llvm-project/llvm/lib/Target/X86/X86Subtarget.cpp

337 lines
10 KiB
C++
Raw Normal View History

2010-12-05 07:57:24 +08:00
//===-- X86Subtarget.cpp - X86 Subtarget Information ----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the X86 specific subclass of TargetSubtargetInfo.
//
//===----------------------------------------------------------------------===//
#include "X86Subtarget.h"
#include "X86InstrInfo.h"
#include "X86TargetMachine.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#if defined(_MSC_VER)
#include <intrin.h>
#endif
using namespace llvm;
#define DEBUG_TYPE "subtarget"
#define GET_SUBTARGETINFO_TARGET_DESC
#define GET_SUBTARGETINFO_CTOR
#include "X86GenSubtargetInfo.inc"
// Temporary option to control early if-conversion for x86 while adding machine
// models.
static cl::opt<bool>
X86EarlyIfConv("x86-early-ifcvt", cl::Hidden,
cl::desc("Enable early if-conversion on X86"));
/// Classify a blockaddress reference for the current subtarget according to how
/// we should reference it in a non-pcrel context.
2016-05-20 02:34:20 +08:00
unsigned char X86Subtarget::classifyBlockAddressReference() const {
return classifyLocalReference(nullptr);
}
2012-08-02 02:39:17 +08:00
/// Classify a global variable reference for the current subtarget according to
/// how we should reference it in a non-pcrel context.
unsigned char
X86Subtarget::classifyGlobalReference(const GlobalValue *GV) const {
return classifyGlobalReference(GV, *GV->getParent());
}
2012-08-02 02:39:17 +08:00
unsigned char
X86Subtarget::classifyLocalReference(const GlobalValue *GV) const {
// 64 bits can use %rip addressing for anything local.
if (is64Bit())
return X86II::MO_NO_FLAG;
// If this is for a position dependent executable, the static linker can
// figure it out.
if (!isPositionIndependent())
return X86II::MO_NO_FLAG;
2012-08-02 02:39:17 +08:00
// The COFF dynamic linker just patches the executable sections.
if (isTargetCOFF())
return X86II::MO_NO_FLAG;
if (isTargetDarwin()) {
// 32 bit macho has no relocation for a-b if a is undefined, even if
// b is in the section that is being relocated.
// This means we have to use o load even for GVs that are known to be
// local to the dso.
if (GV && (GV->isDeclarationForLinker() || GV->hasCommonLinkage()))
return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
2012-08-02 02:39:17 +08:00
return X86II::MO_PIC_BASE_OFFSET;
}
2012-08-02 02:39:17 +08:00
return X86II::MO_GOTOFF;
}
2012-08-02 02:39:17 +08:00
unsigned char X86Subtarget::classifyGlobalReference(const GlobalValue *GV,
const Module &M) const {
// Large model never uses stubs.
if (TM.getCodeModel() == CodeModel::Large)
return X86II::MO_NO_FLAG;
2012-08-02 02:39:17 +08:00
if (TM.shouldAssumeDSOLocal(M, GV))
return classifyLocalReference(GV);
if (isTargetCOFF())
return X86II::MO_DLLIMPORT;
if (is64Bit())
return X86II::MO_GOTPCREL;
if (isTargetDarwin()) {
if (!isPositionIndependent())
return X86II::MO_DARWIN_NONLAZY;
return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
}
2012-08-02 02:39:17 +08:00
return X86II::MO_GOT;
}
unsigned char
X86Subtarget::classifyGlobalFunctionReference(const GlobalValue *GV) const {
return classifyGlobalFunctionReference(GV, *GV->getParent());
}
unsigned char
X86Subtarget::classifyGlobalFunctionReference(const GlobalValue *GV,
const Module &M) const {
if (TM.shouldAssumeDSOLocal(M, GV))
return X86II::MO_NO_FLAG;
assert(!isTargetCOFF());
if (isTargetELF())
return X86II::MO_PLT;
if (is64Bit()) {
auto *F = dyn_cast_or_null<Function>(GV);
if (F && F->hasFnAttribute(Attribute::NonLazyBind))
// If the function is marked as non-lazy, generate an indirect call
// which loads from the GOT directly. This avoids runtime overhead
// at the cost of eager binding (and one extra byte of encoding).
return X86II::MO_GOTPCREL;
return X86II::MO_NO_FLAG;
}
return X86II::MO_NO_FLAG;
}
/// This function returns the name of a function which has an interface like
/// the non-standard bzero function, if such a function exists on the
/// current subtarget and it is considered preferable over memset with zero
/// passed as the second argument. Otherwise it returns null.
const char *X86Subtarget::getBZeroEntry() const {
// Darwin 10 has a __bzero entry point for this purpose.
if (getTargetTriple().isMacOSX() &&
!getTargetTriple().isMacOSXVersionLT(10, 6))
return "__bzero";
return nullptr;
}
bool X86Subtarget::hasSinCos() const {
return getTargetTriple().isMacOSX() &&
!getTargetTriple().isMacOSXVersionLT(10, 9) &&
is64Bit();
}
/// Return true if the subtarget allows calls to immediate address.
bool X86Subtarget::isLegalToCallImmediateAddr() const {
// FIXME: I386 PE/COFF supports PC relative calls using IMAGE_REL_I386_REL32
// but WinCOFFObjectWriter::RecordRelocation cannot emit them. Once it does,
// the following check for Win32 should be removed.
if (In64BitMode || isTargetWin32())
return false;
return isTargetELF() || TM.getRelocationModel() == Reloc::Static;
}
void X86Subtarget::initSubtargetFeatures(StringRef CPU, StringRef FS) {
std::string CPUName = CPU;
if (CPUName.empty())
CPUName = "generic";
// Make sure 64-bit features are available in 64-bit mode. (But make sure
// SSE2 can be turned off explicitly.)
std::string FullFS = FS;
if (In64BitMode) {
if (!FullFS.empty())
FullFS = "+64bit,+sse2," + FullFS;
else
FullFS = "+64bit,+sse2";
}
// LAHF/SAHF are always supported in non-64-bit mode.
if (!In64BitMode) {
if (!FullFS.empty())
FullFS = "+sahf," + FullFS;
else
FullFS = "+sahf";
}
// Parse features string and set the CPU.
ParseSubtargetFeatures(CPUName, FullFS);
// All CPUs that implement SSE4.2 or SSE4A support unaligned accesses of
// 16-bytes and under that are reasonably fast. These features were
// introduced with Intel's Nehalem/Silvermont and AMD's Family10h
// micro-architectures respectively.
if (hasSSE42() || hasSSE4A())
IsUAMem16Slow = false;
InstrItins = getInstrItineraryForCPU(CPUName);
// It's important to keep the MCSubtargetInfo feature bits in sync with
// target data structure which is shared with MC code emitter, etc.
if (In64BitMode)
ToggleFeature(X86::Mode64Bit);
else if (In32BitMode)
ToggleFeature(X86::Mode32Bit);
else if (In16BitMode)
ToggleFeature(X86::Mode16Bit);
else
llvm_unreachable("Not 16-bit, 32-bit or 64-bit mode!");
DEBUG(dbgs() << "Subtarget features: SSELevel " << X86SSELevel
<< ", 3DNowLevel " << X863DNowLevel
<< ", 64bit " << HasX86_64 << "\n");
assert((!In64BitMode || HasX86_64) &&
"64-bit code requested on a subtarget that doesn't support it!");
// Stack alignment is 16 bytes on Darwin, Linux, kFreeBSD and Solaris (both
// 32 and 64 bit) and for all 64-bit targets.
if (StackAlignOverride)
stackAlignment = StackAlignOverride;
else if (isTargetDarwin() || isTargetLinux() || isTargetSolaris() ||
isTargetKFreeBSD() || In64BitMode)
stackAlignment = 16;
}
void X86Subtarget::initializeEnvironment() {
X86SSELevel = NoSSE;
X863DNowLevel = NoThreeDNow;
HasX87 = false;
HasCMov = false;
HasX86_64 = false;
HasPOPCNT = false;
HasSSE4A = false;
HasAES = false;
HasFXSR = false;
HasXSAVE = false;
HasXSAVEOPT = false;
HasXSAVEC = false;
HasXSAVES = false;
HasPCLMUL = false;
HasFMA = false;
HasFMA4 = false;
HasXOP = false;
HasTBM = false;
HasMOVBE = false;
HasRDRAND = false;
HasF16C = false;
HasFSGSBase = false;
HasLZCNT = false;
HasBMI = false;
HasBMI2 = false;
HasVBMI = false;
HasIFMA = false;
HasRTM = false;
HasHLE = false;
HasERI = false;
HasCDI = false;
HasPFI = false;
HasDQI = false;
HasBWI = false;
HasVLX = false;
HasADX = false;
HasPKU = false;
HasSHA = false;
HasPRFCHW = false;
HasRDSEED = false;
HasLAHFSAHF = false;
HasMWAITX = false;
HasMPX = false;
IsBTMemSlow = false;
IsSHLDSlow = false;
IsUAMem16Slow = false;
IsUAMem32Slow = false;
HasSSEUnalignedMem = false;
HasCmpxchg16b = false;
UseLeaForSP = false;
HasFastPartialYMMWrite = false;
HasFastScalarFSQRT = false;
HasFastVectorFSQRT = false;
HasSlowDivide32 = false;
HasSlowDivide64 = false;
PadShortFunctions = false;
CallRegIndirect = false;
LEAUsesAG = false;
SlowLEA = false;
SlowIncDec = false;
stackAlignment = 4;
// FIXME: this is a known good value for Yonah. How about others?
MaxInlineSizeThreshold = 128;
UseSoftFloat = false;
}
X86Subtarget &X86Subtarget::initializeSubtargetDependencies(StringRef CPU,
StringRef FS) {
initializeEnvironment();
initSubtargetFeatures(CPU, FS);
return *this;
}
X86Subtarget::X86Subtarget(const Triple &TT, StringRef CPU, StringRef FS,
const X86TargetMachine &TM,
unsigned StackAlignOverride)
: X86GenSubtargetInfo(TT, CPU, FS), X86ProcFamily(Others),
PICStyle(PICStyles::None), TM(TM), TargetTriple(TT),
StackAlignOverride(StackAlignOverride),
In64BitMode(TargetTriple.getArch() == Triple::x86_64),
In32BitMode(TargetTriple.getArch() == Triple::x86 &&
TargetTriple.getEnvironment() != Triple::CODE16),
In16BitMode(TargetTriple.getArch() == Triple::x86 &&
TargetTriple.getEnvironment() == Triple::CODE16),
TSInfo(), InstrInfo(initializeSubtargetDependencies(CPU, FS)),
TLInfo(TM, *this), FrameLowering(*this, getStackAlignment()) {
// Determine the PICStyle based on the target selected.
if (!isPositionIndependent())
setPICStyle(PICStyles::None);
else if (is64Bit())
setPICStyle(PICStyles::RIPRel);
else if (isTargetCOFF())
setPICStyle(PICStyles::None);
else if (isTargetDarwin())
setPICStyle(PICStyles::StubPIC);
else if (isTargetELF())
setPICStyle(PICStyles::GOT);
}
bool X86Subtarget::enableEarlyIfConversion() const {
return hasCMov() && X86EarlyIfConv;
}