2016-03-10 19:24:06 +08:00
|
|
|
; RUN: opt -disable-output -passes=print-lcg %s 2>&1 | FileCheck %s
|
2014-02-06 12:37:03 +08:00
|
|
|
;
|
|
|
|
; Basic validation of the call graph analysis used in the new pass manager.
|
|
|
|
|
|
|
|
define void @f() {
|
2016-02-02 11:57:13 +08:00
|
|
|
; CHECK-LABEL: Edges in function: f
|
2014-02-06 12:37:03 +08:00
|
|
|
; CHECK-NOT: ->
|
|
|
|
|
|
|
|
entry:
|
|
|
|
ret void
|
|
|
|
}
|
|
|
|
|
|
|
|
; A bunch more functions just to make it easier to test several call edges at once.
|
|
|
|
define void @f1() {
|
|
|
|
ret void
|
|
|
|
}
|
|
|
|
define void @f2() {
|
|
|
|
ret void
|
|
|
|
}
|
|
|
|
define void @f3() {
|
|
|
|
ret void
|
|
|
|
}
|
|
|
|
define void @f4() {
|
|
|
|
ret void
|
|
|
|
}
|
|
|
|
define void @f5() {
|
|
|
|
ret void
|
|
|
|
}
|
|
|
|
define void @f6() {
|
|
|
|
ret void
|
|
|
|
}
|
|
|
|
define void @f7() {
|
|
|
|
ret void
|
|
|
|
}
|
|
|
|
define void @f8() {
|
|
|
|
ret void
|
|
|
|
}
|
|
|
|
define void @f9() {
|
|
|
|
ret void
|
|
|
|
}
|
|
|
|
define void @f10() {
|
|
|
|
ret void
|
|
|
|
}
|
|
|
|
define void @f11() {
|
|
|
|
ret void
|
|
|
|
}
|
|
|
|
define void @f12() {
|
|
|
|
ret void
|
|
|
|
}
|
|
|
|
|
|
|
|
declare i32 @__gxx_personality_v0(...)
|
|
|
|
|
|
|
|
define void @test0() {
|
2016-02-02 11:57:13 +08:00
|
|
|
; CHECK-LABEL: Edges in function: test0
|
|
|
|
; CHECK-NEXT: call -> f
|
2014-02-06 12:37:03 +08:00
|
|
|
; CHECK-NOT: ->
|
|
|
|
|
|
|
|
entry:
|
|
|
|
call void @f()
|
|
|
|
call void @f()
|
|
|
|
call void @f()
|
|
|
|
call void @f()
|
|
|
|
ret void
|
|
|
|
}
|
|
|
|
|
2015-06-18 04:52:32 +08:00
|
|
|
define void ()* @test1(void ()** %x) personality i32 (...)* @__gxx_personality_v0 {
|
2016-02-02 11:57:13 +08:00
|
|
|
; CHECK-LABEL: Edges in function: test1
|
|
|
|
; CHECK-NEXT: call -> f6
|
|
|
|
; CHECK-NEXT: call -> f10
|
|
|
|
; CHECK-NEXT: ref -> f12
|
|
|
|
; CHECK-NEXT: ref -> f11
|
|
|
|
; CHECK-NEXT: ref -> f7
|
|
|
|
; CHECK-NEXT: ref -> f9
|
|
|
|
; CHECK-NEXT: ref -> f8
|
|
|
|
; CHECK-NEXT: ref -> f5
|
|
|
|
; CHECK-NEXT: ref -> f4
|
|
|
|
; CHECK-NEXT: ref -> f3
|
|
|
|
; CHECK-NEXT: ref -> f2
|
|
|
|
; CHECK-NEXT: ref -> f1
|
2014-02-06 12:37:03 +08:00
|
|
|
; CHECK-NOT: ->
|
|
|
|
|
|
|
|
entry:
|
|
|
|
br label %next
|
|
|
|
|
|
|
|
dead:
|
|
|
|
br label %next
|
|
|
|
|
|
|
|
next:
|
|
|
|
phi void ()* [ @f1, %entry ], [ @f2, %dead ]
|
|
|
|
select i1 true, void ()* @f3, void ()* @f4
|
|
|
|
store void ()* @f5, void ()** %x
|
|
|
|
call void @f6()
|
[opaque pointer type] Add textual IR support for explicit type parameter to the call instruction
See r230786 and r230794 for similar changes to gep and load
respectively.
Call is a bit different because it often doesn't have a single explicit
type - usually the type is deduced from the arguments, and just the
return type is explicit. In those cases there's no need to change the
IR.
When that's not the case, the IR usually contains the pointer type of
the first operand - but since typed pointers are going away, that
representation is insufficient so I'm just stripping the "pointerness"
of the explicit type away.
This does make the IR a bit weird - it /sort of/ reads like the type of
the first operand: "call void () %x(" but %x is actually of type "void
()*" and will eventually be just of type "ptr". But this seems not too
bad and I don't think it would benefit from repeating the type
("void (), void () * %x(" and then eventually "void (), ptr %x(") as has
been done with gep and load.
This also has a side benefit: since the explicit type is no longer a
pointer, there's no ambiguity between an explicit type and a function
that returns a function pointer. Previously this case needed an explicit
type (eg: a function returning a void() function was written as
"call void () () * @x(" rather than "call void () * @x(" because of the
ambiguity between a function returning a pointer to a void() function
and a function returning void).
No ambiguity means even function pointer return types can just be
written alone, without writing the whole function's type.
This leaves /only/ the varargs case where the explicit type is required.
Given the special type syntax in call instructions, the regex-fu used
for migration was a bit more involved in its own unique way (as every
one of these is) so here it is. Use it in conjunction with the apply.sh
script and associated find/xargs commands I've provided in rr230786 to
migrate your out of tree tests. Do let me know if any of this doesn't
cover your cases & we can iterate on a more general script/regexes to
help others with out of tree tests.
About 9 test cases couldn't be automatically migrated - half of those
were functions returning function pointers, where I just had to manually
delete the function argument types now that we didn't need an explicit
function type there. The other half were typedefs of function types used
in calls - just had to manually drop the * from those.
import fileinput
import sys
import re
pat = re.compile(r'((?:=|:|^|\s)call\s(?:[^@]*?))(\s*$|\s*(?:(?:\[\[[a-zA-Z0-9_]+\]\]|[@%](?:(")?[\\\?@a-zA-Z0-9_.]*?(?(3)"|)|{{.*}}))(?:\(|$)|undef|inttoptr|bitcast|null|asm).*$)')
addrspace_end = re.compile(r"addrspace\(\d+\)\s*\*$")
func_end = re.compile("(?:void.*|\)\s*)\*$")
def conv(match, line):
if not match or re.search(addrspace_end, match.group(1)) or not re.search(func_end, match.group(1)):
return line
return line[:match.start()] + match.group(1)[:match.group(1).rfind('*')].rstrip() + match.group(2) + line[match.end():]
for line in sys.stdin:
sys.stdout.write(conv(re.search(pat, line), line))
llvm-svn: 235145
2015-04-17 07:24:18 +08:00
|
|
|
call void (void ()*, void ()*) bitcast (void ()* @f7 to void (void ()*, void ()*)*)(void ()* @f8, void ()* @f9)
|
2014-02-06 12:37:03 +08:00
|
|
|
invoke void @f10() to label %exit unwind label %unwind
|
|
|
|
|
|
|
|
exit:
|
|
|
|
ret void ()* @f11
|
|
|
|
|
|
|
|
unwind:
|
2015-06-18 04:52:32 +08:00
|
|
|
%res = landingpad { i8*, i32 }
|
2014-02-06 12:37:03 +08:00
|
|
|
cleanup
|
|
|
|
resume { i8*, i32 } { i8* bitcast (void ()* @f12 to i8*), i32 42 }
|
|
|
|
}
|
|
|
|
|
|
|
|
@g = global void ()* @f1
|
|
|
|
@g1 = global [4 x void ()*] [void ()* @f2, void ()* @f3, void ()* @f4, void ()* @f5]
|
|
|
|
@g2 = global {i8, void ()*, i8} {i8 1, void ()* @f6, i8 2}
|
|
|
|
@h = constant void ()* @f7
|
|
|
|
|
|
|
|
define void @test2() {
|
2016-02-02 11:57:13 +08:00
|
|
|
; CHECK-LABEL: Edges in function: test2
|
|
|
|
; CHECK-NEXT: ref -> f7
|
|
|
|
; CHECK-NEXT: ref -> f6
|
|
|
|
; CHECK-NEXT: ref -> f5
|
|
|
|
; CHECK-NEXT: ref -> f4
|
|
|
|
; CHECK-NEXT: ref -> f3
|
|
|
|
; CHECK-NEXT: ref -> f2
|
|
|
|
; CHECK-NEXT: ref -> f1
|
2014-02-06 12:37:03 +08:00
|
|
|
; CHECK-NOT: ->
|
|
|
|
|
2015-02-28 05:17:42 +08:00
|
|
|
load i8*, i8** bitcast (void ()** @g to i8**)
|
2015-03-14 02:20:45 +08:00
|
|
|
load i8*, i8** bitcast (void ()** getelementptr ([4 x void ()*], [4 x void ()*]* @g1, i32 0, i32 2) to i8**)
|
|
|
|
load i8*, i8** bitcast (void ()** getelementptr ({i8, void ()*, i8}, {i8, void ()*, i8}* @g2, i32 0, i32 1) to i8**)
|
2015-02-28 05:17:42 +08:00
|
|
|
load i8*, i8** bitcast (void ()** @h to i8**)
|
2014-02-06 12:37:03 +08:00
|
|
|
ret void
|
|
|
|
}
|
[LCG] Add support for building persistent and connected SCCs to the
LazyCallGraph. This is the start of the whole point of this different
abstraction, but it is just the initial bits. Here is a run-down of
what's going on here. I'm planning to incorporate some (or all) of this
into comments going forward, hopefully with better editing and wording.
=]
The crux of the problem with the traditional way of building SCCs is
that they are ephemeral. The new pass manager however really needs the
ability to associate analysis passes and results of analysis passes with
SCCs in order to expose these analysis passes to the SCC passes. Making
this work is kind-of the whole point of the new pass manager. =]
So, when we're building SCCs for the call graph, we actually want to
build persistent nodes that stick around and can be reasoned about
later. We'd also like the ability to walk the SCC graph in more complex
ways than just the traditional postorder traversal of the current CGSCC
walk. That means that in addition to being persistent, the SCCs need to
be connected into a useful graph structure.
However, we still want the SCCs to be formed lazily where possible.
These constraints are quite hard to satisfy with the SCC iterator. Also,
using that would bypass our ability to actually add data to the nodes of
the call graph to facilite implementing the Tarjan walk. So I've
re-implemented things in a more direct and embedded way. This
immediately makes it easy to get the persistence and connectivity
correct, and it also allows leveraging the existing nodes to simplify
the algorithm. I've worked somewhat to make this implementation more
closely follow the traditional paper's nomenclature and strategy,
although it is still a bit obtuse because it isn't recursive, using
an explicit stack and a tail call instead, and it is interruptable,
resuming each time we need another SCC.
The other tricky bit here, and what actually took almost all the time
and trials and errors I spent building this, is exactly *what* graph
structure to build for the SCCs. The naive thing to build is the call
graph in its newly acyclic form. I wrote about 4 versions of this which
did precisely this. Inevitably, when I experimented with them across
various use cases, they became incredibly awkward. It was all
implementable, but it felt like a complete wrong fit. Square peg, round
hole. There were two overriding aspects that pushed me in a different
direction:
1) We want to discover the SCC graph in a postorder fashion. That means
the root node will be the *last* node we find. Using the call-SCC DAG
as the graph structure of the SCCs results in an orphaned graph until
we discover a root.
2) We will eventually want to walk the SCC graph in parallel, exploring
distinct sub-graphs independently, and synchronizing at merge points.
This again is not helped by the call-SCC DAG structure.
The structure which, quite surprisingly, ended up being completely
natural to use is the *inverse* of the call-SCC DAG. We add the leaf
SCCs to the graph as "roots", and have edges to the caller SCCs. Once
I switched to building this structure, everything just fell into place
elegantly.
Aside from general cleanups (there are FIXMEs and too few comments
overall) that are still needed, the other missing piece of this is
support for iterating across levels of the SCC graph. These will become
useful for implementing #2, but they aren't an immediate priority.
Once SCCs are in good shape, I'll be working on adding mutation support
for incremental updates and adding the pass manager that this analysis
enables.
llvm-svn: 206581
2014-04-18 18:50:32 +08:00
|
|
|
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
@test3_ptr = external global void ()*
|
|
|
|
|
|
|
|
define void @test3_aa1() {
|
|
|
|
; CHECK-LABEL: Edges in function: test3_aa1
|
|
|
|
; CHECK-NEXT: call -> test3_aa2
|
|
|
|
; CHECK-NEXT: ref -> test3_ab1
|
|
|
|
; CHECK-NOT: ->
|
|
|
|
|
|
|
|
entry:
|
|
|
|
call void @test3_aa2()
|
|
|
|
store void ()* @test3_ab1, void ()** @test3_ptr
|
|
|
|
ret void
|
|
|
|
}
|
|
|
|
|
|
|
|
define void @test3_aa2() {
|
|
|
|
; CHECK-LABEL: Edges in function: test3_aa2
|
|
|
|
; CHECK-NEXT: call -> test3_aa1
|
|
|
|
; CHECK-NEXT: call -> test3_ab2
|
|
|
|
; CHECK-NOT: ->
|
|
|
|
|
|
|
|
entry:
|
|
|
|
call void @test3_aa1()
|
|
|
|
call void @test3_ab2()
|
|
|
|
ret void
|
|
|
|
}
|
|
|
|
|
|
|
|
define void @test3_ab1() {
|
|
|
|
; CHECK-LABEL: Edges in function: test3_ab1
|
|
|
|
; CHECK-NEXT: call -> test3_ab2
|
|
|
|
; CHECK-NEXT: call -> test3_ac1
|
|
|
|
; CHECK-NOT: ->
|
|
|
|
|
|
|
|
entry:
|
|
|
|
call void @test3_ab2()
|
|
|
|
call void @test3_ac1()
|
|
|
|
ret void
|
|
|
|
}
|
|
|
|
|
|
|
|
define void @test3_ab2() {
|
|
|
|
; CHECK-LABEL: Edges in function: test3_ab2
|
|
|
|
; CHECK-NEXT: call -> test3_ab1
|
|
|
|
; CHECK-NEXT: call -> test3_ba1
|
|
|
|
; CHECK-NOT: ->
|
|
|
|
|
|
|
|
entry:
|
|
|
|
call void @test3_ab1()
|
|
|
|
call void @test3_ba1()
|
|
|
|
ret void
|
|
|
|
}
|
|
|
|
|
|
|
|
define void @test3_ac1() {
|
|
|
|
; CHECK-LABEL: Edges in function: test3_ac1
|
|
|
|
; CHECK-NEXT: call -> test3_ac2
|
|
|
|
; CHECK-NEXT: ref -> test3_aa2
|
|
|
|
; CHECK-NOT: ->
|
|
|
|
|
|
|
|
entry:
|
|
|
|
call void @test3_ac2()
|
|
|
|
store void ()* @test3_aa2, void ()** @test3_ptr
|
|
|
|
ret void
|
|
|
|
}
|
|
|
|
|
|
|
|
define void @test3_ac2() {
|
|
|
|
; CHECK-LABEL: Edges in function: test3_ac2
|
|
|
|
; CHECK-NEXT: call -> test3_ac1
|
|
|
|
; CHECK-NEXT: ref -> test3_ba1
|
|
|
|
; CHECK-NOT: ->
|
|
|
|
|
|
|
|
entry:
|
|
|
|
call void @test3_ac1()
|
|
|
|
store void ()* @test3_ba1, void ()** @test3_ptr
|
|
|
|
ret void
|
|
|
|
}
|
|
|
|
|
|
|
|
define void @test3_ba1() {
|
|
|
|
; CHECK-LABEL: Edges in function: test3_ba1
|
|
|
|
; CHECK-NEXT: call -> test3_bb1
|
|
|
|
; CHECK-NEXT: ref -> test3_ca1
|
|
|
|
; CHECK-NOT: ->
|
|
|
|
|
|
|
|
entry:
|
|
|
|
call void @test3_bb1()
|
|
|
|
store void ()* @test3_ca1, void ()** @test3_ptr
|
|
|
|
ret void
|
|
|
|
}
|
|
|
|
|
|
|
|
define void @test3_bb1() {
|
|
|
|
; CHECK-LABEL: Edges in function: test3_bb1
|
|
|
|
; CHECK-NEXT: call -> test3_ca2
|
|
|
|
; CHECK-NEXT: ref -> test3_ba1
|
|
|
|
; CHECK-NOT: ->
|
|
|
|
|
|
|
|
entry:
|
|
|
|
call void @test3_ca2()
|
|
|
|
store void ()* @test3_ba1, void ()** @test3_ptr
|
|
|
|
ret void
|
|
|
|
}
|
|
|
|
|
|
|
|
define void @test3_ca1() {
|
|
|
|
; CHECK-LABEL: Edges in function: test3_ca1
|
|
|
|
; CHECK-NEXT: call -> test3_ca2
|
|
|
|
; CHECK-NOT: ->
|
|
|
|
|
|
|
|
entry:
|
|
|
|
call void @test3_ca2()
|
|
|
|
ret void
|
|
|
|
}
|
|
|
|
|
|
|
|
define void @test3_ca2() {
|
|
|
|
; CHECK-LABEL: Edges in function: test3_ca2
|
|
|
|
; CHECK-NEXT: call -> test3_ca3
|
|
|
|
; CHECK-NOT: ->
|
|
|
|
|
|
|
|
entry:
|
|
|
|
call void @test3_ca3()
|
|
|
|
ret void
|
|
|
|
}
|
|
|
|
|
|
|
|
define void @test3_ca3() {
|
|
|
|
; CHECK-LABEL: Edges in function: test3_ca3
|
|
|
|
; CHECK-NEXT: call -> test3_ca1
|
|
|
|
; CHECK-NOT: ->
|
|
|
|
|
|
|
|
entry:
|
|
|
|
call void @test3_ca1()
|
|
|
|
ret void
|
|
|
|
}
|
|
|
|
|
[LCG] Add support for building persistent and connected SCCs to the
LazyCallGraph. This is the start of the whole point of this different
abstraction, but it is just the initial bits. Here is a run-down of
what's going on here. I'm planning to incorporate some (or all) of this
into comments going forward, hopefully with better editing and wording.
=]
The crux of the problem with the traditional way of building SCCs is
that they are ephemeral. The new pass manager however really needs the
ability to associate analysis passes and results of analysis passes with
SCCs in order to expose these analysis passes to the SCC passes. Making
this work is kind-of the whole point of the new pass manager. =]
So, when we're building SCCs for the call graph, we actually want to
build persistent nodes that stick around and can be reasoned about
later. We'd also like the ability to walk the SCC graph in more complex
ways than just the traditional postorder traversal of the current CGSCC
walk. That means that in addition to being persistent, the SCCs need to
be connected into a useful graph structure.
However, we still want the SCCs to be formed lazily where possible.
These constraints are quite hard to satisfy with the SCC iterator. Also,
using that would bypass our ability to actually add data to the nodes of
the call graph to facilite implementing the Tarjan walk. So I've
re-implemented things in a more direct and embedded way. This
immediately makes it easy to get the persistence and connectivity
correct, and it also allows leveraging the existing nodes to simplify
the algorithm. I've worked somewhat to make this implementation more
closely follow the traditional paper's nomenclature and strategy,
although it is still a bit obtuse because it isn't recursive, using
an explicit stack and a tail call instead, and it is interruptable,
resuming each time we need another SCC.
The other tricky bit here, and what actually took almost all the time
and trials and errors I spent building this, is exactly *what* graph
structure to build for the SCCs. The naive thing to build is the call
graph in its newly acyclic form. I wrote about 4 versions of this which
did precisely this. Inevitably, when I experimented with them across
various use cases, they became incredibly awkward. It was all
implementable, but it felt like a complete wrong fit. Square peg, round
hole. There were two overriding aspects that pushed me in a different
direction:
1) We want to discover the SCC graph in a postorder fashion. That means
the root node will be the *last* node we find. Using the call-SCC DAG
as the graph structure of the SCCs results in an orphaned graph until
we discover a root.
2) We will eventually want to walk the SCC graph in parallel, exploring
distinct sub-graphs independently, and synchronizing at merge points.
This again is not helped by the call-SCC DAG structure.
The structure which, quite surprisingly, ended up being completely
natural to use is the *inverse* of the call-SCC DAG. We add the leaf
SCCs to the graph as "roots", and have edges to the caller SCCs. Once
I switched to building this structure, everything just fell into place
elegantly.
Aside from general cleanups (there are FIXMEs and too few comments
overall) that are still needed, the other missing piece of this is
support for iterating across levels of the SCC graph. These will become
useful for implementing #2, but they aren't an immediate priority.
Once SCCs are in good shape, I'll be working on adding mutation support
for incremental updates and adding the pass manager that this analysis
enables.
llvm-svn: 206581
2014-04-18 18:50:32 +08:00
|
|
|
; Verify the SCCs formed.
|
|
|
|
;
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
; CHECK-LABEL: RefSCC with 1 call SCCs:
|
|
|
|
; CHECK-NEXT: SCC with 3 functions:
|
|
|
|
; CHECK-NEXT: test3_ca3
|
|
|
|
; CHECK-NEXT: test3_ca1
|
|
|
|
; CHECK-NEXT: test3_ca2
|
|
|
|
;
|
|
|
|
; CHECK-LABEL: RefSCC with 2 call SCCs:
|
|
|
|
; CHECK-NEXT: SCC with 1 functions:
|
|
|
|
; CHECK-NEXT: test3_bb1
|
|
|
|
; CHECK-NEXT: SCC with 1 functions:
|
|
|
|
; CHECK-NEXT: test3_ba1
|
|
|
|
;
|
|
|
|
; CHECK-LABEL: RefSCC with 3 call SCCs:
|
|
|
|
; CHECK-NEXT: SCC with 2 functions:
|
|
|
|
; CHECK-NEXT: test3_ac2
|
|
|
|
; CHECK-NEXT: test3_ac1
|
|
|
|
; CHECK-NEXT: SCC with 2 functions:
|
|
|
|
; CHECK-NEXT: test3_ab2
|
|
|
|
; CHECK-NEXT: test3_ab1
|
|
|
|
; CHECK-NEXT: SCC with 2 functions:
|
|
|
|
; CHECK-NEXT: test3_aa2
|
|
|
|
; CHECK-NEXT: test3_aa1
|
|
|
|
;
|
|
|
|
; CHECK-LABEL: RefSCC with 1 call SCCs:
|
|
|
|
; CHECK-NEXT: SCC with 1 functions:
|
|
|
|
; CHECK-NEXT: f7
|
[LCG] Add support for building persistent and connected SCCs to the
LazyCallGraph. This is the start of the whole point of this different
abstraction, but it is just the initial bits. Here is a run-down of
what's going on here. I'm planning to incorporate some (or all) of this
into comments going forward, hopefully with better editing and wording.
=]
The crux of the problem with the traditional way of building SCCs is
that they are ephemeral. The new pass manager however really needs the
ability to associate analysis passes and results of analysis passes with
SCCs in order to expose these analysis passes to the SCC passes. Making
this work is kind-of the whole point of the new pass manager. =]
So, when we're building SCCs for the call graph, we actually want to
build persistent nodes that stick around and can be reasoned about
later. We'd also like the ability to walk the SCC graph in more complex
ways than just the traditional postorder traversal of the current CGSCC
walk. That means that in addition to being persistent, the SCCs need to
be connected into a useful graph structure.
However, we still want the SCCs to be formed lazily where possible.
These constraints are quite hard to satisfy with the SCC iterator. Also,
using that would bypass our ability to actually add data to the nodes of
the call graph to facilite implementing the Tarjan walk. So I've
re-implemented things in a more direct and embedded way. This
immediately makes it easy to get the persistence and connectivity
correct, and it also allows leveraging the existing nodes to simplify
the algorithm. I've worked somewhat to make this implementation more
closely follow the traditional paper's nomenclature and strategy,
although it is still a bit obtuse because it isn't recursive, using
an explicit stack and a tail call instead, and it is interruptable,
resuming each time we need another SCC.
The other tricky bit here, and what actually took almost all the time
and trials and errors I spent building this, is exactly *what* graph
structure to build for the SCCs. The naive thing to build is the call
graph in its newly acyclic form. I wrote about 4 versions of this which
did precisely this. Inevitably, when I experimented with them across
various use cases, they became incredibly awkward. It was all
implementable, but it felt like a complete wrong fit. Square peg, round
hole. There were two overriding aspects that pushed me in a different
direction:
1) We want to discover the SCC graph in a postorder fashion. That means
the root node will be the *last* node we find. Using the call-SCC DAG
as the graph structure of the SCCs results in an orphaned graph until
we discover a root.
2) We will eventually want to walk the SCC graph in parallel, exploring
distinct sub-graphs independently, and synchronizing at merge points.
This again is not helped by the call-SCC DAG structure.
The structure which, quite surprisingly, ended up being completely
natural to use is the *inverse* of the call-SCC DAG. We add the leaf
SCCs to the graph as "roots", and have edges to the caller SCCs. Once
I switched to building this structure, everything just fell into place
elegantly.
Aside from general cleanups (there are FIXMEs and too few comments
overall) that are still needed, the other missing piece of this is
support for iterating across levels of the SCC graph. These will become
useful for implementing #2, but they aren't an immediate priority.
Once SCCs are in good shape, I'll be working on adding mutation support
for incremental updates and adding the pass manager that this analysis
enables.
llvm-svn: 206581
2014-04-18 18:50:32 +08:00
|
|
|
;
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
; CHECK-LABEL: RefSCC with 1 call SCCs:
|
|
|
|
; CHECK-NEXT: SCC with 1 functions:
|
|
|
|
; CHECK-NEXT: f6
|
[LCG] Add support for building persistent and connected SCCs to the
LazyCallGraph. This is the start of the whole point of this different
abstraction, but it is just the initial bits. Here is a run-down of
what's going on here. I'm planning to incorporate some (or all) of this
into comments going forward, hopefully with better editing and wording.
=]
The crux of the problem with the traditional way of building SCCs is
that they are ephemeral. The new pass manager however really needs the
ability to associate analysis passes and results of analysis passes with
SCCs in order to expose these analysis passes to the SCC passes. Making
this work is kind-of the whole point of the new pass manager. =]
So, when we're building SCCs for the call graph, we actually want to
build persistent nodes that stick around and can be reasoned about
later. We'd also like the ability to walk the SCC graph in more complex
ways than just the traditional postorder traversal of the current CGSCC
walk. That means that in addition to being persistent, the SCCs need to
be connected into a useful graph structure.
However, we still want the SCCs to be formed lazily where possible.
These constraints are quite hard to satisfy with the SCC iterator. Also,
using that would bypass our ability to actually add data to the nodes of
the call graph to facilite implementing the Tarjan walk. So I've
re-implemented things in a more direct and embedded way. This
immediately makes it easy to get the persistence and connectivity
correct, and it also allows leveraging the existing nodes to simplify
the algorithm. I've worked somewhat to make this implementation more
closely follow the traditional paper's nomenclature and strategy,
although it is still a bit obtuse because it isn't recursive, using
an explicit stack and a tail call instead, and it is interruptable,
resuming each time we need another SCC.
The other tricky bit here, and what actually took almost all the time
and trials and errors I spent building this, is exactly *what* graph
structure to build for the SCCs. The naive thing to build is the call
graph in its newly acyclic form. I wrote about 4 versions of this which
did precisely this. Inevitably, when I experimented with them across
various use cases, they became incredibly awkward. It was all
implementable, but it felt like a complete wrong fit. Square peg, round
hole. There were two overriding aspects that pushed me in a different
direction:
1) We want to discover the SCC graph in a postorder fashion. That means
the root node will be the *last* node we find. Using the call-SCC DAG
as the graph structure of the SCCs results in an orphaned graph until
we discover a root.
2) We will eventually want to walk the SCC graph in parallel, exploring
distinct sub-graphs independently, and synchronizing at merge points.
This again is not helped by the call-SCC DAG structure.
The structure which, quite surprisingly, ended up being completely
natural to use is the *inverse* of the call-SCC DAG. We add the leaf
SCCs to the graph as "roots", and have edges to the caller SCCs. Once
I switched to building this structure, everything just fell into place
elegantly.
Aside from general cleanups (there are FIXMEs and too few comments
overall) that are still needed, the other missing piece of this is
support for iterating across levels of the SCC graph. These will become
useful for implementing #2, but they aren't an immediate priority.
Once SCCs are in good shape, I'll be working on adding mutation support
for incremental updates and adding the pass manager that this analysis
enables.
llvm-svn: 206581
2014-04-18 18:50:32 +08:00
|
|
|
;
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
; CHECK-LABEL: RefSCC with 1 call SCCs:
|
|
|
|
; CHECK-NEXT: SCC with 1 functions:
|
|
|
|
; CHECK-NEXT: f5
|
[LCG] Add support for building persistent and connected SCCs to the
LazyCallGraph. This is the start of the whole point of this different
abstraction, but it is just the initial bits. Here is a run-down of
what's going on here. I'm planning to incorporate some (or all) of this
into comments going forward, hopefully with better editing and wording.
=]
The crux of the problem with the traditional way of building SCCs is
that they are ephemeral. The new pass manager however really needs the
ability to associate analysis passes and results of analysis passes with
SCCs in order to expose these analysis passes to the SCC passes. Making
this work is kind-of the whole point of the new pass manager. =]
So, when we're building SCCs for the call graph, we actually want to
build persistent nodes that stick around and can be reasoned about
later. We'd also like the ability to walk the SCC graph in more complex
ways than just the traditional postorder traversal of the current CGSCC
walk. That means that in addition to being persistent, the SCCs need to
be connected into a useful graph structure.
However, we still want the SCCs to be formed lazily where possible.
These constraints are quite hard to satisfy with the SCC iterator. Also,
using that would bypass our ability to actually add data to the nodes of
the call graph to facilite implementing the Tarjan walk. So I've
re-implemented things in a more direct and embedded way. This
immediately makes it easy to get the persistence and connectivity
correct, and it also allows leveraging the existing nodes to simplify
the algorithm. I've worked somewhat to make this implementation more
closely follow the traditional paper's nomenclature and strategy,
although it is still a bit obtuse because it isn't recursive, using
an explicit stack and a tail call instead, and it is interruptable,
resuming each time we need another SCC.
The other tricky bit here, and what actually took almost all the time
and trials and errors I spent building this, is exactly *what* graph
structure to build for the SCCs. The naive thing to build is the call
graph in its newly acyclic form. I wrote about 4 versions of this which
did precisely this. Inevitably, when I experimented with them across
various use cases, they became incredibly awkward. It was all
implementable, but it felt like a complete wrong fit. Square peg, round
hole. There were two overriding aspects that pushed me in a different
direction:
1) We want to discover the SCC graph in a postorder fashion. That means
the root node will be the *last* node we find. Using the call-SCC DAG
as the graph structure of the SCCs results in an orphaned graph until
we discover a root.
2) We will eventually want to walk the SCC graph in parallel, exploring
distinct sub-graphs independently, and synchronizing at merge points.
This again is not helped by the call-SCC DAG structure.
The structure which, quite surprisingly, ended up being completely
natural to use is the *inverse* of the call-SCC DAG. We add the leaf
SCCs to the graph as "roots", and have edges to the caller SCCs. Once
I switched to building this structure, everything just fell into place
elegantly.
Aside from general cleanups (there are FIXMEs and too few comments
overall) that are still needed, the other missing piece of this is
support for iterating across levels of the SCC graph. These will become
useful for implementing #2, but they aren't an immediate priority.
Once SCCs are in good shape, I'll be working on adding mutation support
for incremental updates and adding the pass manager that this analysis
enables.
llvm-svn: 206581
2014-04-18 18:50:32 +08:00
|
|
|
;
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
; CHECK-LABEL: RefSCC with 1 call SCCs:
|
|
|
|
; CHECK-NEXT: SCC with 1 functions:
|
|
|
|
; CHECK-NEXT: f4
|
[LCG] Add support for building persistent and connected SCCs to the
LazyCallGraph. This is the start of the whole point of this different
abstraction, but it is just the initial bits. Here is a run-down of
what's going on here. I'm planning to incorporate some (or all) of this
into comments going forward, hopefully with better editing and wording.
=]
The crux of the problem with the traditional way of building SCCs is
that they are ephemeral. The new pass manager however really needs the
ability to associate analysis passes and results of analysis passes with
SCCs in order to expose these analysis passes to the SCC passes. Making
this work is kind-of the whole point of the new pass manager. =]
So, when we're building SCCs for the call graph, we actually want to
build persistent nodes that stick around and can be reasoned about
later. We'd also like the ability to walk the SCC graph in more complex
ways than just the traditional postorder traversal of the current CGSCC
walk. That means that in addition to being persistent, the SCCs need to
be connected into a useful graph structure.
However, we still want the SCCs to be formed lazily where possible.
These constraints are quite hard to satisfy with the SCC iterator. Also,
using that would bypass our ability to actually add data to the nodes of
the call graph to facilite implementing the Tarjan walk. So I've
re-implemented things in a more direct and embedded way. This
immediately makes it easy to get the persistence and connectivity
correct, and it also allows leveraging the existing nodes to simplify
the algorithm. I've worked somewhat to make this implementation more
closely follow the traditional paper's nomenclature and strategy,
although it is still a bit obtuse because it isn't recursive, using
an explicit stack and a tail call instead, and it is interruptable,
resuming each time we need another SCC.
The other tricky bit here, and what actually took almost all the time
and trials and errors I spent building this, is exactly *what* graph
structure to build for the SCCs. The naive thing to build is the call
graph in its newly acyclic form. I wrote about 4 versions of this which
did precisely this. Inevitably, when I experimented with them across
various use cases, they became incredibly awkward. It was all
implementable, but it felt like a complete wrong fit. Square peg, round
hole. There were two overriding aspects that pushed me in a different
direction:
1) We want to discover the SCC graph in a postorder fashion. That means
the root node will be the *last* node we find. Using the call-SCC DAG
as the graph structure of the SCCs results in an orphaned graph until
we discover a root.
2) We will eventually want to walk the SCC graph in parallel, exploring
distinct sub-graphs independently, and synchronizing at merge points.
This again is not helped by the call-SCC DAG structure.
The structure which, quite surprisingly, ended up being completely
natural to use is the *inverse* of the call-SCC DAG. We add the leaf
SCCs to the graph as "roots", and have edges to the caller SCCs. Once
I switched to building this structure, everything just fell into place
elegantly.
Aside from general cleanups (there are FIXMEs and too few comments
overall) that are still needed, the other missing piece of this is
support for iterating across levels of the SCC graph. These will become
useful for implementing #2, but they aren't an immediate priority.
Once SCCs are in good shape, I'll be working on adding mutation support
for incremental updates and adding the pass manager that this analysis
enables.
llvm-svn: 206581
2014-04-18 18:50:32 +08:00
|
|
|
;
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
; CHECK-LABEL: RefSCC with 1 call SCCs:
|
|
|
|
; CHECK-NEXT: SCC with 1 functions:
|
|
|
|
; CHECK-NEXT: f3
|
[LCG] Add support for building persistent and connected SCCs to the
LazyCallGraph. This is the start of the whole point of this different
abstraction, but it is just the initial bits. Here is a run-down of
what's going on here. I'm planning to incorporate some (or all) of this
into comments going forward, hopefully with better editing and wording.
=]
The crux of the problem with the traditional way of building SCCs is
that they are ephemeral. The new pass manager however really needs the
ability to associate analysis passes and results of analysis passes with
SCCs in order to expose these analysis passes to the SCC passes. Making
this work is kind-of the whole point of the new pass manager. =]
So, when we're building SCCs for the call graph, we actually want to
build persistent nodes that stick around and can be reasoned about
later. We'd also like the ability to walk the SCC graph in more complex
ways than just the traditional postorder traversal of the current CGSCC
walk. That means that in addition to being persistent, the SCCs need to
be connected into a useful graph structure.
However, we still want the SCCs to be formed lazily where possible.
These constraints are quite hard to satisfy with the SCC iterator. Also,
using that would bypass our ability to actually add data to the nodes of
the call graph to facilite implementing the Tarjan walk. So I've
re-implemented things in a more direct and embedded way. This
immediately makes it easy to get the persistence and connectivity
correct, and it also allows leveraging the existing nodes to simplify
the algorithm. I've worked somewhat to make this implementation more
closely follow the traditional paper's nomenclature and strategy,
although it is still a bit obtuse because it isn't recursive, using
an explicit stack and a tail call instead, and it is interruptable,
resuming each time we need another SCC.
The other tricky bit here, and what actually took almost all the time
and trials and errors I spent building this, is exactly *what* graph
structure to build for the SCCs. The naive thing to build is the call
graph in its newly acyclic form. I wrote about 4 versions of this which
did precisely this. Inevitably, when I experimented with them across
various use cases, they became incredibly awkward. It was all
implementable, but it felt like a complete wrong fit. Square peg, round
hole. There were two overriding aspects that pushed me in a different
direction:
1) We want to discover the SCC graph in a postorder fashion. That means
the root node will be the *last* node we find. Using the call-SCC DAG
as the graph structure of the SCCs results in an orphaned graph until
we discover a root.
2) We will eventually want to walk the SCC graph in parallel, exploring
distinct sub-graphs independently, and synchronizing at merge points.
This again is not helped by the call-SCC DAG structure.
The structure which, quite surprisingly, ended up being completely
natural to use is the *inverse* of the call-SCC DAG. We add the leaf
SCCs to the graph as "roots", and have edges to the caller SCCs. Once
I switched to building this structure, everything just fell into place
elegantly.
Aside from general cleanups (there are FIXMEs and too few comments
overall) that are still needed, the other missing piece of this is
support for iterating across levels of the SCC graph. These will become
useful for implementing #2, but they aren't an immediate priority.
Once SCCs are in good shape, I'll be working on adding mutation support
for incremental updates and adding the pass manager that this analysis
enables.
llvm-svn: 206581
2014-04-18 18:50:32 +08:00
|
|
|
;
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
; CHECK-LABEL: RefSCC with 1 call SCCs:
|
|
|
|
; CHECK-NEXT: SCC with 1 functions:
|
|
|
|
; CHECK-NEXT: f2
|
[LCG] Add support for building persistent and connected SCCs to the
LazyCallGraph. This is the start of the whole point of this different
abstraction, but it is just the initial bits. Here is a run-down of
what's going on here. I'm planning to incorporate some (or all) of this
into comments going forward, hopefully with better editing and wording.
=]
The crux of the problem with the traditional way of building SCCs is
that they are ephemeral. The new pass manager however really needs the
ability to associate analysis passes and results of analysis passes with
SCCs in order to expose these analysis passes to the SCC passes. Making
this work is kind-of the whole point of the new pass manager. =]
So, when we're building SCCs for the call graph, we actually want to
build persistent nodes that stick around and can be reasoned about
later. We'd also like the ability to walk the SCC graph in more complex
ways than just the traditional postorder traversal of the current CGSCC
walk. That means that in addition to being persistent, the SCCs need to
be connected into a useful graph structure.
However, we still want the SCCs to be formed lazily where possible.
These constraints are quite hard to satisfy with the SCC iterator. Also,
using that would bypass our ability to actually add data to the nodes of
the call graph to facilite implementing the Tarjan walk. So I've
re-implemented things in a more direct and embedded way. This
immediately makes it easy to get the persistence and connectivity
correct, and it also allows leveraging the existing nodes to simplify
the algorithm. I've worked somewhat to make this implementation more
closely follow the traditional paper's nomenclature and strategy,
although it is still a bit obtuse because it isn't recursive, using
an explicit stack and a tail call instead, and it is interruptable,
resuming each time we need another SCC.
The other tricky bit here, and what actually took almost all the time
and trials and errors I spent building this, is exactly *what* graph
structure to build for the SCCs. The naive thing to build is the call
graph in its newly acyclic form. I wrote about 4 versions of this which
did precisely this. Inevitably, when I experimented with them across
various use cases, they became incredibly awkward. It was all
implementable, but it felt like a complete wrong fit. Square peg, round
hole. There were two overriding aspects that pushed me in a different
direction:
1) We want to discover the SCC graph in a postorder fashion. That means
the root node will be the *last* node we find. Using the call-SCC DAG
as the graph structure of the SCCs results in an orphaned graph until
we discover a root.
2) We will eventually want to walk the SCC graph in parallel, exploring
distinct sub-graphs independently, and synchronizing at merge points.
This again is not helped by the call-SCC DAG structure.
The structure which, quite surprisingly, ended up being completely
natural to use is the *inverse* of the call-SCC DAG. We add the leaf
SCCs to the graph as "roots", and have edges to the caller SCCs. Once
I switched to building this structure, everything just fell into place
elegantly.
Aside from general cleanups (there are FIXMEs and too few comments
overall) that are still needed, the other missing piece of this is
support for iterating across levels of the SCC graph. These will become
useful for implementing #2, but they aren't an immediate priority.
Once SCCs are in good shape, I'll be working on adding mutation support
for incremental updates and adding the pass manager that this analysis
enables.
llvm-svn: 206581
2014-04-18 18:50:32 +08:00
|
|
|
;
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
; CHECK-LABEL: RefSCC with 1 call SCCs:
|
|
|
|
; CHECK-NEXT: SCC with 1 functions:
|
|
|
|
; CHECK-NEXT: f1
|
[LCG] Add support for building persistent and connected SCCs to the
LazyCallGraph. This is the start of the whole point of this different
abstraction, but it is just the initial bits. Here is a run-down of
what's going on here. I'm planning to incorporate some (or all) of this
into comments going forward, hopefully with better editing and wording.
=]
The crux of the problem with the traditional way of building SCCs is
that they are ephemeral. The new pass manager however really needs the
ability to associate analysis passes and results of analysis passes with
SCCs in order to expose these analysis passes to the SCC passes. Making
this work is kind-of the whole point of the new pass manager. =]
So, when we're building SCCs for the call graph, we actually want to
build persistent nodes that stick around and can be reasoned about
later. We'd also like the ability to walk the SCC graph in more complex
ways than just the traditional postorder traversal of the current CGSCC
walk. That means that in addition to being persistent, the SCCs need to
be connected into a useful graph structure.
However, we still want the SCCs to be formed lazily where possible.
These constraints are quite hard to satisfy with the SCC iterator. Also,
using that would bypass our ability to actually add data to the nodes of
the call graph to facilite implementing the Tarjan walk. So I've
re-implemented things in a more direct and embedded way. This
immediately makes it easy to get the persistence and connectivity
correct, and it also allows leveraging the existing nodes to simplify
the algorithm. I've worked somewhat to make this implementation more
closely follow the traditional paper's nomenclature and strategy,
although it is still a bit obtuse because it isn't recursive, using
an explicit stack and a tail call instead, and it is interruptable,
resuming each time we need another SCC.
The other tricky bit here, and what actually took almost all the time
and trials and errors I spent building this, is exactly *what* graph
structure to build for the SCCs. The naive thing to build is the call
graph in its newly acyclic form. I wrote about 4 versions of this which
did precisely this. Inevitably, when I experimented with them across
various use cases, they became incredibly awkward. It was all
implementable, but it felt like a complete wrong fit. Square peg, round
hole. There were two overriding aspects that pushed me in a different
direction:
1) We want to discover the SCC graph in a postorder fashion. That means
the root node will be the *last* node we find. Using the call-SCC DAG
as the graph structure of the SCCs results in an orphaned graph until
we discover a root.
2) We will eventually want to walk the SCC graph in parallel, exploring
distinct sub-graphs independently, and synchronizing at merge points.
This again is not helped by the call-SCC DAG structure.
The structure which, quite surprisingly, ended up being completely
natural to use is the *inverse* of the call-SCC DAG. We add the leaf
SCCs to the graph as "roots", and have edges to the caller SCCs. Once
I switched to building this structure, everything just fell into place
elegantly.
Aside from general cleanups (there are FIXMEs and too few comments
overall) that are still needed, the other missing piece of this is
support for iterating across levels of the SCC graph. These will become
useful for implementing #2, but they aren't an immediate priority.
Once SCCs are in good shape, I'll be working on adding mutation support
for incremental updates and adding the pass manager that this analysis
enables.
llvm-svn: 206581
2014-04-18 18:50:32 +08:00
|
|
|
;
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
; CHECK-LABEL: RefSCC with 1 call SCCs:
|
|
|
|
; CHECK-NEXT: SCC with 1 functions:
|
|
|
|
; CHECK-NEXT: test2
|
[LCG] Add support for building persistent and connected SCCs to the
LazyCallGraph. This is the start of the whole point of this different
abstraction, but it is just the initial bits. Here is a run-down of
what's going on here. I'm planning to incorporate some (or all) of this
into comments going forward, hopefully with better editing and wording.
=]
The crux of the problem with the traditional way of building SCCs is
that they are ephemeral. The new pass manager however really needs the
ability to associate analysis passes and results of analysis passes with
SCCs in order to expose these analysis passes to the SCC passes. Making
this work is kind-of the whole point of the new pass manager. =]
So, when we're building SCCs for the call graph, we actually want to
build persistent nodes that stick around and can be reasoned about
later. We'd also like the ability to walk the SCC graph in more complex
ways than just the traditional postorder traversal of the current CGSCC
walk. That means that in addition to being persistent, the SCCs need to
be connected into a useful graph structure.
However, we still want the SCCs to be formed lazily where possible.
These constraints are quite hard to satisfy with the SCC iterator. Also,
using that would bypass our ability to actually add data to the nodes of
the call graph to facilite implementing the Tarjan walk. So I've
re-implemented things in a more direct and embedded way. This
immediately makes it easy to get the persistence and connectivity
correct, and it also allows leveraging the existing nodes to simplify
the algorithm. I've worked somewhat to make this implementation more
closely follow the traditional paper's nomenclature and strategy,
although it is still a bit obtuse because it isn't recursive, using
an explicit stack and a tail call instead, and it is interruptable,
resuming each time we need another SCC.
The other tricky bit here, and what actually took almost all the time
and trials and errors I spent building this, is exactly *what* graph
structure to build for the SCCs. The naive thing to build is the call
graph in its newly acyclic form. I wrote about 4 versions of this which
did precisely this. Inevitably, when I experimented with them across
various use cases, they became incredibly awkward. It was all
implementable, but it felt like a complete wrong fit. Square peg, round
hole. There were two overriding aspects that pushed me in a different
direction:
1) We want to discover the SCC graph in a postorder fashion. That means
the root node will be the *last* node we find. Using the call-SCC DAG
as the graph structure of the SCCs results in an orphaned graph until
we discover a root.
2) We will eventually want to walk the SCC graph in parallel, exploring
distinct sub-graphs independently, and synchronizing at merge points.
This again is not helped by the call-SCC DAG structure.
The structure which, quite surprisingly, ended up being completely
natural to use is the *inverse* of the call-SCC DAG. We add the leaf
SCCs to the graph as "roots", and have edges to the caller SCCs. Once
I switched to building this structure, everything just fell into place
elegantly.
Aside from general cleanups (there are FIXMEs and too few comments
overall) that are still needed, the other missing piece of this is
support for iterating across levels of the SCC graph. These will become
useful for implementing #2, but they aren't an immediate priority.
Once SCCs are in good shape, I'll be working on adding mutation support
for incremental updates and adding the pass manager that this analysis
enables.
llvm-svn: 206581
2014-04-18 18:50:32 +08:00
|
|
|
;
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
; CHECK-LABEL: RefSCC with 1 call SCCs:
|
|
|
|
; CHECK-NEXT: SCC with 1 functions:
|
|
|
|
; CHECK-NEXT: f10
|
[LCG] Add support for building persistent and connected SCCs to the
LazyCallGraph. This is the start of the whole point of this different
abstraction, but it is just the initial bits. Here is a run-down of
what's going on here. I'm planning to incorporate some (or all) of this
into comments going forward, hopefully with better editing and wording.
=]
The crux of the problem with the traditional way of building SCCs is
that they are ephemeral. The new pass manager however really needs the
ability to associate analysis passes and results of analysis passes with
SCCs in order to expose these analysis passes to the SCC passes. Making
this work is kind-of the whole point of the new pass manager. =]
So, when we're building SCCs for the call graph, we actually want to
build persistent nodes that stick around and can be reasoned about
later. We'd also like the ability to walk the SCC graph in more complex
ways than just the traditional postorder traversal of the current CGSCC
walk. That means that in addition to being persistent, the SCCs need to
be connected into a useful graph structure.
However, we still want the SCCs to be formed lazily where possible.
These constraints are quite hard to satisfy with the SCC iterator. Also,
using that would bypass our ability to actually add data to the nodes of
the call graph to facilite implementing the Tarjan walk. So I've
re-implemented things in a more direct and embedded way. This
immediately makes it easy to get the persistence and connectivity
correct, and it also allows leveraging the existing nodes to simplify
the algorithm. I've worked somewhat to make this implementation more
closely follow the traditional paper's nomenclature and strategy,
although it is still a bit obtuse because it isn't recursive, using
an explicit stack and a tail call instead, and it is interruptable,
resuming each time we need another SCC.
The other tricky bit here, and what actually took almost all the time
and trials and errors I spent building this, is exactly *what* graph
structure to build for the SCCs. The naive thing to build is the call
graph in its newly acyclic form. I wrote about 4 versions of this which
did precisely this. Inevitably, when I experimented with them across
various use cases, they became incredibly awkward. It was all
implementable, but it felt like a complete wrong fit. Square peg, round
hole. There were two overriding aspects that pushed me in a different
direction:
1) We want to discover the SCC graph in a postorder fashion. That means
the root node will be the *last* node we find. Using the call-SCC DAG
as the graph structure of the SCCs results in an orphaned graph until
we discover a root.
2) We will eventually want to walk the SCC graph in parallel, exploring
distinct sub-graphs independently, and synchronizing at merge points.
This again is not helped by the call-SCC DAG structure.
The structure which, quite surprisingly, ended up being completely
natural to use is the *inverse* of the call-SCC DAG. We add the leaf
SCCs to the graph as "roots", and have edges to the caller SCCs. Once
I switched to building this structure, everything just fell into place
elegantly.
Aside from general cleanups (there are FIXMEs and too few comments
overall) that are still needed, the other missing piece of this is
support for iterating across levels of the SCC graph. These will become
useful for implementing #2, but they aren't an immediate priority.
Once SCCs are in good shape, I'll be working on adding mutation support
for incremental updates and adding the pass manager that this analysis
enables.
llvm-svn: 206581
2014-04-18 18:50:32 +08:00
|
|
|
;
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
; CHECK-LABEL: RefSCC with 1 call SCCs:
|
|
|
|
; CHECK-NEXT: SCC with 1 functions:
|
|
|
|
; CHECK-NEXT: f12
|
[LCG] Add support for building persistent and connected SCCs to the
LazyCallGraph. This is the start of the whole point of this different
abstraction, but it is just the initial bits. Here is a run-down of
what's going on here. I'm planning to incorporate some (or all) of this
into comments going forward, hopefully with better editing and wording.
=]
The crux of the problem with the traditional way of building SCCs is
that they are ephemeral. The new pass manager however really needs the
ability to associate analysis passes and results of analysis passes with
SCCs in order to expose these analysis passes to the SCC passes. Making
this work is kind-of the whole point of the new pass manager. =]
So, when we're building SCCs for the call graph, we actually want to
build persistent nodes that stick around and can be reasoned about
later. We'd also like the ability to walk the SCC graph in more complex
ways than just the traditional postorder traversal of the current CGSCC
walk. That means that in addition to being persistent, the SCCs need to
be connected into a useful graph structure.
However, we still want the SCCs to be formed lazily where possible.
These constraints are quite hard to satisfy with the SCC iterator. Also,
using that would bypass our ability to actually add data to the nodes of
the call graph to facilite implementing the Tarjan walk. So I've
re-implemented things in a more direct and embedded way. This
immediately makes it easy to get the persistence and connectivity
correct, and it also allows leveraging the existing nodes to simplify
the algorithm. I've worked somewhat to make this implementation more
closely follow the traditional paper's nomenclature and strategy,
although it is still a bit obtuse because it isn't recursive, using
an explicit stack and a tail call instead, and it is interruptable,
resuming each time we need another SCC.
The other tricky bit here, and what actually took almost all the time
and trials and errors I spent building this, is exactly *what* graph
structure to build for the SCCs. The naive thing to build is the call
graph in its newly acyclic form. I wrote about 4 versions of this which
did precisely this. Inevitably, when I experimented with them across
various use cases, they became incredibly awkward. It was all
implementable, but it felt like a complete wrong fit. Square peg, round
hole. There were two overriding aspects that pushed me in a different
direction:
1) We want to discover the SCC graph in a postorder fashion. That means
the root node will be the *last* node we find. Using the call-SCC DAG
as the graph structure of the SCCs results in an orphaned graph until
we discover a root.
2) We will eventually want to walk the SCC graph in parallel, exploring
distinct sub-graphs independently, and synchronizing at merge points.
This again is not helped by the call-SCC DAG structure.
The structure which, quite surprisingly, ended up being completely
natural to use is the *inverse* of the call-SCC DAG. We add the leaf
SCCs to the graph as "roots", and have edges to the caller SCCs. Once
I switched to building this structure, everything just fell into place
elegantly.
Aside from general cleanups (there are FIXMEs and too few comments
overall) that are still needed, the other missing piece of this is
support for iterating across levels of the SCC graph. These will become
useful for implementing #2, but they aren't an immediate priority.
Once SCCs are in good shape, I'll be working on adding mutation support
for incremental updates and adding the pass manager that this analysis
enables.
llvm-svn: 206581
2014-04-18 18:50:32 +08:00
|
|
|
;
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
; CHECK-LABEL: RefSCC with 1 call SCCs:
|
|
|
|
; CHECK-NEXT: SCC with 1 functions:
|
|
|
|
; CHECK-NEXT: f11
|
[LCG] Add support for building persistent and connected SCCs to the
LazyCallGraph. This is the start of the whole point of this different
abstraction, but it is just the initial bits. Here is a run-down of
what's going on here. I'm planning to incorporate some (or all) of this
into comments going forward, hopefully with better editing and wording.
=]
The crux of the problem with the traditional way of building SCCs is
that they are ephemeral. The new pass manager however really needs the
ability to associate analysis passes and results of analysis passes with
SCCs in order to expose these analysis passes to the SCC passes. Making
this work is kind-of the whole point of the new pass manager. =]
So, when we're building SCCs for the call graph, we actually want to
build persistent nodes that stick around and can be reasoned about
later. We'd also like the ability to walk the SCC graph in more complex
ways than just the traditional postorder traversal of the current CGSCC
walk. That means that in addition to being persistent, the SCCs need to
be connected into a useful graph structure.
However, we still want the SCCs to be formed lazily where possible.
These constraints are quite hard to satisfy with the SCC iterator. Also,
using that would bypass our ability to actually add data to the nodes of
the call graph to facilite implementing the Tarjan walk. So I've
re-implemented things in a more direct and embedded way. This
immediately makes it easy to get the persistence and connectivity
correct, and it also allows leveraging the existing nodes to simplify
the algorithm. I've worked somewhat to make this implementation more
closely follow the traditional paper's nomenclature and strategy,
although it is still a bit obtuse because it isn't recursive, using
an explicit stack and a tail call instead, and it is interruptable,
resuming each time we need another SCC.
The other tricky bit here, and what actually took almost all the time
and trials and errors I spent building this, is exactly *what* graph
structure to build for the SCCs. The naive thing to build is the call
graph in its newly acyclic form. I wrote about 4 versions of this which
did precisely this. Inevitably, when I experimented with them across
various use cases, they became incredibly awkward. It was all
implementable, but it felt like a complete wrong fit. Square peg, round
hole. There were two overriding aspects that pushed me in a different
direction:
1) We want to discover the SCC graph in a postorder fashion. That means
the root node will be the *last* node we find. Using the call-SCC DAG
as the graph structure of the SCCs results in an orphaned graph until
we discover a root.
2) We will eventually want to walk the SCC graph in parallel, exploring
distinct sub-graphs independently, and synchronizing at merge points.
This again is not helped by the call-SCC DAG structure.
The structure which, quite surprisingly, ended up being completely
natural to use is the *inverse* of the call-SCC DAG. We add the leaf
SCCs to the graph as "roots", and have edges to the caller SCCs. Once
I switched to building this structure, everything just fell into place
elegantly.
Aside from general cleanups (there are FIXMEs and too few comments
overall) that are still needed, the other missing piece of this is
support for iterating across levels of the SCC graph. These will become
useful for implementing #2, but they aren't an immediate priority.
Once SCCs are in good shape, I'll be working on adding mutation support
for incremental updates and adding the pass manager that this analysis
enables.
llvm-svn: 206581
2014-04-18 18:50:32 +08:00
|
|
|
;
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
; CHECK-LABEL: RefSCC with 1 call SCCs:
|
|
|
|
; CHECK-NEXT: SCC with 1 functions:
|
|
|
|
; CHECK-NEXT: f9
|
[LCG] Add support for building persistent and connected SCCs to the
LazyCallGraph. This is the start of the whole point of this different
abstraction, but it is just the initial bits. Here is a run-down of
what's going on here. I'm planning to incorporate some (or all) of this
into comments going forward, hopefully with better editing and wording.
=]
The crux of the problem with the traditional way of building SCCs is
that they are ephemeral. The new pass manager however really needs the
ability to associate analysis passes and results of analysis passes with
SCCs in order to expose these analysis passes to the SCC passes. Making
this work is kind-of the whole point of the new pass manager. =]
So, when we're building SCCs for the call graph, we actually want to
build persistent nodes that stick around and can be reasoned about
later. We'd also like the ability to walk the SCC graph in more complex
ways than just the traditional postorder traversal of the current CGSCC
walk. That means that in addition to being persistent, the SCCs need to
be connected into a useful graph structure.
However, we still want the SCCs to be formed lazily where possible.
These constraints are quite hard to satisfy with the SCC iterator. Also,
using that would bypass our ability to actually add data to the nodes of
the call graph to facilite implementing the Tarjan walk. So I've
re-implemented things in a more direct and embedded way. This
immediately makes it easy to get the persistence and connectivity
correct, and it also allows leveraging the existing nodes to simplify
the algorithm. I've worked somewhat to make this implementation more
closely follow the traditional paper's nomenclature and strategy,
although it is still a bit obtuse because it isn't recursive, using
an explicit stack and a tail call instead, and it is interruptable,
resuming each time we need another SCC.
The other tricky bit here, and what actually took almost all the time
and trials and errors I spent building this, is exactly *what* graph
structure to build for the SCCs. The naive thing to build is the call
graph in its newly acyclic form. I wrote about 4 versions of this which
did precisely this. Inevitably, when I experimented with them across
various use cases, they became incredibly awkward. It was all
implementable, but it felt like a complete wrong fit. Square peg, round
hole. There were two overriding aspects that pushed me in a different
direction:
1) We want to discover the SCC graph in a postorder fashion. That means
the root node will be the *last* node we find. Using the call-SCC DAG
as the graph structure of the SCCs results in an orphaned graph until
we discover a root.
2) We will eventually want to walk the SCC graph in parallel, exploring
distinct sub-graphs independently, and synchronizing at merge points.
This again is not helped by the call-SCC DAG structure.
The structure which, quite surprisingly, ended up being completely
natural to use is the *inverse* of the call-SCC DAG. We add the leaf
SCCs to the graph as "roots", and have edges to the caller SCCs. Once
I switched to building this structure, everything just fell into place
elegantly.
Aside from general cleanups (there are FIXMEs and too few comments
overall) that are still needed, the other missing piece of this is
support for iterating across levels of the SCC graph. These will become
useful for implementing #2, but they aren't an immediate priority.
Once SCCs are in good shape, I'll be working on adding mutation support
for incremental updates and adding the pass manager that this analysis
enables.
llvm-svn: 206581
2014-04-18 18:50:32 +08:00
|
|
|
;
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
; CHECK-LABEL: RefSCC with 1 call SCCs:
|
|
|
|
; CHECK-NEXT: SCC with 1 functions:
|
|
|
|
; CHECK-NEXT: f8
|
[LCG] Add support for building persistent and connected SCCs to the
LazyCallGraph. This is the start of the whole point of this different
abstraction, but it is just the initial bits. Here is a run-down of
what's going on here. I'm planning to incorporate some (or all) of this
into comments going forward, hopefully with better editing and wording.
=]
The crux of the problem with the traditional way of building SCCs is
that they are ephemeral. The new pass manager however really needs the
ability to associate analysis passes and results of analysis passes with
SCCs in order to expose these analysis passes to the SCC passes. Making
this work is kind-of the whole point of the new pass manager. =]
So, when we're building SCCs for the call graph, we actually want to
build persistent nodes that stick around and can be reasoned about
later. We'd also like the ability to walk the SCC graph in more complex
ways than just the traditional postorder traversal of the current CGSCC
walk. That means that in addition to being persistent, the SCCs need to
be connected into a useful graph structure.
However, we still want the SCCs to be formed lazily where possible.
These constraints are quite hard to satisfy with the SCC iterator. Also,
using that would bypass our ability to actually add data to the nodes of
the call graph to facilite implementing the Tarjan walk. So I've
re-implemented things in a more direct and embedded way. This
immediately makes it easy to get the persistence and connectivity
correct, and it also allows leveraging the existing nodes to simplify
the algorithm. I've worked somewhat to make this implementation more
closely follow the traditional paper's nomenclature and strategy,
although it is still a bit obtuse because it isn't recursive, using
an explicit stack and a tail call instead, and it is interruptable,
resuming each time we need another SCC.
The other tricky bit here, and what actually took almost all the time
and trials and errors I spent building this, is exactly *what* graph
structure to build for the SCCs. The naive thing to build is the call
graph in its newly acyclic form. I wrote about 4 versions of this which
did precisely this. Inevitably, when I experimented with them across
various use cases, they became incredibly awkward. It was all
implementable, but it felt like a complete wrong fit. Square peg, round
hole. There were two overriding aspects that pushed me in a different
direction:
1) We want to discover the SCC graph in a postorder fashion. That means
the root node will be the *last* node we find. Using the call-SCC DAG
as the graph structure of the SCCs results in an orphaned graph until
we discover a root.
2) We will eventually want to walk the SCC graph in parallel, exploring
distinct sub-graphs independently, and synchronizing at merge points.
This again is not helped by the call-SCC DAG structure.
The structure which, quite surprisingly, ended up being completely
natural to use is the *inverse* of the call-SCC DAG. We add the leaf
SCCs to the graph as "roots", and have edges to the caller SCCs. Once
I switched to building this structure, everything just fell into place
elegantly.
Aside from general cleanups (there are FIXMEs and too few comments
overall) that are still needed, the other missing piece of this is
support for iterating across levels of the SCC graph. These will become
useful for implementing #2, but they aren't an immediate priority.
Once SCCs are in good shape, I'll be working on adding mutation support
for incremental updates and adding the pass manager that this analysis
enables.
llvm-svn: 206581
2014-04-18 18:50:32 +08:00
|
|
|
;
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
; CHECK-LABEL: RefSCC with 1 call SCCs:
|
|
|
|
; CHECK-NEXT: SCC with 1 functions:
|
|
|
|
; CHECK-NEXT: test1
|
[LCG] Add support for building persistent and connected SCCs to the
LazyCallGraph. This is the start of the whole point of this different
abstraction, but it is just the initial bits. Here is a run-down of
what's going on here. I'm planning to incorporate some (or all) of this
into comments going forward, hopefully with better editing and wording.
=]
The crux of the problem with the traditional way of building SCCs is
that they are ephemeral. The new pass manager however really needs the
ability to associate analysis passes and results of analysis passes with
SCCs in order to expose these analysis passes to the SCC passes. Making
this work is kind-of the whole point of the new pass manager. =]
So, when we're building SCCs for the call graph, we actually want to
build persistent nodes that stick around and can be reasoned about
later. We'd also like the ability to walk the SCC graph in more complex
ways than just the traditional postorder traversal of the current CGSCC
walk. That means that in addition to being persistent, the SCCs need to
be connected into a useful graph structure.
However, we still want the SCCs to be formed lazily where possible.
These constraints are quite hard to satisfy with the SCC iterator. Also,
using that would bypass our ability to actually add data to the nodes of
the call graph to facilite implementing the Tarjan walk. So I've
re-implemented things in a more direct and embedded way. This
immediately makes it easy to get the persistence and connectivity
correct, and it also allows leveraging the existing nodes to simplify
the algorithm. I've worked somewhat to make this implementation more
closely follow the traditional paper's nomenclature and strategy,
although it is still a bit obtuse because it isn't recursive, using
an explicit stack and a tail call instead, and it is interruptable,
resuming each time we need another SCC.
The other tricky bit here, and what actually took almost all the time
and trials and errors I spent building this, is exactly *what* graph
structure to build for the SCCs. The naive thing to build is the call
graph in its newly acyclic form. I wrote about 4 versions of this which
did precisely this. Inevitably, when I experimented with them across
various use cases, they became incredibly awkward. It was all
implementable, but it felt like a complete wrong fit. Square peg, round
hole. There were two overriding aspects that pushed me in a different
direction:
1) We want to discover the SCC graph in a postorder fashion. That means
the root node will be the *last* node we find. Using the call-SCC DAG
as the graph structure of the SCCs results in an orphaned graph until
we discover a root.
2) We will eventually want to walk the SCC graph in parallel, exploring
distinct sub-graphs independently, and synchronizing at merge points.
This again is not helped by the call-SCC DAG structure.
The structure which, quite surprisingly, ended up being completely
natural to use is the *inverse* of the call-SCC DAG. We add the leaf
SCCs to the graph as "roots", and have edges to the caller SCCs. Once
I switched to building this structure, everything just fell into place
elegantly.
Aside from general cleanups (there are FIXMEs and too few comments
overall) that are still needed, the other missing piece of this is
support for iterating across levels of the SCC graph. These will become
useful for implementing #2, but they aren't an immediate priority.
Once SCCs are in good shape, I'll be working on adding mutation support
for incremental updates and adding the pass manager that this analysis
enables.
llvm-svn: 206581
2014-04-18 18:50:32 +08:00
|
|
|
;
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
; CHECK-LABEL: RefSCC with 1 call SCCs:
|
|
|
|
; CHECK-NEXT: SCC with 1 functions:
|
|
|
|
; CHECK-NEXT: f
|
[LCG] Add support for building persistent and connected SCCs to the
LazyCallGraph. This is the start of the whole point of this different
abstraction, but it is just the initial bits. Here is a run-down of
what's going on here. I'm planning to incorporate some (or all) of this
into comments going forward, hopefully with better editing and wording.
=]
The crux of the problem with the traditional way of building SCCs is
that they are ephemeral. The new pass manager however really needs the
ability to associate analysis passes and results of analysis passes with
SCCs in order to expose these analysis passes to the SCC passes. Making
this work is kind-of the whole point of the new pass manager. =]
So, when we're building SCCs for the call graph, we actually want to
build persistent nodes that stick around and can be reasoned about
later. We'd also like the ability to walk the SCC graph in more complex
ways than just the traditional postorder traversal of the current CGSCC
walk. That means that in addition to being persistent, the SCCs need to
be connected into a useful graph structure.
However, we still want the SCCs to be formed lazily where possible.
These constraints are quite hard to satisfy with the SCC iterator. Also,
using that would bypass our ability to actually add data to the nodes of
the call graph to facilite implementing the Tarjan walk. So I've
re-implemented things in a more direct and embedded way. This
immediately makes it easy to get the persistence and connectivity
correct, and it also allows leveraging the existing nodes to simplify
the algorithm. I've worked somewhat to make this implementation more
closely follow the traditional paper's nomenclature and strategy,
although it is still a bit obtuse because it isn't recursive, using
an explicit stack and a tail call instead, and it is interruptable,
resuming each time we need another SCC.
The other tricky bit here, and what actually took almost all the time
and trials and errors I spent building this, is exactly *what* graph
structure to build for the SCCs. The naive thing to build is the call
graph in its newly acyclic form. I wrote about 4 versions of this which
did precisely this. Inevitably, when I experimented with them across
various use cases, they became incredibly awkward. It was all
implementable, but it felt like a complete wrong fit. Square peg, round
hole. There were two overriding aspects that pushed me in a different
direction:
1) We want to discover the SCC graph in a postorder fashion. That means
the root node will be the *last* node we find. Using the call-SCC DAG
as the graph structure of the SCCs results in an orphaned graph until
we discover a root.
2) We will eventually want to walk the SCC graph in parallel, exploring
distinct sub-graphs independently, and synchronizing at merge points.
This again is not helped by the call-SCC DAG structure.
The structure which, quite surprisingly, ended up being completely
natural to use is the *inverse* of the call-SCC DAG. We add the leaf
SCCs to the graph as "roots", and have edges to the caller SCCs. Once
I switched to building this structure, everything just fell into place
elegantly.
Aside from general cleanups (there are FIXMEs and too few comments
overall) that are still needed, the other missing piece of this is
support for iterating across levels of the SCC graph. These will become
useful for implementing #2, but they aren't an immediate priority.
Once SCCs are in good shape, I'll be working on adding mutation support
for incremental updates and adding the pass manager that this analysis
enables.
llvm-svn: 206581
2014-04-18 18:50:32 +08:00
|
|
|
;
|
[LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
2016-02-17 08:18:16 +08:00
|
|
|
; CHECK-LABEL: RefSCC with 1 call SCCs:
|
|
|
|
; CHECK-NEXT: SCC with 1 functions:
|
|
|
|
; CHECK-NEXT: test0
|