llvm-project/llvm/lib/CodeGen/TargetLoweringObjectFileImp...

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1951 lines
71 KiB
C++
Raw Normal View History

//===- llvm/CodeGen/TargetLoweringObjectFileImpl.cpp - Object File Info ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements classes used to handle lowerings specific to common
// object file formats.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/BinaryFormat/COFF.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/BinaryFormat/MachO.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineModuleInfoImpls.h"
#include "llvm/IR/Comdat.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalObject.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Mangler.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCSectionCOFF.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCSectionMachO.h"
#include "llvm/MC/MCSectionWasm.h"
#include "llvm/MC/MCSectionXCOFF.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCSymbolELF.h"
#include "llvm/MC/MCValue.h"
#include "llvm/MC/SectionKind.h"
#include "llvm/ProfileData/InstrProf.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <cassert>
#include <string>
using namespace llvm;
using namespace dwarf;
static void GetObjCImageInfo(Module &M, unsigned &Version, unsigned &Flags,
StringRef &Section) {
SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
M.getModuleFlagsMetadata(ModuleFlags);
for (const auto &MFE: ModuleFlags) {
// Ignore flags with 'Require' behaviour.
if (MFE.Behavior == Module::Require)
continue;
StringRef Key = MFE.Key->getString();
if (Key == "Objective-C Image Info Version") {
Version = mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue();
} else if (Key == "Objective-C Garbage Collection" ||
Key == "Objective-C GC Only" ||
Key == "Objective-C Is Simulated" ||
Key == "Objective-C Class Properties" ||
Key == "Objective-C Image Swift Version") {
Flags |= mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue();
} else if (Key == "Objective-C Image Info Section") {
Section = cast<MDString>(MFE.Val)->getString();
}
}
}
//===----------------------------------------------------------------------===//
// ELF
//===----------------------------------------------------------------------===//
void TargetLoweringObjectFileELF::Initialize(MCContext &Ctx,
const TargetMachine &TgtM) {
TargetLoweringObjectFile::Initialize(Ctx, TgtM);
TM = &TgtM;
CodeModel::Model CM = TgtM.getCodeModel();
switch (TgtM.getTargetTriple().getArch()) {
case Triple::arm:
case Triple::armeb:
case Triple::thumb:
case Triple::thumbeb:
if (Ctx.getAsmInfo()->getExceptionHandlingType() == ExceptionHandling::ARM)
break;
// Fallthrough if not using EHABI
LLVM_FALLTHROUGH;
case Triple::ppc:
case Triple::x86:
PersonalityEncoding = isPositionIndependent()
? dwarf::DW_EH_PE_indirect |
dwarf::DW_EH_PE_pcrel |
dwarf::DW_EH_PE_sdata4
: dwarf::DW_EH_PE_absptr;
LSDAEncoding = isPositionIndependent()
? dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4
: dwarf::DW_EH_PE_absptr;
TTypeEncoding = isPositionIndependent()
? dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
dwarf::DW_EH_PE_sdata4
: dwarf::DW_EH_PE_absptr;
break;
case Triple::x86_64:
if (isPositionIndependent()) {
PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
((CM == CodeModel::Small || CM == CodeModel::Medium)
? dwarf::DW_EH_PE_sdata4 : dwarf::DW_EH_PE_sdata8);
LSDAEncoding = dwarf::DW_EH_PE_pcrel |
(CM == CodeModel::Small
? dwarf::DW_EH_PE_sdata4 : dwarf::DW_EH_PE_sdata8);
TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
((CM == CodeModel::Small || CM == CodeModel::Medium)
? dwarf::DW_EH_PE_sdata8 : dwarf::DW_EH_PE_sdata4);
} else {
PersonalityEncoding =
(CM == CodeModel::Small || CM == CodeModel::Medium)
? dwarf::DW_EH_PE_udata4 : dwarf::DW_EH_PE_absptr;
LSDAEncoding = (CM == CodeModel::Small)
? dwarf::DW_EH_PE_udata4 : dwarf::DW_EH_PE_absptr;
TTypeEncoding = (CM == CodeModel::Small)
? dwarf::DW_EH_PE_udata4 : dwarf::DW_EH_PE_absptr;
}
break;
case Triple::hexagon:
PersonalityEncoding = dwarf::DW_EH_PE_absptr;
LSDAEncoding = dwarf::DW_EH_PE_absptr;
TTypeEncoding = dwarf::DW_EH_PE_absptr;
if (isPositionIndependent()) {
PersonalityEncoding |= dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel;
LSDAEncoding |= dwarf::DW_EH_PE_pcrel;
TTypeEncoding |= dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel;
}
break;
case Triple::aarch64:
case Triple::aarch64_be:
case Triple::aarch64_32:
// The small model guarantees static code/data size < 4GB, but not where it
// will be in memory. Most of these could end up >2GB away so even a signed
// pc-relative 32-bit address is insufficient, theoretically.
if (isPositionIndependent()) {
PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
dwarf::DW_EH_PE_sdata8;
LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata8;
TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
dwarf::DW_EH_PE_sdata8;
} else {
PersonalityEncoding = dwarf::DW_EH_PE_absptr;
LSDAEncoding = dwarf::DW_EH_PE_absptr;
TTypeEncoding = dwarf::DW_EH_PE_absptr;
}
break;
case Triple::lanai:
LSDAEncoding = dwarf::DW_EH_PE_absptr;
PersonalityEncoding = dwarf::DW_EH_PE_absptr;
TTypeEncoding = dwarf::DW_EH_PE_absptr;
break;
case Triple::mips:
case Triple::mipsel:
case Triple::mips64:
case Triple::mips64el:
// MIPS uses indirect pointer to refer personality functions and types, so
// that the eh_frame section can be read-only. DW.ref.personality will be
// generated for relocation.
PersonalityEncoding = dwarf::DW_EH_PE_indirect;
// FIXME: The N64 ABI probably ought to use DW_EH_PE_sdata8 but we can't
// identify N64 from just a triple.
TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
dwarf::DW_EH_PE_sdata4;
// We don't support PC-relative LSDA references in GAS so we use the default
// DW_EH_PE_absptr for those.
// FreeBSD must be explicit about the data size and using pcrel since it's
// assembler/linker won't do the automatic conversion that the Linux tools
// do.
if (TgtM.getTargetTriple().isOSFreeBSD()) {
PersonalityEncoding |= dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
}
break;
case Triple::ppc64:
case Triple::ppc64le:
PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
dwarf::DW_EH_PE_udata8;
LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata8;
TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
dwarf::DW_EH_PE_udata8;
break;
case Triple::sparcel:
case Triple::sparc:
if (isPositionIndependent()) {
LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
dwarf::DW_EH_PE_sdata4;
TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
dwarf::DW_EH_PE_sdata4;
} else {
LSDAEncoding = dwarf::DW_EH_PE_absptr;
PersonalityEncoding = dwarf::DW_EH_PE_absptr;
TTypeEncoding = dwarf::DW_EH_PE_absptr;
}
CallSiteEncoding = dwarf::DW_EH_PE_udata4;
break;
case Triple::riscv32:
case Triple::riscv64:
LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
dwarf::DW_EH_PE_sdata4;
TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
dwarf::DW_EH_PE_sdata4;
CallSiteEncoding = dwarf::DW_EH_PE_udata4;
break;
case Triple::sparcv9:
LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
if (isPositionIndependent()) {
PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
dwarf::DW_EH_PE_sdata4;
TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
dwarf::DW_EH_PE_sdata4;
} else {
PersonalityEncoding = dwarf::DW_EH_PE_absptr;
TTypeEncoding = dwarf::DW_EH_PE_absptr;
}
break;
case Triple::systemz:
// All currently-defined code models guarantee that 4-byte PC-relative
// values will be in range.
if (isPositionIndependent()) {
PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
dwarf::DW_EH_PE_sdata4;
LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
dwarf::DW_EH_PE_sdata4;
} else {
PersonalityEncoding = dwarf::DW_EH_PE_absptr;
LSDAEncoding = dwarf::DW_EH_PE_absptr;
TTypeEncoding = dwarf::DW_EH_PE_absptr;
}
break;
default:
break;
}
}
void TargetLoweringObjectFileELF::emitModuleMetadata(MCStreamer &Streamer,
Module &M) const {
auto &C = getContext();
if (NamedMDNode *LinkerOptions = M.getNamedMetadata("llvm.linker.options")) {
auto *S = C.getELFSection(".linker-options", ELF::SHT_LLVM_LINKER_OPTIONS,
ELF::SHF_EXCLUDE);
Streamer.SwitchSection(S);
for (const auto &Operand : LinkerOptions->operands()) {
if (cast<MDNode>(Operand)->getNumOperands() != 2)
report_fatal_error("invalid llvm.linker.options");
for (const auto &Option : cast<MDNode>(Operand)->operands()) {
Streamer.EmitBytes(cast<MDString>(Option)->getString());
Streamer.EmitIntValue(0, 1);
}
}
}
[ELF] Implement Dependent Libraries Feature This patch implements a limited form of autolinking primarily designed to allow either the --dependent-library compiler option, or "comment lib" pragmas ( https://docs.microsoft.com/en-us/cpp/preprocessor/comment-c-cpp?view=vs-2017) in C/C++ e.g. #pragma comment(lib, "foo"), to cause an ELF linker to automatically add the specified library to the link when processing the input file generated by the compiler. Currently this extension is unique to LLVM and LLD. However, care has been taken to design this feature so that it could be supported by other ELF linkers. The design goals were to provide: - A simple linking model for developers to reason about. - The ability to to override autolinking from the linker command line. - Source code compatibility, where possible, with "comment lib" pragmas in other environments (MSVC in particular). Dependent library support is implemented differently for ELF platforms than on the other platforms. Primarily this difference is that on ELF we pass the dependent library specifiers directly to the linker without manipulating them. This is in contrast to other platforms where they are mapped to a specific linker option by the compiler. This difference is a result of the greater variety of ELF linkers and the fact that ELF linkers tend to handle libraries in a more complicated fashion than on other platforms. This forces us to defer handling the specifiers to the linker. In order to achieve a level of source code compatibility with other platforms we have restricted this feature to work with libraries that meet the following "reasonable" requirements: 1. There are no competing defined symbols in a given set of libraries, or if they exist, the program owner doesn't care which is linked to their program. 2. There may be circular dependencies between libraries. The binary representation is a mergeable string section (SHF_MERGE, SHF_STRINGS), called .deplibs, with custom type SHT_LLVM_DEPENDENT_LIBRARIES (0x6fff4c04). The compiler forms this section by concatenating the arguments of the "comment lib" pragmas and --dependent-library options in the order they are encountered. Partial (-r, -Ur) links are handled by concatenating .deplibs sections with the normal mergeable string section rules. As an example, #pragma comment(lib, "foo") would result in: .section ".deplibs","MS",@llvm_dependent_libraries,1 .asciz "foo" For LTO, equivalent information to the contents of a the .deplibs section can be retrieved by the LLD for bitcode input files. LLD processes the dependent library specifiers in the following way: 1. Dependent libraries which are found from the specifiers in .deplibs sections of relocatable object files are added when the linker decides to include that file (which could itself be in a library) in the link. Dependent libraries behave as if they were appended to the command line after all other options. As a consequence the set of dependent libraries are searched last to resolve symbols. 2. It is an error if a file cannot be found for a given specifier. 3. Any command line options in effect at the end of the command line parsing apply to the dependent libraries, e.g. --whole-archive. 4. The linker tries to add a library or relocatable object file from each of the strings in a .deplibs section by; first, handling the string as if it was specified on the command line; second, by looking for the string in each of the library search paths in turn; third, by looking for a lib<string>.a or lib<string>.so (depending on the current mode of the linker) in each of the library search paths. 5. A new command line option --no-dependent-libraries tells LLD to ignore the dependent libraries. Rationale for the above points: 1. Adding the dependent libraries last makes the process simple to understand from a developers perspective. All linkers are able to implement this scheme. 2. Error-ing for libraries that are not found seems like better behavior than failing the link during symbol resolution. 3. It seems useful for the user to be able to apply command line options which will affect all of the dependent libraries. There is a potential problem of surprise for developers, who might not realize that these options would apply to these "invisible" input files; however, despite the potential for surprise, this is easy for developers to reason about and gives developers the control that they may require. 4. This algorithm takes into account all of the different ways that ELF linkers find input files. The different search methods are tried by the linker in most obvious to least obvious order. 5. I considered adding finer grained control over which dependent libraries were ignored (e.g. MSVC has /nodefaultlib:<library>); however, I concluded that this is not necessary: if finer control is required developers can fall back to using the command line directly. RFC thread: http://lists.llvm.org/pipermail/llvm-dev/2019-March/131004.html. Differential Revision: https://reviews.llvm.org/D60274 llvm-svn: 360984
2019-05-17 11:44:15 +08:00
if (NamedMDNode *DependentLibraries = M.getNamedMetadata("llvm.dependent-libraries")) {
auto *S = C.getELFSection(".deplibs", ELF::SHT_LLVM_DEPENDENT_LIBRARIES,
ELF::SHF_MERGE | ELF::SHF_STRINGS, 1, "");
Streamer.SwitchSection(S);
for (const auto &Operand : DependentLibraries->operands()) {
Streamer.EmitBytes(
cast<MDString>(cast<MDNode>(Operand)->getOperand(0))->getString());
Streamer.EmitIntValue(0, 1);
}
}
unsigned Version = 0;
unsigned Flags = 0;
StringRef Section;
GetObjCImageInfo(M, Version, Flags, Section);
if (!Section.empty()) {
auto *S = C.getELFSection(Section, ELF::SHT_PROGBITS, ELF::SHF_ALLOC);
Streamer.SwitchSection(S);
Streamer.EmitLabel(C.getOrCreateSymbol(StringRef("OBJC_IMAGE_INFO")));
Streamer.EmitIntValue(Version, 4);
Streamer.EmitIntValue(Flags, 4);
Streamer.AddBlankLine();
}
SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
M.getModuleFlagsMetadata(ModuleFlags);
MDNode *CFGProfile = nullptr;
for (const auto &MFE : ModuleFlags) {
StringRef Key = MFE.Key->getString();
if (Key == "CG Profile") {
CFGProfile = cast<MDNode>(MFE.Val);
break;
}
}
if (!CFGProfile)
return;
auto GetSym = [this](const MDOperand &MDO) -> MCSymbol * {
if (!MDO)
return nullptr;
auto V = cast<ValueAsMetadata>(MDO);
const Function *F = cast<Function>(V->getValue());
return TM->getSymbol(F);
};
for (const auto &Edge : CFGProfile->operands()) {
MDNode *E = cast<MDNode>(Edge);
const MCSymbol *From = GetSym(E->getOperand(0));
const MCSymbol *To = GetSym(E->getOperand(1));
// Skip null functions. This can happen if functions are dead stripped after
// the CGProfile pass has been run.
if (!From || !To)
continue;
uint64_t Count = cast<ConstantAsMetadata>(E->getOperand(2))
->getValue()
->getUniqueInteger()
.getZExtValue();
Streamer.emitCGProfileEntry(
MCSymbolRefExpr::create(From, MCSymbolRefExpr::VK_None, C),
MCSymbolRefExpr::create(To, MCSymbolRefExpr::VK_None, C), Count);
}
}
MCSymbol *TargetLoweringObjectFileELF::getCFIPersonalitySymbol(
const GlobalValue *GV, const TargetMachine &TM,
MachineModuleInfo *MMI) const {
unsigned Encoding = getPersonalityEncoding();
if ((Encoding & 0x80) == DW_EH_PE_indirect)
return getContext().getOrCreateSymbol(StringRef("DW.ref.") +
TM.getSymbol(GV)->getName());
if ((Encoding & 0x70) == DW_EH_PE_absptr)
return TM.getSymbol(GV);
report_fatal_error("We do not support this DWARF encoding yet!");
}
void TargetLoweringObjectFileELF::emitPersonalityValue(
MCStreamer &Streamer, const DataLayout &DL, const MCSymbol *Sym) const {
SmallString<64> NameData("DW.ref.");
NameData += Sym->getName();
MCSymbolELF *Label =
cast<MCSymbolELF>(getContext().getOrCreateSymbol(NameData));
2011-04-28 05:29:52 +08:00
Streamer.EmitSymbolAttribute(Label, MCSA_Hidden);
Streamer.EmitSymbolAttribute(Label, MCSA_Weak);
unsigned Flags = ELF::SHF_ALLOC | ELF::SHF_WRITE | ELF::SHF_GROUP;
MCSection *Sec = getContext().getELFNamedSection(".data", Label->getName(),
ELF::SHT_PROGBITS, Flags, 0);
unsigned Size = DL.getPointerSize();
2011-04-28 05:29:52 +08:00
Streamer.SwitchSection(Sec);
Streamer.EmitValueToAlignment(DL.getPointerABIAlignment(0).value());
2011-04-28 05:29:52 +08:00
Streamer.EmitSymbolAttribute(Label, MCSA_ELF_TypeObject);
const MCExpr *E = MCConstantExpr::create(Size, getContext());
Streamer.emitELFSize(Label, E);
2011-04-28 05:29:52 +08:00
Streamer.EmitLabel(Label);
Streamer.EmitSymbolValue(Sym, Size);
}
const MCExpr *TargetLoweringObjectFileELF::getTTypeGlobalReference(
const GlobalValue *GV, unsigned Encoding, const TargetMachine &TM,
MachineModuleInfo *MMI, MCStreamer &Streamer) const {
if (Encoding & DW_EH_PE_indirect) {
MachineModuleInfoELF &ELFMMI = MMI->getObjFileInfo<MachineModuleInfoELF>();
MCSymbol *SSym = getSymbolWithGlobalValueBase(GV, ".DW.stub", TM);
// Add information about the stub reference to ELFMMI so that the stub
// gets emitted by the asmprinter.
MachineModuleInfoImpl::StubValueTy &StubSym = ELFMMI.getGVStubEntry(SSym);
if (!StubSym.getPointer()) {
MCSymbol *Sym = TM.getSymbol(GV);
StubSym = MachineModuleInfoImpl::StubValueTy(Sym, !GV->hasLocalLinkage());
}
return TargetLoweringObjectFile::
getTTypeReference(MCSymbolRefExpr::create(SSym, getContext()),
Encoding & ~DW_EH_PE_indirect, Streamer);
}
return TargetLoweringObjectFile::getTTypeGlobalReference(GV, Encoding, TM,
MMI, Streamer);
}
static SectionKind getELFKindForNamedSection(StringRef Name, SectionKind K) {
2018-05-17 04:34:00 +08:00
// N.B.: The defaults used in here are not the same ones used in MC.
2011-05-24 11:10:31 +08:00
// We follow gcc, MC follows gas. For example, given ".section .eh_frame",
// both gas and MC will produce a section with no flags. Given
2012-07-19 08:04:14 +08:00
// section(".eh_frame") gcc will produce:
//
// .section .eh_frame,"a",@progbits
if (Name == getInstrProfSectionName(IPSK_covmap, Triple::ELF,
/*AddSegmentInfo=*/false))
return SectionKind::getMetadata();
if (Name.empty() || Name[0] != '.') return K;
// Default implementation based on some magic section names.
if (Name == ".bss" ||
Name.startswith(".bss.") ||
Name.startswith(".gnu.linkonce.b.") ||
Name.startswith(".llvm.linkonce.b.") ||
Name == ".sbss" ||
Name.startswith(".sbss.") ||
Name.startswith(".gnu.linkonce.sb.") ||
Name.startswith(".llvm.linkonce.sb."))
return SectionKind::getBSS();
if (Name == ".tdata" ||
Name.startswith(".tdata.") ||
Name.startswith(".gnu.linkonce.td.") ||
Name.startswith(".llvm.linkonce.td."))
return SectionKind::getThreadData();
if (Name == ".tbss" ||
Name.startswith(".tbss.") ||
Name.startswith(".gnu.linkonce.tb.") ||
Name.startswith(".llvm.linkonce.tb."))
return SectionKind::getThreadBSS();
return K;
}
static unsigned getELFSectionType(StringRef Name, SectionKind K) {
// Use SHT_NOTE for section whose name starts with ".note" to allow
// emitting ELF notes from C variable declaration.
// See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=77609
if (Name.startswith(".note"))
return ELF::SHT_NOTE;
if (Name == ".init_array")
return ELF::SHT_INIT_ARRAY;
if (Name == ".fini_array")
return ELF::SHT_FINI_ARRAY;
if (Name == ".preinit_array")
return ELF::SHT_PREINIT_ARRAY;
if (K.isBSS() || K.isThreadBSS())
return ELF::SHT_NOBITS;
return ELF::SHT_PROGBITS;
}
static unsigned getELFSectionFlags(SectionKind K) {
unsigned Flags = 0;
if (!K.isMetadata())
Flags |= ELF::SHF_ALLOC;
if (K.isText())
Flags |= ELF::SHF_EXECINSTR;
if (K.isExecuteOnly())
Flags |= ELF::SHF_ARM_PURECODE;
if (K.isWriteable())
Flags |= ELF::SHF_WRITE;
if (K.isThreadLocal())
Flags |= ELF::SHF_TLS;
if (K.isMergeableCString() || K.isMergeableConst())
Flags |= ELF::SHF_MERGE;
if (K.isMergeableCString())
Flags |= ELF::SHF_STRINGS;
return Flags;
}
static const Comdat *getELFComdat(const GlobalValue *GV) {
const Comdat *C = GV->getComdat();
if (!C)
return nullptr;
if (C->getSelectionKind() != Comdat::Any)
report_fatal_error("ELF COMDATs only support SelectionKind::Any, '" +
C->getName() + "' cannot be lowered.");
return C;
}
static const MCSymbolELF *getAssociatedSymbol(const GlobalObject *GO,
const TargetMachine &TM) {
MDNode *MD = GO->getMetadata(LLVMContext::MD_associated);
if (!MD)
return nullptr;
const MDOperand &Op = MD->getOperand(0);
if (!Op.get())
return nullptr;
auto *VM = dyn_cast<ValueAsMetadata>(Op);
if (!VM)
report_fatal_error("MD_associated operand is not ValueAsMetadata");
auto *OtherGV = dyn_cast<GlobalValue>(VM->getValue());
return OtherGV ? dyn_cast<MCSymbolELF>(TM.getSymbol(OtherGV)) : nullptr;
}
static unsigned getEntrySizeForKind(SectionKind Kind) {
if (Kind.isMergeable1ByteCString())
return 1;
else if (Kind.isMergeable2ByteCString())
return 2;
else if (Kind.isMergeable4ByteCString())
return 4;
else if (Kind.isMergeableConst4())
return 4;
else if (Kind.isMergeableConst8())
return 8;
else if (Kind.isMergeableConst16())
return 16;
else if (Kind.isMergeableConst32())
return 32;
else {
// We shouldn't have mergeable C strings or mergeable constants that we
// didn't handle above.
assert(!Kind.isMergeableCString() && "unknown string width");
assert(!Kind.isMergeableConst() && "unknown data width");
return 0;
}
}
MCSection *TargetLoweringObjectFileELF::getExplicitSectionGlobal(
const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
StringRef SectionName = GO->getSection();
// Check if '#pragma clang section' name is applicable.
// Note that pragma directive overrides -ffunction-section, -fdata-section
// and so section name is exactly as user specified and not uniqued.
const GlobalVariable *GV = dyn_cast<GlobalVariable>(GO);
if (GV && GV->hasImplicitSection()) {
auto Attrs = GV->getAttributes();
if (Attrs.hasAttribute("bss-section") && Kind.isBSS()) {
SectionName = Attrs.getAttribute("bss-section").getValueAsString();
} else if (Attrs.hasAttribute("rodata-section") && Kind.isReadOnly()) {
SectionName = Attrs.getAttribute("rodata-section").getValueAsString();
} else if (Attrs.hasAttribute("relro-section") && Kind.isReadOnlyWithRel()) {
SectionName = Attrs.getAttribute("relro-section").getValueAsString();
} else if (Attrs.hasAttribute("data-section") && Kind.isData()) {
SectionName = Attrs.getAttribute("data-section").getValueAsString();
}
}
const Function *F = dyn_cast<Function>(GO);
if (F && F->hasFnAttribute("implicit-section-name")) {
SectionName = F->getFnAttribute("implicit-section-name").getValueAsString();
}
// Infer section flags from the section name if we can.
Kind = getELFKindForNamedSection(SectionName, Kind);
StringRef Group = "";
unsigned Flags = getELFSectionFlags(Kind);
if (const Comdat *C = getELFComdat(GO)) {
Group = C->getName();
Flags |= ELF::SHF_GROUP;
}
// A section can have at most one associated section. Put each global with
// MD_associated in a unique section.
unsigned UniqueID = MCContext::GenericSectionID;
const MCSymbolELF *AssociatedSymbol = getAssociatedSymbol(GO, TM);
if (AssociatedSymbol) {
UniqueID = NextUniqueID++;
Flags |= ELF::SHF_LINK_ORDER;
}
MCSectionELF *Section = getContext().getELFSection(
SectionName, getELFSectionType(SectionName, Kind), Flags,
getEntrySizeForKind(Kind), Group, UniqueID, AssociatedSymbol);
// Make sure that we did not get some other section with incompatible sh_link.
// This should not be possible due to UniqueID code above.
assert(Section->getAssociatedSymbol() == AssociatedSymbol &&
"Associated symbol mismatch between sections");
return Section;
}
/// Return the section prefix name used by options FunctionsSections and
/// DataSections.
static StringRef getSectionPrefixForGlobal(SectionKind Kind) {
if (Kind.isText())
return ".text";
if (Kind.isReadOnly())
return ".rodata";
if (Kind.isBSS())
return ".bss";
if (Kind.isThreadData())
return ".tdata";
if (Kind.isThreadBSS())
return ".tbss";
if (Kind.isData())
return ".data";
assert(Kind.isReadOnlyWithRel() && "Unknown section kind");
return ".data.rel.ro";
}
static MCSectionELF *selectELFSectionForGlobal(
MCContext &Ctx, const GlobalObject *GO, SectionKind Kind, Mangler &Mang,
const TargetMachine &TM, bool EmitUniqueSection, unsigned Flags,
unsigned *NextUniqueID, const MCSymbolELF *AssociatedSymbol) {
StringRef Group = "";
if (const Comdat *C = getELFComdat(GO)) {
Flags |= ELF::SHF_GROUP;
Group = C->getName();
}
// Get the section entry size based on the kind.
unsigned EntrySize = getEntrySizeForKind(Kind);
SmallString<128> Name;
2015-01-29 01:54:19 +08:00
if (Kind.isMergeableCString()) {
// We also need alignment here.
// FIXME: this is getting the alignment of the character, not the
// alignment of the global!
unsigned Align = GO->getParent()->getDataLayout().getPreferredAlignment(
cast<GlobalVariable>(GO));
std::string SizeSpec = ".rodata.str" + utostr(EntrySize) + ".";
Name = SizeSpec + utostr(Align);
} else if (Kind.isMergeableConst()) {
Name = ".rodata.cst";
Name += utostr(EntrySize);
} else {
Name = getSectionPrefixForGlobal(Kind);
}
if (const auto *F = dyn_cast<Function>(GO)) {
const auto &OptionalPrefix = F->getSectionPrefix();
if (OptionalPrefix)
Name += *OptionalPrefix;
}
unsigned UniqueID = MCContext::GenericSectionID;
if (EmitUniqueSection) {
if (TM.getUniqueSectionNames()) {
Name.push_back('.');
TM.getNameWithPrefix(Name, GO, Mang, true /*MayAlwaysUsePrivate*/);
} else {
UniqueID = *NextUniqueID;
(*NextUniqueID)++;
}
}
// Use 0 as the unique ID for execute-only text.
if (Kind.isExecuteOnly())
UniqueID = 0;
return Ctx.getELFSection(Name, getELFSectionType(Name, Kind), Flags,
EntrySize, Group, UniqueID, AssociatedSymbol);
}
MCSection *TargetLoweringObjectFileELF::SelectSectionForGlobal(
const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
unsigned Flags = getELFSectionFlags(Kind);
// If we have -ffunction-section or -fdata-section then we should emit the
// global value to a uniqued section specifically for it.
bool EmitUniqueSection = false;
if (!(Flags & ELF::SHF_MERGE) && !Kind.isCommon()) {
if (Kind.isText())
EmitUniqueSection = TM.getFunctionSections();
else
EmitUniqueSection = TM.getDataSections();
}
EmitUniqueSection |= GO->hasComdat();
const MCSymbolELF *AssociatedSymbol = getAssociatedSymbol(GO, TM);
if (AssociatedSymbol) {
EmitUniqueSection = true;
Flags |= ELF::SHF_LINK_ORDER;
}
MCSectionELF *Section = selectELFSectionForGlobal(
getContext(), GO, Kind, getMangler(), TM, EmitUniqueSection, Flags,
&NextUniqueID, AssociatedSymbol);
assert(Section->getAssociatedSymbol() == AssociatedSymbol);
return Section;
}
MCSection *TargetLoweringObjectFileELF::getSectionForJumpTable(
const Function &F, const TargetMachine &TM) const {
// If the function can be removed, produce a unique section so that
// the table doesn't prevent the removal.
const Comdat *C = F.getComdat();
bool EmitUniqueSection = TM.getFunctionSections() || C;
if (!EmitUniqueSection)
return ReadOnlySection;
return selectELFSectionForGlobal(getContext(), &F, SectionKind::getReadOnly(),
getMangler(), TM, EmitUniqueSection,
ELF::SHF_ALLOC, &NextUniqueID,
/* AssociatedSymbol */ nullptr);
}
bool TargetLoweringObjectFileELF::shouldPutJumpTableInFunctionSection(
bool UsesLabelDifference, const Function &F) const {
// We can always create relative relocations, so use another section
// that can be marked non-executable.
return false;
}
/// Given a mergeable constant with the specified size and relocation
/// information, return a section that it should be placed in.
MCSection *TargetLoweringObjectFileELF::getSectionForConstant(
const DataLayout &DL, SectionKind Kind, const Constant *C,
unsigned &Align) const {
if (Kind.isMergeableConst4() && MergeableConst4Section)
return MergeableConst4Section;
if (Kind.isMergeableConst8() && MergeableConst8Section)
return MergeableConst8Section;
if (Kind.isMergeableConst16() && MergeableConst16Section)
return MergeableConst16Section;
if (Kind.isMergeableConst32() && MergeableConst32Section)
return MergeableConst32Section;
if (Kind.isReadOnly())
return ReadOnlySection;
assert(Kind.isReadOnlyWithRel() && "Unknown section kind");
return DataRelROSection;
}
static MCSectionELF *getStaticStructorSection(MCContext &Ctx, bool UseInitArray,
bool IsCtor, unsigned Priority,
const MCSymbol *KeySym) {
std::string Name;
unsigned Type;
unsigned Flags = ELF::SHF_ALLOC | ELF::SHF_WRITE;
StringRef COMDAT = KeySym ? KeySym->getName() : "";
if (KeySym)
Flags |= ELF::SHF_GROUP;
if (UseInitArray) {
if (IsCtor) {
Type = ELF::SHT_INIT_ARRAY;
Name = ".init_array";
} else {
Type = ELF::SHT_FINI_ARRAY;
Name = ".fini_array";
}
if (Priority != 65535) {
Name += '.';
Name += utostr(Priority);
}
} else {
// The default scheme is .ctor / .dtor, so we have to invert the priority
// numbering.
if (IsCtor)
Name = ".ctors";
else
Name = ".dtors";
if (Priority != 65535)
raw_string_ostream(Name) << format(".%05u", 65535 - Priority);
Type = ELF::SHT_PROGBITS;
}
return Ctx.getELFSection(Name, Type, Flags, 0, COMDAT);
}
MCSection *TargetLoweringObjectFileELF::getStaticCtorSection(
unsigned Priority, const MCSymbol *KeySym) const {
return getStaticStructorSection(getContext(), UseInitArray, true, Priority,
KeySym);
}
MCSection *TargetLoweringObjectFileELF::getStaticDtorSection(
unsigned Priority, const MCSymbol *KeySym) const {
return getStaticStructorSection(getContext(), UseInitArray, false, Priority,
KeySym);
}
const MCExpr *TargetLoweringObjectFileELF::lowerRelativeReference(
const GlobalValue *LHS, const GlobalValue *RHS,
const TargetMachine &TM) const {
// We may only use a PLT-relative relocation to refer to unnamed_addr
// functions.
IR: Introduce local_unnamed_addr attribute. If a local_unnamed_addr attribute is attached to a global, the address is known to be insignificant within the module. It is distinct from the existing unnamed_addr attribute in that it only describes a local property of the module rather than a global property of the symbol. This attribute is intended to be used by the code generator and LTO to allow the linker to decide whether the global needs to be in the symbol table. It is possible to exclude a global from the symbol table if three things are true: - This attribute is present on every instance of the global (which means that the normal rule that the global must have a unique address can be broken without being observable by the program by performing comparisons against the global's address) - The global has linkonce_odr linkage (which means that each linkage unit must have its own copy of the global if it requires one, and the copy in each linkage unit must be the same) - It is a constant or a function (which means that the program cannot observe that the unique-address rule has been broken by writing to the global) Although this attribute could in principle be computed from the module contents, LTO clients (i.e. linkers) will normally need to be able to compute this property as part of symbol resolution, and it would be inefficient to materialize every module just to compute it. See: http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160509/356401.html http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160516/356738.html for earlier discussion. Part of the fix for PR27553. Differential Revision: http://reviews.llvm.org/D20348 llvm-svn: 272709
2016-06-15 05:01:22 +08:00
if (!LHS->hasGlobalUnnamedAddr() || !LHS->getValueType()->isFunctionTy())
return nullptr;
// Basic sanity checks.
if (LHS->getType()->getPointerAddressSpace() != 0 ||
RHS->getType()->getPointerAddressSpace() != 0 || LHS->isThreadLocal() ||
RHS->isThreadLocal())
return nullptr;
return MCBinaryExpr::createSub(
MCSymbolRefExpr::create(TM.getSymbol(LHS), PLTRelativeVariantKind,
getContext()),
MCSymbolRefExpr::create(TM.getSymbol(RHS), getContext()), getContext());
}
MCSection *TargetLoweringObjectFileELF::getSectionForCommandLines() const {
// Use ".GCC.command.line" since this feature is to support clang's
// -frecord-gcc-switches which in turn attempts to mimic GCC's switch of the
// same name.
return getContext().getELFSection(".GCC.command.line", ELF::SHT_PROGBITS,
ELF::SHF_MERGE | ELF::SHF_STRINGS, 1, "");
}
void
TargetLoweringObjectFileELF::InitializeELF(bool UseInitArray_) {
UseInitArray = UseInitArray_;
MCContext &Ctx = getContext();
if (!UseInitArray) {
StaticCtorSection = Ctx.getELFSection(".ctors", ELF::SHT_PROGBITS,
ELF::SHF_ALLOC | ELF::SHF_WRITE);
StaticDtorSection = Ctx.getELFSection(".dtors", ELF::SHT_PROGBITS,
ELF::SHF_ALLOC | ELF::SHF_WRITE);
return;
}
StaticCtorSection = Ctx.getELFSection(".init_array", ELF::SHT_INIT_ARRAY,
ELF::SHF_WRITE | ELF::SHF_ALLOC);
StaticDtorSection = Ctx.getELFSection(".fini_array", ELF::SHT_FINI_ARRAY,
ELF::SHF_WRITE | ELF::SHF_ALLOC);
}
//===----------------------------------------------------------------------===//
// MachO
//===----------------------------------------------------------------------===//
TargetLoweringObjectFileMachO::TargetLoweringObjectFileMachO()
: TargetLoweringObjectFile() {
SupportIndirectSymViaGOTPCRel = true;
}
void TargetLoweringObjectFileMachO::Initialize(MCContext &Ctx,
const TargetMachine &TM) {
TargetLoweringObjectFile::Initialize(Ctx, TM);
if (TM.getRelocationModel() == Reloc::Static) {
StaticCtorSection = Ctx.getMachOSection("__TEXT", "__constructor", 0,
SectionKind::getData());
StaticDtorSection = Ctx.getMachOSection("__TEXT", "__destructor", 0,
SectionKind::getData());
} else {
StaticCtorSection = Ctx.getMachOSection("__DATA", "__mod_init_func",
MachO::S_MOD_INIT_FUNC_POINTERS,
SectionKind::getData());
StaticDtorSection = Ctx.getMachOSection("__DATA", "__mod_term_func",
MachO::S_MOD_TERM_FUNC_POINTERS,
SectionKind::getData());
}
PersonalityEncoding =
dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
LSDAEncoding = dwarf::DW_EH_PE_pcrel;
TTypeEncoding =
dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
}
void TargetLoweringObjectFileMachO::emitModuleMetadata(MCStreamer &Streamer,
Module &M) const {
// Emit the linker options if present.
if (auto *LinkerOptions = M.getNamedMetadata("llvm.linker.options")) {
for (const auto &Option : LinkerOptions->operands()) {
SmallVector<std::string, 4> StrOptions;
for (const auto &Piece : cast<MDNode>(Option)->operands())
StrOptions.push_back(cast<MDString>(Piece)->getString());
Streamer.EmitLinkerOptions(StrOptions);
}
}
unsigned VersionVal = 0;
unsigned ImageInfoFlags = 0;
StringRef SectionVal;
GetObjCImageInfo(M, VersionVal, ImageInfoFlags, SectionVal);
// The section is mandatory. If we don't have it, then we don't have GC info.
if (SectionVal.empty())
return;
StringRef Segment, Section;
unsigned TAA = 0, StubSize = 0;
bool TAAParsed;
std::string ErrorCode =
MCSectionMachO::ParseSectionSpecifier(SectionVal, Segment, Section,
TAA, TAAParsed, StubSize);
if (!ErrorCode.empty())
// If invalid, report the error with report_fatal_error.
report_fatal_error("Invalid section specifier '" + Section + "': " +
ErrorCode + ".");
// Get the section.
MCSectionMachO *S = getContext().getMachOSection(
Segment, Section, TAA, StubSize, SectionKind::getData());
Streamer.SwitchSection(S);
Streamer.EmitLabel(getContext().
getOrCreateSymbol(StringRef("L_OBJC_IMAGE_INFO")));
Streamer.EmitIntValue(VersionVal, 4);
Streamer.EmitIntValue(ImageInfoFlags, 4);
Streamer.AddBlankLine();
}
static void checkMachOComdat(const GlobalValue *GV) {
const Comdat *C = GV->getComdat();
if (!C)
return;
report_fatal_error("MachO doesn't support COMDATs, '" + C->getName() +
"' cannot be lowered.");
}
MCSection *TargetLoweringObjectFileMachO::getExplicitSectionGlobal(
const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
// Parse the section specifier and create it if valid.
StringRef Segment, Section;
unsigned TAA = 0, StubSize = 0;
bool TAAParsed;
checkMachOComdat(GO);
std::string ErrorCode =
MCSectionMachO::ParseSectionSpecifier(GO->getSection(), Segment, Section,
TAA, TAAParsed, StubSize);
if (!ErrorCode.empty()) {
// If invalid, report the error with report_fatal_error.
report_fatal_error("Global variable '" + GO->getName() +
"' has an invalid section specifier '" +
GO->getSection() + "': " + ErrorCode + ".");
}
// Get the section.
MCSectionMachO *S =
getContext().getMachOSection(Segment, Section, TAA, StubSize, Kind);
// If TAA wasn't set by ParseSectionSpecifier() above,
// use the value returned by getMachOSection() as a default.
if (!TAAParsed)
TAA = S->getTypeAndAttributes();
// Okay, now that we got the section, verify that the TAA & StubSize agree.
// If the user declared multiple globals with different section flags, we need
// to reject it here.
if (S->getTypeAndAttributes() != TAA || S->getStubSize() != StubSize) {
// If invalid, report the error with report_fatal_error.
report_fatal_error("Global variable '" + GO->getName() +
"' section type or attributes does not match previous"
" section specifier");
}
return S;
}
MCSection *TargetLoweringObjectFileMachO::SelectSectionForGlobal(
const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
checkMachOComdat(GO);
// Handle thread local data.
if (Kind.isThreadBSS()) return TLSBSSSection;
if (Kind.isThreadData()) return TLSDataSection;
if (Kind.isText())
return GO->isWeakForLinker() ? TextCoalSection : TextSection;
// If this is weak/linkonce, put this in a coalescable section, either in text
// or data depending on if it is writable.
if (GO->isWeakForLinker()) {
if (Kind.isReadOnly())
return ConstTextCoalSection;
if (Kind.isReadOnlyWithRel())
return ConstDataCoalSection;
return DataCoalSection;
}
// FIXME: Alignment check should be handled by section classifier.
2010-03-07 12:28:09 +08:00
if (Kind.isMergeable1ByteCString() &&
GO->getParent()->getDataLayout().getPreferredAlignment(
cast<GlobalVariable>(GO)) < 32)
2010-03-07 12:28:09 +08:00
return CStringSection;
2010-10-28 02:52:20 +08:00
2010-03-07 12:28:09 +08:00
// Do not put 16-bit arrays in the UString section if they have an
// externally visible label, this runs into issues with certain linker
// versions.
if (Kind.isMergeable2ByteCString() && !GO->hasExternalLinkage() &&
GO->getParent()->getDataLayout().getPreferredAlignment(
cast<GlobalVariable>(GO)) < 32)
2010-03-07 12:28:09 +08:00
return UStringSection;
// With MachO only variables whose corresponding symbol starts with 'l' or
// 'L' can be merged, so we only try merging GVs with private linkage.
if (GO->hasPrivateLinkage() && Kind.isMergeableConst()) {
if (Kind.isMergeableConst4())
return FourByteConstantSection;
if (Kind.isMergeableConst8())
return EightByteConstantSection;
if (Kind.isMergeableConst16())
return SixteenByteConstantSection;
}
// Otherwise, if it is readonly, but not something we can specially optimize,
// just drop it in .const.
if (Kind.isReadOnly())
return ReadOnlySection;
// If this is marked const, put it into a const section. But if the dynamic
// linker needs to write to it, put it in the data segment.
if (Kind.isReadOnlyWithRel())
return ConstDataSection;
// Put zero initialized globals with strong external linkage in the
// DATA, __common section with the .zerofill directive.
if (Kind.isBSSExtern())
return DataCommonSection;
// Put zero initialized globals with local linkage in __DATA,__bss directive
// with the .zerofill directive (aka .lcomm).
if (Kind.isBSSLocal())
return DataBSSSection;
2010-10-28 02:52:20 +08:00
// Otherwise, just drop the variable in the normal data section.
return DataSection;
}
MCSection *TargetLoweringObjectFileMachO::getSectionForConstant(
const DataLayout &DL, SectionKind Kind, const Constant *C,
unsigned &Align) const {
// If this constant requires a relocation, we have to put it in the data
// segment, not in the text segment.
if (Kind.isData() || Kind.isReadOnlyWithRel())
return ConstDataSection;
if (Kind.isMergeableConst4())
return FourByteConstantSection;
if (Kind.isMergeableConst8())
return EightByteConstantSection;
if (Kind.isMergeableConst16())
return SixteenByteConstantSection;
return ReadOnlySection; // .const
}
const MCExpr *TargetLoweringObjectFileMachO::getTTypeGlobalReference(
const GlobalValue *GV, unsigned Encoding, const TargetMachine &TM,
MachineModuleInfo *MMI, MCStreamer &Streamer) const {
// The mach-o version of this method defaults to returning a stub reference.
if (Encoding & DW_EH_PE_indirect) {
MachineModuleInfoMachO &MachOMMI =
MMI->getObjFileInfo<MachineModuleInfoMachO>();
MCSymbol *SSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr", TM);
// Add information about the stub reference to MachOMMI so that the stub
// gets emitted by the asmprinter.
MachineModuleInfoImpl::StubValueTy &StubSym = MachOMMI.getGVStubEntry(SSym);
if (!StubSym.getPointer()) {
MCSymbol *Sym = TM.getSymbol(GV);
StubSym = MachineModuleInfoImpl::StubValueTy(Sym, !GV->hasLocalLinkage());
}
return TargetLoweringObjectFile::
getTTypeReference(MCSymbolRefExpr::create(SSym, getContext()),
Encoding & ~DW_EH_PE_indirect, Streamer);
}
return TargetLoweringObjectFile::getTTypeGlobalReference(GV, Encoding, TM,
MMI, Streamer);
}
MCSymbol *TargetLoweringObjectFileMachO::getCFIPersonalitySymbol(
const GlobalValue *GV, const TargetMachine &TM,
MachineModuleInfo *MMI) const {
// The mach-o version of this method defaults to returning a stub reference.
MachineModuleInfoMachO &MachOMMI =
MMI->getObjFileInfo<MachineModuleInfoMachO>();
MCSymbol *SSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr", TM);
// Add information about the stub reference to MachOMMI so that the stub
// gets emitted by the asmprinter.
MachineModuleInfoImpl::StubValueTy &StubSym = MachOMMI.getGVStubEntry(SSym);
if (!StubSym.getPointer()) {
MCSymbol *Sym = TM.getSymbol(GV);
StubSym = MachineModuleInfoImpl::StubValueTy(Sym, !GV->hasLocalLinkage());
}
return SSym;
}
const MCExpr *TargetLoweringObjectFileMachO::getIndirectSymViaGOTPCRel(
const GlobalValue *GV, const MCSymbol *Sym, const MCValue &MV,
int64_t Offset, MachineModuleInfo *MMI, MCStreamer &Streamer) const {
// Although MachO 32-bit targets do not explicitly have a GOTPCREL relocation
// as 64-bit do, we replace the GOT equivalent by accessing the final symbol
// through a non_lazy_ptr stub instead. One advantage is that it allows the
// computation of deltas to final external symbols. Example:
//
// _extgotequiv:
// .long _extfoo
//
// _delta:
// .long _extgotequiv-_delta
//
// is transformed to:
//
// _delta:
// .long L_extfoo$non_lazy_ptr-(_delta+0)
//
// .section __IMPORT,__pointers,non_lazy_symbol_pointers
// L_extfoo$non_lazy_ptr:
// .indirect_symbol _extfoo
// .long 0
//
// The indirect symbol table (and sections of non_lazy_symbol_pointers type)
// may point to both local (same translation unit) and global (other
// translation units) symbols. Example:
//
// .section __DATA,__pointers,non_lazy_symbol_pointers
// L1:
// .indirect_symbol _myGlobal
// .long 0
// L2:
// .indirect_symbol _myLocal
// .long _myLocal
//
// If the symbol is local, instead of the symbol's index, the assembler
// places the constant INDIRECT_SYMBOL_LOCAL into the indirect symbol table.
// Then the linker will notice the constant in the table and will look at the
// content of the symbol.
MachineModuleInfoMachO &MachOMMI =
MMI->getObjFileInfo<MachineModuleInfoMachO>();
MCContext &Ctx = getContext();
// The offset must consider the original displacement from the base symbol
// since 32-bit targets don't have a GOTPCREL to fold the PC displacement.
Offset = -MV.getConstant();
const MCSymbol *BaseSym = &MV.getSymB()->getSymbol();
// Access the final symbol via sym$non_lazy_ptr and generate the appropriated
// non_lazy_ptr stubs.
SmallString<128> Name;
StringRef Suffix = "$non_lazy_ptr";
Name += MMI->getModule()->getDataLayout().getPrivateGlobalPrefix();
Name += Sym->getName();
Name += Suffix;
MCSymbol *Stub = Ctx.getOrCreateSymbol(Name);
MachineModuleInfoImpl::StubValueTy &StubSym = MachOMMI.getGVStubEntry(Stub);
if (!StubSym.getPointer())
StubSym = MachineModuleInfoImpl::StubValueTy(const_cast<MCSymbol *>(Sym),
!GV->hasLocalLinkage());
const MCExpr *BSymExpr =
MCSymbolRefExpr::create(BaseSym, MCSymbolRefExpr::VK_None, Ctx);
const MCExpr *LHS =
MCSymbolRefExpr::create(Stub, MCSymbolRefExpr::VK_None, Ctx);
if (!Offset)
return MCBinaryExpr::createSub(LHS, BSymExpr, Ctx);
const MCExpr *RHS =
MCBinaryExpr::createAdd(BSymExpr, MCConstantExpr::create(Offset, Ctx), Ctx);
return MCBinaryExpr::createSub(LHS, RHS, Ctx);
}
static bool canUsePrivateLabel(const MCAsmInfo &AsmInfo,
const MCSection &Section) {
if (!AsmInfo.isSectionAtomizableBySymbols(Section))
return true;
// If it is not dead stripped, it is safe to use private labels.
const MCSectionMachO &SMO = cast<MCSectionMachO>(Section);
if (SMO.hasAttribute(MachO::S_ATTR_NO_DEAD_STRIP))
return true;
return false;
}
void TargetLoweringObjectFileMachO::getNameWithPrefix(
SmallVectorImpl<char> &OutName, const GlobalValue *GV,
const TargetMachine &TM) const {
bool CannotUsePrivateLabel = true;
if (auto *GO = GV->getBaseObject()) {
SectionKind GOKind = TargetLoweringObjectFile::getKindForGlobal(GO, TM);
const MCSection *TheSection = SectionForGlobal(GO, GOKind, TM);
CannotUsePrivateLabel =
!canUsePrivateLabel(*TM.getMCAsmInfo(), *TheSection);
}
getMangler().getNameWithPrefix(OutName, GV, CannotUsePrivateLabel);
}
//===----------------------------------------------------------------------===//
// COFF
//===----------------------------------------------------------------------===//
static unsigned
getCOFFSectionFlags(SectionKind K, const TargetMachine &TM) {
unsigned Flags = 0;
bool isThumb = TM.getTargetTriple().getArch() == Triple::thumb;
if (K.isMetadata())
Flags |=
COFF::IMAGE_SCN_MEM_DISCARDABLE;
else if (K.isText())
Flags |=
COFF::IMAGE_SCN_MEM_EXECUTE |
COFF::IMAGE_SCN_MEM_READ |
COFF::IMAGE_SCN_CNT_CODE |
(isThumb ? COFF::IMAGE_SCN_MEM_16BIT : (COFF::SectionCharacteristics)0);
else if (K.isBSS())
Flags |=
COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA |
COFF::IMAGE_SCN_MEM_READ |
COFF::IMAGE_SCN_MEM_WRITE;
else if (K.isThreadLocal())
Flags |=
COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
COFF::IMAGE_SCN_MEM_READ |
COFF::IMAGE_SCN_MEM_WRITE;
else if (K.isReadOnly() || K.isReadOnlyWithRel())
Flags |=
COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
COFF::IMAGE_SCN_MEM_READ;
else if (K.isWriteable())
Flags |=
COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
COFF::IMAGE_SCN_MEM_READ |
COFF::IMAGE_SCN_MEM_WRITE;
return Flags;
}
static const GlobalValue *getComdatGVForCOFF(const GlobalValue *GV) {
const Comdat *C = GV->getComdat();
assert(C && "expected GV to have a Comdat!");
StringRef ComdatGVName = C->getName();
const GlobalValue *ComdatGV = GV->getParent()->getNamedValue(ComdatGVName);
if (!ComdatGV)
report_fatal_error("Associative COMDAT symbol '" + ComdatGVName +
"' does not exist.");
if (ComdatGV->getComdat() != C)
report_fatal_error("Associative COMDAT symbol '" + ComdatGVName +
"' is not a key for its COMDAT.");
return ComdatGV;
}
static int getSelectionForCOFF(const GlobalValue *GV) {
if (const Comdat *C = GV->getComdat()) {
const GlobalValue *ComdatKey = getComdatGVForCOFF(GV);
if (const auto *GA = dyn_cast<GlobalAlias>(ComdatKey))
ComdatKey = GA->getBaseObject();
if (ComdatKey == GV) {
switch (C->getSelectionKind()) {
case Comdat::Any:
return COFF::IMAGE_COMDAT_SELECT_ANY;
case Comdat::ExactMatch:
return COFF::IMAGE_COMDAT_SELECT_EXACT_MATCH;
case Comdat::Largest:
return COFF::IMAGE_COMDAT_SELECT_LARGEST;
case Comdat::NoDuplicates:
return COFF::IMAGE_COMDAT_SELECT_NODUPLICATES;
case Comdat::SameSize:
return COFF::IMAGE_COMDAT_SELECT_SAME_SIZE;
}
} else {
return COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE;
}
}
return 0;
}
MCSection *TargetLoweringObjectFileCOFF::getExplicitSectionGlobal(
const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
int Selection = 0;
unsigned Characteristics = getCOFFSectionFlags(Kind, TM);
StringRef Name = GO->getSection();
StringRef COMDATSymName = "";
if (GO->hasComdat()) {
Selection = getSelectionForCOFF(GO);
const GlobalValue *ComdatGV;
if (Selection == COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE)
ComdatGV = getComdatGVForCOFF(GO);
else
ComdatGV = GO;
if (!ComdatGV->hasPrivateLinkage()) {
MCSymbol *Sym = TM.getSymbol(ComdatGV);
COMDATSymName = Sym->getName();
Characteristics |= COFF::IMAGE_SCN_LNK_COMDAT;
} else {
Selection = 0;
}
}
return getContext().getCOFFSection(Name, Characteristics, Kind, COMDATSymName,
Selection);
}
static StringRef getCOFFSectionNameForUniqueGlobal(SectionKind Kind) {
if (Kind.isText())
return ".text";
if (Kind.isBSS())
return ".bss";
if (Kind.isThreadLocal())
return ".tls$";
if (Kind.isReadOnly() || Kind.isReadOnlyWithRel())
return ".rdata";
return ".data";
}
MCSection *TargetLoweringObjectFileCOFF::SelectSectionForGlobal(
const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
// If we have -ffunction-sections then we should emit the global value to a
// uniqued section specifically for it.
bool EmitUniquedSection;
if (Kind.isText())
EmitUniquedSection = TM.getFunctionSections();
else
EmitUniquedSection = TM.getDataSections();
if ((EmitUniquedSection && !Kind.isCommon()) || GO->hasComdat()) {
SmallString<256> Name = getCOFFSectionNameForUniqueGlobal(Kind);
unsigned Characteristics = getCOFFSectionFlags(Kind, TM);
Characteristics |= COFF::IMAGE_SCN_LNK_COMDAT;
int Selection = getSelectionForCOFF(GO);
if (!Selection)
Selection = COFF::IMAGE_COMDAT_SELECT_NODUPLICATES;
const GlobalValue *ComdatGV;
if (GO->hasComdat())
ComdatGV = getComdatGVForCOFF(GO);
else
ComdatGV = GO;
unsigned UniqueID = MCContext::GenericSectionID;
if (EmitUniquedSection)
UniqueID = NextUniqueID++;
if (!ComdatGV->hasPrivateLinkage()) {
MCSymbol *Sym = TM.getSymbol(ComdatGV);
StringRef COMDATSymName = Sym->getName();
// Append "$symbol" to the section name *before* IR-level mangling is
// applied when targetting mingw. This is what GCC does, and the ld.bfd
// COFF linker will not properly handle comdats otherwise.
if (getTargetTriple().isWindowsGNUEnvironment())
raw_svector_ostream(Name) << '$' << ComdatGV->getName();
return getContext().getCOFFSection(Name, Characteristics, Kind,
COMDATSymName, Selection, UniqueID);
} else {
SmallString<256> TmpData;
getMangler().getNameWithPrefix(TmpData, GO, /*CannotUsePrivateLabel=*/true);
return getContext().getCOFFSection(Name, Characteristics, Kind, TmpData,
Selection, UniqueID);
}
}
if (Kind.isText())
return TextSection;
if (Kind.isThreadLocal())
return TLSDataSection;
if (Kind.isReadOnly() || Kind.isReadOnlyWithRel())
return ReadOnlySection;
// Note: we claim that common symbols are put in BSSSection, but they are
// really emitted with the magic .comm directive, which creates a symbol table
// entry but not a section.
if (Kind.isBSS() || Kind.isCommon())
return BSSSection;
return DataSection;
}
void TargetLoweringObjectFileCOFF::getNameWithPrefix(
SmallVectorImpl<char> &OutName, const GlobalValue *GV,
const TargetMachine &TM) const {
bool CannotUsePrivateLabel = false;
if (GV->hasPrivateLinkage() &&
((isa<Function>(GV) && TM.getFunctionSections()) ||
(isa<GlobalVariable>(GV) && TM.getDataSections())))
CannotUsePrivateLabel = true;
getMangler().getNameWithPrefix(OutName, GV, CannotUsePrivateLabel);
}
MCSection *TargetLoweringObjectFileCOFF::getSectionForJumpTable(
const Function &F, const TargetMachine &TM) const {
// If the function can be removed, produce a unique section so that
// the table doesn't prevent the removal.
const Comdat *C = F.getComdat();
bool EmitUniqueSection = TM.getFunctionSections() || C;
if (!EmitUniqueSection)
return ReadOnlySection;
// FIXME: we should produce a symbol for F instead.
if (F.hasPrivateLinkage())
return ReadOnlySection;
MCSymbol *Sym = TM.getSymbol(&F);
StringRef COMDATSymName = Sym->getName();
SectionKind Kind = SectionKind::getReadOnly();
StringRef SecName = getCOFFSectionNameForUniqueGlobal(Kind);
unsigned Characteristics = getCOFFSectionFlags(Kind, TM);
Characteristics |= COFF::IMAGE_SCN_LNK_COMDAT;
unsigned UniqueID = NextUniqueID++;
return getContext().getCOFFSection(
SecName, Characteristics, Kind, COMDATSymName,
COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE, UniqueID);
}
void TargetLoweringObjectFileCOFF::emitModuleMetadata(MCStreamer &Streamer,
Module &M) const {
if (NamedMDNode *LinkerOptions = M.getNamedMetadata("llvm.linker.options")) {
// Emit the linker options to the linker .drectve section. According to the
// spec, this section is a space-separated string containing flags for
// linker.
MCSection *Sec = getDrectveSection();
Streamer.SwitchSection(Sec);
for (const auto &Option : LinkerOptions->operands()) {
for (const auto &Piece : cast<MDNode>(Option)->operands()) {
// Lead with a space for consistency with our dllexport implementation.
std::string Directive(" ");
Directive.append(cast<MDString>(Piece)->getString());
Streamer.EmitBytes(Directive);
}
}
}
unsigned Version = 0;
unsigned Flags = 0;
StringRef Section;
GetObjCImageInfo(M, Version, Flags, Section);
if (Section.empty())
return;
auto &C = getContext();
auto *S = C.getCOFFSection(
Section, COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ,
SectionKind::getReadOnly());
Streamer.SwitchSection(S);
Streamer.EmitLabel(C.getOrCreateSymbol(StringRef("OBJC_IMAGE_INFO")));
Streamer.EmitIntValue(Version, 4);
Streamer.EmitIntValue(Flags, 4);
Streamer.AddBlankLine();
}
void TargetLoweringObjectFileCOFF::Initialize(MCContext &Ctx,
const TargetMachine &TM) {
TargetLoweringObjectFile::Initialize(Ctx, TM);
const Triple &T = TM.getTargetTriple();
if (T.isWindowsMSVCEnvironment() || T.isWindowsItaniumEnvironment()) {
StaticCtorSection =
Ctx.getCOFFSection(".CRT$XCU", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
COFF::IMAGE_SCN_MEM_READ,
SectionKind::getReadOnly());
StaticDtorSection =
Ctx.getCOFFSection(".CRT$XTX", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
COFF::IMAGE_SCN_MEM_READ,
SectionKind::getReadOnly());
} else {
StaticCtorSection = Ctx.getCOFFSection(
".ctors", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
COFF::IMAGE_SCN_MEM_READ | COFF::IMAGE_SCN_MEM_WRITE,
SectionKind::getData());
StaticDtorSection = Ctx.getCOFFSection(
".dtors", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
COFF::IMAGE_SCN_MEM_READ | COFF::IMAGE_SCN_MEM_WRITE,
SectionKind::getData());
}
}
static MCSectionCOFF *getCOFFStaticStructorSection(MCContext &Ctx,
const Triple &T, bool IsCtor,
unsigned Priority,
const MCSymbol *KeySym,
MCSectionCOFF *Default) {
if (T.isWindowsMSVCEnvironment() || T.isWindowsItaniumEnvironment()) {
// If the priority is the default, use .CRT$XCU, possibly associative.
if (Priority == 65535)
return Ctx.getAssociativeCOFFSection(Default, KeySym, 0);
// Otherwise, we need to compute a new section name. Low priorities should
// run earlier. The linker will sort sections ASCII-betically, and we need a
// string that sorts between .CRT$XCA and .CRT$XCU. In the general case, we
// make a name like ".CRT$XCT12345", since that runs before .CRT$XCU. Really
// low priorities need to sort before 'L', since the CRT uses that
// internally, so we use ".CRT$XCA00001" for them.
SmallString<24> Name;
raw_svector_ostream OS(Name);
OS << ".CRT$X" << (IsCtor ? "C" : "T") <<
(Priority < 200 ? 'A' : 'T') << format("%05u", Priority);
MCSectionCOFF *Sec = Ctx.getCOFFSection(
Name, COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ,
SectionKind::getReadOnly());
return Ctx.getAssociativeCOFFSection(Sec, KeySym, 0);
}
std::string Name = IsCtor ? ".ctors" : ".dtors";
if (Priority != 65535)
raw_string_ostream(Name) << format(".%05u", 65535 - Priority);
return Ctx.getAssociativeCOFFSection(
Ctx.getCOFFSection(Name, COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
COFF::IMAGE_SCN_MEM_READ |
COFF::IMAGE_SCN_MEM_WRITE,
SectionKind::getData()),
KeySym, 0);
}
MCSection *TargetLoweringObjectFileCOFF::getStaticCtorSection(
unsigned Priority, const MCSymbol *KeySym) const {
return getCOFFStaticStructorSection(getContext(), getTargetTriple(), true,
Priority, KeySym,
cast<MCSectionCOFF>(StaticCtorSection));
}
MCSection *TargetLoweringObjectFileCOFF::getStaticDtorSection(
unsigned Priority, const MCSymbol *KeySym) const {
return getCOFFStaticStructorSection(getContext(), getTargetTriple(), false,
Priority, KeySym,
cast<MCSectionCOFF>(StaticDtorSection));
}
void TargetLoweringObjectFileCOFF::emitLinkerFlagsForGlobal(
raw_ostream &OS, const GlobalValue *GV) const {
emitLinkerFlagsForGlobalCOFF(OS, GV, getTargetTriple(), getMangler());
}
void TargetLoweringObjectFileCOFF::emitLinkerFlagsForUsed(
raw_ostream &OS, const GlobalValue *GV) const {
emitLinkerFlagsForUsedCOFF(OS, GV, getTargetTriple(), getMangler());
}
const MCExpr *TargetLoweringObjectFileCOFF::lowerRelativeReference(
const GlobalValue *LHS, const GlobalValue *RHS,
const TargetMachine &TM) const {
const Triple &T = TM.getTargetTriple();
if (T.isOSCygMing())
return nullptr;
// Our symbols should exist in address space zero, cowardly no-op if
// otherwise.
if (LHS->getType()->getPointerAddressSpace() != 0 ||
RHS->getType()->getPointerAddressSpace() != 0)
return nullptr;
// Both ptrtoint instructions must wrap global objects:
// - Only global variables are eligible for image relative relocations.
// - The subtrahend refers to the special symbol __ImageBase, a GlobalVariable.
// We expect __ImageBase to be a global variable without a section, externally
// defined.
//
// It should look something like this: @__ImageBase = external constant i8
if (!isa<GlobalObject>(LHS) || !isa<GlobalVariable>(RHS) ||
LHS->isThreadLocal() || RHS->isThreadLocal() ||
RHS->getName() != "__ImageBase" || !RHS->hasExternalLinkage() ||
cast<GlobalVariable>(RHS)->hasInitializer() || RHS->hasSection())
return nullptr;
return MCSymbolRefExpr::create(TM.getSymbol(LHS),
MCSymbolRefExpr::VK_COFF_IMGREL32,
getContext());
}
static std::string APIntToHexString(const APInt &AI) {
unsigned Width = (AI.getBitWidth() / 8) * 2;
std::string HexString = AI.toString(16, /*Signed=*/false);
transform(HexString.begin(), HexString.end(), HexString.begin(), tolower);
unsigned Size = HexString.size();
assert(Width >= Size && "hex string is too large!");
HexString.insert(HexString.begin(), Width - Size, '0');
return HexString;
}
static std::string scalarConstantToHexString(const Constant *C) {
Type *Ty = C->getType();
if (isa<UndefValue>(C)) {
return APIntToHexString(APInt::getNullValue(Ty->getPrimitiveSizeInBits()));
} else if (const auto *CFP = dyn_cast<ConstantFP>(C)) {
return APIntToHexString(CFP->getValueAPF().bitcastToAPInt());
} else if (const auto *CI = dyn_cast<ConstantInt>(C)) {
return APIntToHexString(CI->getValue());
} else {
unsigned NumElements;
if (isa<VectorType>(Ty))
NumElements = Ty->getVectorNumElements();
else
NumElements = Ty->getArrayNumElements();
std::string HexString;
for (int I = NumElements - 1, E = -1; I != E; --I)
HexString += scalarConstantToHexString(C->getAggregateElement(I));
return HexString;
}
}
MCSection *TargetLoweringObjectFileCOFF::getSectionForConstant(
const DataLayout &DL, SectionKind Kind, const Constant *C,
unsigned &Align) const {
if (Kind.isMergeableConst() && C &&
getContext().getAsmInfo()->hasCOFFComdatConstants()) {
// This creates comdat sections with the given symbol name, but unless
// AsmPrinter::GetCPISymbol actually makes the symbol global, the symbol
// will be created with a null storage class, which makes GNU binutils
// error out.
const unsigned Characteristics = COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
COFF::IMAGE_SCN_MEM_READ |
COFF::IMAGE_SCN_LNK_COMDAT;
std::string COMDATSymName;
if (Kind.isMergeableConst4()) {
if (Align <= 4) {
COMDATSymName = "__real@" + scalarConstantToHexString(C);
Align = 4;
}
} else if (Kind.isMergeableConst8()) {
if (Align <= 8) {
COMDATSymName = "__real@" + scalarConstantToHexString(C);
Align = 8;
}
} else if (Kind.isMergeableConst16()) {
// FIXME: These may not be appropriate for non-x86 architectures.
if (Align <= 16) {
COMDATSymName = "__xmm@" + scalarConstantToHexString(C);
Align = 16;
}
} else if (Kind.isMergeableConst32()) {
if (Align <= 32) {
COMDATSymName = "__ymm@" + scalarConstantToHexString(C);
Align = 32;
}
}
if (!COMDATSymName.empty())
return getContext().getCOFFSection(".rdata", Characteristics, Kind,
COMDATSymName,
COFF::IMAGE_COMDAT_SELECT_ANY);
}
return TargetLoweringObjectFile::getSectionForConstant(DL, Kind, C, Align);
}
//===----------------------------------------------------------------------===//
// Wasm
//===----------------------------------------------------------------------===//
static const Comdat *getWasmComdat(const GlobalValue *GV) {
const Comdat *C = GV->getComdat();
if (!C)
return nullptr;
if (C->getSelectionKind() != Comdat::Any)
report_fatal_error("WebAssembly COMDATs only support "
"SelectionKind::Any, '" + C->getName() + "' cannot be "
"lowered.");
return C;
}
static SectionKind getWasmKindForNamedSection(StringRef Name, SectionKind K) {
// If we're told we have function data, then use that.
if (K.isText())
return SectionKind::getText();
// Otherwise, ignore whatever section type the generic impl detected and use
// a plain data section.
return SectionKind::getData();
}
MCSection *TargetLoweringObjectFileWasm::getExplicitSectionGlobal(
const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
// We don't support explict section names for functions in the wasm object
// format. Each function has to be in its own unique section.
if (isa<Function>(GO)) {
return SelectSectionForGlobal(GO, Kind, TM);
}
StringRef Name = GO->getSection();
Kind = getWasmKindForNamedSection(Name, Kind);
StringRef Group = "";
if (const Comdat *C = getWasmComdat(GO)) {
Group = C->getName();
}
MCSectionWasm* Section =
getContext().getWasmSection(Name, Kind, Group,
MCContext::GenericSectionID);
return Section;
}
static MCSectionWasm *selectWasmSectionForGlobal(
MCContext &Ctx, const GlobalObject *GO, SectionKind Kind, Mangler &Mang,
const TargetMachine &TM, bool EmitUniqueSection, unsigned *NextUniqueID) {
StringRef Group = "";
if (const Comdat *C = getWasmComdat(GO)) {
Group = C->getName();
}
bool UniqueSectionNames = TM.getUniqueSectionNames();
SmallString<128> Name = getSectionPrefixForGlobal(Kind);
if (const auto *F = dyn_cast<Function>(GO)) {
const auto &OptionalPrefix = F->getSectionPrefix();
if (OptionalPrefix)
Name += *OptionalPrefix;
}
if (EmitUniqueSection && UniqueSectionNames) {
Name.push_back('.');
TM.getNameWithPrefix(Name, GO, Mang, true);
}
unsigned UniqueID = MCContext::GenericSectionID;
if (EmitUniqueSection && !UniqueSectionNames) {
UniqueID = *NextUniqueID;
(*NextUniqueID)++;
}
return Ctx.getWasmSection(Name, Kind, Group, UniqueID);
}
MCSection *TargetLoweringObjectFileWasm::SelectSectionForGlobal(
const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
if (Kind.isCommon())
report_fatal_error("mergable sections not supported yet on wasm");
// If we have -ffunction-section or -fdata-section then we should emit the
// global value to a uniqued section specifically for it.
bool EmitUniqueSection = false;
if (Kind.isText())
EmitUniqueSection = TM.getFunctionSections();
else
EmitUniqueSection = TM.getDataSections();
EmitUniqueSection |= GO->hasComdat();
return selectWasmSectionForGlobal(getContext(), GO, Kind, getMangler(), TM,
EmitUniqueSection, &NextUniqueID);
}
bool TargetLoweringObjectFileWasm::shouldPutJumpTableInFunctionSection(
bool UsesLabelDifference, const Function &F) const {
// We can always create relative relocations, so use another section
// that can be marked non-executable.
return false;
}
const MCExpr *TargetLoweringObjectFileWasm::lowerRelativeReference(
const GlobalValue *LHS, const GlobalValue *RHS,
const TargetMachine &TM) const {
// We may only use a PLT-relative relocation to refer to unnamed_addr
// functions.
if (!LHS->hasGlobalUnnamedAddr() || !LHS->getValueType()->isFunctionTy())
return nullptr;
// Basic sanity checks.
if (LHS->getType()->getPointerAddressSpace() != 0 ||
RHS->getType()->getPointerAddressSpace() != 0 || LHS->isThreadLocal() ||
RHS->isThreadLocal())
return nullptr;
return MCBinaryExpr::createSub(
MCSymbolRefExpr::create(TM.getSymbol(LHS), MCSymbolRefExpr::VK_None,
getContext()),
MCSymbolRefExpr::create(TM.getSymbol(RHS), getContext()), getContext());
}
void TargetLoweringObjectFileWasm::InitializeWasm() {
StaticCtorSection =
getContext().getWasmSection(".init_array", SectionKind::getData());
// We don't use PersonalityEncoding and LSDAEncoding because we don't emit
// .cfi directives. We use TTypeEncoding to encode typeinfo global variables.
TTypeEncoding = dwarf::DW_EH_PE_absptr;
}
MCSection *TargetLoweringObjectFileWasm::getStaticCtorSection(
unsigned Priority, const MCSymbol *KeySym) const {
return Priority == UINT16_MAX ?
StaticCtorSection :
getContext().getWasmSection(".init_array." + utostr(Priority),
SectionKind::getData());
}
MCSection *TargetLoweringObjectFileWasm::getStaticDtorSection(
unsigned Priority, const MCSymbol *KeySym) const {
llvm_unreachable("@llvm.global_dtors should have been lowered already");
return nullptr;
}
//===----------------------------------------------------------------------===//
// XCOFF
//===----------------------------------------------------------------------===//
MCSection *TargetLoweringObjectFileXCOFF::getExplicitSectionGlobal(
const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
report_fatal_error("XCOFF explicit sections not yet implemented.");
}
MCSection *TargetLoweringObjectFileXCOFF::SelectSectionForGlobal(
const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
assert(!TM.getFunctionSections() && !TM.getDataSections() &&
"XCOFF unique sections not yet implemented.");
// Common symbols go into a csect with matching name which will get mapped
// into the .bss section.
if (Kind.isBSSLocal() || Kind.isCommon()) {
SmallString<128> Name;
getNameWithPrefix(Name, GO, TM);
XCOFF::StorageClass SC =
TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GO);
return getContext().getXCOFFSection(
Name, Kind.isBSSLocal() ? XCOFF::XMC_BS : XCOFF::XMC_RW, XCOFF::XTY_CM,
SC, Kind, /* BeginSymbolName */ nullptr);
}
if (Kind.isMergeableCString()) {
if (!Kind.isMergeable1ByteCString())
report_fatal_error("Unhandled multi-byte mergeable string kind.");
unsigned Align = GO->getParent()->getDataLayout().getPreferredAlignment(
cast<GlobalVariable>(GO));
unsigned EntrySize = getEntrySizeForKind(Kind);
std::string SizeSpec = ".rodata.str" + utostr(EntrySize) + ".";
SmallString<128> Name;
Name = SizeSpec + utostr(Align);
return getContext().getXCOFFSection(
Name, XCOFF::XMC_RO, XCOFF::XTY_SD,
TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GO),
Kind, /* BeginSymbolName */ nullptr);
}
if (Kind.isText())
return TextSection;
if (Kind.isData())
return DataSection;
// Zero initialized data must be emitted to the .data section because external
// linkage control sections that get mapped to the .bss section will be linked
// as tentative defintions, which is only appropriate for SectionKind::Common.
if (Kind.isBSS())
return DataSection;
if (Kind.isReadOnly() && !Kind.isMergeableConst())
return ReadOnlySection;
report_fatal_error("XCOFF other section types not yet implemented.");
}
MCSection *TargetLoweringObjectFileXCOFF::getSectionForJumpTable(
const Function &F, const TargetMachine &TM) const {
assert (!TM.getFunctionSections() && "Unique sections not supported on XCOFF"
" yet.");
assert (!F.getComdat() && "Comdat not supported on XCOFF.");
//TODO: Enable emiting jump table to unique sections when we support it.
return ReadOnlySection;
}
bool TargetLoweringObjectFileXCOFF::shouldPutJumpTableInFunctionSection(
bool UsesLabelDifference, const Function &F) const {
return false;
}
/// Given a mergeable constant with the specified size and relocation
/// information, return a section that it should be placed in.
MCSection *TargetLoweringObjectFileXCOFF::getSectionForConstant(
const DataLayout &DL, SectionKind Kind, const Constant *C,
unsigned &Align) const {
//TODO: Enable emiting constant pool to unique sections when we support it.
return ReadOnlySection;
}
void TargetLoweringObjectFileXCOFF::Initialize(MCContext &Ctx,
const TargetMachine &TgtM) {
TargetLoweringObjectFile::Initialize(Ctx, TgtM);
TTypeEncoding = 0;
PersonalityEncoding = 0;
LSDAEncoding = 0;
}
MCSection *TargetLoweringObjectFileXCOFF::getStaticCtorSection(
unsigned Priority, const MCSymbol *KeySym) const {
report_fatal_error("XCOFF ctor section not yet implemented.");
}
MCSection *TargetLoweringObjectFileXCOFF::getStaticDtorSection(
unsigned Priority, const MCSymbol *KeySym) const {
report_fatal_error("XCOFF dtor section not yet implemented.");
}
const MCExpr *TargetLoweringObjectFileXCOFF::lowerRelativeReference(
const GlobalValue *LHS, const GlobalValue *RHS,
const TargetMachine &TM) const {
report_fatal_error("XCOFF not yet implemented.");
}
XCOFF::StorageClass TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(
const GlobalObject *GO) {
switch (GO->getLinkage()) {
case GlobalValue::InternalLinkage:
case GlobalValue::PrivateLinkage:
return XCOFF::C_HIDEXT;
case GlobalValue::ExternalLinkage:
case GlobalValue::CommonLinkage:
return XCOFF::C_EXT;
case GlobalValue::ExternalWeakLinkage:
return XCOFF::C_WEAKEXT;
default:
report_fatal_error(
"Unhandled linkage when mapping linkage to StorageClass.");
}
}