llvm-project/clang/lib/CodeGen/CGBuiltin.cpp

3803 lines
155 KiB
C++
Raw Normal View History

//===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit Builtin calls as LLVM code.
//
//===----------------------------------------------------------------------===//
#include "CodeGenFunction.h"
#include "CGObjCRuntime.h"
#include "CodeGenModule.h"
#include "TargetInfo.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/Basic/TargetBuiltins.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Intrinsics.h"
using namespace clang;
using namespace CodeGen;
using namespace llvm;
/// getBuiltinLibFunction - Given a builtin id for a function like
/// "__builtin_fabsf", return a Function* for "fabsf".
llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
unsigned BuiltinID) {
assert(Context.BuiltinInfo.isLibFunction(BuiltinID));
// Get the name, skip over the __builtin_ prefix (if necessary).
StringRef Name;
GlobalDecl D(FD);
// If the builtin has been declared explicitly with an assembler label,
// use the mangled name. This differs from the plain label on platforms
// that prefix labels.
if (FD->hasAttr<AsmLabelAttr>())
Name = getMangledName(D);
else
Name = Context.BuiltinInfo.GetName(BuiltinID) + 10;
llvm::FunctionType *Ty =
cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
}
/// Emit the conversions required to turn the given value into an
/// integer of the given size.
static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
QualType T, llvm::IntegerType *IntType) {
V = CGF.EmitToMemory(V, T);
if (V->getType()->isPointerTy())
return CGF.Builder.CreatePtrToInt(V, IntType);
assert(V->getType() == IntType);
return V;
}
static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
QualType T, llvm::Type *ResultType) {
V = CGF.EmitFromMemory(V, T);
if (ResultType->isPointerTy())
return CGF.Builder.CreateIntToPtr(V, ResultType);
assert(V->getType() == ResultType);
return V;
}
/// Utility to insert an atomic instruction based on Instrinsic::ID
/// and the expression node.
static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
llvm::AtomicRMWInst::BinOp Kind,
const CallExpr *E) {
QualType T = E->getType();
assert(E->getArg(0)->getType()->isPointerType());
assert(CGF.getContext().hasSameUnqualifiedType(T,
E->getArg(0)->getType()->getPointeeType()));
assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
llvm::IntegerType *IntType =
llvm::IntegerType::get(CGF.getLLVMContext(),
CGF.getContext().getTypeSize(T));
llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
llvm::Value *Args[2];
Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
Args[1] = CGF.EmitScalarExpr(E->getArg(1));
llvm::Type *ValueType = Args[1]->getType();
Args[1] = EmitToInt(CGF, Args[1], T, IntType);
llvm::Value *Result =
CGF.Builder.CreateAtomicRMW(Kind, Args[0], Args[1],
llvm::SequentiallyConsistent);
Result = EmitFromInt(CGF, Result, T, ValueType);
return RValue::get(Result);
}
/// Utility to insert an atomic instruction based Instrinsic::ID and
/// the expression node, where the return value is the result of the
/// operation.
static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
llvm::AtomicRMWInst::BinOp Kind,
const CallExpr *E,
Instruction::BinaryOps Op) {
QualType T = E->getType();
assert(E->getArg(0)->getType()->isPointerType());
assert(CGF.getContext().hasSameUnqualifiedType(T,
E->getArg(0)->getType()->getPointeeType()));
assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
llvm::IntegerType *IntType =
llvm::IntegerType::get(CGF.getLLVMContext(),
CGF.getContext().getTypeSize(T));
llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
llvm::Value *Args[2];
Args[1] = CGF.EmitScalarExpr(E->getArg(1));
llvm::Type *ValueType = Args[1]->getType();
Args[1] = EmitToInt(CGF, Args[1], T, IntType);
Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
llvm::Value *Result =
CGF.Builder.CreateAtomicRMW(Kind, Args[0], Args[1],
llvm::SequentiallyConsistent);
Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
Result = EmitFromInt(CGF, Result, T, ValueType);
return RValue::get(Result);
}
/// EmitFAbs - Emit a call to fabs/fabsf/fabsl, depending on the type of ValTy,
/// which must be a scalar floating point type.
static Value *EmitFAbs(CodeGenFunction &CGF, Value *V, QualType ValTy) {
const BuiltinType *ValTyP = ValTy->getAs<BuiltinType>();
assert(ValTyP && "isn't scalar fp type!");
StringRef FnName;
switch (ValTyP->getKind()) {
default: llvm_unreachable("Isn't a scalar fp type!");
case BuiltinType::Float: FnName = "fabsf"; break;
case BuiltinType::Double: FnName = "fabs"; break;
case BuiltinType::LongDouble: FnName = "fabsl"; break;
}
// The prototype is something that takes and returns whatever V's type is.
llvm::FunctionType *FT = llvm::FunctionType::get(V->getType(), V->getType(),
false);
llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(FT, FnName);
return CGF.EmitNounwindRuntimeCall(Fn, V, "abs");
}
static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *Fn,
const CallExpr *E, llvm::Value *calleeValue) {
return CGF.EmitCall(E->getCallee()->getType(), calleeValue,
ReturnValueSlot(), E->arg_begin(), E->arg_end(), Fn);
}
/// \brief Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.*
/// depending on IntrinsicID.
///
/// \arg CGF The current codegen function.
/// \arg IntrinsicID The ID for the Intrinsic we wish to generate.
/// \arg X The first argument to the llvm.*.with.overflow.*.
/// \arg Y The second argument to the llvm.*.with.overflow.*.
/// \arg Carry The carry returned by the llvm.*.with.overflow.*.
/// \returns The result (i.e. sum/product) returned by the intrinsic.
static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF,
const llvm::Intrinsic::ID IntrinsicID,
llvm::Value *X, llvm::Value *Y,
llvm::Value *&Carry) {
// Make sure we have integers of the same width.
assert(X->getType() == Y->getType() &&
"Arguments must be the same type. (Did you forget to make sure both "
"arguments have the same integer width?)");
llvm::Value *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType());
llvm::Value *Tmp = CGF.Builder.CreateCall2(Callee, X, Y);
Carry = CGF.Builder.CreateExtractValue(Tmp, 1);
return CGF.Builder.CreateExtractValue(Tmp, 0);
}
RValue CodeGenFunction::EmitBuiltinExpr(const FunctionDecl *FD,
unsigned BuiltinID, const CallExpr *E) {
// See if we can constant fold this builtin. If so, don't emit it at all.
Expr::EvalResult Result;
if (E->EvaluateAsRValue(Result, CGM.getContext()) &&
!Result.hasSideEffects()) {
if (Result.Val.isInt())
return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
Result.Val.getInt()));
2010-10-02 07:43:16 +08:00
if (Result.Val.isFloat())
return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
Result.Val.getFloat()));
}
switch (BuiltinID) {
default: break; // Handle intrinsics and libm functions below.
case Builtin::BI__builtin___CFStringMakeConstantString:
case Builtin::BI__builtin___NSStringMakeConstantString:
return RValue::get(CGM.EmitConstantExpr(E, E->getType(), 0));
case Builtin::BI__builtin_stdarg_start:
case Builtin::BI__builtin_va_start:
case Builtin::BI__builtin_va_end: {
Value *ArgValue = EmitVAListRef(E->getArg(0));
llvm::Type *DestType = Int8PtrTy;
if (ArgValue->getType() != DestType)
ArgValue = Builder.CreateBitCast(ArgValue, DestType,
2009-07-26 17:28:40 +08:00
ArgValue->getName().data());
Intrinsic::ID inst = (BuiltinID == Builtin::BI__builtin_va_end) ?
Intrinsic::vaend : Intrinsic::vastart;
return RValue::get(Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue));
}
case Builtin::BI__builtin_va_copy: {
Value *DstPtr = EmitVAListRef(E->getArg(0));
Value *SrcPtr = EmitVAListRef(E->getArg(1));
llvm::Type *Type = Int8PtrTy;
DstPtr = Builder.CreateBitCast(DstPtr, Type);
SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
return RValue::get(Builder.CreateCall2(CGM.getIntrinsic(Intrinsic::vacopy),
DstPtr, SrcPtr));
}
case Builtin::BI__builtin_abs:
case Builtin::BI__builtin_labs:
case Builtin::BI__builtin_llabs: {
Value *ArgValue = EmitScalarExpr(E->getArg(0));
Value *NegOp = Builder.CreateNeg(ArgValue, "neg");
Value *CmpResult =
Builder.CreateICmpSGE(ArgValue,
llvm::Constant::getNullValue(ArgValue->getType()),
"abscond");
Value *Result =
2007-11-21 03:05:17 +08:00
Builder.CreateSelect(CmpResult, ArgValue, NegOp, "abs");
2007-11-21 03:05:17 +08:00
return RValue::get(Result);
}
case Builtin::BI__builtin_conj:
case Builtin::BI__builtin_conjf:
case Builtin::BI__builtin_conjl: {
ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
Value *Real = ComplexVal.first;
Value *Imag = ComplexVal.second;
Value *Zero =
Imag->getType()->isFPOrFPVectorTy()
? llvm::ConstantFP::getZeroValueForNegation(Imag->getType())
: llvm::Constant::getNullValue(Imag->getType());
Imag = Builder.CreateFSub(Zero, Imag, "sub");
return RValue::getComplex(std::make_pair(Real, Imag));
}
case Builtin::BI__builtin_creal:
case Builtin::BI__builtin_crealf:
case Builtin::BI__builtin_creall:
case Builtin::BIcreal:
case Builtin::BIcrealf:
case Builtin::BIcreall: {
ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
return RValue::get(ComplexVal.first);
}
case Builtin::BI__builtin_cimag:
case Builtin::BI__builtin_cimagf:
case Builtin::BI__builtin_cimagl:
case Builtin::BIcimag:
case Builtin::BIcimagf:
case Builtin::BIcimagl: {
ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
return RValue::get(ComplexVal.second);
}
case Builtin::BI__builtin_ctzs:
case Builtin::BI__builtin_ctz:
case Builtin::BI__builtin_ctzl:
case Builtin::BI__builtin_ctzll: {
Value *ArgValue = EmitScalarExpr(E->getArg(0));
llvm::Type *ArgType = ArgValue->getType();
Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
llvm::Type *ResultType = ConvertType(E->getType());
Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
Value *Result = Builder.CreateCall2(F, ArgValue, ZeroUndef);
if (Result->getType() != ResultType)
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
"cast");
return RValue::get(Result);
}
case Builtin::BI__builtin_clzs:
case Builtin::BI__builtin_clz:
case Builtin::BI__builtin_clzl:
case Builtin::BI__builtin_clzll: {
Value *ArgValue = EmitScalarExpr(E->getArg(0));
llvm::Type *ArgType = ArgValue->getType();
Value *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
llvm::Type *ResultType = ConvertType(E->getType());
Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
Value *Result = Builder.CreateCall2(F, ArgValue, ZeroUndef);
if (Result->getType() != ResultType)
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
"cast");
return RValue::get(Result);
}
case Builtin::BI__builtin_ffs:
case Builtin::BI__builtin_ffsl:
case Builtin::BI__builtin_ffsll: {
// ffs(x) -> x ? cttz(x) + 1 : 0
Value *ArgValue = EmitScalarExpr(E->getArg(0));
llvm::Type *ArgType = ArgValue->getType();
Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
llvm::Type *ResultType = ConvertType(E->getType());
Value *Tmp = Builder.CreateAdd(Builder.CreateCall2(F, ArgValue,
Builder.getTrue()),
2011-09-28 05:06:10 +08:00
llvm::ConstantInt::get(ArgType, 1));
Value *Zero = llvm::Constant::getNullValue(ArgType);
Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
if (Result->getType() != ResultType)
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
"cast");
return RValue::get(Result);
}
case Builtin::BI__builtin_parity:
case Builtin::BI__builtin_parityl:
case Builtin::BI__builtin_parityll: {
// parity(x) -> ctpop(x) & 1
Value *ArgValue = EmitScalarExpr(E->getArg(0));
llvm::Type *ArgType = ArgValue->getType();
Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
llvm::Type *ResultType = ConvertType(E->getType());
2011-09-28 05:06:10 +08:00
Value *Tmp = Builder.CreateCall(F, ArgValue);
Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
if (Result->getType() != ResultType)
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
"cast");
return RValue::get(Result);
}
case Builtin::BI__builtin_popcount:
case Builtin::BI__builtin_popcountl:
case Builtin::BI__builtin_popcountll: {
Value *ArgValue = EmitScalarExpr(E->getArg(0));
llvm::Type *ArgType = ArgValue->getType();
Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
llvm::Type *ResultType = ConvertType(E->getType());
2011-09-28 05:06:10 +08:00
Value *Result = Builder.CreateCall(F, ArgValue);
if (Result->getType() != ResultType)
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
"cast");
return RValue::get(Result);
}
case Builtin::BI__builtin_expect: {
Value *ArgValue = EmitScalarExpr(E->getArg(0));
llvm::Type *ArgType = ArgValue->getType();
Value *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
Value *Result = Builder.CreateCall2(FnExpect, ArgValue, ExpectedValue,
"expval");
return RValue::get(Result);
}
case Builtin::BI__builtin_bswap16:
case Builtin::BI__builtin_bswap32:
case Builtin::BI__builtin_bswap64: {
2007-12-13 15:34:23 +08:00
Value *ArgValue = EmitScalarExpr(E->getArg(0));
llvm::Type *ArgType = ArgValue->getType();
Value *F = CGM.getIntrinsic(Intrinsic::bswap, ArgType);
2011-09-28 05:06:10 +08:00
return RValue::get(Builder.CreateCall(F, ArgValue));
}
case Builtin::BI__builtin_object_size: {
// We rely on constant folding to deal with expressions with side effects.
assert(!E->getArg(0)->HasSideEffects(getContext()) &&
"should have been constant folded");
// We pass this builtin onto the optimizer so that it can
// figure out the object size in more complex cases.
llvm::Type *ResType = ConvertType(E->getType());
// LLVM only supports 0 and 2, make sure that we pass along that
// as a boolean.
Value *Ty = EmitScalarExpr(E->getArg(1));
ConstantInt *CI = dyn_cast<ConstantInt>(Ty);
assert(CI);
uint64_t val = CI->getZExtValue();
CI = ConstantInt::get(Builder.getInt1Ty(), (val & 0x2) >> 1);
// FIXME: Get right address space.
llvm::Type *Tys[] = { ResType, Builder.getInt8PtrTy(0) };
Value *F = CGM.getIntrinsic(Intrinsic::objectsize, Tys);
return RValue::get(Builder.CreateCall2(F, EmitScalarExpr(E->getArg(0)),CI));
}
case Builtin::BI__builtin_prefetch: {
Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
// FIXME: Technically these constants should of type 'int', yes?
RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
llvm::ConstantInt::get(Int32Ty, 0);
Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
llvm::ConstantInt::get(Int32Ty, 3);
Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
Value *F = CGM.getIntrinsic(Intrinsic::prefetch);
return RValue::get(Builder.CreateCall4(F, Address, RW, Locality, Data));
}
case Builtin::BI__builtin_readcyclecounter: {
Value *F = CGM.getIntrinsic(Intrinsic::readcyclecounter);
return RValue::get(Builder.CreateCall(F));
}
case Builtin::BI__builtin_trap: {
Value *F = CGM.getIntrinsic(Intrinsic::trap);
return RValue::get(Builder.CreateCall(F));
}
case Builtin::BI__debugbreak: {
Value *F = CGM.getIntrinsic(Intrinsic::debugtrap);
return RValue::get(Builder.CreateCall(F));
}
case Builtin::BI__builtin_unreachable: {
if (SanOpts->Unreachable)
EmitCheck(Builder.getFalse(), "builtin_unreachable",
EmitCheckSourceLocation(E->getExprLoc()),
ArrayRef<llvm::Value *>(), CRK_Unrecoverable);
else
Builder.CreateUnreachable();
// We do need to preserve an insertion point.
EmitBlock(createBasicBlock("unreachable.cont"));
return RValue::get(0);
}
case Builtin::BI__builtin_powi:
case Builtin::BI__builtin_powif:
case Builtin::BI__builtin_powil: {
Value *Base = EmitScalarExpr(E->getArg(0));
Value *Exponent = EmitScalarExpr(E->getArg(1));
llvm::Type *ArgType = Base->getType();
Value *F = CGM.getIntrinsic(Intrinsic::powi, ArgType);
2011-09-28 05:06:10 +08:00
return RValue::get(Builder.CreateCall2(F, Base, Exponent));
}
case Builtin::BI__builtin_isgreater:
case Builtin::BI__builtin_isgreaterequal:
case Builtin::BI__builtin_isless:
case Builtin::BI__builtin_islessequal:
case Builtin::BI__builtin_islessgreater:
case Builtin::BI__builtin_isunordered: {
// Ordered comparisons: we know the arguments to these are matching scalar
// floating point values.
Value *LHS = EmitScalarExpr(E->getArg(0));
Value *RHS = EmitScalarExpr(E->getArg(1));
switch (BuiltinID) {
default: llvm_unreachable("Unknown ordered comparison");
case Builtin::BI__builtin_isgreater:
LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
break;
case Builtin::BI__builtin_isgreaterequal:
LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
break;
case Builtin::BI__builtin_isless:
LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
break;
case Builtin::BI__builtin_islessequal:
LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
break;
case Builtin::BI__builtin_islessgreater:
LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
break;
case Builtin::BI__builtin_isunordered:
LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
break;
}
// ZExt bool to int type.
2011-09-28 05:06:10 +08:00
return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType())));
}
case Builtin::BI__builtin_isnan: {
Value *V = EmitScalarExpr(E->getArg(0));
V = Builder.CreateFCmpUNO(V, V, "cmp");
2011-09-28 05:06:10 +08:00
return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
}
case Builtin::BI__builtin_isinf: {
// isinf(x) --> fabs(x) == infinity
Value *V = EmitScalarExpr(E->getArg(0));
V = EmitFAbs(*this, V, E->getArg(0)->getType());
V = Builder.CreateFCmpOEQ(V, ConstantFP::getInfinity(V->getType()),"isinf");
2011-09-28 05:06:10 +08:00
return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
}
// TODO: BI__builtin_isinf_sign
// isinf_sign(x) -> isinf(x) ? (signbit(x) ? -1 : 1) : 0
case Builtin::BI__builtin_isnormal: {
// isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
Value *V = EmitScalarExpr(E->getArg(0));
Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
Value *Abs = EmitFAbs(*this, V, E->getArg(0)->getType());
Value *IsLessThanInf =
Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
APFloat Smallest = APFloat::getSmallestNormalized(
getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
Value *IsNormal =
Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
"isnormal");
V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
V = Builder.CreateAnd(V, IsNormal, "and");
return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
}
case Builtin::BI__builtin_isfinite: {
// isfinite(x) --> x == x && fabs(x) != infinity;
Value *V = EmitScalarExpr(E->getArg(0));
Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
Value *Abs = EmitFAbs(*this, V, E->getArg(0)->getType());
Value *IsNotInf =
Builder.CreateFCmpUNE(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
V = Builder.CreateAnd(Eq, IsNotInf, "and");
return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
}
case Builtin::BI__builtin_fpclassify: {
Value *V = EmitScalarExpr(E->getArg(5));
llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
// Create Result
BasicBlock *Begin = Builder.GetInsertBlock();
BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
Builder.SetInsertPoint(End);
PHINode *Result =
Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
"fpclassify_result");
// if (V==0) return FP_ZERO
Builder.SetInsertPoint(Begin);
Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
"iszero");
Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
Builder.CreateCondBr(IsZero, End, NotZero);
Result->addIncoming(ZeroLiteral, Begin);
// if (V != V) return FP_NAN
Builder.SetInsertPoint(NotZero);
Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
Value *NanLiteral = EmitScalarExpr(E->getArg(0));
BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
Builder.CreateCondBr(IsNan, End, NotNan);
Result->addIncoming(NanLiteral, NotZero);
// if (fabs(V) == infinity) return FP_INFINITY
Builder.SetInsertPoint(NotNan);
Value *VAbs = EmitFAbs(*this, V, E->getArg(5)->getType());
Value *IsInf =
Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
"isinf");
Value *InfLiteral = EmitScalarExpr(E->getArg(1));
BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
Builder.CreateCondBr(IsInf, End, NotInf);
Result->addIncoming(InfLiteral, NotNan);
// if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
Builder.SetInsertPoint(NotInf);
APFloat Smallest = APFloat::getSmallestNormalized(
getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
Value *IsNormal =
Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
"isnormal");
Value *NormalResult =
Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
EmitScalarExpr(E->getArg(3)));
Builder.CreateBr(End);
Result->addIncoming(NormalResult, NotInf);
// return Result
Builder.SetInsertPoint(End);
return RValue::get(Result);
}
case Builtin::BIalloca:
case Builtin::BI__builtin_alloca: {
Value *Size = EmitScalarExpr(E->getArg(0));
2011-09-28 05:06:10 +08:00
return RValue::get(Builder.CreateAlloca(Builder.getInt8Ty(), Size));
}
case Builtin::BIbzero:
case Builtin::BI__builtin_bzero: {
std::pair<llvm::Value*, unsigned> Dest =
EmitPointerWithAlignment(E->getArg(0));
Value *SizeVal = EmitScalarExpr(E->getArg(1));
Builder.CreateMemSet(Dest.first, Builder.getInt8(0), SizeVal,
Dest.second, false);
return RValue::get(Dest.first);
}
case Builtin::BImemcpy:
case Builtin::BI__builtin_memcpy: {
std::pair<llvm::Value*, unsigned> Dest =
EmitPointerWithAlignment(E->getArg(0));
std::pair<llvm::Value*, unsigned> Src =
EmitPointerWithAlignment(E->getArg(1));
Value *SizeVal = EmitScalarExpr(E->getArg(2));
unsigned Align = std::min(Dest.second, Src.second);
Builder.CreateMemCpy(Dest.first, Src.first, SizeVal, Align, false);
return RValue::get(Dest.first);
}
case Builtin::BI__builtin___memcpy_chk: {
// fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2.
llvm::APSInt Size, DstSize;
if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
!E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
break;
if (Size.ugt(DstSize))
break;
std::pair<llvm::Value*, unsigned> Dest =
EmitPointerWithAlignment(E->getArg(0));
std::pair<llvm::Value*, unsigned> Src =
EmitPointerWithAlignment(E->getArg(1));
Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
unsigned Align = std::min(Dest.second, Src.second);
Builder.CreateMemCpy(Dest.first, Src.first, SizeVal, Align, false);
return RValue::get(Dest.first);
}
case Builtin::BI__builtin_objc_memmove_collectable: {
Value *Address = EmitScalarExpr(E->getArg(0));
Value *SrcAddr = EmitScalarExpr(E->getArg(1));
Value *SizeVal = EmitScalarExpr(E->getArg(2));
CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
Address, SrcAddr, SizeVal);
return RValue::get(Address);
}
case Builtin::BI__builtin___memmove_chk: {
// fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2.
llvm::APSInt Size, DstSize;
if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
!E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
break;
if (Size.ugt(DstSize))
break;
std::pair<llvm::Value*, unsigned> Dest =
EmitPointerWithAlignment(E->getArg(0));
std::pair<llvm::Value*, unsigned> Src =
EmitPointerWithAlignment(E->getArg(1));
Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
unsigned Align = std::min(Dest.second, Src.second);
Builder.CreateMemMove(Dest.first, Src.first, SizeVal, Align, false);
return RValue::get(Dest.first);
}
case Builtin::BImemmove:
case Builtin::BI__builtin_memmove: {
std::pair<llvm::Value*, unsigned> Dest =
EmitPointerWithAlignment(E->getArg(0));
std::pair<llvm::Value*, unsigned> Src =
EmitPointerWithAlignment(E->getArg(1));
Value *SizeVal = EmitScalarExpr(E->getArg(2));
unsigned Align = std::min(Dest.second, Src.second);
Builder.CreateMemMove(Dest.first, Src.first, SizeVal, Align, false);
return RValue::get(Dest.first);
}
case Builtin::BImemset:
case Builtin::BI__builtin_memset: {
std::pair<llvm::Value*, unsigned> Dest =
EmitPointerWithAlignment(E->getArg(0));
Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
Builder.getInt8Ty());
Value *SizeVal = EmitScalarExpr(E->getArg(2));
Builder.CreateMemSet(Dest.first, ByteVal, SizeVal, Dest.second, false);
return RValue::get(Dest.first);
}
case Builtin::BI__builtin___memset_chk: {
// fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
llvm::APSInt Size, DstSize;
if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
!E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
break;
if (Size.ugt(DstSize))
break;
std::pair<llvm::Value*, unsigned> Dest =
EmitPointerWithAlignment(E->getArg(0));
Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
Builder.getInt8Ty());
Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
Builder.CreateMemSet(Dest.first, ByteVal, SizeVal, Dest.second, false);
return RValue::get(Dest.first);
}
case Builtin::BI__builtin_dwarf_cfa: {
// The offset in bytes from the first argument to the CFA.
//
// Why on earth is this in the frontend? Is there any reason at
// all that the backend can't reasonably determine this while
// lowering llvm.eh.dwarf.cfa()?
//
// TODO: If there's a satisfactory reason, add a target hook for
// this instead of hard-coding 0, which is correct for most targets.
int32_t Offset = 0;
Value *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
return RValue::get(Builder.CreateCall(F,
llvm::ConstantInt::get(Int32Ty, Offset)));
}
case Builtin::BI__builtin_return_address: {
Value *Depth = EmitScalarExpr(E->getArg(0));
2011-09-28 05:06:10 +08:00
Depth = Builder.CreateIntCast(Depth, Int32Ty, false);
Value *F = CGM.getIntrinsic(Intrinsic::returnaddress);
return RValue::get(Builder.CreateCall(F, Depth));
}
case Builtin::BI__builtin_frame_address: {
Value *Depth = EmitScalarExpr(E->getArg(0));
2011-09-28 05:06:10 +08:00
Depth = Builder.CreateIntCast(Depth, Int32Ty, false);
Value *F = CGM.getIntrinsic(Intrinsic::frameaddress);
return RValue::get(Builder.CreateCall(F, Depth));
}
case Builtin::BI__builtin_extract_return_addr: {
Value *Address = EmitScalarExpr(E->getArg(0));
Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
return RValue::get(Result);
}
case Builtin::BI__builtin_frob_return_addr: {
Value *Address = EmitScalarExpr(E->getArg(0));
Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
return RValue::get(Result);
}
case Builtin::BI__builtin_dwarf_sp_column: {
llvm::IntegerType *Ty
= cast<llvm::IntegerType>(ConvertType(E->getType()));
int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
if (Column == -1) {
CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
return RValue::get(llvm::UndefValue::get(Ty));
}
return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
}
case Builtin::BI__builtin_init_dwarf_reg_size_table: {
Value *Address = EmitScalarExpr(E->getArg(0));
if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
}
case Builtin::BI__builtin_eh_return: {
Value *Int = EmitScalarExpr(E->getArg(0));
Value *Ptr = EmitScalarExpr(E->getArg(1));
llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&
"LLVM's __builtin_eh_return only supports 32- and 64-bit variants");
Value *F = CGM.getIntrinsic(IntTy->getBitWidth() == 32
? Intrinsic::eh_return_i32
: Intrinsic::eh_return_i64);
Builder.CreateCall2(F, Int, Ptr);
Builder.CreateUnreachable();
// We do need to preserve an insertion point.
EmitBlock(createBasicBlock("builtin_eh_return.cont"));
return RValue::get(0);
}
case Builtin::BI__builtin_unwind_init: {
Value *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
return RValue::get(Builder.CreateCall(F));
}
case Builtin::BI__builtin_extend_pointer: {
// Extends a pointer to the size of an _Unwind_Word, which is
// uint64_t on all platforms. Generally this gets poked into a
// register and eventually used as an address, so if the
// addressing registers are wider than pointers and the platform
// doesn't implicitly ignore high-order bits when doing
// addressing, we need to make sure we zext / sext based on
// the platform's expectations.
//
// See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
// Cast the pointer to intptr_t.
Value *Ptr = EmitScalarExpr(E->getArg(0));
Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
// If that's 64 bits, we're done.
if (IntPtrTy->getBitWidth() == 64)
return RValue::get(Result);
// Otherwise, ask the codegen data what to do.
if (getTargetHooks().extendPointerWithSExt())
return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
else
return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
}
case Builtin::BI__builtin_setjmp: {
// Buffer is a void**.
Value *Buf = EmitScalarExpr(E->getArg(0));
// Store the frame pointer to the setjmp buffer.
Value *FrameAddr =
Builder.CreateCall(CGM.getIntrinsic(Intrinsic::frameaddress),
ConstantInt::get(Int32Ty, 0));
Builder.CreateStore(FrameAddr, Buf);
// Store the stack pointer to the setjmp buffer.
Value *StackAddr =
Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave));
Value *StackSaveSlot =
Builder.CreateGEP(Buf, ConstantInt::get(Int32Ty, 2));
Builder.CreateStore(StackAddr, StackSaveSlot);
// Call LLVM's EH setjmp, which is lightweight.
Value *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
return RValue::get(Builder.CreateCall(F, Buf));
}
case Builtin::BI__builtin_longjmp: {
Value *Buf = EmitScalarExpr(E->getArg(0));
Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
// Call LLVM's EH longjmp, which is lightweight.
Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
// longjmp doesn't return; mark this as unreachable.
Builder.CreateUnreachable();
// We do need to preserve an insertion point.
EmitBlock(createBasicBlock("longjmp.cont"));
return RValue::get(0);
}
case Builtin::BI__sync_fetch_and_add:
case Builtin::BI__sync_fetch_and_sub:
case Builtin::BI__sync_fetch_and_or:
case Builtin::BI__sync_fetch_and_and:
case Builtin::BI__sync_fetch_and_xor:
case Builtin::BI__sync_add_and_fetch:
case Builtin::BI__sync_sub_and_fetch:
case Builtin::BI__sync_and_and_fetch:
case Builtin::BI__sync_or_and_fetch:
case Builtin::BI__sync_xor_and_fetch:
case Builtin::BI__sync_val_compare_and_swap:
case Builtin::BI__sync_bool_compare_and_swap:
case Builtin::BI__sync_lock_test_and_set:
case Builtin::BI__sync_lock_release:
case Builtin::BI__sync_swap:
llvm_unreachable("Shouldn't make it through sema");
case Builtin::BI__sync_fetch_and_add_1:
case Builtin::BI__sync_fetch_and_add_2:
case Builtin::BI__sync_fetch_and_add_4:
case Builtin::BI__sync_fetch_and_add_8:
case Builtin::BI__sync_fetch_and_add_16:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E);
case Builtin::BI__sync_fetch_and_sub_1:
case Builtin::BI__sync_fetch_and_sub_2:
case Builtin::BI__sync_fetch_and_sub_4:
case Builtin::BI__sync_fetch_and_sub_8:
case Builtin::BI__sync_fetch_and_sub_16:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E);
case Builtin::BI__sync_fetch_and_or_1:
case Builtin::BI__sync_fetch_and_or_2:
case Builtin::BI__sync_fetch_and_or_4:
case Builtin::BI__sync_fetch_and_or_8:
case Builtin::BI__sync_fetch_and_or_16:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E);
case Builtin::BI__sync_fetch_and_and_1:
case Builtin::BI__sync_fetch_and_and_2:
case Builtin::BI__sync_fetch_and_and_4:
case Builtin::BI__sync_fetch_and_and_8:
case Builtin::BI__sync_fetch_and_and_16:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E);
case Builtin::BI__sync_fetch_and_xor_1:
case Builtin::BI__sync_fetch_and_xor_2:
case Builtin::BI__sync_fetch_and_xor_4:
case Builtin::BI__sync_fetch_and_xor_8:
case Builtin::BI__sync_fetch_and_xor_16:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E);
// Clang extensions: not overloaded yet.
case Builtin::BI__sync_fetch_and_min:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E);
case Builtin::BI__sync_fetch_and_max:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E);
case Builtin::BI__sync_fetch_and_umin:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E);
case Builtin::BI__sync_fetch_and_umax:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E);
case Builtin::BI__sync_add_and_fetch_1:
case Builtin::BI__sync_add_and_fetch_2:
case Builtin::BI__sync_add_and_fetch_4:
case Builtin::BI__sync_add_and_fetch_8:
case Builtin::BI__sync_add_and_fetch_16:
return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E,
llvm::Instruction::Add);
case Builtin::BI__sync_sub_and_fetch_1:
case Builtin::BI__sync_sub_and_fetch_2:
case Builtin::BI__sync_sub_and_fetch_4:
case Builtin::BI__sync_sub_and_fetch_8:
case Builtin::BI__sync_sub_and_fetch_16:
return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E,
llvm::Instruction::Sub);
case Builtin::BI__sync_and_and_fetch_1:
case Builtin::BI__sync_and_and_fetch_2:
case Builtin::BI__sync_and_and_fetch_4:
case Builtin::BI__sync_and_and_fetch_8:
case Builtin::BI__sync_and_and_fetch_16:
return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E,
llvm::Instruction::And);
case Builtin::BI__sync_or_and_fetch_1:
case Builtin::BI__sync_or_and_fetch_2:
case Builtin::BI__sync_or_and_fetch_4:
case Builtin::BI__sync_or_and_fetch_8:
case Builtin::BI__sync_or_and_fetch_16:
return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E,
llvm::Instruction::Or);
case Builtin::BI__sync_xor_and_fetch_1:
case Builtin::BI__sync_xor_and_fetch_2:
case Builtin::BI__sync_xor_and_fetch_4:
case Builtin::BI__sync_xor_and_fetch_8:
case Builtin::BI__sync_xor_and_fetch_16:
return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E,
llvm::Instruction::Xor);
case Builtin::BI__sync_val_compare_and_swap_1:
case Builtin::BI__sync_val_compare_and_swap_2:
case Builtin::BI__sync_val_compare_and_swap_4:
case Builtin::BI__sync_val_compare_and_swap_8:
case Builtin::BI__sync_val_compare_and_swap_16: {
QualType T = E->getType();
llvm::Value *DestPtr = EmitScalarExpr(E->getArg(0));
unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
llvm::IntegerType *IntType =
llvm::IntegerType::get(getLLVMContext(),
getContext().getTypeSize(T));
llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
Value *Args[3];
Args[0] = Builder.CreateBitCast(DestPtr, IntPtrType);
Args[1] = EmitScalarExpr(E->getArg(1));
llvm::Type *ValueType = Args[1]->getType();
Args[1] = EmitToInt(*this, Args[1], T, IntType);
Args[2] = EmitToInt(*this, EmitScalarExpr(E->getArg(2)), T, IntType);
Value *Result = Builder.CreateAtomicCmpXchg(Args[0], Args[1], Args[2],
llvm::SequentiallyConsistent);
Result = EmitFromInt(*this, Result, T, ValueType);
return RValue::get(Result);
}
case Builtin::BI__sync_bool_compare_and_swap_1:
case Builtin::BI__sync_bool_compare_and_swap_2:
case Builtin::BI__sync_bool_compare_and_swap_4:
case Builtin::BI__sync_bool_compare_and_swap_8:
case Builtin::BI__sync_bool_compare_and_swap_16: {
QualType T = E->getArg(1)->getType();
llvm::Value *DestPtr = EmitScalarExpr(E->getArg(0));
unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
llvm::IntegerType *IntType =
llvm::IntegerType::get(getLLVMContext(),
getContext().getTypeSize(T));
llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
Value *Args[3];
Args[0] = Builder.CreateBitCast(DestPtr, IntPtrType);
Args[1] = EmitToInt(*this, EmitScalarExpr(E->getArg(1)), T, IntType);
Args[2] = EmitToInt(*this, EmitScalarExpr(E->getArg(2)), T, IntType);
Value *OldVal = Args[1];
Value *PrevVal = Builder.CreateAtomicCmpXchg(Args[0], Args[1], Args[2],
llvm::SequentiallyConsistent);
Value *Result = Builder.CreateICmpEQ(PrevVal, OldVal);
// zext bool to int.
Result = Builder.CreateZExt(Result, ConvertType(E->getType()));
return RValue::get(Result);
}
case Builtin::BI__sync_swap_1:
case Builtin::BI__sync_swap_2:
case Builtin::BI__sync_swap_4:
case Builtin::BI__sync_swap_8:
case Builtin::BI__sync_swap_16:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
case Builtin::BI__sync_lock_test_and_set_1:
case Builtin::BI__sync_lock_test_and_set_2:
case Builtin::BI__sync_lock_test_and_set_4:
case Builtin::BI__sync_lock_test_and_set_8:
case Builtin::BI__sync_lock_test_and_set_16:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
case Builtin::BI__sync_lock_release_1:
case Builtin::BI__sync_lock_release_2:
case Builtin::BI__sync_lock_release_4:
case Builtin::BI__sync_lock_release_8:
case Builtin::BI__sync_lock_release_16: {
Value *Ptr = EmitScalarExpr(E->getArg(0));
QualType ElTy = E->getArg(0)->getType()->getPointeeType();
CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy);
llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
StoreSize.getQuantity() * 8);
Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
llvm::StoreInst *Store =
Builder.CreateStore(llvm::Constant::getNullValue(ITy), Ptr);
Store->setAlignment(StoreSize.getQuantity());
Store->setAtomic(llvm::Release);
return RValue::get(0);
}
case Builtin::BI__sync_synchronize: {
// We assume this is supposed to correspond to a C++0x-style
// sequentially-consistent fence (i.e. this is only usable for
// synchonization, not device I/O or anything like that). This intrinsic
// is really badly designed in the sense that in theory, there isn't
// any way to safely use it... but in practice, it mostly works
// to use it with non-atomic loads and stores to get acquire/release
// semantics.
Builder.CreateFence(llvm::SequentiallyConsistent);
return RValue::get(0);
}
case Builtin::BI__c11_atomic_is_lock_free:
case Builtin::BI__atomic_is_lock_free: {
// Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the
// __c11 builtin, ptr is 0 (indicating a properly-aligned object), since
// _Atomic(T) is always properly-aligned.
const char *LibCallName = "__atomic_is_lock_free";
CallArgList Args;
Args.add(RValue::get(EmitScalarExpr(E->getArg(0))),
getContext().getSizeType());
if (BuiltinID == Builtin::BI__atomic_is_lock_free)
Args.add(RValue::get(EmitScalarExpr(E->getArg(1))),
getContext().VoidPtrTy);
else
Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)),
getContext().VoidPtrTy);
const CGFunctionInfo &FuncInfo =
CGM.getTypes().arrangeFreeFunctionCall(E->getType(), Args,
FunctionType::ExtInfo(),
RequiredArgs::All);
llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
return EmitCall(FuncInfo, Func, ReturnValueSlot(), Args);
}
case Builtin::BI__atomic_test_and_set: {
// Look at the argument type to determine whether this is a volatile
// operation. The parameter type is always volatile.
QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
bool Volatile =
PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
Value *Ptr = EmitScalarExpr(E->getArg(0));
unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
Value *NewVal = Builder.getInt8(1);
Value *Order = EmitScalarExpr(E->getArg(1));
if (isa<llvm::ConstantInt>(Order)) {
int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
AtomicRMWInst *Result = 0;
switch (ord) {
case 0: // memory_order_relaxed
default: // invalid order
Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
Ptr, NewVal,
llvm::Monotonic);
break;
case 1: // memory_order_consume
case 2: // memory_order_acquire
Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
Ptr, NewVal,
llvm::Acquire);
break;
case 3: // memory_order_release
Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
Ptr, NewVal,
llvm::Release);
break;
case 4: // memory_order_acq_rel
Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
Ptr, NewVal,
llvm::AcquireRelease);
break;
case 5: // memory_order_seq_cst
Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
Ptr, NewVal,
llvm::SequentiallyConsistent);
break;
}
Result->setVolatile(Volatile);
return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
}
llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
llvm::BasicBlock *BBs[5] = {
createBasicBlock("monotonic", CurFn),
createBasicBlock("acquire", CurFn),
createBasicBlock("release", CurFn),
createBasicBlock("acqrel", CurFn),
createBasicBlock("seqcst", CurFn)
};
llvm::AtomicOrdering Orders[5] = {
llvm::Monotonic, llvm::Acquire, llvm::Release,
llvm::AcquireRelease, llvm::SequentiallyConsistent
};
Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
Builder.SetInsertPoint(ContBB);
PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set");
for (unsigned i = 0; i < 5; ++i) {
Builder.SetInsertPoint(BBs[i]);
AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
Ptr, NewVal, Orders[i]);
RMW->setVolatile(Volatile);
Result->addIncoming(RMW, BBs[i]);
Builder.CreateBr(ContBB);
}
SI->addCase(Builder.getInt32(0), BBs[0]);
SI->addCase(Builder.getInt32(1), BBs[1]);
SI->addCase(Builder.getInt32(2), BBs[1]);
SI->addCase(Builder.getInt32(3), BBs[2]);
SI->addCase(Builder.getInt32(4), BBs[3]);
SI->addCase(Builder.getInt32(5), BBs[4]);
Builder.SetInsertPoint(ContBB);
return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
}
case Builtin::BI__atomic_clear: {
QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
bool Volatile =
PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
Value *Ptr = EmitScalarExpr(E->getArg(0));
unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
Value *NewVal = Builder.getInt8(0);
Value *Order = EmitScalarExpr(E->getArg(1));
if (isa<llvm::ConstantInt>(Order)) {
int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
Store->setAlignment(1);
switch (ord) {
case 0: // memory_order_relaxed
default: // invalid order
Store->setOrdering(llvm::Monotonic);
break;
case 3: // memory_order_release
Store->setOrdering(llvm::Release);
break;
case 5: // memory_order_seq_cst
Store->setOrdering(llvm::SequentiallyConsistent);
break;
}
return RValue::get(0);
}
llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
llvm::BasicBlock *BBs[3] = {
createBasicBlock("monotonic", CurFn),
createBasicBlock("release", CurFn),
createBasicBlock("seqcst", CurFn)
};
llvm::AtomicOrdering Orders[3] = {
llvm::Monotonic, llvm::Release, llvm::SequentiallyConsistent
};
Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
for (unsigned i = 0; i < 3; ++i) {
Builder.SetInsertPoint(BBs[i]);
StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
Store->setAlignment(1);
Store->setOrdering(Orders[i]);
Builder.CreateBr(ContBB);
}
SI->addCase(Builder.getInt32(0), BBs[0]);
SI->addCase(Builder.getInt32(3), BBs[1]);
SI->addCase(Builder.getInt32(5), BBs[2]);
Builder.SetInsertPoint(ContBB);
return RValue::get(0);
}
case Builtin::BI__atomic_thread_fence:
case Builtin::BI__atomic_signal_fence:
case Builtin::BI__c11_atomic_thread_fence:
case Builtin::BI__c11_atomic_signal_fence: {
llvm::SynchronizationScope Scope;
if (BuiltinID == Builtin::BI__atomic_signal_fence ||
BuiltinID == Builtin::BI__c11_atomic_signal_fence)
Scope = llvm::SingleThread;
else
Scope = llvm::CrossThread;
Value *Order = EmitScalarExpr(E->getArg(0));
if (isa<llvm::ConstantInt>(Order)) {
int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
switch (ord) {
case 0: // memory_order_relaxed
default: // invalid order
break;
case 1: // memory_order_consume
case 2: // memory_order_acquire
Builder.CreateFence(llvm::Acquire, Scope);
break;
case 3: // memory_order_release
Builder.CreateFence(llvm::Release, Scope);
break;
case 4: // memory_order_acq_rel
Builder.CreateFence(llvm::AcquireRelease, Scope);
break;
case 5: // memory_order_seq_cst
Builder.CreateFence(llvm::SequentiallyConsistent, Scope);
break;
}
return RValue::get(0);
}
llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB;
AcquireBB = createBasicBlock("acquire", CurFn);
ReleaseBB = createBasicBlock("release", CurFn);
AcqRelBB = createBasicBlock("acqrel", CurFn);
SeqCstBB = createBasicBlock("seqcst", CurFn);
llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB);
Builder.SetInsertPoint(AcquireBB);
Builder.CreateFence(llvm::Acquire, Scope);
Builder.CreateBr(ContBB);
SI->addCase(Builder.getInt32(1), AcquireBB);
SI->addCase(Builder.getInt32(2), AcquireBB);
Builder.SetInsertPoint(ReleaseBB);
Builder.CreateFence(llvm::Release, Scope);
Builder.CreateBr(ContBB);
SI->addCase(Builder.getInt32(3), ReleaseBB);
Builder.SetInsertPoint(AcqRelBB);
Builder.CreateFence(llvm::AcquireRelease, Scope);
Builder.CreateBr(ContBB);
SI->addCase(Builder.getInt32(4), AcqRelBB);
Builder.SetInsertPoint(SeqCstBB);
Builder.CreateFence(llvm::SequentiallyConsistent, Scope);
Builder.CreateBr(ContBB);
SI->addCase(Builder.getInt32(5), SeqCstBB);
Builder.SetInsertPoint(ContBB);
return RValue::get(0);
}
// Library functions with special handling.
case Builtin::BIsqrt:
case Builtin::BIsqrtf:
case Builtin::BIsqrtl: {
// Transform a call to sqrt* into a @llvm.sqrt.* intrinsic call, but only
// in finite- or unsafe-math mode (the intrinsic has different semantics
// for handling negative numbers compared to the library function, so
// -fmath-errno=0 is not enough).
if (!FD->hasAttr<ConstAttr>())
break;
if (!(CGM.getCodeGenOpts().UnsafeFPMath ||
CGM.getCodeGenOpts().NoNaNsFPMath))
break;
Value *Arg0 = EmitScalarExpr(E->getArg(0));
llvm::Type *ArgType = Arg0->getType();
Value *F = CGM.getIntrinsic(Intrinsic::sqrt, ArgType);
return RValue::get(Builder.CreateCall(F, Arg0));
}
case Builtin::BIpow:
case Builtin::BIpowf:
case Builtin::BIpowl: {
// Transform a call to pow* into a @llvm.pow.* intrinsic call.
if (!FD->hasAttr<ConstAttr>())
break;
Value *Base = EmitScalarExpr(E->getArg(0));
Value *Exponent = EmitScalarExpr(E->getArg(1));
llvm::Type *ArgType = Base->getType();
Value *F = CGM.getIntrinsic(Intrinsic::pow, ArgType);
return RValue::get(Builder.CreateCall2(F, Base, Exponent));
break;
}
case Builtin::BIfma:
case Builtin::BIfmaf:
case Builtin::BIfmal:
case Builtin::BI__builtin_fma:
case Builtin::BI__builtin_fmaf:
case Builtin::BI__builtin_fmal: {
// Rewrite fma to intrinsic.
Value *FirstArg = EmitScalarExpr(E->getArg(0));
llvm::Type *ArgType = FirstArg->getType();
Value *F = CGM.getIntrinsic(Intrinsic::fma, ArgType);
return RValue::get(Builder.CreateCall3(F, FirstArg,
EmitScalarExpr(E->getArg(1)),
2011-09-28 05:06:10 +08:00
EmitScalarExpr(E->getArg(2))));
}
case Builtin::BI__builtin_signbit:
case Builtin::BI__builtin_signbitf:
case Builtin::BI__builtin_signbitl: {
LLVMContext &C = CGM.getLLVMContext();
Value *Arg = EmitScalarExpr(E->getArg(0));
llvm::Type *ArgTy = Arg->getType();
if (ArgTy->isPPC_FP128Ty())
break; // FIXME: I'm not sure what the right implementation is here.
int ArgWidth = ArgTy->getPrimitiveSizeInBits();
llvm::Type *ArgIntTy = llvm::IntegerType::get(C, ArgWidth);
Value *BCArg = Builder.CreateBitCast(Arg, ArgIntTy);
Value *ZeroCmp = llvm::Constant::getNullValue(ArgIntTy);
Value *Result = Builder.CreateICmpSLT(BCArg, ZeroCmp);
return RValue::get(Builder.CreateZExt(Result, ConvertType(E->getType())));
}
case Builtin::BI__builtin_annotation: {
llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0));
llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::annotation,
AnnVal->getType());
// Get the annotation string, go through casts. Sema requires this to be a
// non-wide string literal, potentially casted, so the cast<> is safe.
const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts();
StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString();
return RValue::get(EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc()));
}
case Builtin::BI__builtin_addcb:
case Builtin::BI__builtin_addcs:
case Builtin::BI__builtin_addc:
case Builtin::BI__builtin_addcl:
case Builtin::BI__builtin_addcll:
case Builtin::BI__builtin_subcb:
case Builtin::BI__builtin_subcs:
case Builtin::BI__builtin_subc:
case Builtin::BI__builtin_subcl:
case Builtin::BI__builtin_subcll: {
// We translate all of these builtins from expressions of the form:
// int x = ..., y = ..., carryin = ..., carryout, result;
// result = __builtin_addc(x, y, carryin, &carryout);
//
// to LLVM IR of the form:
//
// %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y)
// %tmpsum1 = extractvalue {i32, i1} %tmp1, 0
// %carry1 = extractvalue {i32, i1} %tmp1, 1
// %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1,
// i32 %carryin)
// %result = extractvalue {i32, i1} %tmp2, 0
// %carry2 = extractvalue {i32, i1} %tmp2, 1
// %tmp3 = or i1 %carry1, %carry2
// %tmp4 = zext i1 %tmp3 to i32
// store i32 %tmp4, i32* %carryout
// Scalarize our inputs.
llvm::Value *X = EmitScalarExpr(E->getArg(0));
llvm::Value *Y = EmitScalarExpr(E->getArg(1));
llvm::Value *Carryin = EmitScalarExpr(E->getArg(2));
std::pair<llvm::Value*, unsigned> CarryOutPtr =
EmitPointerWithAlignment(E->getArg(3));
// Decide if we are lowering to a uadd.with.overflow or usub.with.overflow.
llvm::Intrinsic::ID IntrinsicId;
switch (BuiltinID) {
default: llvm_unreachable("Unknown multiprecision builtin id.");
case Builtin::BI__builtin_addcb:
case Builtin::BI__builtin_addcs:
case Builtin::BI__builtin_addc:
case Builtin::BI__builtin_addcl:
case Builtin::BI__builtin_addcll:
IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
break;
case Builtin::BI__builtin_subcb:
case Builtin::BI__builtin_subcs:
case Builtin::BI__builtin_subc:
case Builtin::BI__builtin_subcl:
case Builtin::BI__builtin_subcll:
IntrinsicId = llvm::Intrinsic::usub_with_overflow;
break;
}
// Construct our resulting LLVM IR expression.
llvm::Value *Carry1;
llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId,
X, Y, Carry1);
llvm::Value *Carry2;
llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId,
Sum1, Carryin, Carry2);
llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2),
X->getType());
llvm::StoreInst *CarryOutStore = Builder.CreateStore(CarryOut,
CarryOutPtr.first);
CarryOutStore->setAlignment(CarryOutPtr.second);
return RValue::get(Sum2);
}
case Builtin::BI__builtin_uadd_overflow:
case Builtin::BI__builtin_uaddl_overflow:
case Builtin::BI__builtin_uaddll_overflow:
case Builtin::BI__builtin_usub_overflow:
case Builtin::BI__builtin_usubl_overflow:
case Builtin::BI__builtin_usubll_overflow:
case Builtin::BI__builtin_umul_overflow:
case Builtin::BI__builtin_umull_overflow:
case Builtin::BI__builtin_umulll_overflow:
case Builtin::BI__builtin_sadd_overflow:
case Builtin::BI__builtin_saddl_overflow:
case Builtin::BI__builtin_saddll_overflow:
case Builtin::BI__builtin_ssub_overflow:
case Builtin::BI__builtin_ssubl_overflow:
case Builtin::BI__builtin_ssubll_overflow:
case Builtin::BI__builtin_smul_overflow:
case Builtin::BI__builtin_smull_overflow:
case Builtin::BI__builtin_smulll_overflow: {
// We translate all of these builtins directly to the relevant llvm IR node.
// Scalarize our inputs.
llvm::Value *X = EmitScalarExpr(E->getArg(0));
llvm::Value *Y = EmitScalarExpr(E->getArg(1));
std::pair<llvm::Value *, unsigned> SumOutPtr =
EmitPointerWithAlignment(E->getArg(2));
// Decide which of the overflow intrinsics we are lowering to:
llvm::Intrinsic::ID IntrinsicId;
switch (BuiltinID) {
default: llvm_unreachable("Unknown security overflow builtin id.");
case Builtin::BI__builtin_uadd_overflow:
case Builtin::BI__builtin_uaddl_overflow:
case Builtin::BI__builtin_uaddll_overflow:
IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
break;
case Builtin::BI__builtin_usub_overflow:
case Builtin::BI__builtin_usubl_overflow:
case Builtin::BI__builtin_usubll_overflow:
IntrinsicId = llvm::Intrinsic::usub_with_overflow;
break;
case Builtin::BI__builtin_umul_overflow:
case Builtin::BI__builtin_umull_overflow:
case Builtin::BI__builtin_umulll_overflow:
IntrinsicId = llvm::Intrinsic::umul_with_overflow;
break;
case Builtin::BI__builtin_sadd_overflow:
case Builtin::BI__builtin_saddl_overflow:
case Builtin::BI__builtin_saddll_overflow:
IntrinsicId = llvm::Intrinsic::sadd_with_overflow;
break;
case Builtin::BI__builtin_ssub_overflow:
case Builtin::BI__builtin_ssubl_overflow:
case Builtin::BI__builtin_ssubll_overflow:
IntrinsicId = llvm::Intrinsic::ssub_with_overflow;
break;
case Builtin::BI__builtin_smul_overflow:
case Builtin::BI__builtin_smull_overflow:
case Builtin::BI__builtin_smulll_overflow:
IntrinsicId = llvm::Intrinsic::smul_with_overflow;
break;
}
llvm::Value *Carry;
llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry);
llvm::StoreInst *SumOutStore = Builder.CreateStore(Sum, SumOutPtr.first);
SumOutStore->setAlignment(SumOutPtr.second);
return RValue::get(Carry);
}
case Builtin::BI__builtin_addressof:
return RValue::get(EmitLValue(E->getArg(0)).getAddress());
case Builtin::BI__noop:
return RValue::get(0);
}
// If this is an alias for a lib function (e.g. __builtin_sin), emit
// the call using the normal call path, but using the unmangled
// version of the function name.
if (getContext().BuiltinInfo.isLibFunction(BuiltinID))
return emitLibraryCall(*this, FD, E,
CGM.getBuiltinLibFunction(FD, BuiltinID));
// If this is a predefined lib function (e.g. malloc), emit the call
// using exactly the normal call path.
if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
return emitLibraryCall(*this, FD, E, EmitScalarExpr(E->getCallee()));
// See if we have a target specific intrinsic.
const char *Name = getContext().BuiltinInfo.GetName(BuiltinID);
Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
if (const char *Prefix =
llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch()))
IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix, Name);
if (IntrinsicID != Intrinsic::not_intrinsic) {
SmallVector<Value*, 16> Args;
// Find out if any arguments are required to be integer constant
// expressions.
unsigned ICEArguments = 0;
ASTContext::GetBuiltinTypeError Error;
getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
assert(Error == ASTContext::GE_None && "Should not codegen an error");
Function *F = CGM.getIntrinsic(IntrinsicID);
llvm::FunctionType *FTy = F->getFunctionType();
for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
Value *ArgValue;
// If this is a normal argument, just emit it as a scalar.
if ((ICEArguments & (1 << i)) == 0) {
ArgValue = EmitScalarExpr(E->getArg(i));
} else {
// If this is required to be a constant, constant fold it so that we
// know that the generated intrinsic gets a ConstantInt.
llvm::APSInt Result;
bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result,getContext());
assert(IsConst && "Constant arg isn't actually constant?");
(void)IsConst;
ArgValue = llvm::ConstantInt::get(getLLVMContext(), Result);
}
// If the intrinsic arg type is different from the builtin arg type
// we need to do a bit cast.
llvm::Type *PTy = FTy->getParamType(i);
if (PTy != ArgValue->getType()) {
assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&
"Must be able to losslessly bit cast to param");
ArgValue = Builder.CreateBitCast(ArgValue, PTy);
}
Args.push_back(ArgValue);
}
Value *V = Builder.CreateCall(F, Args);
QualType BuiltinRetType = E->getType();
llvm::Type *RetTy = VoidTy;
if (!BuiltinRetType->isVoidType())
RetTy = ConvertType(BuiltinRetType);
if (RetTy != V->getType()) {
assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&
"Must be able to losslessly bit cast result type");
V = Builder.CreateBitCast(V, RetTy);
}
return RValue::get(V);
}
// See if we have a target specific builtin that needs to be lowered.
if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E))
return RValue::get(V);
ErrorUnsupported(E, "builtin function");
// Unknown builtin, for now just dump it out and return undef.
return GetUndefRValue(E->getType());
}
Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
const CallExpr *E) {
switch (getTarget().getTriple().getArch()) {
case llvm::Triple::aarch64:
return EmitAArch64BuiltinExpr(BuiltinID, E);
case llvm::Triple::arm:
case llvm::Triple::thumb:
return EmitARMBuiltinExpr(BuiltinID, E);
case llvm::Triple::x86:
case llvm::Triple::x86_64:
return EmitX86BuiltinExpr(BuiltinID, E);
case llvm::Triple::ppc:
case llvm::Triple::ppc64:
case llvm::Triple::ppc64le:
return EmitPPCBuiltinExpr(BuiltinID, E);
default:
return 0;
}
}
static llvm::VectorType *GetNeonType(CodeGenFunction *CGF,
NeonTypeFlags TypeFlags,
bool V1Ty=false) {
int IsQuad = TypeFlags.isQuad();
switch (TypeFlags.getEltType()) {
case NeonTypeFlags::Int8:
case NeonTypeFlags::Poly8:
return llvm::VectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad));
case NeonTypeFlags::Int16:
case NeonTypeFlags::Poly16:
case NeonTypeFlags::Float16:
return llvm::VectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
case NeonTypeFlags::Int32:
return llvm::VectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad));
case NeonTypeFlags::Int64:
return llvm::VectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad));
case NeonTypeFlags::Float32:
return llvm::VectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad));
case NeonTypeFlags::Float64:
return llvm::VectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad));
}
llvm_unreachable("Unknown vector element type!");
}
Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
unsigned nElts = cast<llvm::VectorType>(V->getType())->getNumElements();
Value* SV = llvm::ConstantVector::getSplat(nElts, C);
return Builder.CreateShuffleVector(V, V, SV, "lane");
}
Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
const char *name,
unsigned shift, bool rightshift) {
unsigned j = 0;
for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
ai != ae; ++ai, ++j)
if (shift > 0 && shift == j)
Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
else
Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
return Builder.CreateCall(F, Ops, name);
}
Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty,
bool neg) {
int SV = cast<ConstantInt>(V)->getSExtValue();
llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
llvm::Constant *C = ConstantInt::get(VTy->getElementType(), neg ? -SV : SV);
return llvm::ConstantVector::getSplat(VTy->getNumElements(), C);
}
// \brief Right-shift a vector by a constant.
Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift,
llvm::Type *Ty, bool usgn,
const char *name) {
llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue();
int EltSize = VTy->getScalarSizeInBits();
Vec = Builder.CreateBitCast(Vec, Ty);
// lshr/ashr are undefined when the shift amount is equal to the vector
// element size.
if (ShiftAmt == EltSize) {
if (usgn) {
// Right-shifting an unsigned value by its size yields 0.
llvm::Constant *Zero = ConstantInt::get(VTy->getElementType(), 0);
return llvm::ConstantVector::getSplat(VTy->getNumElements(), Zero);
} else {
// Right-shifting a signed value by its size is equivalent
// to a shift of size-1.
--ShiftAmt;
Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt);
}
}
Shift = EmitNeonShiftVector(Shift, Ty, false);
if (usgn)
return Builder.CreateLShr(Vec, Shift, name);
else
return Builder.CreateAShr(Vec, Shift, name);
}
/// GetPointeeAlignment - Given an expression with a pointer type, find the
/// alignment of the type referenced by the pointer. Skip over implicit
/// casts.
std::pair<llvm::Value*, unsigned>
CodeGenFunction::EmitPointerWithAlignment(const Expr *Addr) {
assert(Addr->getType()->isPointerType());
Addr = Addr->IgnoreParens();
if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Addr)) {
if ((ICE->getCastKind() == CK_BitCast || ICE->getCastKind() == CK_NoOp) &&
ICE->getSubExpr()->getType()->isPointerType()) {
std::pair<llvm::Value*, unsigned> Ptr =
EmitPointerWithAlignment(ICE->getSubExpr());
Ptr.first = Builder.CreateBitCast(Ptr.first,
ConvertType(Addr->getType()));
return Ptr;
} else if (ICE->getCastKind() == CK_ArrayToPointerDecay) {
LValue LV = EmitLValue(ICE->getSubExpr());
unsigned Align = LV.getAlignment().getQuantity();
if (!Align) {
// FIXME: Once LValues are fixed to always set alignment,
// zap this code.
QualType PtTy = ICE->getSubExpr()->getType();
if (!PtTy->isIncompleteType())
Align = getContext().getTypeAlignInChars(PtTy).getQuantity();
else
Align = 1;
}
return std::make_pair(LV.getAddress(), Align);
}
}
if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(Addr)) {
if (UO->getOpcode() == UO_AddrOf) {
LValue LV = EmitLValue(UO->getSubExpr());
unsigned Align = LV.getAlignment().getQuantity();
if (!Align) {
// FIXME: Once LValues are fixed to always set alignment,
// zap this code.
QualType PtTy = UO->getSubExpr()->getType();
if (!PtTy->isIncompleteType())
Align = getContext().getTypeAlignInChars(PtTy).getQuantity();
else
Align = 1;
}
return std::make_pair(LV.getAddress(), Align);
}
}
unsigned Align = 1;
QualType PtTy = Addr->getType()->getPointeeType();
if (!PtTy->isIncompleteType())
Align = getContext().getTypeAlignInChars(PtTy).getQuantity();
return std::make_pair(EmitScalarExpr(Addr), Align);
}
static Value *EmitAArch64ScalarBuiltinExpr(CodeGenFunction &CGF,
2013-09-26 20:16:47 +08:00
unsigned BuiltinID,
const CallExpr *E) {
unsigned int Int = 0;
// Scalar result generated across vectors
bool AcrossVec = false;
// Extend element of one-element vector
bool ExtendEle = false;
bool OverloadInt = false;
const char *s = NULL;
// AArch64 scalar builtins are not overloaded, they do not have an extra
// argument that specifies the vector type, need to handle each case.
switch (BuiltinID) {
default: break;
// Scalar Add
case AArch64::BI__builtin_neon_vaddd_s64:
Int = Intrinsic::aarch64_neon_vaddds;
s = "vaddds"; break;
case AArch64::BI__builtin_neon_vaddd_u64:
Int = Intrinsic::aarch64_neon_vadddu;
s = "vadddu"; break;
// Scalar Sub
case AArch64::BI__builtin_neon_vsubd_s64:
Int = Intrinsic::aarch64_neon_vsubds;
s = "vsubds"; break;
case AArch64::BI__builtin_neon_vsubd_u64:
Int = Intrinsic::aarch64_neon_vsubdu;
s = "vsubdu"; break;
// Scalar Saturating Add
case AArch64::BI__builtin_neon_vqaddb_s8:
case AArch64::BI__builtin_neon_vqaddh_s16:
case AArch64::BI__builtin_neon_vqadds_s32:
case AArch64::BI__builtin_neon_vqaddd_s64:
Int = Intrinsic::aarch64_neon_vqadds;
s = "vqadds"; OverloadInt = true; break;
case AArch64::BI__builtin_neon_vqaddb_u8:
case AArch64::BI__builtin_neon_vqaddh_u16:
case AArch64::BI__builtin_neon_vqadds_u32:
case AArch64::BI__builtin_neon_vqaddd_u64:
Int = Intrinsic::aarch64_neon_vqaddu;
s = "vqaddu"; OverloadInt = true; break;
// Scalar Saturating Sub
case AArch64::BI__builtin_neon_vqsubb_s8:
case AArch64::BI__builtin_neon_vqsubh_s16:
case AArch64::BI__builtin_neon_vqsubs_s32:
case AArch64::BI__builtin_neon_vqsubd_s64:
Int = Intrinsic::aarch64_neon_vqsubs;
s = "vqsubs"; OverloadInt = true; break;
case AArch64::BI__builtin_neon_vqsubb_u8:
case AArch64::BI__builtin_neon_vqsubh_u16:
case AArch64::BI__builtin_neon_vqsubs_u32:
case AArch64::BI__builtin_neon_vqsubd_u64:
Int = Intrinsic::aarch64_neon_vqsubu;
s = "vqsubu"; OverloadInt = true; break;
// Scalar Shift Left
case AArch64::BI__builtin_neon_vshld_s64:
Int = Intrinsic::aarch64_neon_vshlds;
s = "vshlds"; break;
case AArch64::BI__builtin_neon_vshld_u64:
Int = Intrinsic::aarch64_neon_vshldu;
s = "vshldu"; break;
// Scalar Saturating Shift Left
case AArch64::BI__builtin_neon_vqshlb_s8:
case AArch64::BI__builtin_neon_vqshlh_s16:
case AArch64::BI__builtin_neon_vqshls_s32:
case AArch64::BI__builtin_neon_vqshld_s64:
Int = Intrinsic::aarch64_neon_vqshls;
s = "vqshls"; OverloadInt = true; break;
case AArch64::BI__builtin_neon_vqshlb_u8:
case AArch64::BI__builtin_neon_vqshlh_u16:
case AArch64::BI__builtin_neon_vqshls_u32:
case AArch64::BI__builtin_neon_vqshld_u64:
Int = Intrinsic::aarch64_neon_vqshlu;
s = "vqshlu"; OverloadInt = true; break;
// Scalar Rouding Shift Left
case AArch64::BI__builtin_neon_vrshld_s64:
Int = Intrinsic::aarch64_neon_vrshlds;
s = "vrshlds"; break;
case AArch64::BI__builtin_neon_vrshld_u64:
Int = Intrinsic::aarch64_neon_vrshldu;
s = "vrshldu"; break;
// Scalar Saturating Rouding Shift Left
case AArch64::BI__builtin_neon_vqrshlb_s8:
case AArch64::BI__builtin_neon_vqrshlh_s16:
case AArch64::BI__builtin_neon_vqrshls_s32:
case AArch64::BI__builtin_neon_vqrshld_s64:
Int = Intrinsic::aarch64_neon_vqrshls;
s = "vqrshls"; OverloadInt = true; break;
case AArch64::BI__builtin_neon_vqrshlb_u8:
case AArch64::BI__builtin_neon_vqrshlh_u16:
case AArch64::BI__builtin_neon_vqrshls_u32:
case AArch64::BI__builtin_neon_vqrshld_u64:
Int = Intrinsic::aarch64_neon_vqrshlu;
s = "vqrshlu"; OverloadInt = true; break;
// Scalar Reduce Pairwise Add
case AArch64::BI__builtin_neon_vpaddd_s64:
Int = Intrinsic::aarch64_neon_vpadd; s = "vpadd";
break;
case AArch64::BI__builtin_neon_vpadds_f32:
Int = Intrinsic::aarch64_neon_vpfadd; s = "vpfadd";
break;
case AArch64::BI__builtin_neon_vpaddd_f64:
Int = Intrinsic::aarch64_neon_vpfaddq; s = "vpfaddq";
break;
// Scalar Reduce Pairwise Floating Point Max
case AArch64::BI__builtin_neon_vpmaxs_f32:
Int = Intrinsic::aarch64_neon_vpmax; s = "vpmax";
break;
case AArch64::BI__builtin_neon_vpmaxqd_f64:
Int = Intrinsic::aarch64_neon_vpmaxq; s = "vpmaxq";
break;
// Scalar Reduce Pairwise Floating Point Min
case AArch64::BI__builtin_neon_vpmins_f32:
2013-09-26 20:16:47 +08:00
Int = Intrinsic::aarch64_neon_vpmin; s = "vpmin";
break;
case AArch64::BI__builtin_neon_vpminqd_f64:
2013-09-26 20:16:47 +08:00
Int = Intrinsic::aarch64_neon_vpminq; s = "vpminq";
break;
// Scalar Reduce Pairwise Floating Point Maxnm
case AArch64::BI__builtin_neon_vpmaxnms_f32:
2013-09-26 20:16:47 +08:00
Int = Intrinsic::aarch64_neon_vpfmaxnm; s = "vpfmaxnm";
break;
case AArch64::BI__builtin_neon_vpmaxnmqd_f64:
2013-09-26 20:16:47 +08:00
Int = Intrinsic::aarch64_neon_vpfmaxnmq; s = "vpfmaxnmq";
break;
// Scalar Reduce Pairwise Floating Point Minnm
case AArch64::BI__builtin_neon_vpminnms_f32:
2013-09-26 20:16:47 +08:00
Int = Intrinsic::aarch64_neon_vpfminnm; s = "vpfminnm";
break;
case AArch64::BI__builtin_neon_vpminnmqd_f64:
2013-09-26 20:16:47 +08:00
Int = Intrinsic::aarch64_neon_vpfminnmq; s = "vpfminnmq";
break;
// The followings are intrinsics with scalar results generated AcrossVec vectors
case AArch64::BI__builtin_neon_vaddlv_s8:
case AArch64::BI__builtin_neon_vaddlv_s16:
case AArch64::BI__builtin_neon_vaddlvq_s8:
case AArch64::BI__builtin_neon_vaddlvq_s16:
case AArch64::BI__builtin_neon_vaddlvq_s32:
Int = Intrinsic::aarch64_neon_saddlv;
AcrossVec = true; ExtendEle = true; s = "saddlv"; break;
case AArch64::BI__builtin_neon_vaddlv_u8:
case AArch64::BI__builtin_neon_vaddlv_u16:
case AArch64::BI__builtin_neon_vaddlvq_u8:
case AArch64::BI__builtin_neon_vaddlvq_u16:
case AArch64::BI__builtin_neon_vaddlvq_u32:
Int = Intrinsic::aarch64_neon_uaddlv;
AcrossVec = true; ExtendEle = true; s = "uaddlv"; break;
case AArch64::BI__builtin_neon_vmaxv_s8:
case AArch64::BI__builtin_neon_vmaxv_s16:
case AArch64::BI__builtin_neon_vmaxvq_s8:
case AArch64::BI__builtin_neon_vmaxvq_s16:
case AArch64::BI__builtin_neon_vmaxvq_s32:
Int = Intrinsic::aarch64_neon_smaxv;
AcrossVec = true; ExtendEle = false; s = "smaxv"; break;
case AArch64::BI__builtin_neon_vmaxv_u8:
case AArch64::BI__builtin_neon_vmaxv_u16:
case AArch64::BI__builtin_neon_vmaxvq_u8:
case AArch64::BI__builtin_neon_vmaxvq_u16:
case AArch64::BI__builtin_neon_vmaxvq_u32:
Int = Intrinsic::aarch64_neon_umaxv;
AcrossVec = true; ExtendEle = false; s = "umaxv"; break;
case AArch64::BI__builtin_neon_vminv_s8:
case AArch64::BI__builtin_neon_vminv_s16:
case AArch64::BI__builtin_neon_vminvq_s8:
case AArch64::BI__builtin_neon_vminvq_s16:
case AArch64::BI__builtin_neon_vminvq_s32:
Int = Intrinsic::aarch64_neon_sminv;
AcrossVec = true; ExtendEle = false; s = "sminv"; break;
case AArch64::BI__builtin_neon_vminv_u8:
case AArch64::BI__builtin_neon_vminv_u16:
case AArch64::BI__builtin_neon_vminvq_u8:
case AArch64::BI__builtin_neon_vminvq_u16:
case AArch64::BI__builtin_neon_vminvq_u32:
Int = Intrinsic::aarch64_neon_uminv;
AcrossVec = true; ExtendEle = false; s = "uminv"; break;
case AArch64::BI__builtin_neon_vaddv_s8:
case AArch64::BI__builtin_neon_vaddv_s16:
case AArch64::BI__builtin_neon_vaddvq_s8:
case AArch64::BI__builtin_neon_vaddvq_s16:
case AArch64::BI__builtin_neon_vaddvq_s32:
case AArch64::BI__builtin_neon_vaddv_u8:
case AArch64::BI__builtin_neon_vaddv_u16:
case AArch64::BI__builtin_neon_vaddvq_u8:
case AArch64::BI__builtin_neon_vaddvq_u16:
case AArch64::BI__builtin_neon_vaddvq_u32:
Int = Intrinsic::aarch64_neon_vaddv;
AcrossVec = true; ExtendEle = false; s = "vaddv"; break;
case AArch64::BI__builtin_neon_vmaxvq_f32:
Int = Intrinsic::aarch64_neon_vmaxv;
AcrossVec = true; ExtendEle = false; s = "vmaxv"; break;
case AArch64::BI__builtin_neon_vminvq_f32:
Int = Intrinsic::aarch64_neon_vminv;
AcrossVec = true; ExtendEle = false; s = "vminv"; break;
case AArch64::BI__builtin_neon_vmaxnmvq_f32:
Int = Intrinsic::aarch64_neon_vmaxnmv;
AcrossVec = true; ExtendEle = false; s = "vmaxnmv"; break;
case AArch64::BI__builtin_neon_vminnmvq_f32:
Int = Intrinsic::aarch64_neon_vminnmv;
AcrossVec = true; ExtendEle = false; s = "vminnmv"; break;
// Scalar Integer Saturating Doubling Multiply Half High
case AArch64::BI__builtin_neon_vqdmulhh_s16:
case AArch64::BI__builtin_neon_vqdmulhs_s32:
Int = Intrinsic::arm_neon_vqdmulh;
s = "vqdmulh"; OverloadInt = true; break;
// Scalar Integer Saturating Rounding Doubling Multiply Half High
case AArch64::BI__builtin_neon_vqrdmulhh_s16:
case AArch64::BI__builtin_neon_vqrdmulhs_s32:
Int = Intrinsic::arm_neon_vqrdmulh;
s = "vqrdmulh"; OverloadInt = true; break;
// Scalar Floating-point Multiply Extended
case AArch64::BI__builtin_neon_vmulxs_f32:
case AArch64::BI__builtin_neon_vmulxd_f64:
Int = Intrinsic::aarch64_neon_vmulx;
s = "vmulx"; OverloadInt = true; break;
// Scalar Floating-point Reciprocal Step and
case AArch64::BI__builtin_neon_vrecpss_f32:
case AArch64::BI__builtin_neon_vrecpsd_f64:
Int = Intrinsic::arm_neon_vrecps;
s = "vrecps"; OverloadInt = true; break;
// Scalar Floating-point Reciprocal Square Root Step
case AArch64::BI__builtin_neon_vrsqrtss_f32:
case AArch64::BI__builtin_neon_vrsqrtsd_f64:
Int = Intrinsic::arm_neon_vrsqrts;
s = "vrsqrts"; OverloadInt = true; break;
// Scalar Signed Integer Convert To Floating-point
case AArch64::BI__builtin_neon_vcvts_f32_s32:
Int = Intrinsic::aarch64_neon_vcvtf32_s32,
s = "vcvtf"; OverloadInt = false; break;
case AArch64::BI__builtin_neon_vcvtd_f64_s64:
Int = Intrinsic::aarch64_neon_vcvtf64_s64,
s = "vcvtf"; OverloadInt = false; break;
// Scalar Unsigned Integer Convert To Floating-point
case AArch64::BI__builtin_neon_vcvts_f32_u32:
Int = Intrinsic::aarch64_neon_vcvtf32_u32,
s = "vcvtf"; OverloadInt = false; break;
case AArch64::BI__builtin_neon_vcvtd_f64_u64:
Int = Intrinsic::aarch64_neon_vcvtf64_u64,
s = "vcvtf"; OverloadInt = false; break;
// Scalar Floating-point Reciprocal Estimate
case AArch64::BI__builtin_neon_vrecpes_f32:
case AArch64::BI__builtin_neon_vrecped_f64:
Int = Intrinsic::arm_neon_vrecpe;
s = "vrecpe"; OverloadInt = true; break;
// Scalar Floating-point Reciprocal Exponent
case AArch64::BI__builtin_neon_vrecpxs_f32:
case AArch64::BI__builtin_neon_vrecpxd_f64:
Int = Intrinsic::aarch64_neon_vrecpx;
s = "vrecpx"; OverloadInt = true; break;
// Scalar Floating-point Reciprocal Square Root Estimate
case AArch64::BI__builtin_neon_vrsqrtes_f32:
case AArch64::BI__builtin_neon_vrsqrted_f64:
Int = Intrinsic::arm_neon_vrsqrte;
s = "vrsqrte"; OverloadInt = true; break;
}
if (!Int)
return 0;
// AArch64 scalar builtin that returns scalar type
// and should be mapped to AArch64 intrinsic that returns
// one-element vector type.
Function *F = 0;
SmallVector<Value *, 4> Ops;
if (AcrossVec) {
// Gen arg type
const Expr *Arg = E->getArg(E->getNumArgs()-1);
llvm::Type *Ty = CGF.ConvertType(Arg->getType());
llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
llvm::Type *ETy = VTy->getElementType();
llvm::VectorType *RTy = llvm::VectorType::get(ETy, 1);
if (ExtendEle) {
assert(!ETy->isFloatingPointTy());
RTy = llvm::VectorType::getExtendedElementVectorType(RTy);
}
llvm::Type *Tys[2] = {RTy, VTy};
F = CGF.CGM.getIntrinsic(Int, Tys);
assert(E->getNumArgs() == 1);
}
else if (OverloadInt) {
2013-09-26 20:16:47 +08:00
// Determine the type of this overloaded AArch64 intrinsic
const Expr *Arg = E->getArg(E->getNumArgs()-1);
llvm::Type *Ty = CGF.ConvertType(Arg->getType());
llvm::VectorType *VTy = llvm::VectorType::get(Ty, 1);
assert(VTy);
F = CGF.CGM.getIntrinsic(Int, VTy);
} else
2013-09-26 20:16:47 +08:00
F = CGF.CGM.getIntrinsic(Int);
for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
Ops.push_back(CGF.EmitScalarExpr(E->getArg(i)));
}
Value *Result = CGF.EmitNeonCall(F, Ops, s);
llvm::Type *ResultType = CGF.ConvertType(E->getType());
// AArch64 intrinsic one-element vector type cast to
// scalar type expected by the builtin
return CGF.Builder.CreateBitCast(Result, ResultType, s);
}
Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID,
const CallExpr *E) {
// Process AArch64 scalar builtins
if (Value *Result = EmitAArch64ScalarBuiltinExpr(*this, BuiltinID, E))
return Result;
if (BuiltinID == AArch64::BI__clear_cache) {
assert(E->getNumArgs() == 2 &&
"Variadic __clear_cache slipped through on AArch64");
const FunctionDecl *FD = E->getDirectCallee();
SmallVector<Value *, 2> Ops;
for (unsigned i = 0; i < E->getNumArgs(); i++)
Ops.push_back(EmitScalarExpr(E->getArg(i)));
llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
StringRef Name = FD->getName();
return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
}
SmallVector<Value *, 4> Ops;
for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
Ops.push_back(EmitScalarExpr(E->getArg(i)));
}
// Get the last argument, which specifies the vector type.
llvm::APSInt Result;
const Expr *Arg = E->getArg(E->getNumArgs() - 1);
if (!Arg->isIntegerConstantExpr(Result, getContext()))
return 0;
// Determine the type of this overloaded NEON intrinsic.
NeonTypeFlags Type(Result.getZExtValue());
bool usgn = Type.isUnsigned();
llvm::VectorType *VTy = GetNeonType(this, Type);
llvm::Type *Ty = VTy;
if (!Ty)
return 0;
unsigned Int;
switch (BuiltinID) {
default:
return 0;
// AArch64 builtins mapping to legacy ARM v7 builtins.
// FIXME: the mapped builtins listed correspond to what has been tested
// in aarch64-neon-intrinsics.c so far.
case AArch64::BI__builtin_neon_vmul_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vmul_v, E);
case AArch64::BI__builtin_neon_vmulq_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vmulq_v, E);
case AArch64::BI__builtin_neon_vabd_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vabd_v, E);
case AArch64::BI__builtin_neon_vabdq_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vabdq_v, E);
case AArch64::BI__builtin_neon_vfma_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vfma_v, E);
case AArch64::BI__builtin_neon_vfmaq_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vfmaq_v, E);
case AArch64::BI__builtin_neon_vbsl_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vbsl_v, E);
case AArch64::BI__builtin_neon_vbslq_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vbslq_v, E);
case AArch64::BI__builtin_neon_vrsqrts_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vrsqrts_v, E);
case AArch64::BI__builtin_neon_vrsqrtsq_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vrsqrtsq_v, E);
case AArch64::BI__builtin_neon_vrecps_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vrecps_v, E);
case AArch64::BI__builtin_neon_vrecpsq_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vrecpsq_v, E);
case AArch64::BI__builtin_neon_vcage_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcage_v, E);
case AArch64::BI__builtin_neon_vcale_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcale_v, E);
case AArch64::BI__builtin_neon_vcaleq_v:
std::swap(Ops[0], Ops[1]);
case AArch64::BI__builtin_neon_vcageq_v: {
Function *F;
if (VTy->getElementType()->isIntegerTy(64))
F = CGM.getIntrinsic(Intrinsic::aarch64_neon_vacgeq);
else
F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgeq);
return EmitNeonCall(F, Ops, "vcage");
}
case AArch64::BI__builtin_neon_vcalt_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcalt_v, E);
case AArch64::BI__builtin_neon_vcagt_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcagt_v, E);
case AArch64::BI__builtin_neon_vcaltq_v:
std::swap(Ops[0], Ops[1]);
case AArch64::BI__builtin_neon_vcagtq_v: {
Function *F;
if (VTy->getElementType()->isIntegerTy(64))
F = CGM.getIntrinsic(Intrinsic::aarch64_neon_vacgtq);
else
F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgtq);
return EmitNeonCall(F, Ops, "vcagt");
}
case AArch64::BI__builtin_neon_vtst_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vtst_v, E);
case AArch64::BI__builtin_neon_vtstq_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vtstq_v, E);
case AArch64::BI__builtin_neon_vhadd_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vhadd_v, E);
case AArch64::BI__builtin_neon_vhaddq_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vhaddq_v, E);
case AArch64::BI__builtin_neon_vhsub_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vhsub_v, E);
case AArch64::BI__builtin_neon_vhsubq_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vhsubq_v, E);
case AArch64::BI__builtin_neon_vrhadd_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vrhadd_v, E);
case AArch64::BI__builtin_neon_vrhaddq_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vrhaddq_v, E);
case AArch64::BI__builtin_neon_vqadd_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqadd_v, E);
case AArch64::BI__builtin_neon_vqaddq_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqaddq_v, E);
case AArch64::BI__builtin_neon_vqsub_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqsub_v, E);
case AArch64::BI__builtin_neon_vqsubq_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqsubq_v, E);
case AArch64::BI__builtin_neon_vshl_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vshl_v, E);
case AArch64::BI__builtin_neon_vshlq_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vshlq_v, E);
case AArch64::BI__builtin_neon_vqshl_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqshl_v, E);
case AArch64::BI__builtin_neon_vqshlq_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqshlq_v, E);
case AArch64::BI__builtin_neon_vrshl_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vrshl_v, E);
case AArch64::BI__builtin_neon_vrshlq_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vrshlq_v, E);
case AArch64::BI__builtin_neon_vqrshl_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqrshl_v, E);
case AArch64::BI__builtin_neon_vqrshlq_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqrshlq_v, E);
case AArch64::BI__builtin_neon_vaddhn_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vaddhn_v, E);
case AArch64::BI__builtin_neon_vraddhn_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vraddhn_v, E);
case AArch64::BI__builtin_neon_vsubhn_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vsubhn_v, E);
case AArch64::BI__builtin_neon_vrsubhn_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vrsubhn_v, E);
case AArch64::BI__builtin_neon_vmull_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vmull_v, E);
case AArch64::BI__builtin_neon_vqdmull_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqdmull_v, E);
case AArch64::BI__builtin_neon_vqdmlal_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqdmlal_v, E);
case AArch64::BI__builtin_neon_vqdmlsl_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqdmlsl_v, E);
case AArch64::BI__builtin_neon_vmax_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vmax_v, E);
case AArch64::BI__builtin_neon_vmaxq_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vmaxq_v, E);
case AArch64::BI__builtin_neon_vmin_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vmin_v, E);
case AArch64::BI__builtin_neon_vminq_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vminq_v, E);
case AArch64::BI__builtin_neon_vpmax_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vpmax_v, E);
case AArch64::BI__builtin_neon_vpmin_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vpmin_v, E);
case AArch64::BI__builtin_neon_vpadd_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vpadd_v, E);
case AArch64::BI__builtin_neon_vqdmulh_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqdmulh_v, E);
case AArch64::BI__builtin_neon_vqdmulhq_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqdmulhq_v, E);
case AArch64::BI__builtin_neon_vqrdmulh_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqrdmulh_v, E);
case AArch64::BI__builtin_neon_vqrdmulhq_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqrdmulhq_v, E);
// Shift by immediate
case AArch64::BI__builtin_neon_vshr_n_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vshr_n_v, E);
case AArch64::BI__builtin_neon_vshrq_n_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vshrq_n_v, E);
case AArch64::BI__builtin_neon_vrshr_n_v:
case AArch64::BI__builtin_neon_vrshrq_n_v:
Int = usgn ? Intrinsic::aarch64_neon_vurshr
: Intrinsic::aarch64_neon_vsrshr;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n");
case AArch64::BI__builtin_neon_vsra_n_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vsra_n_v, E);
case AArch64::BI__builtin_neon_vsraq_n_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vsraq_n_v, E);
case AArch64::BI__builtin_neon_vrsra_n_v:
case AArch64::BI__builtin_neon_vrsraq_n_v: {
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Int = usgn ? Intrinsic::aarch64_neon_vurshr
: Intrinsic::aarch64_neon_vsrshr;
Ops[1] = Builder.CreateCall2(CGM.getIntrinsic(Int, Ty), Ops[1], Ops[2]);
return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
}
case AArch64::BI__builtin_neon_vshl_n_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vshl_n_v, E);
case AArch64::BI__builtin_neon_vshlq_n_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vshlq_n_v, E);
case AArch64::BI__builtin_neon_vqshl_n_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqshl_n_v, E);
case AArch64::BI__builtin_neon_vqshlq_n_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqshlq_n_v, E);
case AArch64::BI__builtin_neon_vqshlu_n_v:
case AArch64::BI__builtin_neon_vqshluq_n_v:
Int = Intrinsic::aarch64_neon_vsqshlu;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n");
case AArch64::BI__builtin_neon_vsri_n_v:
case AArch64::BI__builtin_neon_vsriq_n_v:
Int = Intrinsic::aarch64_neon_vsri;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsri_n");
case AArch64::BI__builtin_neon_vsli_n_v:
case AArch64::BI__builtin_neon_vsliq_n_v:
Int = Intrinsic::aarch64_neon_vsli;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsli_n");
case AArch64::BI__builtin_neon_vshll_n_v: {
llvm::Type *SrcTy = llvm::VectorType::getTruncatedElementVectorType(VTy);
Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
if (usgn)
Ops[0] = Builder.CreateZExt(Ops[0], VTy);
else
Ops[0] = Builder.CreateSExt(Ops[0], VTy);
Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false);
return Builder.CreateShl(Ops[0], Ops[1], "vshll_n");
}
case AArch64::BI__builtin_neon_vshrn_n_v: {
llvm::Type *SrcTy = llvm::VectorType::getExtendedElementVectorType(VTy);
Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false);
if (usgn)
Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]);
else
Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]);
return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n");
}
case AArch64::BI__builtin_neon_vqshrun_n_v:
Int = Intrinsic::aarch64_neon_vsqshrun;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n");
case AArch64::BI__builtin_neon_vrshrn_n_v:
Int = Intrinsic::aarch64_neon_vrshrn;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n");
case AArch64::BI__builtin_neon_vqrshrun_n_v:
Int = Intrinsic::aarch64_neon_vsqrshrun;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n");
case AArch64::BI__builtin_neon_vqshrn_n_v:
Int = usgn ? Intrinsic::aarch64_neon_vuqshrn
: Intrinsic::aarch64_neon_vsqshrn;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n");
case AArch64::BI__builtin_neon_vqrshrn_n_v:
Int = usgn ? Intrinsic::aarch64_neon_vuqrshrn
: Intrinsic::aarch64_neon_vsqrshrn;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n");
// Convert
case AArch64::BI__builtin_neon_vmovl_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vmovl_v, E);
case AArch64::BI__builtin_neon_vcvt_n_f32_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcvt_n_f32_v, E);
case AArch64::BI__builtin_neon_vcvtq_n_f32_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcvtq_n_f32_v, E);
case AArch64::BI__builtin_neon_vcvtq_n_f64_v: {
llvm::Type *FloatTy =
GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, true));
llvm::Type *Tys[2] = { FloatTy, Ty };
Int = usgn ? Intrinsic::arm_neon_vcvtfxu2fp
: Intrinsic::arm_neon_vcvtfxs2fp;
Function *F = CGM.getIntrinsic(Int, Tys);
return EmitNeonCall(F, Ops, "vcvt_n");
}
case AArch64::BI__builtin_neon_vcvt_n_s32_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcvt_n_s32_v, E);
case AArch64::BI__builtin_neon_vcvtq_n_s32_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcvtq_n_s32_v, E);
case AArch64::BI__builtin_neon_vcvt_n_u32_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcvt_n_u32_v, E);
case AArch64::BI__builtin_neon_vcvtq_n_u32_v:
return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcvtq_n_u32_v, E);
case AArch64::BI__builtin_neon_vcvtq_n_s64_v:
case AArch64::BI__builtin_neon_vcvtq_n_u64_v: {
llvm::Type *FloatTy =
GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, true));
llvm::Type *Tys[2] = { Ty, FloatTy };
Int = usgn ? Intrinsic::arm_neon_vcvtfp2fxu
: Intrinsic::arm_neon_vcvtfp2fxs;
Function *F = CGM.getIntrinsic(Int, Tys);
return EmitNeonCall(F, Ops, "vcvt_n");
}
// AArch64-only builtins
case AArch64::BI__builtin_neon_vfma_lane_v:
case AArch64::BI__builtin_neon_vfmaq_laneq_v: {
Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3]));
return Builder.CreateCall3(F, Ops[2], Ops[1], Ops[0]);
}
case AArch64::BI__builtin_neon_vfmaq_lane_v: {
Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
llvm::Type *STy = llvm::VectorType::get(VTy->getElementType(),
VTy->getNumElements() / 2);
Ops[2] = Builder.CreateBitCast(Ops[2], STy);
Value* SV = llvm::ConstantVector::getSplat(VTy->getNumElements(),
cast<ConstantInt>(Ops[3]));
Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane");
return Builder.CreateCall3(F, Ops[2], Ops[1], Ops[0]);
}
case AArch64::BI__builtin_neon_vfma_laneq_v: {
Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
llvm::Type *STy = llvm::VectorType::get(VTy->getElementType(),
VTy->getNumElements() * 2);
Ops[2] = Builder.CreateBitCast(Ops[2], STy);
Value* SV = llvm::ConstantVector::getSplat(VTy->getNumElements(),
cast<ConstantInt>(Ops[3]));
Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane");
return Builder.CreateCall3(F, Ops[2], Ops[1], Ops[0]);
}
case AArch64::BI__builtin_neon_vfms_v:
case AArch64::BI__builtin_neon_vfmsq_v: {
Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[1] = Builder.CreateFNeg(Ops[1]);
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
// LLVM's fma intrinsic puts the accumulator in the last position, but the
// AArch64 intrinsic has it first.
return Builder.CreateCall3(F, Ops[1], Ops[2], Ops[0]);
}
case AArch64::BI__builtin_neon_vmaxnm_v:
case AArch64::BI__builtin_neon_vmaxnmq_v: {
Int = Intrinsic::aarch64_neon_vmaxnm;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm");
}
case AArch64::BI__builtin_neon_vminnm_v:
case AArch64::BI__builtin_neon_vminnmq_v: {
Int = Intrinsic::aarch64_neon_vminnm;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm");
}
case AArch64::BI__builtin_neon_vpmaxnm_v:
case AArch64::BI__builtin_neon_vpmaxnmq_v: {
Int = Intrinsic::aarch64_neon_vpmaxnm;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm");
}
case AArch64::BI__builtin_neon_vpminnm_v:
case AArch64::BI__builtin_neon_vpminnmq_v: {
Int = Intrinsic::aarch64_neon_vpminnm;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm");
}
case AArch64::BI__builtin_neon_vpmaxq_v: {
Int = usgn ? Intrinsic::arm_neon_vpmaxu : Intrinsic::arm_neon_vpmaxs;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
}
case AArch64::BI__builtin_neon_vpminq_v: {
Int = usgn ? Intrinsic::arm_neon_vpminu : Intrinsic::arm_neon_vpmins;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
}
case AArch64::BI__builtin_neon_vpaddq_v: {
Int = Intrinsic::arm_neon_vpadd;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpadd");
}
case AArch64::BI__builtin_neon_vmulx_v:
case AArch64::BI__builtin_neon_vmulxq_v: {
Int = Intrinsic::aarch64_neon_vmulx;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx");
}
}
}
Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
const CallExpr *E) {
if (BuiltinID == ARM::BI__clear_cache) {
assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
const FunctionDecl *FD = E->getDirectCallee();
SmallVector<Value*, 2> Ops;
for (unsigned i = 0; i < 2; i++)
Ops.push_back(EmitScalarExpr(E->getArg(i)));
llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
StringRef Name = FD->getName();
return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
}
if (BuiltinID == ARM::BI__builtin_arm_ldrexd ||
(BuiltinID == ARM::BI__builtin_arm_ldrex &&
getContext().getTypeSize(E->getType()) == 64)) {
Function *F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
Value *LdPtr = EmitScalarExpr(E->getArg(0));
Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
"ldrexd");
Value *Val0 = Builder.CreateExtractValue(Val, 1);
Value *Val1 = Builder.CreateExtractValue(Val, 0);
Val0 = Builder.CreateZExt(Val0, Int64Ty);
Val1 = Builder.CreateZExt(Val1, Int64Ty);
Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
Val = Builder.CreateOr(Val, Val1);
return Builder.CreateBitCast(Val, ConvertType(E->getType()));
}
if (BuiltinID == ARM::BI__builtin_arm_ldrex) {
Value *LoadAddr = EmitScalarExpr(E->getArg(0));
QualType Ty = E->getType();
llvm::Type *RealResTy = ConvertType(Ty);
llvm::Type *IntResTy = llvm::IntegerType::get(getLLVMContext(),
getContext().getTypeSize(Ty));
LoadAddr = Builder.CreateBitCast(LoadAddr, IntResTy->getPointerTo());
Function *F = CGM.getIntrinsic(Intrinsic::arm_ldrex, LoadAddr->getType());
Value *Val = Builder.CreateCall(F, LoadAddr, "ldrex");
if (RealResTy->isPointerTy())
return Builder.CreateIntToPtr(Val, RealResTy);
else {
Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
return Builder.CreateBitCast(Val, RealResTy);
}
}
if (BuiltinID == ARM::BI__builtin_arm_strexd ||
(BuiltinID == ARM::BI__builtin_arm_strex &&
getContext().getTypeSize(E->getArg(0)->getType()) == 64)) {
Function *F = CGM.getIntrinsic(Intrinsic::arm_strexd);
llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, NULL);
Value *Tmp = CreateMemTemp(E->getArg(0)->getType());
Value *Val = EmitScalarExpr(E->getArg(0));
Builder.CreateStore(Val, Tmp);
Value *LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy));
Val = Builder.CreateLoad(LdPtr);
Value *Arg0 = Builder.CreateExtractValue(Val, 0);
Value *Arg1 = Builder.CreateExtractValue(Val, 1);
Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy);
return Builder.CreateCall3(F, Arg0, Arg1, StPtr, "strexd");
}
if (BuiltinID == ARM::BI__builtin_arm_strex) {
Value *StoreVal = EmitScalarExpr(E->getArg(0));
Value *StoreAddr = EmitScalarExpr(E->getArg(1));
QualType Ty = E->getArg(0)->getType();
llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
getContext().getTypeSize(Ty));
StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
if (StoreVal->getType()->isPointerTy())
StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty);
else {
StoreVal = Builder.CreateBitCast(StoreVal, StoreTy);
StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty);
}
Function *F = CGM.getIntrinsic(Intrinsic::arm_strex, StoreAddr->getType());
return Builder.CreateCall2(F, StoreVal, StoreAddr, "strex");
}
if (BuiltinID == ARM::BI__builtin_arm_clrex) {
Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex);
return Builder.CreateCall(F);
}
if (BuiltinID == ARM::BI__builtin_arm_sevl) {
Function *F = CGM.getIntrinsic(Intrinsic::arm_sevl);
return Builder.CreateCall(F);
}
// CRC32
Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
switch (BuiltinID) {
case ARM::BI__builtin_arm_crc32b:
CRCIntrinsicID = Intrinsic::arm_crc32b; break;
case ARM::BI__builtin_arm_crc32cb:
CRCIntrinsicID = Intrinsic::arm_crc32cb; break;
case ARM::BI__builtin_arm_crc32h:
CRCIntrinsicID = Intrinsic::arm_crc32h; break;
case ARM::BI__builtin_arm_crc32ch:
CRCIntrinsicID = Intrinsic::arm_crc32ch; break;
case ARM::BI__builtin_arm_crc32w:
case ARM::BI__builtin_arm_crc32d:
CRCIntrinsicID = Intrinsic::arm_crc32w; break;
case ARM::BI__builtin_arm_crc32cw:
case ARM::BI__builtin_arm_crc32cd:
CRCIntrinsicID = Intrinsic::arm_crc32cw; break;
}
if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
Value *Arg0 = EmitScalarExpr(E->getArg(0));
Value *Arg1 = EmitScalarExpr(E->getArg(1));
// crc32{c,}d intrinsics are implemnted as two calls to crc32{c,}w
// intrinsics, hence we need different codegen for these cases.
if (BuiltinID == ARM::BI__builtin_arm_crc32d ||
BuiltinID == ARM::BI__builtin_arm_crc32cd) {
Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty);
Value *Arg1b = Builder.CreateLShr(Arg1, C1);
Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty);
Function *F = CGM.getIntrinsic(CRCIntrinsicID);
Value *Res = Builder.CreateCall2(F, Arg0, Arg1a);
return Builder.CreateCall2(F, Res, Arg1b);
} else {
Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty);
Function *F = CGM.getIntrinsic(CRCIntrinsicID);
return Builder.CreateCall2(F, Arg0, Arg1);
}
}
SmallVector<Value*, 4> Ops;
llvm::Value *Align = 0;
for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
if (i == 0) {
switch (BuiltinID) {
case ARM::BI__builtin_neon_vld1_v:
case ARM::BI__builtin_neon_vld1q_v:
case ARM::BI__builtin_neon_vld1q_lane_v:
case ARM::BI__builtin_neon_vld1_lane_v:
case ARM::BI__builtin_neon_vld1_dup_v:
case ARM::BI__builtin_neon_vld1q_dup_v:
case ARM::BI__builtin_neon_vst1_v:
case ARM::BI__builtin_neon_vst1q_v:
case ARM::BI__builtin_neon_vst1q_lane_v:
case ARM::BI__builtin_neon_vst1_lane_v:
case ARM::BI__builtin_neon_vst2_v:
case ARM::BI__builtin_neon_vst2q_v:
case ARM::BI__builtin_neon_vst2_lane_v:
case ARM::BI__builtin_neon_vst2q_lane_v:
case ARM::BI__builtin_neon_vst3_v:
case ARM::BI__builtin_neon_vst3q_v:
case ARM::BI__builtin_neon_vst3_lane_v:
case ARM::BI__builtin_neon_vst3q_lane_v:
case ARM::BI__builtin_neon_vst4_v:
case ARM::BI__builtin_neon_vst4q_v:
case ARM::BI__builtin_neon_vst4_lane_v:
case ARM::BI__builtin_neon_vst4q_lane_v:
// Get the alignment for the argument in addition to the value;
// we'll use it later.
std::pair<llvm::Value*, unsigned> Src =
EmitPointerWithAlignment(E->getArg(0));
Ops.push_back(Src.first);
Align = Builder.getInt32(Src.second);
continue;
}
}
if (i == 1) {
switch (BuiltinID) {
case ARM::BI__builtin_neon_vld2_v:
case ARM::BI__builtin_neon_vld2q_v:
case ARM::BI__builtin_neon_vld3_v:
case ARM::BI__builtin_neon_vld3q_v:
case ARM::BI__builtin_neon_vld4_v:
case ARM::BI__builtin_neon_vld4q_v:
case ARM::BI__builtin_neon_vld2_lane_v:
case ARM::BI__builtin_neon_vld2q_lane_v:
case ARM::BI__builtin_neon_vld3_lane_v:
case ARM::BI__builtin_neon_vld3q_lane_v:
case ARM::BI__builtin_neon_vld4_lane_v:
case ARM::BI__builtin_neon_vld4q_lane_v:
case ARM::BI__builtin_neon_vld2_dup_v:
case ARM::BI__builtin_neon_vld3_dup_v:
case ARM::BI__builtin_neon_vld4_dup_v:
// Get the alignment for the argument in addition to the value;
// we'll use it later.
std::pair<llvm::Value*, unsigned> Src =
EmitPointerWithAlignment(E->getArg(1));
Ops.push_back(Src.first);
Align = Builder.getInt32(Src.second);
continue;
}
}
Ops.push_back(EmitScalarExpr(E->getArg(i)));
}
// vget_lane and vset_lane are not overloaded and do not have an extra
// argument that specifies the vector type.
switch (BuiltinID) {
default: break;
case ARM::BI__builtin_neon_vget_lane_i8:
case ARM::BI__builtin_neon_vget_lane_i16:
case ARM::BI__builtin_neon_vget_lane_i32:
case ARM::BI__builtin_neon_vget_lane_i64:
case ARM::BI__builtin_neon_vget_lane_f32:
case ARM::BI__builtin_neon_vgetq_lane_i8:
case ARM::BI__builtin_neon_vgetq_lane_i16:
case ARM::BI__builtin_neon_vgetq_lane_i32:
case ARM::BI__builtin_neon_vgetq_lane_i64:
case ARM::BI__builtin_neon_vgetq_lane_f32:
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
"vget_lane");
case ARM::BI__builtin_neon_vset_lane_i8:
case ARM::BI__builtin_neon_vset_lane_i16:
case ARM::BI__builtin_neon_vset_lane_i32:
case ARM::BI__builtin_neon_vset_lane_i64:
case ARM::BI__builtin_neon_vset_lane_f32:
case ARM::BI__builtin_neon_vsetq_lane_i8:
case ARM::BI__builtin_neon_vsetq_lane_i16:
case ARM::BI__builtin_neon_vsetq_lane_i32:
case ARM::BI__builtin_neon_vsetq_lane_i64:
case ARM::BI__builtin_neon_vsetq_lane_f32:
Ops.push_back(EmitScalarExpr(E->getArg(2)));
return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
}
// Get the last argument, which specifies the vector type.
llvm::APSInt Result;
const Expr *Arg = E->getArg(E->getNumArgs()-1);
if (!Arg->isIntegerConstantExpr(Result, getContext()))
return 0;
if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f ||
BuiltinID == ARM::BI__builtin_arm_vcvtr_d) {
// Determine the overloaded type of this builtin.
llvm::Type *Ty;
if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f)
Ty = FloatTy;
else
Ty = DoubleTy;
// Determine whether this is an unsigned conversion or not.
bool usgn = Result.getZExtValue() == 1;
unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
// Call the appropriate intrinsic.
Function *F = CGM.getIntrinsic(Int, Ty);
return Builder.CreateCall(F, Ops, "vcvtr");
}
// Determine the type of this overloaded NEON intrinsic.
NeonTypeFlags Type(Result.getZExtValue());
bool usgn = Type.isUnsigned();
bool quad = Type.isQuad();
bool rightShift = false;
llvm::VectorType *VTy = GetNeonType(this, Type);
llvm::Type *Ty = VTy;
if (!Ty)
return 0;
unsigned Int;
switch (BuiltinID) {
default: return 0;
case ARM::BI__builtin_neon_vbsl_v:
case ARM::BI__builtin_neon_vbslq_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vbsl, Ty),
Ops, "vbsl");
case ARM::BI__builtin_neon_vabd_v:
case ARM::BI__builtin_neon_vabdq_v:
Int = usgn ? Intrinsic::arm_neon_vabdu : Intrinsic::arm_neon_vabds;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd");
case ARM::BI__builtin_neon_vabs_v:
case ARM::BI__builtin_neon_vabsq_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vabs, Ty),
Ops, "vabs");
case ARM::BI__builtin_neon_vaddhn_v: {
llvm::VectorType *SrcTy =
llvm::VectorType::getExtendedElementVectorType(VTy);
// %sum = add <4 x i32> %lhs, %rhs
Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn");
// %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
Constant *ShiftAmt = ConstantInt::get(SrcTy->getElementType(),
SrcTy->getScalarSizeInBits() / 2);
ShiftAmt = ConstantVector::getSplat(VTy->getNumElements(), ShiftAmt);
Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn");
// %res = trunc <4 x i32> %high to <4 x i16>
return Builder.CreateTrunc(Ops[0], VTy, "vaddhn");
}
case ARM::BI__builtin_neon_vcale_v:
std::swap(Ops[0], Ops[1]);
case ARM::BI__builtin_neon_vcage_v: {
Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacged);
return EmitNeonCall(F, Ops, "vcage");
}
case ARM::BI__builtin_neon_vcaleq_v:
std::swap(Ops[0], Ops[1]);
case ARM::BI__builtin_neon_vcageq_v: {
Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgeq);
return EmitNeonCall(F, Ops, "vcage");
}
case ARM::BI__builtin_neon_vcalt_v:
std::swap(Ops[0], Ops[1]);
case ARM::BI__builtin_neon_vcagt_v: {
Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgtd);
return EmitNeonCall(F, Ops, "vcagt");
}
case ARM::BI__builtin_neon_vcaltq_v:
std::swap(Ops[0], Ops[1]);
case ARM::BI__builtin_neon_vcagtq_v: {
Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgtq);
return EmitNeonCall(F, Ops, "vcagt");
}
case ARM::BI__builtin_neon_vcls_v:
case ARM::BI__builtin_neon_vclsq_v: {
Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcls, Ty);
return EmitNeonCall(F, Ops, "vcls");
}
case ARM::BI__builtin_neon_vclz_v:
case ARM::BI__builtin_neon_vclzq_v: {
2012-07-15 03:29:12 +08:00
// Generate target-independent intrinsic; also need to add second argument
// for whether or not clz of zero is undefined; on ARM it isn't.
Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ty);
Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef()));
return EmitNeonCall(F, Ops, "vclz");
}
case ARM::BI__builtin_neon_vcnt_v:
case ARM::BI__builtin_neon_vcntq_v: {
// generate target-independent intrinsic
Function *F = CGM.getIntrinsic(Intrinsic::ctpop, Ty);
return EmitNeonCall(F, Ops, "vctpop");
}
case ARM::BI__builtin_neon_vcvt_f16_v: {
assert(Type.getEltType() == NeonTypeFlags::Float16 && !quad &&
"unexpected vcvt_f16_v builtin");
Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcvtfp2hf);
return EmitNeonCall(F, Ops, "vcvt");
}
case ARM::BI__builtin_neon_vcvt_f32_f16: {
assert(Type.getEltType() == NeonTypeFlags::Float16 && !quad &&
"unexpected vcvt_f32_f16 builtin");
Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcvthf2fp);
return EmitNeonCall(F, Ops, "vcvt");
}
case ARM::BI__builtin_neon_vcvt_f32_v:
case ARM::BI__builtin_neon_vcvtq_f32_v:
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, quad));
return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
: Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
case ARM::BI__builtin_neon_vcvt_s32_v:
case ARM::BI__builtin_neon_vcvt_u32_v:
case ARM::BI__builtin_neon_vcvtq_s32_v:
case ARM::BI__builtin_neon_vcvtq_u32_v: {
llvm::Type *FloatTy =
GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, quad));
Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy);
return usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
: Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
}
case ARM::BI__builtin_neon_vcvt_n_f32_v:
case ARM::BI__builtin_neon_vcvtq_n_f32_v: {
llvm::Type *FloatTy =
GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, quad));
llvm::Type *Tys[2] = { FloatTy, Ty };
Int = usgn ? Intrinsic::arm_neon_vcvtfxu2fp
: Intrinsic::arm_neon_vcvtfxs2fp;
Function *F = CGM.getIntrinsic(Int, Tys);
return EmitNeonCall(F, Ops, "vcvt_n");
}
case ARM::BI__builtin_neon_vcvt_n_s32_v:
case ARM::BI__builtin_neon_vcvt_n_u32_v:
case ARM::BI__builtin_neon_vcvtq_n_s32_v:
case ARM::BI__builtin_neon_vcvtq_n_u32_v: {
llvm::Type *FloatTy =
GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, quad));
llvm::Type *Tys[2] = { Ty, FloatTy };
Int = usgn ? Intrinsic::arm_neon_vcvtfp2fxu
: Intrinsic::arm_neon_vcvtfp2fxs;
Function *F = CGM.getIntrinsic(Int, Tys);
return EmitNeonCall(F, Ops, "vcvt_n");
}
case ARM::BI__builtin_neon_vext_v:
case ARM::BI__builtin_neon_vextq_v: {
int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
SmallVector<Constant*, 16> Indices;
for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
Indices.push_back(ConstantInt::get(Int32Ty, i+CV));
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Value *SV = llvm::ConstantVector::get(Indices);
return Builder.CreateShuffleVector(Ops[0], Ops[1], SV, "vext");
}
case ARM::BI__builtin_neon_vhadd_v:
case ARM::BI__builtin_neon_vhaddq_v:
Int = usgn ? Intrinsic::arm_neon_vhaddu : Intrinsic::arm_neon_vhadds;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vhadd");
case ARM::BI__builtin_neon_vhsub_v:
case ARM::BI__builtin_neon_vhsubq_v:
Int = usgn ? Intrinsic::arm_neon_vhsubu : Intrinsic::arm_neon_vhsubs;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vhsub");
case ARM::BI__builtin_neon_vld1_v:
case ARM::BI__builtin_neon_vld1q_v:
Ops.push_back(Align);
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Ty),
Ops, "vld1");
case ARM::BI__builtin_neon_vld1q_lane_v:
// Handle 64-bit integer elements as a special case. Use shuffles of
// one-element vectors to avoid poor code for i64 in the backend.
if (VTy->getElementType()->isIntegerTy(64)) {
// Extract the other lane.
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
int Lane = cast<ConstantInt>(Ops[2])->getZExtValue();
Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane));
Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
// Load the value as a one-element vector.
Ty = llvm::VectorType::get(VTy->getElementType(), 1);
Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Ty);
Value *Ld = Builder.CreateCall2(F, Ops[0], Align);
// Combine them.
SmallVector<Constant*, 2> Indices;
Indices.push_back(ConstantInt::get(Int32Ty, 1-Lane));
Indices.push_back(ConstantInt::get(Int32Ty, Lane));
SV = llvm::ConstantVector::get(Indices);
return Builder.CreateShuffleVector(Ops[1], Ld, SV, "vld1q_lane");
}
// fall through
case ARM::BI__builtin_neon_vld1_lane_v: {
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ty = llvm::PointerType::getUnqual(VTy->getElementType());
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
LoadInst *Ld = Builder.CreateLoad(Ops[0]);
Ld->setAlignment(cast<ConstantInt>(Align)->getZExtValue());
return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane");
}
case ARM::BI__builtin_neon_vld1_dup_v:
case ARM::BI__builtin_neon_vld1q_dup_v: {
Value *V = UndefValue::get(Ty);
Ty = llvm::PointerType::getUnqual(VTy->getElementType());
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
LoadInst *Ld = Builder.CreateLoad(Ops[0]);
Ld->setAlignment(cast<ConstantInt>(Align)->getZExtValue());
llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
Ops[0] = Builder.CreateInsertElement(V, Ld, CI);
return EmitNeonSplat(Ops[0], CI);
}
case ARM::BI__builtin_neon_vld2_v:
case ARM::BI__builtin_neon_vld2q_v: {
Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld2, Ty);
Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld2");
Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
return Builder.CreateStore(Ops[1], Ops[0]);
}
case ARM::BI__builtin_neon_vld3_v:
case ARM::BI__builtin_neon_vld3q_v: {
Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld3, Ty);
Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld3");
Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
return Builder.CreateStore(Ops[1], Ops[0]);
}
case ARM::BI__builtin_neon_vld4_v:
case ARM::BI__builtin_neon_vld4q_v: {
Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld4, Ty);
Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld4");
Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
return Builder.CreateStore(Ops[1], Ops[0]);
}
case ARM::BI__builtin_neon_vld2_lane_v:
case ARM::BI__builtin_neon_vld2q_lane_v: {
Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld2lane, Ty);
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
Ops.push_back(Align);
Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane");
Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
return Builder.CreateStore(Ops[1], Ops[0]);
}
case ARM::BI__builtin_neon_vld3_lane_v:
case ARM::BI__builtin_neon_vld3q_lane_v: {
Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld3lane, Ty);
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
Ops.push_back(Align);
Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
return Builder.CreateStore(Ops[1], Ops[0]);
}
case ARM::BI__builtin_neon_vld4_lane_v:
case ARM::BI__builtin_neon_vld4q_lane_v: {
Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld4lane, Ty);
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
Ops[5] = Builder.CreateBitCast(Ops[5], Ty);
Ops.push_back(Align);
Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
return Builder.CreateStore(Ops[1], Ops[0]);
}
case ARM::BI__builtin_neon_vld2_dup_v:
case ARM::BI__builtin_neon_vld3_dup_v:
case ARM::BI__builtin_neon_vld4_dup_v: {
// Handle 64-bit elements as a special-case. There is no "dup" needed.
if (VTy->getElementType()->getPrimitiveSizeInBits() == 64) {
switch (BuiltinID) {
case ARM::BI__builtin_neon_vld2_dup_v:
Int = Intrinsic::arm_neon_vld2;
break;
case ARM::BI__builtin_neon_vld3_dup_v:
Int = Intrinsic::arm_neon_vld3;
break;
case ARM::BI__builtin_neon_vld4_dup_v:
Int = Intrinsic::arm_neon_vld4;
break;
default: llvm_unreachable("unknown vld_dup intrinsic?");
}
Function *F = CGM.getIntrinsic(Int, Ty);
Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld_dup");
Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
return Builder.CreateStore(Ops[1], Ops[0]);
}
switch (BuiltinID) {
case ARM::BI__builtin_neon_vld2_dup_v:
Int = Intrinsic::arm_neon_vld2lane;
break;
case ARM::BI__builtin_neon_vld3_dup_v:
Int = Intrinsic::arm_neon_vld3lane;
break;
case ARM::BI__builtin_neon_vld4_dup_v:
Int = Intrinsic::arm_neon_vld4lane;
break;
default: llvm_unreachable("unknown vld_dup intrinsic?");
}
Function *F = CGM.getIntrinsic(Int, Ty);
llvm::StructType *STy = cast<llvm::StructType>(F->getReturnType());
SmallVector<Value*, 6> Args;
Args.push_back(Ops[1]);
Args.append(STy->getNumElements(), UndefValue::get(Ty));
llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
Args.push_back(CI);
Args.push_back(Align);
Ops[1] = Builder.CreateCall(F, Args, "vld_dup");
// splat lane 0 to all elts in each vector of the result.
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
Value *Val = Builder.CreateExtractValue(Ops[1], i);
Value *Elt = Builder.CreateBitCast(Val, Ty);
Elt = EmitNeonSplat(Elt, CI);
Elt = Builder.CreateBitCast(Elt, Val->getType());
Ops[1] = Builder.CreateInsertValue(Ops[1], Elt, i);
}
Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
return Builder.CreateStore(Ops[1], Ops[0]);
}
case ARM::BI__builtin_neon_vmax_v:
case ARM::BI__builtin_neon_vmaxq_v:
Int = usgn ? Intrinsic::arm_neon_vmaxu : Intrinsic::arm_neon_vmaxs;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax");
case ARM::BI__builtin_neon_vmin_v:
case ARM::BI__builtin_neon_vminq_v:
Int = usgn ? Intrinsic::arm_neon_vminu : Intrinsic::arm_neon_vmins;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin");
case ARM::BI__builtin_neon_vmovl_v: {
llvm::Type *DTy =llvm::VectorType::getTruncatedElementVectorType(VTy);
Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
if (usgn)
return Builder.CreateZExt(Ops[0], Ty, "vmovl");
return Builder.CreateSExt(Ops[0], Ty, "vmovl");
}
case ARM::BI__builtin_neon_vmovn_v: {
llvm::Type *QTy = llvm::VectorType::getExtendedElementVectorType(VTy);
Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
}
case ARM::BI__builtin_neon_vmul_v:
case ARM::BI__builtin_neon_vmulq_v:
assert(Type.isPoly() && "vmul builtin only supported for polynomial types");
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vmulp, Ty),
Ops, "vmul");
case ARM::BI__builtin_neon_vmull_v:
// FIXME: the integer vmull operations could be emitted in terms of pure
// LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of
// hoisting the exts outside loops. Until global ISel comes along that can
// see through such movement this leads to bad CodeGen. So we need an
// intrinsic for now.
Int = usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
case ARM::BI__builtin_neon_vfma_v:
case ARM::BI__builtin_neon_vfmaq_v: {
Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
// NEON intrinsic puts accumulator first, unlike the LLVM fma.
return Builder.CreateCall3(F, Ops[1], Ops[2], Ops[0]);
}
case ARM::BI__builtin_neon_vpadal_v:
case ARM::BI__builtin_neon_vpadalq_v: {
Int = usgn ? Intrinsic::arm_neon_vpadalu : Intrinsic::arm_neon_vpadals;
// The source operand type has twice as many elements of half the size.
unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
llvm::Type *EltTy =
llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
llvm::Type *NarrowTy =
llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
llvm::Type *Tys[2] = { Ty, NarrowTy };
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpadal");
}
case ARM::BI__builtin_neon_vpadd_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vpadd, Ty),
Ops, "vpadd");
case ARM::BI__builtin_neon_vpaddl_v:
case ARM::BI__builtin_neon_vpaddlq_v: {
Int = usgn ? Intrinsic::arm_neon_vpaddlu : Intrinsic::arm_neon_vpaddls;
// The source operand type has twice as many elements of half the size.
unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
llvm::Type *NarrowTy =
llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
llvm::Type *Tys[2] = { Ty, NarrowTy };
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl");
}
case ARM::BI__builtin_neon_vpmax_v:
Int = usgn ? Intrinsic::arm_neon_vpmaxu : Intrinsic::arm_neon_vpmaxs;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
case ARM::BI__builtin_neon_vpmin_v:
Int = usgn ? Intrinsic::arm_neon_vpminu : Intrinsic::arm_neon_vpmins;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
case ARM::BI__builtin_neon_vqabs_v:
case ARM::BI__builtin_neon_vqabsq_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqabs, Ty),
Ops, "vqabs");
case ARM::BI__builtin_neon_vqadd_v:
case ARM::BI__builtin_neon_vqaddq_v:
Int = usgn ? Intrinsic::arm_neon_vqaddu : Intrinsic::arm_neon_vqadds;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqadd");
case ARM::BI__builtin_neon_vqdmlal_v: {
SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end());
Value *Mul = EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmull, Ty),
MulOps, "vqdmlal");
SmallVector<Value *, 2> AddOps;
AddOps.push_back(Ops[0]);
AddOps.push_back(Mul);
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqadds, Ty),
AddOps, "vqdmlal");
}
case ARM::BI__builtin_neon_vqdmlsl_v: {
SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end());
Value *Mul = EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmull, Ty),
MulOps, "vqdmlsl");
SmallVector<Value *, 2> SubOps;
SubOps.push_back(Ops[0]);
SubOps.push_back(Mul);
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqsubs, Ty),
SubOps, "vqdmlsl");
}
case ARM::BI__builtin_neon_vqdmulh_v:
case ARM::BI__builtin_neon_vqdmulhq_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmulh, Ty),
Ops, "vqdmulh");
case ARM::BI__builtin_neon_vqdmull_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmull, Ty),
Ops, "vqdmull");
case ARM::BI__builtin_neon_vqmovn_v:
Int = usgn ? Intrinsic::arm_neon_vqmovnu : Intrinsic::arm_neon_vqmovns;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqmovn");
case ARM::BI__builtin_neon_vqmovun_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqmovnsu, Ty),
Ops, "vqdmull");
case ARM::BI__builtin_neon_vqneg_v:
case ARM::BI__builtin_neon_vqnegq_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqneg, Ty),
Ops, "vqneg");
case ARM::BI__builtin_neon_vqrdmulh_v:
case ARM::BI__builtin_neon_vqrdmulhq_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrdmulh, Ty),
Ops, "vqrdmulh");
case ARM::BI__builtin_neon_vqrshl_v:
case ARM::BI__builtin_neon_vqrshlq_v:
Int = usgn ? Intrinsic::arm_neon_vqrshiftu : Intrinsic::arm_neon_vqrshifts;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshl");
case ARM::BI__builtin_neon_vqrshrn_n_v:
Int =
usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n",
1, true);
case ARM::BI__builtin_neon_vqrshrun_n_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty),
Ops, "vqrshrun_n", 1, true);
case ARM::BI__builtin_neon_vqshl_v:
case ARM::BI__builtin_neon_vqshlq_v:
Int = usgn ? Intrinsic::arm_neon_vqshiftu : Intrinsic::arm_neon_vqshifts;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl");
case ARM::BI__builtin_neon_vqshl_n_v:
case ARM::BI__builtin_neon_vqshlq_n_v:
Int = usgn ? Intrinsic::arm_neon_vqshiftu : Intrinsic::arm_neon_vqshifts;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n",
1, false);
case ARM::BI__builtin_neon_vqshlu_n_v:
case ARM::BI__builtin_neon_vqshluq_n_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftsu, Ty),
Ops, "vqshlu", 1, false);
case ARM::BI__builtin_neon_vqshrn_n_v:
Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n",
1, true);
case ARM::BI__builtin_neon_vqshrun_n_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty),
Ops, "vqshrun_n", 1, true);
case ARM::BI__builtin_neon_vqsub_v:
case ARM::BI__builtin_neon_vqsubq_v:
Int = usgn ? Intrinsic::arm_neon_vqsubu : Intrinsic::arm_neon_vqsubs;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqsub");
case ARM::BI__builtin_neon_vraddhn_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vraddhn, Ty),
Ops, "vraddhn");
case ARM::BI__builtin_neon_vrecpe_v:
case ARM::BI__builtin_neon_vrecpeq_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty),
Ops, "vrecpe");
case ARM::BI__builtin_neon_vrecps_v:
case ARM::BI__builtin_neon_vrecpsq_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecps, Ty),
Ops, "vrecps");
case ARM::BI__builtin_neon_vrhadd_v:
case ARM::BI__builtin_neon_vrhaddq_v:
Int = usgn ? Intrinsic::arm_neon_vrhaddu : Intrinsic::arm_neon_vrhadds;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrhadd");
case ARM::BI__builtin_neon_vrshl_v:
case ARM::BI__builtin_neon_vrshlq_v:
Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshl");
case ARM::BI__builtin_neon_vrshrn_n_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty),
Ops, "vrshrn_n", 1, true);
case ARM::BI__builtin_neon_vrshr_n_v:
case ARM::BI__builtin_neon_vrshrq_n_v:
Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n", 1, true);
case ARM::BI__builtin_neon_vrsqrte_v:
case ARM::BI__builtin_neon_vrsqrteq_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrsqrte, Ty),
Ops, "vrsqrte");
case ARM::BI__builtin_neon_vrsqrts_v:
case ARM::BI__builtin_neon_vrsqrtsq_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrsqrts, Ty),
Ops, "vrsqrts");
case ARM::BI__builtin_neon_vrsra_n_v:
case ARM::BI__builtin_neon_vrsraq_n_v:
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
Ops[1] = Builder.CreateCall2(CGM.getIntrinsic(Int, Ty), Ops[1], Ops[2]);
return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
case ARM::BI__builtin_neon_vrsubhn_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrsubhn, Ty),
Ops, "vrsubhn");
case ARM::BI__builtin_neon_vshl_v:
case ARM::BI__builtin_neon_vshlq_v:
Int = usgn ? Intrinsic::arm_neon_vshiftu : Intrinsic::arm_neon_vshifts;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vshl");
case ARM::BI__builtin_neon_vshll_n_v:
Int = usgn ? Intrinsic::arm_neon_vshiftlu : Intrinsic::arm_neon_vshiftls;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vshll", 1);
case ARM::BI__builtin_neon_vshl_n_v:
case ARM::BI__builtin_neon_vshlq_n_v:
Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1],
"vshl_n");
case ARM::BI__builtin_neon_vshrn_n_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftn, Ty),
Ops, "vshrn_n", 1, true);
case ARM::BI__builtin_neon_vshr_n_v:
case ARM::BI__builtin_neon_vshrq_n_v:
return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, usgn, "vshr_n");
case ARM::BI__builtin_neon_vsri_n_v:
case ARM::BI__builtin_neon_vsriq_n_v:
rightShift = true;
case ARM::BI__builtin_neon_vsli_n_v:
case ARM::BI__builtin_neon_vsliq_n_v:
Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty),
Ops, "vsli_n");
case ARM::BI__builtin_neon_vsra_n_v:
case ARM::BI__builtin_neon_vsraq_n_v:
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
return Builder.CreateAdd(Ops[0], Ops[1]);
case ARM::BI__builtin_neon_vst1_v:
case ARM::BI__builtin_neon_vst1q_v:
Ops.push_back(Align);
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1, Ty),
Ops, "");
case ARM::BI__builtin_neon_vst1q_lane_v:
// Handle 64-bit integer elements as a special case. Use a shuffle to get
// a one-element vector and avoid poor code for i64 in the backend.
if (VTy->getElementType()->isIntegerTy(64)) {
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2]));
Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
Ops[2] = Align;
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1,
Ops[1]->getType()), Ops);
}
// fall through
case ARM::BI__builtin_neon_vst1_lane_v: {
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
StoreInst *St = Builder.CreateStore(Ops[1],
Builder.CreateBitCast(Ops[0], Ty));
St->setAlignment(cast<ConstantInt>(Align)->getZExtValue());
return St;
}
case ARM::BI__builtin_neon_vst2_v:
case ARM::BI__builtin_neon_vst2q_v:
Ops.push_back(Align);
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst2, Ty),
Ops, "");
case ARM::BI__builtin_neon_vst2_lane_v:
case ARM::BI__builtin_neon_vst2q_lane_v:
Ops.push_back(Align);
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst2lane, Ty),
Ops, "");
case ARM::BI__builtin_neon_vst3_v:
case ARM::BI__builtin_neon_vst3q_v:
Ops.push_back(Align);
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst3, Ty),
Ops, "");
case ARM::BI__builtin_neon_vst3_lane_v:
case ARM::BI__builtin_neon_vst3q_lane_v:
Ops.push_back(Align);
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst3lane, Ty),
Ops, "");
case ARM::BI__builtin_neon_vst4_v:
case ARM::BI__builtin_neon_vst4q_v:
Ops.push_back(Align);
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst4, Ty),
Ops, "");
case ARM::BI__builtin_neon_vst4_lane_v:
case ARM::BI__builtin_neon_vst4q_lane_v:
Ops.push_back(Align);
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst4lane, Ty),
Ops, "");
case ARM::BI__builtin_neon_vsubhn_v: {
llvm::VectorType *SrcTy =
llvm::VectorType::getExtendedElementVectorType(VTy);
// %sum = add <4 x i32> %lhs, %rhs
Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn");
// %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
Constant *ShiftAmt = ConstantInt::get(SrcTy->getElementType(),
SrcTy->getScalarSizeInBits() / 2);
ShiftAmt = ConstantVector::getSplat(VTy->getNumElements(), ShiftAmt);
Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn");
// %res = trunc <4 x i32> %high to <4 x i16>
return Builder.CreateTrunc(Ops[0], VTy, "vsubhn");
}
case ARM::BI__builtin_neon_vtbl1_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
Ops, "vtbl1");
case ARM::BI__builtin_neon_vtbl2_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
Ops, "vtbl2");
case ARM::BI__builtin_neon_vtbl3_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
Ops, "vtbl3");
case ARM::BI__builtin_neon_vtbl4_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
Ops, "vtbl4");
case ARM::BI__builtin_neon_vtbx1_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
Ops, "vtbx1");
case ARM::BI__builtin_neon_vtbx2_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
Ops, "vtbx2");
case ARM::BI__builtin_neon_vtbx3_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
Ops, "vtbx3");
case ARM::BI__builtin_neon_vtbx4_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
Ops, "vtbx4");
case ARM::BI__builtin_neon_vtst_v:
case ARM::BI__builtin_neon_vtstq_v: {
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
ConstantAggregateZero::get(Ty));
return Builder.CreateSExt(Ops[0], Ty, "vtst");
}
case ARM::BI__builtin_neon_vtrn_v:
case ARM::BI__builtin_neon_vtrnq_v: {
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
Value *SV = 0;
for (unsigned vi = 0; vi != 2; ++vi) {
SmallVector<Constant*, 16> Indices;
for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
Indices.push_back(Builder.getInt32(i+vi));
Indices.push_back(Builder.getInt32(i+e+vi));
}
Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
SV = llvm::ConstantVector::get(Indices);
SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vtrn");
SV = Builder.CreateStore(SV, Addr);
}
return SV;
}
case ARM::BI__builtin_neon_vuzp_v:
case ARM::BI__builtin_neon_vuzpq_v: {
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
Value *SV = 0;
for (unsigned vi = 0; vi != 2; ++vi) {
SmallVector<Constant*, 16> Indices;
for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
Indices.push_back(ConstantInt::get(Int32Ty, 2*i+vi));
Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
SV = llvm::ConstantVector::get(Indices);
SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vuzp");
SV = Builder.CreateStore(SV, Addr);
}
return SV;
}
case ARM::BI__builtin_neon_vzip_v:
case ARM::BI__builtin_neon_vzipq_v: {
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
Value *SV = 0;
for (unsigned vi = 0; vi != 2; ++vi) {
SmallVector<Constant*, 16> Indices;
for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
Indices.push_back(ConstantInt::get(Int32Ty, (i + vi*e) >> 1));
Indices.push_back(ConstantInt::get(Int32Ty, ((i + vi*e) >> 1)+e));
}
Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
SV = llvm::ConstantVector::get(Indices);
SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vzip");
SV = Builder.CreateStore(SV, Addr);
}
return SV;
}
}
}
llvm::Value *CodeGenFunction::
BuildVector(ArrayRef<llvm::Value*> Ops) {
assert((Ops.size() & (Ops.size() - 1)) == 0 &&
"Not a power-of-two sized vector!");
bool AllConstants = true;
for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
AllConstants &= isa<Constant>(Ops[i]);
// If this is a constant vector, create a ConstantVector.
if (AllConstants) {
SmallVector<llvm::Constant*, 16> CstOps;
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
CstOps.push_back(cast<Constant>(Ops[i]));
return llvm::ConstantVector::get(CstOps);
}
// Otherwise, insertelement the values to build the vector.
Value *Result =
llvm::UndefValue::get(llvm::VectorType::get(Ops[0]->getType(), Ops.size()));
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt32(i));
return Result;
}
Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
2007-12-13 15:34:23 +08:00
const CallExpr *E) {
SmallVector<Value*, 4> Ops;
// Find out if any arguments are required to be integer constant expressions.
unsigned ICEArguments = 0;
ASTContext::GetBuiltinTypeError Error;
getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
assert(Error == ASTContext::GE_None && "Should not codegen an error");
for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
// If this is a normal argument, just emit it as a scalar.
if ((ICEArguments & (1 << i)) == 0) {
Ops.push_back(EmitScalarExpr(E->getArg(i)));
continue;
}
// If this is required to be a constant, constant fold it so that we know
// that the generated intrinsic gets a ConstantInt.
llvm::APSInt Result;
bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst;
Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
}
switch (BuiltinID) {
default: return 0;
case X86::BI__builtin_ia32_vec_init_v8qi:
case X86::BI__builtin_ia32_vec_init_v4hi:
case X86::BI__builtin_ia32_vec_init_v2si:
return Builder.CreateBitCast(BuildVector(Ops),
llvm::Type::getX86_MMXTy(getLLVMContext()));
case X86::BI__builtin_ia32_vec_ext_v2si:
return Builder.CreateExtractElement(Ops[0],
llvm::ConstantInt::get(Ops[1]->getType(), 0));
case X86::BI__builtin_ia32_ldmxcsr: {
Value *Tmp = CreateMemTemp(E->getArg(0)->getType());
Builder.CreateStore(Ops[0], Tmp);
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
Builder.CreateBitCast(Tmp, Int8PtrTy));
}
case X86::BI__builtin_ia32_stmxcsr: {
2013-08-20 07:08:53 +08:00
Value *Tmp = CreateMemTemp(E->getType());
Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
Builder.CreateBitCast(Tmp, Int8PtrTy));
return Builder.CreateLoad(Tmp, "stmxcsr");
}
case X86::BI__builtin_ia32_storehps:
case X86::BI__builtin_ia32_storelps: {
llvm::Type *PtrTy = llvm::PointerType::getUnqual(Int64Ty);
llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 2);
// cast val v2i64
Ops[1] = Builder.CreateBitCast(Ops[1], VecTy, "cast");
// extract (0, 1)
unsigned Index = BuiltinID == X86::BI__builtin_ia32_storelps ? 0 : 1;
llvm::Value *Idx = llvm::ConstantInt::get(Int32Ty, Index);
Ops[1] = Builder.CreateExtractElement(Ops[1], Idx, "extract");
// cast pointer to i64 & store
Ops[0] = Builder.CreateBitCast(Ops[0], PtrTy);
return Builder.CreateStore(Ops[1], Ops[0]);
}
case X86::BI__builtin_ia32_palignr: {
unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
// If palignr is shifting the pair of input vectors less than 9 bytes,
// emit a shuffle instruction.
if (shiftVal <= 8) {
SmallVector<llvm::Constant*, 8> Indices;
for (unsigned i = 0; i != 8; ++i)
Indices.push_back(llvm::ConstantInt::get(Int32Ty, shiftVal + i));
Value* SV = llvm::ConstantVector::get(Indices);
return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr");
}
// If palignr is shifting the pair of input vectors more than 8 but less
// than 16 bytes, emit a logical right shift of the destination.
if (shiftVal < 16) {
// MMX has these as 1 x i64 vectors for some odd optimization reasons.
llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 1);
Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
Ops[1] = llvm::ConstantInt::get(VecTy, (shiftVal-8) * 8);
// create i32 constant
llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_mmx_psrl_q);
return Builder.CreateCall(F, makeArrayRef(&Ops[0], 2), "palignr");
}
2011-09-14 08:52:45 +08:00
// If palignr is shifting the pair of vectors more than 16 bytes, emit zero.
return llvm::Constant::getNullValue(ConvertType(E->getType()));
}
case X86::BI__builtin_ia32_palignr128: {
unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
// If palignr is shifting the pair of input vectors less than 17 bytes,
// emit a shuffle instruction.
if (shiftVal <= 16) {
SmallVector<llvm::Constant*, 16> Indices;
for (unsigned i = 0; i != 16; ++i)
Indices.push_back(llvm::ConstantInt::get(Int32Ty, shiftVal + i));
Value* SV = llvm::ConstantVector::get(Indices);
return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr");
}
// If palignr is shifting the pair of input vectors more than 16 but less
// than 32 bytes, emit a logical right shift of the destination.
if (shiftVal < 32) {
llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 2);
Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
Ops[1] = llvm::ConstantInt::get(Int32Ty, (shiftVal-16) * 8);
// create i32 constant
llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse2_psrl_dq);
return Builder.CreateCall(F, makeArrayRef(&Ops[0], 2), "palignr");
}
// If palignr is shifting the pair of vectors more than 32 bytes, emit zero.
return llvm::Constant::getNullValue(ConvertType(E->getType()));
}
case X86::BI__builtin_ia32_palignr256: {
unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
// If palignr is shifting the pair of input vectors less than 17 bytes,
// emit a shuffle instruction.
if (shiftVal <= 16) {
SmallVector<llvm::Constant*, 32> Indices;
// 256-bit palignr operates on 128-bit lanes so we need to handle that
for (unsigned l = 0; l != 2; ++l) {
unsigned LaneStart = l * 16;
unsigned LaneEnd = (l+1) * 16;
for (unsigned i = 0; i != 16; ++i) {
unsigned Idx = shiftVal + i + LaneStart;
if (Idx >= LaneEnd) Idx += 16; // end of lane, switch operand
Indices.push_back(llvm::ConstantInt::get(Int32Ty, Idx));
}
}
Value* SV = llvm::ConstantVector::get(Indices);
return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr");
}
// If palignr is shifting the pair of input vectors more than 16 but less
// than 32 bytes, emit a logical right shift of the destination.
if (shiftVal < 32) {
llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 4);
Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
Ops[1] = llvm::ConstantInt::get(Int32Ty, (shiftVal-16) * 8);
// create i32 constant
llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_avx2_psrl_dq);
return Builder.CreateCall(F, makeArrayRef(&Ops[0], 2), "palignr");
}
// If palignr is shifting the pair of vectors more than 32 bytes, emit zero.
return llvm::Constant::getNullValue(ConvertType(E->getType()));
}
case X86::BI__builtin_ia32_movntps:
case X86::BI__builtin_ia32_movntps256:
case X86::BI__builtin_ia32_movntpd:
case X86::BI__builtin_ia32_movntpd256:
case X86::BI__builtin_ia32_movntdq:
case X86::BI__builtin_ia32_movntdq256:
case X86::BI__builtin_ia32_movnti:
case X86::BI__builtin_ia32_movnti64: {
llvm::MDNode *Node = llvm::MDNode::get(getLLVMContext(),
Builder.getInt32(1));
// Convert the type of the pointer to a pointer to the stored type.
Value *BC = Builder.CreateBitCast(Ops[0],
llvm::PointerType::getUnqual(Ops[1]->getType()),
"cast");
StoreInst *SI = Builder.CreateStore(Ops[1], BC);
SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
// If the operand is an integer, we can't assume alignment. Otherwise,
// assume natural alignment.
QualType ArgTy = E->getArg(1)->getType();
unsigned Align;
if (ArgTy->isIntegerType())
Align = 1;
else
Align = getContext().getTypeSizeInChars(ArgTy).getQuantity();
SI->setAlignment(Align);
return SI;
}
// 3DNow!
case X86::BI__builtin_ia32_pswapdsf:
case X86::BI__builtin_ia32_pswapdsi: {
const char *name = 0;
Intrinsic::ID ID = Intrinsic::not_intrinsic;
switch(BuiltinID) {
default: llvm_unreachable("Unsupported intrinsic!");
case X86::BI__builtin_ia32_pswapdsf:
case X86::BI__builtin_ia32_pswapdsi:
name = "pswapd";
ID = Intrinsic::x86_3dnowa_pswapd;
break;
}
llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext());
Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast");
llvm::Function *F = CGM.getIntrinsic(ID);
return Builder.CreateCall(F, Ops, name);
}
case X86::BI__builtin_ia32_rdrand16_step:
case X86::BI__builtin_ia32_rdrand32_step:
case X86::BI__builtin_ia32_rdrand64_step:
case X86::BI__builtin_ia32_rdseed16_step:
case X86::BI__builtin_ia32_rdseed32_step:
case X86::BI__builtin_ia32_rdseed64_step: {
Intrinsic::ID ID;
switch (BuiltinID) {
default: llvm_unreachable("Unsupported intrinsic!");
case X86::BI__builtin_ia32_rdrand16_step:
ID = Intrinsic::x86_rdrand_16;
break;
case X86::BI__builtin_ia32_rdrand32_step:
ID = Intrinsic::x86_rdrand_32;
break;
case X86::BI__builtin_ia32_rdrand64_step:
ID = Intrinsic::x86_rdrand_64;
break;
case X86::BI__builtin_ia32_rdseed16_step:
ID = Intrinsic::x86_rdseed_16;
break;
case X86::BI__builtin_ia32_rdseed32_step:
ID = Intrinsic::x86_rdseed_32;
break;
case X86::BI__builtin_ia32_rdseed64_step:
ID = Intrinsic::x86_rdseed_64;
break;
}
Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID));
Builder.CreateStore(Builder.CreateExtractValue(Call, 0), Ops[0]);
return Builder.CreateExtractValue(Call, 1);
}
// AVX2 broadcast
case X86::BI__builtin_ia32_vbroadcastsi256: {
Value *VecTmp = CreateMemTemp(E->getArg(0)->getType());
Builder.CreateStore(Ops[0], VecTmp);
Value *F = CGM.getIntrinsic(Intrinsic::x86_avx2_vbroadcasti128);
return Builder.CreateCall(F, Builder.CreateBitCast(VecTmp, Int8PtrTy));
}
}
}
Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
2007-12-13 15:34:23 +08:00
const CallExpr *E) {
SmallVector<Value*, 4> Ops;
for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
Ops.push_back(EmitScalarExpr(E->getArg(i)));
Intrinsic::ID ID = Intrinsic::not_intrinsic;
switch (BuiltinID) {
default: return 0;
// vec_ld, vec_lvsl, vec_lvsr
case PPC::BI__builtin_altivec_lvx:
case PPC::BI__builtin_altivec_lvxl:
case PPC::BI__builtin_altivec_lvebx:
case PPC::BI__builtin_altivec_lvehx:
case PPC::BI__builtin_altivec_lvewx:
case PPC::BI__builtin_altivec_lvsl:
case PPC::BI__builtin_altivec_lvsr:
{
Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
2011-09-28 05:06:10 +08:00
Ops[0] = Builder.CreateGEP(Ops[1], Ops[0]);
Ops.pop_back();
switch (BuiltinID) {
default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!");
case PPC::BI__builtin_altivec_lvx:
ID = Intrinsic::ppc_altivec_lvx;
break;
case PPC::BI__builtin_altivec_lvxl:
ID = Intrinsic::ppc_altivec_lvxl;
break;
case PPC::BI__builtin_altivec_lvebx:
ID = Intrinsic::ppc_altivec_lvebx;
break;
case PPC::BI__builtin_altivec_lvehx:
ID = Intrinsic::ppc_altivec_lvehx;
break;
case PPC::BI__builtin_altivec_lvewx:
ID = Intrinsic::ppc_altivec_lvewx;
break;
case PPC::BI__builtin_altivec_lvsl:
ID = Intrinsic::ppc_altivec_lvsl;
break;
case PPC::BI__builtin_altivec_lvsr:
ID = Intrinsic::ppc_altivec_lvsr;
break;
}
llvm::Function *F = CGM.getIntrinsic(ID);
return Builder.CreateCall(F, Ops, "");
}
// vec_st
case PPC::BI__builtin_altivec_stvx:
case PPC::BI__builtin_altivec_stvxl:
case PPC::BI__builtin_altivec_stvebx:
case PPC::BI__builtin_altivec_stvehx:
case PPC::BI__builtin_altivec_stvewx:
{
Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
2011-09-28 05:06:10 +08:00
Ops[1] = Builder.CreateGEP(Ops[2], Ops[1]);
Ops.pop_back();
switch (BuiltinID) {
default: llvm_unreachable("Unsupported st intrinsic!");
case PPC::BI__builtin_altivec_stvx:
ID = Intrinsic::ppc_altivec_stvx;
break;
case PPC::BI__builtin_altivec_stvxl:
ID = Intrinsic::ppc_altivec_stvxl;
break;
case PPC::BI__builtin_altivec_stvebx:
ID = Intrinsic::ppc_altivec_stvebx;
break;
case PPC::BI__builtin_altivec_stvehx:
ID = Intrinsic::ppc_altivec_stvehx;
break;
case PPC::BI__builtin_altivec_stvewx:
ID = Intrinsic::ppc_altivec_stvewx;
break;
}
llvm::Function *F = CGM.getIntrinsic(ID);
return Builder.CreateCall(F, Ops, "");
}
}
}