintf);
INTERCEPT_FUNCTION(vsprintf);
INTERCEPT_FUNCTION(vsnprintf);
INTERCEPT_FUNCTION(vswprintf);
INTERCEPT_FUNCTION(sprintf); // NOLINT
INTERCEPT_FUNCTION(snprintf);
INTERCEPT_FUNCTION(swprintf);
INTERCEPT_FUNCTION(strftime);
INTERCEPT_FUNCTION(strftime_l);
INTERCEPT_FUNCTION(__strftime_l);
INTERCEPT_FUNCTION(wcsftime);
INTERCEPT_FUNCTION(wcsftime_l);
INTERCEPT_FUNCTION(__wcsftime_l);
INTERCEPT_FUNCTION(mbtowc);
INTERCEPT_FUNCTION(mbrtowc);
INTERCEPT_FUNCTION(wcslen);
INTERCEPT_FUNCTION(wcschr);
INTERCEPT_FUNCTION(wcscpy);
INTERCEPT_FUNCTION(wcscmp);
INTERCEPT_FUNCTION(wcstod);
INTERCEPT_FUNCTION(getenv);
INTERCEPT_FUNCTION(setenv);
INTERCEPT_FUNCTION(putenv);
INTERCEPT_FUNCTION(gettimeofday);
INTERCEPT_FUNCTION(fcvt);
INTERCEPT_FUNCTION(__fxstat);
INTERCEPT_FUNCTION(__fxstatat);
INTERCEPT_FUNCTION(__xstat);
INTERCEPT_FUNCTION(__lxstat);
INTERCEPT_FUNCTION(__fxstat64);
INTERCEPT_FUNCTION(__fxstatat64);
INTERCEPT_FUNCTION(__xstat64);
INTERCEPT_FUNCTION(__lxstat64);
INTERCEPT_FUNCTION(pipe);
INTERCEPT_FUNCTION(pipe2);
INTERCEPT_FUNCTION(socketpair);
INTERCEPT_FUNCTION(fgets);
INTERCEPT_FUNCTION(fgets_unlocked);
INTERCEPT_FUNCTION(getrlimit);
INTERCEPT_FUNCTION(getrlimit64);
INTERCEPT_FUNCTION(uname);
INTERCEPT_FUNCTION(gethostname);
INTERCEPT_FUNCTION(epoll_wait);
INTERCEPT_FUNCTION(epoll_pwait);
INTERCEPT_FUNCTION(recv);
INTERCEPT_FUNCTION(recvfrom);
INTERCEPT_FUNCTION(dladdr);
INTERCEPT_FUNCTION(dlerror);
INTERCEPT_FUNCTION(dlopen);
INTERCEPT_FUNCTION(dl_iterate_phdr);
INTERCEPT_FUNCTION(getrusage);
INTERCEPT_FUNCTION(sigaction);
INTERCEPT_FUNCTION(signal);
INTERCEPT_FUNCTION(pthread_create);
INTERCEPT_FUNCTION(pthread_key_create);
INTERCEPT_FUNCTION(pthread_join);
INTERCEPT_FUNCTION(tzset);
INTERCEPT_FUNCTION(__cxa_atexit);
INTERCEPT_FUNCTION(shmat);
inited = 1;
}
} // namespace __msan