llvm-project/mlir/test/Dialect/SCF/for-loop-canonicalization.mlir

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

352 lines
11 KiB
MLIR
Raw Normal View History

// RUN: mlir-opt %s -for-loop-canonicalization -split-input-file | FileCheck %s
// CHECK-LABEL: func @scf_for_canonicalize_min
// CHECK: %[[C2:.*]] = arith.constant 2 : i64
// CHECK: scf.for
// CHECK: memref.store %[[C2]], %{{.*}}[] : memref<i64>
func @scf_for_canonicalize_min(%A : memref<i64>) {
%c0 = arith.constant 0 : index
%c2 = arith.constant 2 : index
%c4 = arith.constant 4 : index
scf.for %i = %c0 to %c4 step %c2 {
%1 = affine.min affine_map<(d0, d1)[] -> (2, d1 - d0)> (%i, %c4)
%2 = arith.index_cast %1: index to i64
memref.store %2, %A[]: memref<i64>
}
return
}
// -----
// CHECK-LABEL: func @scf_for_canonicalize_max
// CHECK: %[[Cneg2:.*]] = arith.constant -2 : i64
// CHECK: scf.for
// CHECK: memref.store %[[Cneg2]], %{{.*}}[] : memref<i64>
func @scf_for_canonicalize_max(%A : memref<i64>) {
%c0 = arith.constant 0 : index
%c2 = arith.constant 2 : index
%c4 = arith.constant 4 : index
scf.for %i = %c0 to %c4 step %c2 {
%1 = affine.max affine_map<(d0, d1)[] -> (-2, -(d1 - d0))> (%i, %c4)
%2 = arith.index_cast %1: index to i64
memref.store %2, %A[]: memref<i64>
}
return
}
// -----
// CHECK-LABEL: func @scf_for_max_not_canonicalizable
// CHECK: scf.for
// CHECK: affine.max
// CHECK: arith.index_cast
func @scf_for_max_not_canonicalizable(%A : memref<i64>) {
%c0 = arith.constant 0 : index
%c2 = arith.constant 2 : index
%c3 = arith.constant 3 : index
%c4 = arith.constant 4 : index
scf.for %i = %c0 to %c4 step %c2 {
%1 = affine.max affine_map<(d0, d1)[] -> (-2, -(d1 - d0))> (%i, %c3)
%2 = arith.index_cast %1: index to i64
memref.store %2, %A[]: memref<i64>
}
return
}
// -----
// CHECK-LABEL: func @scf_for_loop_nest_canonicalize_min
// CHECK: %[[C5:.*]] = arith.constant 5 : i64
// CHECK: scf.for
// CHECK: scf.for
// CHECK: memref.store %[[C5]], %{{.*}}[] : memref<i64>
func @scf_for_loop_nest_canonicalize_min(%A : memref<i64>) {
%c0 = arith.constant 0 : index
%c2 = arith.constant 2 : index
%c3 = arith.constant 3 : index
%c4 = arith.constant 4 : index
%c6 = arith.constant 6 : index
scf.for %i = %c0 to %c4 step %c2 {
scf.for %j = %c0 to %c6 step %c3 {
%1 = affine.min affine_map<(d0, d1, d2, d3)[] -> (5, d1 + d3 - d0 - d2)> (%i, %c4, %j, %c6)
%2 = arith.index_cast %1: index to i64
memref.store %2, %A[]: memref<i64>
}
}
return
}
// -----
// CHECK-LABEL: func @scf_for_not_canonicalizable_1
// CHECK: scf.for
// CHECK: affine.min
// CHECK: arith.index_cast
func @scf_for_not_canonicalizable_1(%A : memref<i64>) {
// This should not canonicalize because: 4 - %i may take the value 1 < 2.
%c1 = arith.constant 1 : index
%c2 = arith.constant 2 : index
%c4 = arith.constant 4 : index
scf.for %i = %c1 to %c4 step %c2 {
%1 = affine.min affine_map<(d0)[s0] -> (2, s0 - d0)> (%i)[%c4]
%2 = arith.index_cast %1: index to i64
memref.store %2, %A[]: memref<i64>
}
return
}
// -----
// CHECK-LABEL: func @scf_for_canonicalize_partly
// CHECK: scf.for
// CHECK: affine.apply
// CHECK: arith.index_cast
func @scf_for_canonicalize_partly(%A : memref<i64>) {
// This should canonicalize only partly: 256 - %i <= 256.
%c1 = arith.constant 1 : index
%c16 = arith.constant 16 : index
%c256 = arith.constant 256 : index
scf.for %i = %c1 to %c256 step %c16 {
%1 = affine.min affine_map<(d0) -> (256, 256 - d0)> (%i)
%2 = arith.index_cast %1: index to i64
memref.store %2, %A[]: memref<i64>
}
return
}
// -----
// CHECK-LABEL: func @scf_for_not_canonicalizable_2
// CHECK: scf.for
// CHECK: affine.min
// CHECK: arith.index_cast
func @scf_for_not_canonicalizable_2(%A : memref<i64>, %step : index) {
// This example should simplify but affine_map is currently missing
// semi-affine canonicalizations: `((s0 * 42 - 1) floordiv s0) * s0`
// should evaluate to 41 * s0.
// Note that this may require positivity assumptions on `s0`.
// Revisit when support is added.
%c0 = arith.constant 0 : index
%ub = affine.apply affine_map<(d0) -> (42 * d0)> (%step)
scf.for %i = %c0 to %ub step %step {
%1 = affine.min affine_map<(d0, d1, d2) -> (d0, d1 - d2)> (%step, %ub, %i)
%2 = arith.index_cast %1: index to i64
memref.store %2, %A[]: memref<i64>
}
return
}
// -----
// CHECK-LABEL: func @scf_for_not_canonicalizable_3
// CHECK: scf.for
// CHECK: affine.min
// CHECK: arith.index_cast
func @scf_for_not_canonicalizable_3(%A : memref<i64>, %step : index) {
// This example should simplify but affine_map is currently missing
// semi-affine canonicalizations: `-(((s0 * s0 - 1) floordiv s0) * s0)`
// should evaluate to (s0 - 1) * s0.
// Note that this may require positivity assumptions on `s0`.
// Revisit when support is added.
%c0 = arith.constant 0 : index
%ub2 = affine.apply affine_map<(d0)[s0] -> (s0 * d0)> (%step)[%step]
scf.for %i = %c0 to %ub2 step %step {
%1 = affine.min affine_map<(d0, d1, d2) -> (d0, d2 - d1)> (%step, %i, %ub2)
%2 = arith.index_cast %1: index to i64
memref.store %2, %A[]: memref<i64>
}
return
}
// -----
// CHECK-LABEL: func @scf_for_invalid_loop
// CHECK: scf.for
// CHECK: affine.min
// CHECK: arith.index_cast
func @scf_for_invalid_loop(%A : memref<i64>, %step : index) {
// This is an invalid loop. It should not be touched by the canonicalization
// pattern.
%c1 = arith.constant 1 : index
%c7 = arith.constant 7 : index
%c256 = arith.constant 256 : index
scf.for %i = %c256 to %c1 step %c1 {
%1 = affine.min affine_map<(d0)[s0] -> (s0 + d0, 0)> (%i)[%c7]
%2 = arith.index_cast %1: index to i64
memref.store %2, %A[]: memref<i64>
}
return
}
// -----
// CHECK-LABEL: func @scf_parallel_canonicalize_min_1
// CHECK: %[[C2:.*]] = arith.constant 2 : i64
// CHECK: scf.parallel
// CHECK-NEXT: memref.store %[[C2]], %{{.*}}[] : memref<i64>
func @scf_parallel_canonicalize_min_1(%A : memref<i64>) {
%c0 = arith.constant 0 : index
%c2 = arith.constant 2 : index
%c4 = arith.constant 4 : index
scf.parallel (%i) = (%c0) to (%c4) step (%c2) {
%1 = affine.min affine_map<(d0, d1)[] -> (2, d1 - d0)> (%i, %c4)
%2 = arith.index_cast %1: index to i64
memref.store %2, %A[]: memref<i64>
}
return
}
// -----
// CHECK-LABEL: func @scf_parallel_canonicalize_min_2
// CHECK: %[[C2:.*]] = arith.constant 2 : i64
// CHECK: scf.parallel
// CHECK-NEXT: memref.store %[[C2]], %{{.*}}[] : memref<i64>
func @scf_parallel_canonicalize_min_2(%A : memref<i64>) {
%c1 = arith.constant 1 : index
%c2 = arith.constant 2 : index
%c7 = arith.constant 7 : index
scf.parallel (%i) = (%c1) to (%c7) step (%c2) {
%1 = affine.min affine_map<(d0)[s0] -> (2, s0 - d0)> (%i)[%c7]
%2 = arith.index_cast %1: index to i64
memref.store %2, %A[]: memref<i64>
}
return
}
// -----
// CHECK-LABEL: func @tensor_dim_of_iter_arg(
// CHECK-SAME: %[[t:.*]]: tensor<?x?xf32>
// CHECK: scf.for
// CHECK: tensor.dim %[[t]]
func @tensor_dim_of_iter_arg(%t : tensor<?x?xf32>) -> index {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%c10 = arith.constant 10 : index
%0, %1 = scf.for %i = %c0 to %c10 step %c1 iter_args(%arg0 = %t, %arg1 = %c0)
-> (tensor<?x?xf32>, index) {
%dim = tensor.dim %arg0, %c0 : tensor<?x?xf32>
scf.yield %arg0, %dim : tensor<?x?xf32>, index
}
return %1 : index
}
// -----
// CHECK-LABEL: func @tensor_dim_of_iter_arg_insertslice(
// CHECK-SAME: %[[t:.*]]: tensor<?x?xf32>,
// CHECK: scf.for
// CHECK: tensor.dim %[[t]]
func @tensor_dim_of_iter_arg_insertslice(%t : tensor<?x?xf32>,
%t2 : tensor<10x10xf32>) -> index {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%c10 = arith.constant 10 : index
%0, %1 = scf.for %i = %c0 to %c10 step %c1 iter_args(%arg0 = %t, %arg1 = %c0)
-> (tensor<?x?xf32>, index) {
%dim = tensor.dim %arg0, %c0 : tensor<?x?xf32>
%2 = tensor.insert_slice %t2 into %arg0[0, 0] [10, 10] [1, 1]
: tensor<10x10xf32> into tensor<?x?xf32>
%3 = tensor.insert_slice %t2 into %2[1, 1] [10, 10] [1, 1]
: tensor<10x10xf32> into tensor<?x?xf32>
scf.yield %3, %dim : tensor<?x?xf32>, index
}
return %1 : index
}
// -----
// CHECK-LABEL: func @tensor_dim_of_iter_arg_nested_for(
// CHECK-SAME: %[[t:.*]]: tensor<?x?xf32>,
// CHECK: scf.for
// CHECK: scf.for
// CHECK: tensor.dim %[[t]]
func @tensor_dim_of_iter_arg_nested_for(%t : tensor<?x?xf32>,
%t2 : tensor<10x10xf32>) -> index {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%c10 = arith.constant 10 : index
%0, %1 = scf.for %i = %c0 to %c10 step %c1 iter_args(%arg0 = %t, %arg1 = %c0)
-> (tensor<?x?xf32>, index) {
%2, %3 = scf.for %j = %c0 to %c10 step %c1 iter_args(%arg2 = %arg0, %arg3 = %arg1)
-> (tensor<?x?xf32>, index) {
%dim = tensor.dim %arg2, %c0 : tensor<?x?xf32>
%4 = tensor.insert_slice %t2 into %arg2[0, 0] [10, 10] [1, 1]
: tensor<10x10xf32> into tensor<?x?xf32>
scf.yield %4, %dim : tensor<?x?xf32>, index
}
scf.yield %2, %3 : tensor<?x?xf32>, index
}
return %1 : index
}
// -----
// A test case that should not canonicalize because the loop is not shape
// conserving.
// CHECK-LABEL: func @tensor_dim_of_iter_arg_no_canonicalize(
// CHECK-SAME: %[[t:.*]]: tensor<?x?xf32>,
// CHECK: scf.for {{.*}} iter_args(%[[arg0:.*]] = %[[t]]
// CHECK: tensor.dim %[[arg0]]
func @tensor_dim_of_iter_arg_no_canonicalize(%t : tensor<?x?xf32>,
%t2 : tensor<?x?xf32>) -> index {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%c10 = arith.constant 10 : index
%0, %1 = scf.for %i = %c0 to %c10 step %c1 iter_args(%arg0 = %t, %arg1 = %c0)
-> (tensor<?x?xf32>, index) {
%dim = tensor.dim %arg0, %c0 : tensor<?x?xf32>
scf.yield %t2, %dim : tensor<?x?xf32>, index
}
return %1 : index
}
// -----
// CHECK-LABEL: func @tensor_dim_of_loop_result(
// CHECK-SAME: %[[t:.*]]: tensor<?x?xf32>
// CHECK: tensor.dim %[[t]]
func @tensor_dim_of_loop_result(%t : tensor<?x?xf32>) -> index {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%c10 = arith.constant 10 : index
%0 = scf.for %i = %c0 to %c10 step %c1 iter_args(%arg0 = %t)
-> (tensor<?x?xf32>) {
scf.yield %arg0 : tensor<?x?xf32>
}
%dim = tensor.dim %0, %c0 : tensor<?x?xf32>
return %dim : index
}
// -----
// CHECK-LABEL: func @tensor_dim_of_loop_result_no_canonicalize(
// CHECK: %[[loop:.*]]:2 = scf.for
// CHECK: tensor.dim %[[loop]]#1
func @tensor_dim_of_loop_result_no_canonicalize(%t : tensor<?x?xf32>,
%u : tensor<?x?xf32>) -> index {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%c10 = arith.constant 10 : index
%0, %1 = scf.for %i = %c0 to %c10 step %c1 iter_args(%arg0 = %t, %arg1 = %u)
-> (tensor<?x?xf32>, tensor<?x?xf32>) {
scf.yield %arg0, %u : tensor<?x?xf32>, tensor<?x?xf32>
}
%dim = tensor.dim %1, %c0 : tensor<?x?xf32>
return %dim : index
}