llvm-project/polly/lib/Support/SCEVValidator.cpp

621 lines
18 KiB
C++
Raw Normal View History

#include "polly/Support/SCEVValidator.h"
#include "polly/ScopInfo.h"
#include "llvm/Analysis/RegionInfo.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
Allow invariant loads in the SCoP description This patch allows invariant loads to be used in the SCoP description, e.g., as loop bounds, conditions or in memory access functions. First we collect "required invariant loads" during SCoP detection that would otherwise make an expression we care about non-affine. To this end a new level of abstraction was introduced before SCEVValidator::isAffineExpr() namely ScopDetection::isAffine() and ScopDetection::onlyValidRequiredInvariantLoads(). Here we can decide if we want a load inside the region to be optimistically assumed invariant or not. If we do, it will be marked as required and in the SCoP generation we bail if it is actually not invariant. If we don't it will be a non-affine expression as before. At the moment we optimistically assume all "hoistable" (namely non-loop-carried) loads to be invariant. This causes us to expand some SCoPs and dismiss them later but it also allows us to detect a lot we would dismiss directly if we would ask e.g., AliasAnalysis::canBasicBlockModify(). We also allow potential aliases between optimistically assumed invariant loads and other pointers as our runtime alias checks are sound in case the loads are actually invariant. Together with the invariant checks this combination allows to handle a lot more than LICM can. The code generation of the invariant loads had to be extended as we can now have dependences between parameters and invariant (hoisted) loads as well as the other way around, e.g., test/Isl/CodeGen/invariant_load_parameters_cyclic_dependence.ll First, it is important to note that we cannot have real cycles but only dependences from a hoisted load to a parameter and from another parameter to that hoisted load (and so on). To handle such cases we materialize llvm::Values for parameters that are referred by a hoisted load on demand and then materialize the remaining parameters. Second, there are new kinds of dependences between hoisted loads caused by the constraints on their execution. If a hoisted load is conditionally executed it might depend on the value of another hoisted load. To deal with such situations we sort them already in the ScopInfo such that they can be generated in the order they are listed in the Scop::InvariantAccesses list (see compareInvariantAccesses). The dependences between hoisted loads caused by indirect accesses are handled the same way as before. llvm-svn: 249607
2015-10-08 04:17:36 +08:00
using namespace polly;
#define DEBUG_TYPE "polly-scev-validator"
namespace SCEVType {
2013-02-22 16:21:52 +08:00
/// @brief The type of a SCEV
///
/// To check for the validity of a SCEV we assign to each SCEV a type. The
/// possible types are INT, PARAM, IV and INVALID. The order of the types is
/// important. The subexpressions of SCEV with a type X can only have a type
/// that is smaller or equal than X.
enum TYPE {
// An integer value.
INT,
// An expression that is constant during the execution of the Scop,
// but that may depend on parameters unknown at compile time.
PARAM,
// An expression that may change during the execution of the SCoP.
IV,
// An invalid expression.
INVALID
};
}
/// @brief The result the validator returns for a SCEV expression.
class ValidatorResult {
/// @brief The type of the expression
SCEVType::TYPE Type;
/// @brief The set of Parameters in the expression.
ParameterSetTy Parameters;
public:
/// @brief The copy constructor
ValidatorResult(const ValidatorResult &Source) {
Type = Source.Type;
Parameters = Source.Parameters;
2013-02-22 16:21:52 +08:00
}
/// @brief Construct a result with a certain type and no parameters.
ValidatorResult(SCEVType::TYPE Type) : Type(Type) {
assert(Type != SCEVType::PARAM && "Did you forget to pass the parameter");
2013-02-22 16:21:52 +08:00
}
/// @brief Construct a result with a certain type and a single parameter.
ValidatorResult(SCEVType::TYPE Type, const SCEV *Expr) : Type(Type) {
Parameters.insert(Expr);
2013-02-22 16:21:52 +08:00
}
/// @brief Get the type of the ValidatorResult.
2013-02-22 16:21:52 +08:00
SCEVType::TYPE getType() { return Type; }
/// @brief Is the analyzed SCEV constant during the execution of the SCoP.
2013-02-22 16:21:52 +08:00
bool isConstant() { return Type == SCEVType::INT || Type == SCEVType::PARAM; }
/// @brief Is the analyzed SCEV valid.
2013-02-22 16:21:52 +08:00
bool isValid() { return Type != SCEVType::INVALID; }
/// @brief Is the analyzed SCEV of Type IV.
2013-02-22 16:21:52 +08:00
bool isIV() { return Type == SCEVType::IV; }
/// @brief Is the analyzed SCEV of Type INT.
2013-02-22 16:21:52 +08:00
bool isINT() { return Type == SCEVType::INT; }
/// @brief Is the analyzed SCEV of Type PARAM.
2013-02-22 16:21:52 +08:00
bool isPARAM() { return Type == SCEVType::PARAM; }
/// @brief Get the parameters of this validator result.
const ParameterSetTy &getParameters() { return Parameters; }
/// @brief Add the parameters of Source to this result.
void addParamsFrom(const ValidatorResult &Source) {
Parameters.insert(Source.Parameters.begin(), Source.Parameters.end());
}
/// @brief Merge a result.
///
/// This means to merge the parameters and to set the Type to the most
/// specific Type that matches both.
void merge(const ValidatorResult &ToMerge) {
Type = std::max(Type, ToMerge.Type);
addParamsFrom(ToMerge);
}
void print(raw_ostream &OS) {
switch (Type) {
2013-02-22 16:21:52 +08:00
case SCEVType::INT:
OS << "SCEVType::INT";
break;
2013-02-22 16:21:52 +08:00
case SCEVType::PARAM:
OS << "SCEVType::PARAM";
break;
2013-02-22 16:21:52 +08:00
case SCEVType::IV:
OS << "SCEVType::IV";
break;
2013-02-22 16:21:52 +08:00
case SCEVType::INVALID:
OS << "SCEVType::INVALID";
break;
}
}
};
raw_ostream &operator<<(raw_ostream &OS, class ValidatorResult &VR) {
VR.print(OS);
return OS;
}
/// Check if a SCEV is valid in a SCoP.
struct SCEVValidator
: public SCEVVisitor<SCEVValidator, class ValidatorResult> {
private:
const Region *R;
Loop *Scope;
ScalarEvolution &SE;
Allow invariant loads in the SCoP description This patch allows invariant loads to be used in the SCoP description, e.g., as loop bounds, conditions or in memory access functions. First we collect "required invariant loads" during SCoP detection that would otherwise make an expression we care about non-affine. To this end a new level of abstraction was introduced before SCEVValidator::isAffineExpr() namely ScopDetection::isAffine() and ScopDetection::onlyValidRequiredInvariantLoads(). Here we can decide if we want a load inside the region to be optimistically assumed invariant or not. If we do, it will be marked as required and in the SCoP generation we bail if it is actually not invariant. If we don't it will be a non-affine expression as before. At the moment we optimistically assume all "hoistable" (namely non-loop-carried) loads to be invariant. This causes us to expand some SCoPs and dismiss them later but it also allows us to detect a lot we would dismiss directly if we would ask e.g., AliasAnalysis::canBasicBlockModify(). We also allow potential aliases between optimistically assumed invariant loads and other pointers as our runtime alias checks are sound in case the loads are actually invariant. Together with the invariant checks this combination allows to handle a lot more than LICM can. The code generation of the invariant loads had to be extended as we can now have dependences between parameters and invariant (hoisted) loads as well as the other way around, e.g., test/Isl/CodeGen/invariant_load_parameters_cyclic_dependence.ll First, it is important to note that we cannot have real cycles but only dependences from a hoisted load to a parameter and from another parameter to that hoisted load (and so on). To handle such cases we materialize llvm::Values for parameters that are referred by a hoisted load on demand and then materialize the remaining parameters. Second, there are new kinds of dependences between hoisted loads caused by the constraints on their execution. If a hoisted load is conditionally executed it might depend on the value of another hoisted load. To deal with such situations we sort them already in the ScopInfo such that they can be generated in the order they are listed in the Scop::InvariantAccesses list (see compareInvariantAccesses). The dependences between hoisted loads caused by indirect accesses are handled the same way as before. llvm-svn: 249607
2015-10-08 04:17:36 +08:00
InvariantLoadsSetTy *ILS;
public:
SCEVValidator(const Region *R, Loop *Scope, ScalarEvolution &SE,
InvariantLoadsSetTy *ILS)
: R(R), Scope(Scope), SE(SE), ILS(ILS) {}
class ValidatorResult visitConstant(const SCEVConstant *Constant) {
return ValidatorResult(SCEVType::INT);
}
class ValidatorResult visitTruncateExpr(const SCEVTruncateExpr *Expr) {
ValidatorResult Op = visit(Expr->getOperand());
switch (Op.getType()) {
2013-02-22 16:21:52 +08:00
case SCEVType::INT:
case SCEVType::PARAM:
// We currently do not represent a truncate expression as an affine
// expression. If it is constant during Scop execution, we treat it as a
// parameter.
return ValidatorResult(SCEVType::PARAM, Expr);
case SCEVType::IV:
DEBUG(dbgs() << "INVALID: Truncation of SCEVType::IV expression");
return ValidatorResult(SCEVType::INVALID);
case SCEVType::INVALID:
return Op;
}
llvm_unreachable("Unknown SCEVType");
}
class ValidatorResult visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
Model zext-extend instructions A zero-extended value can be interpreted as a piecewise defined signed value. If the value was non-negative it stays the same, otherwise it is the sum of the original value and 2^n where n is the bit-width of the original (or operand) type. Examples: zext i8 127 to i32 -> { [127] } zext i8 -1 to i32 -> { [256 + (-1)] } = { [255] } zext i8 %v to i32 -> [v] -> { [v] | v >= 0; [256 + v] | v < 0 } However, LLVM/Scalar Evolution uses zero-extend (potentially lead by a truncate) to represent some forms of modulo computation. The left-hand side of the condition in the code below would result in the SCEV "zext i1 <false, +, true>for.body" which is just another description of the C expression "i & 1 != 0" or, equivalently, "i % 2 != 0". for (i = 0; i < N; i++) if (i & 1 != 0 /* == i % 2 */) /* do something */ If we do not make the modulo explicit but only use the mechanism described above we will get the very restrictive assumption "N < 3", because for all values of N >= 3 the SCEVAddRecExpr operand of the zero-extend would wrap. Alternatively, we can make the modulo in the operand explicit in the resulting piecewise function and thereby avoid the assumption on N. For the example this would result in the following piecewise affine function: { [i0] -> [(1)] : 2*floor((-1 + i0)/2) = -1 + i0; [i0] -> [(0)] : 2*floor((i0)/2) = i0 } To this end we can first determine if the (immediate) operand of the zero-extend can wrap and, in case it might, we will use explicit modulo semantic to compute the result instead of emitting non-wrapping assumptions. Note that operands with large bit-widths are less likely to be negative because it would result in a very large access offset or loop bound after the zero-extend. To this end one can optimistically assume the operand to be positive and avoid the piecewise definition if the bit-width is bigger than some threshold (here MaxZextSmallBitWidth). We choose to go with a hybrid solution of all modeling techniques described above. For small bit-widths (up to MaxZextSmallBitWidth) we will model the wrapping explicitly and use a piecewise defined function. However, if the bit-width is bigger than MaxZextSmallBitWidth we will employ overflow assumptions and assume the "former negative" piece will not exist. llvm-svn: 267408
2016-04-25 22:01:36 +08:00
return visit(Expr->getOperand());
}
class ValidatorResult visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
// We currently allow only signed SCEV expressions. In the case of a
// signed value, a sign extend is a noop.
//
// TODO: Reconsider this when we add support for unsigned values.
return visit(Expr->getOperand());
}
class ValidatorResult visitAddExpr(const SCEVAddExpr *Expr) {
ValidatorResult Return(SCEVType::INT);
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
ValidatorResult Op = visit(Expr->getOperand(i));
Return.merge(Op);
// Early exit.
if (!Return.isValid())
break;
}
// TODO: Check for NSW and NUW.
return Return;
}
class ValidatorResult visitMulExpr(const SCEVMulExpr *Expr) {
ValidatorResult Return(SCEVType::INT);
bool HasMultipleParams = false;
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
ValidatorResult Op = visit(Expr->getOperand(i));
if (Op.isINT())
continue;
if (Op.isPARAM() && Return.isPARAM()) {
HasMultipleParams = true;
continue;
}
2013-02-22 16:21:52 +08:00
if ((Op.isIV() || Op.isPARAM()) && !Return.isINT()) {
DEBUG(dbgs() << "INVALID: More than one non-int operand in MulExpr\n"
<< "\tExpr: " << *Expr << "\n"
<< "\tPrevious expression type: " << Return << "\n"
2013-02-22 16:21:52 +08:00
<< "\tNext operand (" << Op
<< "): " << *Expr->getOperand(i) << "\n");
return ValidatorResult(SCEVType::INVALID);
}
Return.merge(Op);
}
if (HasMultipleParams && Return.isValid())
return ValidatorResult(SCEVType::PARAM, Expr);
// TODO: Check for NSW and NUW.
return Return;
}
class ValidatorResult visitUDivExpr(const SCEVUDivExpr *Expr) {
ValidatorResult LHS = visit(Expr->getLHS());
ValidatorResult RHS = visit(Expr->getRHS());
// We currently do not represent an unsigned division as an affine
// expression. If the division is constant during Scop execution we treat it
// as a parameter, otherwise we bail out.
if (LHS.isConstant() && RHS.isConstant())
return ValidatorResult(SCEVType::PARAM, Expr);
DEBUG(dbgs() << "INVALID: unsigned division of non-constant expressions");
return ValidatorResult(SCEVType::INVALID);
}
class ValidatorResult visitAddRecExpr(const SCEVAddRecExpr *Expr) {
if (!Expr->isAffine()) {
DEBUG(dbgs() << "INVALID: AddRec is not affine");
return ValidatorResult(SCEVType::INVALID);
}
ValidatorResult Start = visit(Expr->getStart());
ValidatorResult Recurrence = visit(Expr->getStepRecurrence(SE));
if (!Start.isValid())
return Start;
if (!Recurrence.isValid())
return Recurrence;
auto *L = Expr->getLoop();
if (R->contains(L) && (!Scope || !L->contains(Scope))) {
DEBUG(dbgs() << "INVALID: AddRec out of a loop whose exit value is not "
"synthesizable");
return ValidatorResult(SCEVType::INVALID);
}
if (R->contains(L)) {
if (Recurrence.isINT()) {
ValidatorResult Result(SCEVType::IV);
Result.addParamsFrom(Start);
return Result;
}
DEBUG(dbgs() << "INVALID: AddRec within scop has non-int"
"recurrence part");
return ValidatorResult(SCEVType::INVALID);
}
2013-02-22 16:21:52 +08:00
assert(Start.isConstant() && Recurrence.isConstant() &&
"Expected 'Start' and 'Recurrence' to be constant");
// Directly generate ValidatorResult for Expr if 'start' is zero.
if (Expr->getStart()->isZero())
return ValidatorResult(SCEVType::PARAM, Expr);
// Translate AddRecExpr from '{start, +, inc}' into 'start + {0, +, inc}'
// if 'start' is not zero.
const SCEV *ZeroStartExpr = SE.getAddRecExpr(
SE.getConstant(Expr->getStart()->getType(), 0),
Expr->getStepRecurrence(SE), Expr->getLoop(), Expr->getNoWrapFlags());
ValidatorResult ZeroStartResult =
ValidatorResult(SCEVType::PARAM, ZeroStartExpr);
ZeroStartResult.addParamsFrom(Start);
return ZeroStartResult;
}
class ValidatorResult visitSMaxExpr(const SCEVSMaxExpr *Expr) {
ValidatorResult Return(SCEVType::INT);
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
ValidatorResult Op = visit(Expr->getOperand(i));
if (!Op.isValid())
return Op;
Return.merge(Op);
}
return Return;
}
class ValidatorResult visitUMaxExpr(const SCEVUMaxExpr *Expr) {
// We do not support unsigned operations. If 'Expr' is constant during Scop
// execution we treat this as a parameter, otherwise we bail out.
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
ValidatorResult Op = visit(Expr->getOperand(i));
if (!Op.isConstant()) {
DEBUG(dbgs() << "INVALID: UMaxExpr has a non-constant operand");
return ValidatorResult(SCEVType::INVALID);
}
}
return ValidatorResult(SCEVType::PARAM, Expr);
}
ValidatorResult visitGenericInst(Instruction *I, const SCEV *S) {
if (R->contains(I)) {
DEBUG(dbgs() << "INVALID: UnknownExpr references an instruction "
"within the region\n");
return ValidatorResult(SCEVType::INVALID);
}
return ValidatorResult(SCEVType::PARAM, S);
}
Allow invariant loads in the SCoP description This patch allows invariant loads to be used in the SCoP description, e.g., as loop bounds, conditions or in memory access functions. First we collect "required invariant loads" during SCoP detection that would otherwise make an expression we care about non-affine. To this end a new level of abstraction was introduced before SCEVValidator::isAffineExpr() namely ScopDetection::isAffine() and ScopDetection::onlyValidRequiredInvariantLoads(). Here we can decide if we want a load inside the region to be optimistically assumed invariant or not. If we do, it will be marked as required and in the SCoP generation we bail if it is actually not invariant. If we don't it will be a non-affine expression as before. At the moment we optimistically assume all "hoistable" (namely non-loop-carried) loads to be invariant. This causes us to expand some SCoPs and dismiss them later but it also allows us to detect a lot we would dismiss directly if we would ask e.g., AliasAnalysis::canBasicBlockModify(). We also allow potential aliases between optimistically assumed invariant loads and other pointers as our runtime alias checks are sound in case the loads are actually invariant. Together with the invariant checks this combination allows to handle a lot more than LICM can. The code generation of the invariant loads had to be extended as we can now have dependences between parameters and invariant (hoisted) loads as well as the other way around, e.g., test/Isl/CodeGen/invariant_load_parameters_cyclic_dependence.ll First, it is important to note that we cannot have real cycles but only dependences from a hoisted load to a parameter and from another parameter to that hoisted load (and so on). To handle such cases we materialize llvm::Values for parameters that are referred by a hoisted load on demand and then materialize the remaining parameters. Second, there are new kinds of dependences between hoisted loads caused by the constraints on their execution. If a hoisted load is conditionally executed it might depend on the value of another hoisted load. To deal with such situations we sort them already in the ScopInfo such that they can be generated in the order they are listed in the Scop::InvariantAccesses list (see compareInvariantAccesses). The dependences between hoisted loads caused by indirect accesses are handled the same way as before. llvm-svn: 249607
2015-10-08 04:17:36 +08:00
ValidatorResult visitLoadInstruction(Instruction *I, const SCEV *S) {
if (R->contains(I) && ILS) {
ILS->insert(cast<LoadInst>(I));
return ValidatorResult(SCEVType::PARAM, S);
}
return visitGenericInst(I, S);
}
ValidatorResult visitSDivInstruction(Instruction *SDiv, const SCEV *S) {
assert(SDiv->getOpcode() == Instruction::SDiv &&
"Assumed SDiv instruction!");
auto *Divisor = SDiv->getOperand(1);
auto *CI = dyn_cast<ConstantInt>(Divisor);
if (!CI)
return visitGenericInst(SDiv, S);
auto *Dividend = SDiv->getOperand(0);
auto *DividendSCEV = SE.getSCEV(Dividend);
return visit(DividendSCEV);
}
ValidatorResult visitSRemInstruction(Instruction *SRem, const SCEV *S) {
assert(SRem->getOpcode() == Instruction::SRem &&
"Assumed SRem instruction!");
auto *Divisor = SRem->getOperand(1);
auto *CI = dyn_cast<ConstantInt>(Divisor);
if (!CI)
return visitGenericInst(SRem, S);
auto *Dividend = SRem->getOperand(0);
auto *DividendSCEV = SE.getSCEV(Dividend);
return visit(DividendSCEV);
}
ValidatorResult visitUnknown(const SCEVUnknown *Expr) {
Value *V = Expr->getValue();
if (!Expr->getType()->isIntegerTy() && !Expr->getType()->isPointerTy()) {
DEBUG(dbgs() << "INVALID: UnknownExpr is not an integer or pointer");
return ValidatorResult(SCEVType::INVALID);
}
if (isa<UndefValue>(V)) {
DEBUG(dbgs() << "INVALID: UnknownExpr references an undef value");
return ValidatorResult(SCEVType::INVALID);
}
if (Instruction *I = dyn_cast<Instruction>(Expr->getValue())) {
switch (I->getOpcode()) {
Allow invariant loads in the SCoP description This patch allows invariant loads to be used in the SCoP description, e.g., as loop bounds, conditions or in memory access functions. First we collect "required invariant loads" during SCoP detection that would otherwise make an expression we care about non-affine. To this end a new level of abstraction was introduced before SCEVValidator::isAffineExpr() namely ScopDetection::isAffine() and ScopDetection::onlyValidRequiredInvariantLoads(). Here we can decide if we want a load inside the region to be optimistically assumed invariant or not. If we do, it will be marked as required and in the SCoP generation we bail if it is actually not invariant. If we don't it will be a non-affine expression as before. At the moment we optimistically assume all "hoistable" (namely non-loop-carried) loads to be invariant. This causes us to expand some SCoPs and dismiss them later but it also allows us to detect a lot we would dismiss directly if we would ask e.g., AliasAnalysis::canBasicBlockModify(). We also allow potential aliases between optimistically assumed invariant loads and other pointers as our runtime alias checks are sound in case the loads are actually invariant. Together with the invariant checks this combination allows to handle a lot more than LICM can. The code generation of the invariant loads had to be extended as we can now have dependences between parameters and invariant (hoisted) loads as well as the other way around, e.g., test/Isl/CodeGen/invariant_load_parameters_cyclic_dependence.ll First, it is important to note that we cannot have real cycles but only dependences from a hoisted load to a parameter and from another parameter to that hoisted load (and so on). To handle such cases we materialize llvm::Values for parameters that are referred by a hoisted load on demand and then materialize the remaining parameters. Second, there are new kinds of dependences between hoisted loads caused by the constraints on their execution. If a hoisted load is conditionally executed it might depend on the value of another hoisted load. To deal with such situations we sort them already in the ScopInfo such that they can be generated in the order they are listed in the Scop::InvariantAccesses list (see compareInvariantAccesses). The dependences between hoisted loads caused by indirect accesses are handled the same way as before. llvm-svn: 249607
2015-10-08 04:17:36 +08:00
case Instruction::Load:
return visitLoadInstruction(I, Expr);
case Instruction::SDiv:
return visitSDivInstruction(I, Expr);
case Instruction::SRem:
return visitSRemInstruction(I, Expr);
default:
return visitGenericInst(I, Expr);
}
}
return ValidatorResult(SCEVType::PARAM, Expr);
}
};
/// @brief Check whether a SCEV refers to an SSA name defined inside a region.
class SCEVInRegionDependences {
const Region *R;
Loop *Scope;
bool AllowLoops;
bool HasInRegionDeps = false;
public:
SCEVInRegionDependences(const Region *R, Loop *Scope, bool AllowLoops)
: R(R), Scope(Scope), AllowLoops(AllowLoops) {}
bool follow(const SCEV *S) {
if (auto Unknown = dyn_cast<SCEVUnknown>(S)) {
Instruction *Inst = dyn_cast<Instruction>(Unknown->getValue());
// Return true when Inst is defined inside the region R.
if (Inst && R->contains(Inst)) {
HasInRegionDeps = true;
return false;
}
} else if (auto AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
if (!AllowLoops) {
if (!Scope) {
HasInRegionDeps = true;
return false;
}
auto *L = AddRec->getLoop();
if (R->contains(L) && !L->contains(Scope)) {
HasInRegionDeps = true;
return false;
}
}
}
return true;
}
bool isDone() { return false; }
bool hasDependences() { return HasInRegionDeps; }
};
namespace polly {
Add OpenMP code generation to isl backend This backend supports besides the classical code generation the upcoming SCEV based code generation (which the existing CLooG backend does not support robustly). OpenMP code generation in the isl backend benefits from our run-time alias checks such that the set of loops that can possibly be parallelized is a lot larger. The code was tested on LNT. We do not regress on builds without -polly-parallel. When using -polly-parallel most tests work flawlessly, but a few issues still remain and will be addressed in follow up commits. SCEV/non-SCEV codegen: - Compile time failure in ldecod and TimberWolfMC due a problem in our run-time alias check generation triggered by pointers that escape through the OpenMP subfunction (OpenMP specific). - Several execution time failures. Due to the larger set of loops that we now parallelize (compared to the classical code generation), we currently run into some timeouts in tests with a lot loops that have a low trip count and are slowed down by parallelizing them. SCEV only: - One existing failure in lencod due to llvm.org/PR21204 (not OpenMP specific) OpenMP code generation is the last feature that was only available in the CLooG backend. With the isl backend being the only one supporting features such as run-time alias checks and delinearization, we will soon switch to use the isl ast generator by the default and subsequently remove our dependency on CLooG. http://reviews.llvm.org/D5517 llvm-svn: 222088
2014-11-16 05:32:53 +08:00
/// Find all loops referenced in SCEVAddRecExprs.
class SCEVFindLoops {
SetVector<const Loop *> &Loops;
public:
SCEVFindLoops(SetVector<const Loop *> &Loops) : Loops(Loops) {}
bool follow(const SCEV *S) {
if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S))
Loops.insert(AddRec->getLoop());
return true;
}
bool isDone() { return false; }
};
void findLoops(const SCEV *Expr, SetVector<const Loop *> &Loops) {
SCEVFindLoops FindLoops(Loops);
SCEVTraversal<SCEVFindLoops> ST(FindLoops);
ST.visitAll(Expr);
}
/// Find all values referenced in SCEVUnknowns.
class SCEVFindValues {
ScalarEvolution &SE;
Add OpenMP code generation to isl backend This backend supports besides the classical code generation the upcoming SCEV based code generation (which the existing CLooG backend does not support robustly). OpenMP code generation in the isl backend benefits from our run-time alias checks such that the set of loops that can possibly be parallelized is a lot larger. The code was tested on LNT. We do not regress on builds without -polly-parallel. When using -polly-parallel most tests work flawlessly, but a few issues still remain and will be addressed in follow up commits. SCEV/non-SCEV codegen: - Compile time failure in ldecod and TimberWolfMC due a problem in our run-time alias check generation triggered by pointers that escape through the OpenMP subfunction (OpenMP specific). - Several execution time failures. Due to the larger set of loops that we now parallelize (compared to the classical code generation), we currently run into some timeouts in tests with a lot loops that have a low trip count and are slowed down by parallelizing them. SCEV only: - One existing failure in lencod due to llvm.org/PR21204 (not OpenMP specific) OpenMP code generation is the last feature that was only available in the CLooG backend. With the isl backend being the only one supporting features such as run-time alias checks and delinearization, we will soon switch to use the isl ast generator by the default and subsequently remove our dependency on CLooG. http://reviews.llvm.org/D5517 llvm-svn: 222088
2014-11-16 05:32:53 +08:00
SetVector<Value *> &Values;
public:
SCEVFindValues(ScalarEvolution &SE, SetVector<Value *> &Values)
: SE(SE), Values(Values) {}
Add OpenMP code generation to isl backend This backend supports besides the classical code generation the upcoming SCEV based code generation (which the existing CLooG backend does not support robustly). OpenMP code generation in the isl backend benefits from our run-time alias checks such that the set of loops that can possibly be parallelized is a lot larger. The code was tested on LNT. We do not regress on builds without -polly-parallel. When using -polly-parallel most tests work flawlessly, but a few issues still remain and will be addressed in follow up commits. SCEV/non-SCEV codegen: - Compile time failure in ldecod and TimberWolfMC due a problem in our run-time alias check generation triggered by pointers that escape through the OpenMP subfunction (OpenMP specific). - Several execution time failures. Due to the larger set of loops that we now parallelize (compared to the classical code generation), we currently run into some timeouts in tests with a lot loops that have a low trip count and are slowed down by parallelizing them. SCEV only: - One existing failure in lencod due to llvm.org/PR21204 (not OpenMP specific) OpenMP code generation is the last feature that was only available in the CLooG backend. With the isl backend being the only one supporting features such as run-time alias checks and delinearization, we will soon switch to use the isl ast generator by the default and subsequently remove our dependency on CLooG. http://reviews.llvm.org/D5517 llvm-svn: 222088
2014-11-16 05:32:53 +08:00
bool follow(const SCEV *S) {
const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(S);
if (!Unknown)
return true;
Values.insert(Unknown->getValue());
Instruction *Inst = dyn_cast<Instruction>(Unknown->getValue());
if (!Inst || (Inst->getOpcode() != Instruction::SRem &&
Inst->getOpcode() != Instruction::SDiv))
return false;
auto *Dividend = SE.getSCEV(Inst->getOperand(1));
if (!isa<SCEVConstant>(Dividend))
return false;
auto *Divisor = SE.getSCEV(Inst->getOperand(0));
SCEVFindValues FindValues(SE, Values);
SCEVTraversal<SCEVFindValues> ST(FindValues);
ST.visitAll(Dividend);
ST.visitAll(Divisor);
return false;
Add OpenMP code generation to isl backend This backend supports besides the classical code generation the upcoming SCEV based code generation (which the existing CLooG backend does not support robustly). OpenMP code generation in the isl backend benefits from our run-time alias checks such that the set of loops that can possibly be parallelized is a lot larger. The code was tested on LNT. We do not regress on builds without -polly-parallel. When using -polly-parallel most tests work flawlessly, but a few issues still remain and will be addressed in follow up commits. SCEV/non-SCEV codegen: - Compile time failure in ldecod and TimberWolfMC due a problem in our run-time alias check generation triggered by pointers that escape through the OpenMP subfunction (OpenMP specific). - Several execution time failures. Due to the larger set of loops that we now parallelize (compared to the classical code generation), we currently run into some timeouts in tests with a lot loops that have a low trip count and are slowed down by parallelizing them. SCEV only: - One existing failure in lencod due to llvm.org/PR21204 (not OpenMP specific) OpenMP code generation is the last feature that was only available in the CLooG backend. With the isl backend being the only one supporting features such as run-time alias checks and delinearization, we will soon switch to use the isl ast generator by the default and subsequently remove our dependency on CLooG. http://reviews.llvm.org/D5517 llvm-svn: 222088
2014-11-16 05:32:53 +08:00
}
bool isDone() { return false; }
};
void findValues(const SCEV *Expr, ScalarEvolution &SE,
SetVector<Value *> &Values) {
SCEVFindValues FindValues(SE, Values);
Add OpenMP code generation to isl backend This backend supports besides the classical code generation the upcoming SCEV based code generation (which the existing CLooG backend does not support robustly). OpenMP code generation in the isl backend benefits from our run-time alias checks such that the set of loops that can possibly be parallelized is a lot larger. The code was tested on LNT. We do not regress on builds without -polly-parallel. When using -polly-parallel most tests work flawlessly, but a few issues still remain and will be addressed in follow up commits. SCEV/non-SCEV codegen: - Compile time failure in ldecod and TimberWolfMC due a problem in our run-time alias check generation triggered by pointers that escape through the OpenMP subfunction (OpenMP specific). - Several execution time failures. Due to the larger set of loops that we now parallelize (compared to the classical code generation), we currently run into some timeouts in tests with a lot loops that have a low trip count and are slowed down by parallelizing them. SCEV only: - One existing failure in lencod due to llvm.org/PR21204 (not OpenMP specific) OpenMP code generation is the last feature that was only available in the CLooG backend. With the isl backend being the only one supporting features such as run-time alias checks and delinearization, we will soon switch to use the isl ast generator by the default and subsequently remove our dependency on CLooG. http://reviews.llvm.org/D5517 llvm-svn: 222088
2014-11-16 05:32:53 +08:00
SCEVTraversal<SCEVFindValues> ST(FindValues);
ST.visitAll(Expr);
}
bool hasScalarDepsInsideRegion(const SCEV *Expr, const Region *R,
llvm::Loop *Scope, bool AllowLoops) {
SCEVInRegionDependences InRegionDeps(R, Scope, AllowLoops);
SCEVTraversal<SCEVInRegionDependences> ST(InRegionDeps);
ST.visitAll(Expr);
return InRegionDeps.hasDependences();
}
bool isAffineExpr(const Region *R, llvm::Loop *Scope, const SCEV *Expr,
ScalarEvolution &SE, InvariantLoadsSetTy *ILS) {
if (isa<SCEVCouldNotCompute>(Expr))
2013-02-22 16:21:52 +08:00
return false;
SCEVValidator Validator(R, Scope, SE, ILS);
DEBUG({
dbgs() << "\n";
dbgs() << "Expr: " << *Expr << "\n";
dbgs() << "Region: " << R->getNameStr() << "\n";
dbgs() << " -> ";
});
2013-02-22 16:21:52 +08:00
ValidatorResult Result = Validator.visit(Expr);
DEBUG({
if (Result.isValid())
dbgs() << "VALID\n";
dbgs() << "\n";
});
2013-02-22 16:21:52 +08:00
return Result.isValid();
}
static bool isAffineParamExpr(Value *V, const Region *R, Loop *Scope,
ScalarEvolution &SE, ParameterSetTy &Params) {
auto *E = SE.getSCEV(V);
if (isa<SCEVCouldNotCompute>(E))
return false;
SCEVValidator Validator(R, Scope, SE, nullptr);
ValidatorResult Result = Validator.visit(E);
if (!Result.isConstant())
return false;
auto ResultParams = Result.getParameters();
Params.insert(ResultParams.begin(), ResultParams.end());
return true;
}
bool isAffineParamConstraint(Value *V, const Region *R, llvm::Loop *Scope,
ScalarEvolution &SE, ParameterSetTy &Params,
bool OrExpr) {
if (auto *ICmp = dyn_cast<ICmpInst>(V)) {
return isAffineParamConstraint(ICmp->getOperand(0), R, Scope, SE, Params,
true) &&
isAffineParamConstraint(ICmp->getOperand(1), R, Scope, SE, Params,
true);
} else if (auto *BinOp = dyn_cast<BinaryOperator>(V)) {
auto Opcode = BinOp->getOpcode();
if (Opcode == Instruction::And || Opcode == Instruction::Or)
return isAffineParamConstraint(BinOp->getOperand(0), R, Scope, SE, Params,
false) &&
isAffineParamConstraint(BinOp->getOperand(1), R, Scope, SE, Params,
false);
/* Fall through */
}
if (!OrExpr)
return false;
return isAffineParamExpr(V, R, Scope, SE, Params);
}
ParameterSetTy getParamsInAffineExpr(const Region *R, Loop *Scope,
const SCEV *Expr, ScalarEvolution &SE) {
2013-02-22 16:21:52 +08:00
if (isa<SCEVCouldNotCompute>(Expr))
return ParameterSetTy();
Allow invariant loads in the SCoP description This patch allows invariant loads to be used in the SCoP description, e.g., as loop bounds, conditions or in memory access functions. First we collect "required invariant loads" during SCoP detection that would otherwise make an expression we care about non-affine. To this end a new level of abstraction was introduced before SCEVValidator::isAffineExpr() namely ScopDetection::isAffine() and ScopDetection::onlyValidRequiredInvariantLoads(). Here we can decide if we want a load inside the region to be optimistically assumed invariant or not. If we do, it will be marked as required and in the SCoP generation we bail if it is actually not invariant. If we don't it will be a non-affine expression as before. At the moment we optimistically assume all "hoistable" (namely non-loop-carried) loads to be invariant. This causes us to expand some SCoPs and dismiss them later but it also allows us to detect a lot we would dismiss directly if we would ask e.g., AliasAnalysis::canBasicBlockModify(). We also allow potential aliases between optimistically assumed invariant loads and other pointers as our runtime alias checks are sound in case the loads are actually invariant. Together with the invariant checks this combination allows to handle a lot more than LICM can. The code generation of the invariant loads had to be extended as we can now have dependences between parameters and invariant (hoisted) loads as well as the other way around, e.g., test/Isl/CodeGen/invariant_load_parameters_cyclic_dependence.ll First, it is important to note that we cannot have real cycles but only dependences from a hoisted load to a parameter and from another parameter to that hoisted load (and so on). To handle such cases we materialize llvm::Values for parameters that are referred by a hoisted load on demand and then materialize the remaining parameters. Second, there are new kinds of dependences between hoisted loads caused by the constraints on their execution. If a hoisted load is conditionally executed it might depend on the value of another hoisted load. To deal with such situations we sort them already in the ScopInfo such that they can be generated in the order they are listed in the Scop::InvariantAccesses list (see compareInvariantAccesses). The dependences between hoisted loads caused by indirect accesses are handled the same way as before. llvm-svn: 249607
2015-10-08 04:17:36 +08:00
InvariantLoadsSetTy ILS;
SCEVValidator Validator(R, Scope, SE, &ILS);
2013-02-22 16:21:52 +08:00
ValidatorResult Result = Validator.visit(Expr);
assert(Result.isValid() && "Requested parameters for an invalid SCEV!");
2013-02-22 16:21:52 +08:00
return Result.getParameters();
}
std::pair<const SCEVConstant *, const SCEV *>
extractConstantFactor(const SCEV *S, ScalarEvolution &SE) {
auto *LeftOver = SE.getConstant(S->getType(), 1);
auto *ConstPart = cast<SCEVConstant>(SE.getConstant(S->getType(), 1));
if (auto *Constant = dyn_cast<SCEVConstant>(S))
return std::make_pair(Constant, LeftOver);
auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
if (AddRec) {
auto *StartExpr = AddRec->getStart();
if (StartExpr->isZero()) {
auto StepPair = extractConstantFactor(AddRec->getStepRecurrence(SE), SE);
auto *LeftOverAddRec =
SE.getAddRecExpr(StartExpr, StepPair.second, AddRec->getLoop(),
AddRec->getNoWrapFlags());
return std::make_pair(StepPair.first, LeftOverAddRec);
}
return std::make_pair(ConstPart, S);
}
auto *Mul = dyn_cast<SCEVMulExpr>(S);
if (!Mul)
return std::make_pair(ConstPart, S);
for (auto *Op : Mul->operands())
if (isa<SCEVConstant>(Op))
ConstPart = cast<SCEVConstant>(SE.getMulExpr(ConstPart, Op));
else
LeftOver = SE.getMulExpr(LeftOver, Op);
return std::make_pair(ConstPart, LeftOver);
}
}