llvm-project/polly/lib/Transform/ScheduleOptimizer.cpp

528 lines
19 KiB
C++
Raw Normal View History

//===- Schedule.cpp - Calculate an optimized schedule ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass the isl to calculate a schedule that is optimized for parallelism
// and tileablility. The algorithm used in isl is an optimized version of the
// algorithm described in following paper:
//
// U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan.
// A Practical Automatic Polyhedral Parallelizer and Locality Optimizer.
// In Proceedings of the 2008 ACM SIGPLAN Conference On Programming Language
// Design and Implementation, PLDI 08, pages 101113. ACM, 2008.
//===----------------------------------------------------------------------===//
#include "polly/ScheduleOptimizer.h"
#include "polly/CodeGen/CodeGeneration.h"
#include "polly/DependenceInfo.h"
#include "polly/LinkAllPasses.h"
#include "polly/Options.h"
#include "polly/ScopInfo.h"
#include "polly/Support/GICHelper.h"
#include "llvm/Support/Debug.h"
#include "isl/aff.h"
#include "isl/band.h"
#include "isl/constraint.h"
#include "isl/map.h"
#include "isl/options.h"
#include "isl/printer.h"
#include "isl/schedule.h"
#include "isl/schedule_node.h"
#include "isl/space.h"
#include "isl/union_map.h"
#include "isl/union_set.h"
using namespace llvm;
using namespace polly;
#define DEBUG_TYPE "polly-opt-isl"
namespace polly {
bool DisablePollyTiling;
}
static cl::opt<bool, true>
DisableTiling("polly-no-tiling",
cl::desc("Disable tiling in the scheduler"),
cl::location(polly::DisablePollyTiling), cl::init(false),
cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<std::string>
OptimizeDeps("polly-opt-optimize-only",
cl::desc("Only a certain kind of dependences (all/raw)"),
cl::Hidden, cl::init("all"), cl::ZeroOrMore,
cl::cat(PollyCategory));
static cl::opt<std::string>
SimplifyDeps("polly-opt-simplify-deps",
cl::desc("Dependences should be simplified (yes/no)"),
cl::Hidden, cl::init("yes"), cl::ZeroOrMore,
cl::cat(PollyCategory));
static cl::opt<int> MaxConstantTerm(
"polly-opt-max-constant-term",
cl::desc("The maximal constant term allowed (-1 is unlimited)"), cl::Hidden,
cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> MaxCoefficient(
"polly-opt-max-coefficient",
cl::desc("The maximal coefficient allowed (-1 is unlimited)"), cl::Hidden,
cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<std::string> FusionStrategy(
"polly-opt-fusion", cl::desc("The fusion strategy to choose (min/max)"),
cl::Hidden, cl::init("min"), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<std::string>
MaximizeBandDepth("polly-opt-maximize-bands",
cl::desc("Maximize the band depth (yes/no)"), cl::Hidden,
cl::init("yes"), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> DefaultTileSize(
"polly-default-tile-size",
cl::desc("The default tile size (if not enough were provided by"
" --polly-tile-sizes)"),
cl::Hidden, cl::init(32), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::list<int> TileSizes("polly-tile-sizes",
cl::desc("A tile size"
" for each loop dimension, filled with"
" --polly-default-tile-size"),
cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
cl::cat(PollyCategory));
namespace {
class IslScheduleOptimizer : public ScopPass {
public:
static char ID;
2014-04-16 15:33:47 +08:00
explicit IslScheduleOptimizer() : ScopPass(ID) { LastSchedule = nullptr; }
~IslScheduleOptimizer() { isl_schedule_free(LastSchedule); }
bool runOnScop(Scop &S) override;
void printScop(raw_ostream &OS, Scop &S) const override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
private:
isl_schedule *LastSchedule;
/// @brief Decide if the @p NewSchedule is profitable for @p S.
///
/// @param S The SCoP we optimize.
/// @param NewSchedule The new schedule we computed.
///
/// @return True, if we believe @p NewSchedule is an improvement for @p S.
bool isProfitableSchedule(Scop &S, __isl_keep isl_union_map *NewSchedule);
/// @brief Create a map that pre-vectorizes one scheduling dimension.
///
/// getPrevectorMap creates a map that maps each input dimension to the same
/// output dimension, except for the dimension DimToVectorize.
/// DimToVectorize is strip mined by 'VectorWidth' and the newly created
/// point loop of DimToVectorize is moved to the innermost level.
///
/// Example (DimToVectorize=0, ScheduleDimensions=2, VectorWidth=4):
///
/// | Before transformation
/// |
/// | A[i,j] -> [i,j]
/// |
/// | for (i = 0; i < 128; i++)
/// | for (j = 0; j < 128; j++)
/// | A(i,j);
///
/// Prevector map:
/// [i,j] -> [it,j,ip] : it % 4 = 0 and it <= ip <= it + 3 and i = ip
///
/// | After transformation:
/// |
/// | A[i,j] -> [it,j,ip] : it % 4 = 0 and it <= ip <= it + 3 and i = ip
/// |
/// | for (it = 0; it < 128; it+=4)
/// | for (j = 0; j < 128; j++)
/// | for (ip = max(0,it); ip < min(128, it + 3); ip++)
/// | A(ip,j);
///
/// The goal of this transformation is to create a trivially vectorizable
/// loop. This means a parallel loop at the innermost level that has a
/// constant number of iterations corresponding to the target vector width.
///
/// This transformation creates a loop at the innermost level. The loop has
/// a constant number of iterations, if the number of loop iterations at
/// DimToVectorize can be divided by VectorWidth. The default VectorWidth is
/// currently constant and not yet target specific. This function does not
/// reason about parallelism.
static __isl_give isl_map *getPrevectorMap(isl_ctx *ctx, int DimToVectorize,
int ScheduleDimensions,
int VectorWidth = 4);
/// @brief Apply additional optimizations on the bands in the schedule tree.
///
/// We are looking for an innermost band node and apply the following
/// transformations:
///
/// - Tile the band
/// - if the band is tileable
/// - if the band has more than one loop dimension
///
/// - Prevectorize the point loop of the tile
/// - if vectorization is enabled
///
/// @param Node The schedule node to (possibly) optimize.
/// @param User A pointer to forward some use information (currently unused).
static isl_schedule_node *optimizeBand(isl_schedule_node *Node, void *User);
/// @brief Apply post-scheduling transformations.
///
/// This function applies a set of additional local transformations on the
/// schedule tree as it computed by the isl scheduler. Local transformations
/// applied include:
///
/// - Tiling
/// - Prevectorization
///
/// @param Schedule The schedule object post-transformations will be applied
/// on.
/// @returns The transformed schedule.
static __isl_give isl_schedule *
addPostTransforms(__isl_take isl_schedule *Schedule);
using llvm::Pass::doFinalization;
virtual bool doFinalization() override {
isl_schedule_free(LastSchedule);
2014-04-16 15:33:47 +08:00
LastSchedule = nullptr;
return true;
}
};
}
char IslScheduleOptimizer::ID = 0;
__isl_give isl_map *
IslScheduleOptimizer::getPrevectorMap(isl_ctx *ctx, int DimToVectorize,
int ScheduleDimensions, int VectorWidth) {
isl_space *Space;
isl_local_space *LocalSpace, *LocalSpaceRange;
isl_set *Modulo;
isl_map *TilingMap;
isl_constraint *c;
isl_aff *Aff;
int PointDimension; /* ip */
int TileDimension; /* it */
isl_val *VectorWidthMP;
assert(0 <= DimToVectorize && DimToVectorize < ScheduleDimensions);
Space = isl_space_alloc(ctx, 0, ScheduleDimensions, ScheduleDimensions + 1);
TilingMap = isl_map_universe(isl_space_copy(Space));
LocalSpace = isl_local_space_from_space(Space);
PointDimension = ScheduleDimensions;
TileDimension = DimToVectorize;
// Create an identity map for everything except DimToVectorize and map
// DimToVectorize to the point loop at the innermost dimension.
for (int i = 0; i < ScheduleDimensions; i++)
if (i == DimToVectorize)
TilingMap =
isl_map_equate(TilingMap, isl_dim_in, i, isl_dim_out, PointDimension);
else
TilingMap = isl_map_equate(TilingMap, isl_dim_in, i, isl_dim_out, i);
// it % 'VectorWidth' = 0
LocalSpaceRange = isl_local_space_range(isl_local_space_copy(LocalSpace));
Aff = isl_aff_zero_on_domain(LocalSpaceRange);
Aff = isl_aff_set_constant_si(Aff, VectorWidth);
Aff = isl_aff_set_coefficient_si(Aff, isl_dim_in, TileDimension, 1);
VectorWidthMP = isl_val_int_from_si(ctx, VectorWidth);
Aff = isl_aff_mod_val(Aff, VectorWidthMP);
Modulo = isl_pw_aff_zero_set(isl_pw_aff_from_aff(Aff));
TilingMap = isl_map_intersect_range(TilingMap, Modulo);
// it <= ip
TilingMap = isl_map_order_le(TilingMap, isl_dim_out, TileDimension,
isl_dim_out, PointDimension);
// ip <= it + ('VectorWidth' - 1)
c = isl_inequality_alloc(LocalSpace);
isl_constraint_set_coefficient_si(c, isl_dim_out, TileDimension, 1);
isl_constraint_set_coefficient_si(c, isl_dim_out, PointDimension, -1);
isl_constraint_set_constant_si(c, VectorWidth - 1);
TilingMap = isl_map_add_constraint(TilingMap, c);
return TilingMap;
}
isl_schedule_node *IslScheduleOptimizer::optimizeBand(isl_schedule_node *Node,
void *User) {
if (isl_schedule_node_get_type(Node) != isl_schedule_node_band)
return Node;
if (isl_schedule_node_n_children(Node) != 1)
return Node;
if (!isl_schedule_node_band_get_permutable(Node))
return Node;
auto Space = isl_schedule_node_band_get_space(Node);
auto Dims = isl_space_dim(Space, isl_dim_set);
if (Dims <= 1) {
isl_space_free(Space);
return Node;
}
auto Child = isl_schedule_node_get_child(Node, 0);
auto Type = isl_schedule_node_get_type(Child);
isl_schedule_node_free(Child);
if (Type != isl_schedule_node_leaf) {
isl_space_free(Space);
return Node;
}
auto Sizes = isl_multi_val_zero(Space);
auto Ctx = isl_schedule_node_get_ctx(Node);
for (unsigned i = 0; i < Dims; i++) {
auto tileSize = TileSizes.size() > i ? TileSizes[i] : DefaultTileSize;
Sizes = isl_multi_val_set_val(Sizes, i, isl_val_int_from_si(Ctx, tileSize));
}
isl_schedule_node *Res;
if (DisableTiling) {
isl_multi_val_free(Sizes);
Res = Node;
} else {
Res = isl_schedule_node_band_tile(Node, Sizes);
}
if (PollyVectorizerChoice == VECTORIZER_NONE)
return Res;
Child = isl_schedule_node_get_child(Res, 0);
auto ChildSchedule = isl_schedule_node_band_get_partial_schedule(Child);
for (int i = Dims - 1; i >= 0; i--) {
if (isl_schedule_node_band_member_get_coincident(Child, i)) {
auto TileMap = IslScheduleOptimizer::getPrevectorMap(Ctx, i, Dims);
auto TileUMap = isl_union_map_from_map(TileMap);
auto ChildSchedule2 = isl_union_map_apply_range(
isl_union_map_from_multi_union_pw_aff(ChildSchedule), TileUMap);
ChildSchedule = isl_multi_union_pw_aff_from_union_map(ChildSchedule2);
break;
}
}
isl_schedule_node_free(Res);
Res = isl_schedule_node_delete(Child);
Res = isl_schedule_node_insert_partial_schedule(Res, ChildSchedule);
return Res;
}
__isl_give isl_schedule *
IslScheduleOptimizer::addPostTransforms(__isl_take isl_schedule *Schedule) {
isl_schedule_node *Root = isl_schedule_get_root(Schedule);
isl_schedule_free(Schedule);
Root = isl_schedule_node_map_descendant_bottom_up(
Root, IslScheduleOptimizer::optimizeBand, NULL);
auto S = isl_schedule_node_get_schedule(Root);
isl_schedule_node_free(Root);
return S;
}
bool IslScheduleOptimizer::isProfitableSchedule(
Scop &S, __isl_keep isl_union_map *NewSchedule) {
// To understand if the schedule has been optimized we check if the schedule
// has changed at all.
// TODO: We can improve this by tracking if any necessarily beneficial
// transformations have been performed. This can e.g. be tiling, loop
// interchange, or ...) We can track this either at the place where the
// transformation has been performed or, in case of automatic ILP based
// optimizations, by comparing (yet to be defined) performance metrics
// before/after the scheduling optimizer
// (e.g., #stride-one accesses)
isl_union_map *OldSchedule = S.getSchedule();
bool changed = !isl_union_map_is_equal(OldSchedule, NewSchedule);
isl_union_map_free(OldSchedule);
return changed;
}
bool IslScheduleOptimizer::runOnScop(Scop &S) {
// Skip empty SCoPs but still allow code generation as it will delete the
// loops present but not needed.
if (S.getSize() == 0) {
S.markAsOptimized();
return false;
}
const Dependences &D = getAnalysis<DependenceInfo>().getDependences();
if (!D.hasValidDependences())
return false;
isl_schedule_free(LastSchedule);
2014-04-16 15:33:47 +08:00
LastSchedule = nullptr;
// Build input data.
int ValidityKinds =
Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
int ProximityKinds;
if (OptimizeDeps == "all")
ProximityKinds =
Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
else if (OptimizeDeps == "raw")
ProximityKinds = Dependences::TYPE_RAW;
else {
errs() << "Do not know how to optimize for '" << OptimizeDeps << "'"
<< " Falling back to optimizing all dependences.\n";
ProximityKinds =
Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
}
isl_union_set *Domain = S.getDomains();
if (!Domain)
return false;
isl_union_map *Validity = D.getDependences(ValidityKinds);
isl_union_map *Proximity = D.getDependences(ProximityKinds);
// Simplify the dependences by removing the constraints introduced by the
// domains. This can speed up the scheduling time significantly, as large
// constant coefficients will be removed from the dependences. The
// introduction of some additional dependences reduces the possible
// transformations, but in most cases, such transformation do not seem to be
// interesting anyway. In some cases this option may stop the scheduler to
// find any schedule.
if (SimplifyDeps == "yes") {
Validity = isl_union_map_gist_domain(Validity, isl_union_set_copy(Domain));
Validity = isl_union_map_gist_range(Validity, isl_union_set_copy(Domain));
Proximity =
isl_union_map_gist_domain(Proximity, isl_union_set_copy(Domain));
Proximity = isl_union_map_gist_range(Proximity, isl_union_set_copy(Domain));
} else if (SimplifyDeps != "no") {
errs() << "warning: Option -polly-opt-simplify-deps should either be 'yes' "
"or 'no'. Falling back to default: 'yes'\n";
}
DEBUG(dbgs() << "\n\nCompute schedule from: ");
DEBUG(dbgs() << "Domain := " << stringFromIslObj(Domain) << ";\n");
DEBUG(dbgs() << "Proximity := " << stringFromIslObj(Proximity) << ";\n");
DEBUG(dbgs() << "Validity := " << stringFromIslObj(Validity) << ";\n");
unsigned IslSerializeSCCs;
if (FusionStrategy == "max") {
IslSerializeSCCs = 0;
} else if (FusionStrategy == "min") {
IslSerializeSCCs = 1;
} else {
errs() << "warning: Unknown fusion strategy. Falling back to maximal "
"fusion.\n";
IslSerializeSCCs = 0;
}
int IslMaximizeBands;
if (MaximizeBandDepth == "yes") {
IslMaximizeBands = 1;
} else if (MaximizeBandDepth == "no") {
IslMaximizeBands = 0;
} else {
errs() << "warning: Option -polly-opt-maximize-bands should either be 'yes'"
" or 'no'. Falling back to default: 'yes'\n";
IslMaximizeBands = 1;
}
isl_options_set_schedule_serialize_sccs(S.getIslCtx(), IslSerializeSCCs);
isl_options_set_schedule_maximize_band_depth(S.getIslCtx(), IslMaximizeBands);
isl_options_set_schedule_max_constant_term(S.getIslCtx(), MaxConstantTerm);
isl_options_set_schedule_max_coefficient(S.getIslCtx(), MaxCoefficient);
isl_options_set_tile_scale_tile_loops(S.getIslCtx(), 0);
isl_options_set_on_error(S.getIslCtx(), ISL_ON_ERROR_CONTINUE);
isl_schedule_constraints *ScheduleConstraints;
ScheduleConstraints = isl_schedule_constraints_on_domain(Domain);
ScheduleConstraints =
isl_schedule_constraints_set_proximity(ScheduleConstraints, Proximity);
ScheduleConstraints = isl_schedule_constraints_set_validity(
ScheduleConstraints, isl_union_map_copy(Validity));
ScheduleConstraints =
isl_schedule_constraints_set_coincidence(ScheduleConstraints, Validity);
isl_schedule *Schedule;
Schedule = isl_schedule_constraints_compute_schedule(ScheduleConstraints);
isl_options_set_on_error(S.getIslCtx(), ISL_ON_ERROR_ABORT);
// In cases the scheduler is not able to optimize the code, we just do not
// touch the schedule.
if (!Schedule)
return false;
DEBUG({
auto *P = isl_printer_to_str(S.getIslCtx());
P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK);
P = isl_printer_print_schedule(P, Schedule);
dbgs() << "NewScheduleTree: \n" << isl_printer_get_str(P) << "\n";
isl_printer_free(P);
});
isl_schedule *NewSchedule = addPostTransforms(Schedule);
isl_union_map *NewScheduleMap = isl_schedule_get_map(NewSchedule);
if (!isProfitableSchedule(S, NewScheduleMap)) {
isl_union_map_free(NewScheduleMap);
isl_schedule_free(NewSchedule);
return false;
}
S.setScheduleTree(NewSchedule);
S.markAsOptimized();
isl_union_map_free(NewScheduleMap);
return false;
}
void IslScheduleOptimizer::printScop(raw_ostream &OS, Scop &) const {
isl_printer *p;
char *ScheduleStr;
OS << "Calculated schedule:\n";
if (!LastSchedule) {
OS << "n/a\n";
return;
}
p = isl_printer_to_str(isl_schedule_get_ctx(LastSchedule));
p = isl_printer_print_schedule(p, LastSchedule);
ScheduleStr = isl_printer_get_str(p);
isl_printer_free(p);
OS << ScheduleStr << "\n";
}
void IslScheduleOptimizer::getAnalysisUsage(AnalysisUsage &AU) const {
ScopPass::getAnalysisUsage(AU);
AU.addRequired<DependenceInfo>();
}
Pass *polly::createIslScheduleOptimizerPass() {
return new IslScheduleOptimizer();
}
INITIALIZE_PASS_BEGIN(IslScheduleOptimizer, "polly-opt-isl",
"Polly - Optimize schedule of SCoP", false, false);
INITIALIZE_PASS_DEPENDENCY(DependenceInfo);
INITIALIZE_PASS_DEPENDENCY(ScopInfo);
INITIALIZE_PASS_END(IslScheduleOptimizer, "polly-opt-isl",
"Polly - Optimize schedule of SCoP", false, false)