llvm-project/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp

4866 lines
188 KiB
C++
Raw Normal View History

//===- InstCombineCompares.cpp --------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the visitICmp and visitFCmp functions.
//
//===----------------------------------------------------------------------===//
#include "InstCombineInternal.h"
#include "llvm/ADT/APSInt.h"
Re-commit r257064, after it was reverted in r257340. This contains a fix for the issue that caused the revert: we no longer assume that we can insert instructions after the instruction that produces the base pointer. We previously assumed that this would be ok, because the instruction produces a value and therefore is not a terminator. This is false for invoke instructions. We will now insert these new instruction directly at the location of the users. Original commit message: [InstCombine] Look through PHIs, GEPs, IntToPtrs and PtrToInts to expose more constants when comparing GEPs Summary: When comparing two GEP instructions which have the same base pointer and one of them has a constant index, it is possible to only compare indices, transforming it to a compare with a constant. This removes one use for the GEP instruction with the constant index, can reduce register pressure and can sometimes lead to removing the comparisson entirely. InstCombine was already doing this when comparing two GEPs if the base pointers were the same. However, in the case where we have complex pointer arithmetic (GEPs applied to GEPs, PHIs of GEPs, conversions to or from integers, etc) the value of the original base pointer will be hidden to the optimizer and this transformation will be disabled. This change detects when the two sides of the comparison can be expressed as GEPs with the same base pointer, even if they don't appear as such in the IR. The transformation will convert all the pointer arithmetic to arithmetic done on indices and all the relevant uses of GEPs to GEPs with a common base pointer. The GEP comparison will be converted to a comparison done on indices. Reviewers: majnemer, jmolloy Subscribers: hfinkel, jevinskie, jmolloy, aadg, llvm-commits Differential Revision: http://reviews.llvm.org/D15146 llvm-svn: 257897
2016-01-15 23:52:05 +08:00
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
using namespace PatternMatch;
#define DEBUG_TYPE "instcombine"
// How many times is a select replaced by one of its operands?
STATISTIC(NumSel, "Number of select opts");
static ConstantInt *extractElement(Constant *V, Constant *Idx) {
return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
}
static bool hasAddOverflow(ConstantInt *Result,
ConstantInt *In1, ConstantInt *In2,
bool IsSigned) {
if (!IsSigned)
return Result->getValue().ult(In1->getValue());
if (In2->isNegative())
return Result->getValue().sgt(In1->getValue());
return Result->getValue().slt(In1->getValue());
}
/// Compute Result = In1+In2, returning true if the result overflowed for this
/// type.
static bool addWithOverflow(Constant *&Result, Constant *In1,
Constant *In2, bool IsSigned = false) {
Result = ConstantExpr::getAdd(In1, In2);
if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
if (hasAddOverflow(extractElement(Result, Idx),
extractElement(In1, Idx),
extractElement(In2, Idx),
IsSigned))
return true;
}
return false;
}
return hasAddOverflow(cast<ConstantInt>(Result),
cast<ConstantInt>(In1), cast<ConstantInt>(In2),
IsSigned);
}
static bool hasSubOverflow(ConstantInt *Result,
ConstantInt *In1, ConstantInt *In2,
bool IsSigned) {
if (!IsSigned)
return Result->getValue().ugt(In1->getValue());
if (In2->isNegative())
return Result->getValue().slt(In1->getValue());
return Result->getValue().sgt(In1->getValue());
}
/// Compute Result = In1-In2, returning true if the result overflowed for this
/// type.
static bool subWithOverflow(Constant *&Result, Constant *In1,
Constant *In2, bool IsSigned = false) {
Result = ConstantExpr::getSub(In1, In2);
if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
if (hasSubOverflow(extractElement(Result, Idx),
extractElement(In1, Idx),
extractElement(In2, Idx),
IsSigned))
return true;
}
return false;
}
return hasSubOverflow(cast<ConstantInt>(Result),
cast<ConstantInt>(In1), cast<ConstantInt>(In2),
IsSigned);
}
/// Given an icmp instruction, return true if any use of this comparison is a
/// branch on sign bit comparison.
static bool isBranchOnSignBitCheck(ICmpInst &I, bool isSignBit) {
for (auto *U : I.users())
if (isa<BranchInst>(U))
return isSignBit;
return false;
}
/// Given an exploded icmp instruction, return true if the comparison only
/// checks the sign bit. If it only checks the sign bit, set TrueIfSigned if the
/// result of the comparison is true when the input value is signed.
static bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS,
bool &TrueIfSigned) {
switch (Pred) {
case ICmpInst::ICMP_SLT: // True if LHS s< 0
TrueIfSigned = true;
return RHS == 0;
case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1
TrueIfSigned = true;
return RHS.isAllOnesValue();
case ICmpInst::ICMP_SGT: // True if LHS s> -1
TrueIfSigned = false;
return RHS.isAllOnesValue();
case ICmpInst::ICMP_UGT:
// True if LHS u> RHS and RHS == high-bit-mask - 1
TrueIfSigned = true;
return RHS.isMaxSignedValue();
case ICmpInst::ICMP_UGE:
// True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
TrueIfSigned = true;
return RHS.isSignBit();
default:
return false;
}
}
/// Returns true if the exploded icmp can be expressed as a signed comparison
/// to zero and updates the predicate accordingly.
/// The signedness of the comparison is preserved.
/// TODO: Refactor with decomposeBitTestICmp()?
static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
if (!ICmpInst::isSigned(Pred))
return false;
if (C == 0)
return ICmpInst::isRelational(Pred);
if (C == 1) {
if (Pred == ICmpInst::ICMP_SLT) {
Pred = ICmpInst::ICMP_SLE;
return true;
}
} else if (C.isAllOnesValue()) {
if (Pred == ICmpInst::ICMP_SGT) {
Pred = ICmpInst::ICMP_SGE;
return true;
}
}
return false;
}
/// Given a signed integer type and a set of known zero and one bits, compute
/// the maximum and minimum values that could have the specified known zero and
/// known one bits, returning them in Min/Max.
static void computeSignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
const APInt &KnownOne,
APInt &Min, APInt &Max) {
assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
KnownZero.getBitWidth() == Min.getBitWidth() &&
KnownZero.getBitWidth() == Max.getBitWidth() &&
"KnownZero, KnownOne and Min, Max must have equal bitwidth.");
APInt UnknownBits = ~(KnownZero|KnownOne);
// The minimum value is when all unknown bits are zeros, EXCEPT for the sign
// bit if it is unknown.
Min = KnownOne;
Max = KnownOne|UnknownBits;
if (UnknownBits.isNegative()) { // Sign bit is unknown
Min.setBit(Min.getBitWidth()-1);
Max.clearBit(Max.getBitWidth()-1);
}
}
/// Given an unsigned integer type and a set of known zero and one bits, compute
/// the maximum and minimum values that could have the specified known zero and
/// known one bits, returning them in Min/Max.
static void computeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
const APInt &KnownOne,
APInt &Min, APInt &Max) {
assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
KnownZero.getBitWidth() == Min.getBitWidth() &&
KnownZero.getBitWidth() == Max.getBitWidth() &&
"Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
APInt UnknownBits = ~(KnownZero|KnownOne);
// The minimum value is when the unknown bits are all zeros.
Min = KnownOne;
// The maximum value is when the unknown bits are all ones.
Max = KnownOne|UnknownBits;
}
/// This is called when we see this pattern:
/// cmp pred (load (gep GV, ...)), cmpcst
/// where GV is a global variable with a constant initializer. Try to simplify
/// this into some simple computation that does not need the load. For example
/// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
///
/// If AndCst is non-null, then the loaded value is masked with that constant
/// before doing the comparison. This handles cases like "A[i]&4 == 0".
Instruction *InstCombiner::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
GlobalVariable *GV,
CmpInst &ICI,
ConstantInt *AndCst) {
Constant *Init = GV->getInitializer();
if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
return nullptr;
uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
if (ArrayElementCount > 1024) return nullptr; // Don't blow up on huge arrays.
// There are many forms of this optimization we can handle, for now, just do
// the simple index into a single-dimensional array.
//
// Require: GEP GV, 0, i {{, constant indices}}
if (GEP->getNumOperands() < 3 ||
!isa<ConstantInt>(GEP->getOperand(1)) ||
!cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
isa<Constant>(GEP->getOperand(2)))
return nullptr;
// Check that indices after the variable are constants and in-range for the
// type they index. Collect the indices. This is typically for arrays of
// structs.
SmallVector<unsigned, 4> LaterIndices;
Type *EltTy = Init->getType()->getArrayElementType();
for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
if (!Idx) return nullptr; // Variable index.
uint64_t IdxVal = Idx->getZExtValue();
if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
if (StructType *STy = dyn_cast<StructType>(EltTy))
EltTy = STy->getElementType(IdxVal);
else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
if (IdxVal >= ATy->getNumElements()) return nullptr;
EltTy = ATy->getElementType();
} else {
return nullptr; // Unknown type.
}
LaterIndices.push_back(IdxVal);
}
enum { Overdefined = -3, Undefined = -2 };
// Variables for our state machines.
// FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
// "i == 47 | i == 87", where 47 is the first index the condition is true for,
// and 87 is the second (and last) index. FirstTrueElement is -2 when
// undefined, otherwise set to the first true element. SecondTrueElement is
// -2 when undefined, -3 when overdefined and >= 0 when that index is true.
int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
// FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
// form "i != 47 & i != 87". Same state transitions as for true elements.
int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
/// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
/// define a state machine that triggers for ranges of values that the index
/// is true or false for. This triggers on things like "abbbbc"[i] == 'b'.
/// This is -2 when undefined, -3 when overdefined, and otherwise the last
/// index in the range (inclusive). We use -2 for undefined here because we
/// use relative comparisons and don't want 0-1 to match -1.
int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
// MagicBitvector - This is a magic bitvector where we set a bit if the
// comparison is true for element 'i'. If there are 64 elements or less in
// the array, this will fully represent all the comparison results.
uint64_t MagicBitvector = 0;
// Scan the array and see if one of our patterns matches.
Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
Constant *Elt = Init->getAggregateElement(i);
if (!Elt) return nullptr;
// If this is indexing an array of structures, get the structure element.
if (!LaterIndices.empty())
Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
// If the element is masked, handle it.
if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
// Find out if the comparison would be true or false for the i'th element.
Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
CompareRHS, DL, &TLI);
// If the result is undef for this element, ignore it.
if (isa<UndefValue>(C)) {
// Extend range state machines to cover this element in case there is an
// undef in the middle of the range.
if (TrueRangeEnd == (int)i-1)
TrueRangeEnd = i;
if (FalseRangeEnd == (int)i-1)
FalseRangeEnd = i;
continue;
}
// If we can't compute the result for any of the elements, we have to give
// up evaluating the entire conditional.
if (!isa<ConstantInt>(C)) return nullptr;
// Otherwise, we know if the comparison is true or false for this element,
// update our state machines.
bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
// State machine for single/double/range index comparison.
if (IsTrueForElt) {
// Update the TrueElement state machine.
if (FirstTrueElement == Undefined)
FirstTrueElement = TrueRangeEnd = i; // First true element.
else {
// Update double-compare state machine.
if (SecondTrueElement == Undefined)
SecondTrueElement = i;
else
SecondTrueElement = Overdefined;
// Update range state machine.
if (TrueRangeEnd == (int)i-1)
TrueRangeEnd = i;
else
TrueRangeEnd = Overdefined;
}
} else {
// Update the FalseElement state machine.
if (FirstFalseElement == Undefined)
FirstFalseElement = FalseRangeEnd = i; // First false element.
else {
// Update double-compare state machine.
if (SecondFalseElement == Undefined)
SecondFalseElement = i;
else
SecondFalseElement = Overdefined;
// Update range state machine.
if (FalseRangeEnd == (int)i-1)
FalseRangeEnd = i;
else
FalseRangeEnd = Overdefined;
}
}
// If this element is in range, update our magic bitvector.
if (i < 64 && IsTrueForElt)
MagicBitvector |= 1ULL << i;
// If all of our states become overdefined, bail out early. Since the
// predicate is expensive, only check it every 8 elements. This is only
// really useful for really huge arrays.
if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
FalseRangeEnd == Overdefined)
return nullptr;
}
// Now that we've scanned the entire array, emit our new comparison(s). We
// order the state machines in complexity of the generated code.
Value *Idx = GEP->getOperand(2);
// If the index is larger than the pointer size of the target, truncate the
// index down like the GEP would do implicitly. We don't have to do this for
// an inbounds GEP because the index can't be out of range.
if (!GEP->isInBounds()) {
Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize)
Idx = Builder->CreateTrunc(Idx, IntPtrTy);
}
// If the comparison is only true for one or two elements, emit direct
// comparisons.
if (SecondTrueElement != Overdefined) {
// None true -> false.
if (FirstTrueElement == Undefined)
return replaceInstUsesWith(ICI, Builder->getFalse());
Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
// True for one element -> 'i == 47'.
if (SecondTrueElement == Undefined)
return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
// True for two elements -> 'i == 47 | i == 72'.
Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);
Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx);
return BinaryOperator::CreateOr(C1, C2);
}
// If the comparison is only false for one or two elements, emit direct
// comparisons.
if (SecondFalseElement != Overdefined) {
// None false -> true.
if (FirstFalseElement == Undefined)
return replaceInstUsesWith(ICI, Builder->getTrue());
Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
// False for one element -> 'i != 47'.
if (SecondFalseElement == Undefined)
return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
// False for two elements -> 'i != 47 & i != 72'.
Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);
Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);
return BinaryOperator::CreateAnd(C1, C2);
}
// If the comparison can be replaced with a range comparison for the elements
// where it is true, emit the range check.
if (TrueRangeEnd != Overdefined) {
assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
// Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
if (FirstTrueElement) {
Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
Idx = Builder->CreateAdd(Idx, Offs);
}
Value *End = ConstantInt::get(Idx->getType(),
TrueRangeEnd-FirstTrueElement+1);
return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
}
// False range check.
if (FalseRangeEnd != Overdefined) {
assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
// Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
if (FirstFalseElement) {
Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
Idx = Builder->CreateAdd(Idx, Offs);
}
Value *End = ConstantInt::get(Idx->getType(),
FalseRangeEnd-FirstFalseElement);
return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
}
// If a magic bitvector captures the entire comparison state
// of this load, replace it with computation that does:
// ((magic_cst >> i) & 1) != 0
{
Type *Ty = nullptr;
// Look for an appropriate type:
// - The type of Idx if the magic fits
// - The smallest fitting legal type if we have a DataLayout
// - Default to i32
if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
Ty = Idx->getType();
else
Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
if (Ty) {
Value *V = Builder->CreateIntCast(Idx, Ty, false);
V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
}
}
return nullptr;
}
/// Return a value that can be used to compare the *offset* implied by a GEP to
/// zero. For example, if we have &A[i], we want to return 'i' for
/// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
/// are involved. The above expression would also be legal to codegen as
/// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
/// This latter form is less amenable to optimization though, and we are allowed
/// to generate the first by knowing that pointer arithmetic doesn't overflow.
///
/// If we can't emit an optimized form for this expression, this returns null.
///
static Value *evaluateGEPOffsetExpression(User *GEP, InstCombiner &IC,
const DataLayout &DL) {
gep_type_iterator GTI = gep_type_begin(GEP);
// Check to see if this gep only has a single variable index. If so, and if
// any constant indices are a multiple of its scale, then we can compute this
// in terms of the scale of the variable index. For example, if the GEP
// implies an offset of "12 + i*4", then we can codegen this as "3 + i",
// because the expression will cross zero at the same point.
unsigned i, e = GEP->getNumOperands();
int64_t Offset = 0;
for (i = 1; i != e; ++i, ++GTI) {
if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
// Compute the aggregate offset of constant indices.
if (CI->isZero()) continue;
// Handle a struct index, which adds its field offset to the pointer.
if (StructType *STy = GTI.getStructTypeOrNull()) {
Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
} else {
uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
Offset += Size*CI->getSExtValue();
}
} else {
// Found our variable index.
break;
}
}
// If there are no variable indices, we must have a constant offset, just
// evaluate it the general way.
if (i == e) return nullptr;
Value *VariableIdx = GEP->getOperand(i);
// Determine the scale factor of the variable element. For example, this is
// 4 if the variable index is into an array of i32.
uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
// Verify that there are no other variable indices. If so, emit the hard way.
for (++i, ++GTI; i != e; ++i, ++GTI) {
ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
if (!CI) return nullptr;
// Compute the aggregate offset of constant indices.
if (CI->isZero()) continue;
// Handle a struct index, which adds its field offset to the pointer.
if (StructType *STy = GTI.getStructTypeOrNull()) {
Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
} else {
uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
Offset += Size*CI->getSExtValue();
}
}
// Okay, we know we have a single variable index, which must be a
// pointer/array/vector index. If there is no offset, life is simple, return
// the index.
Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
if (Offset == 0) {
// Cast to intptrty in case a truncation occurs. If an extension is needed,
// we don't need to bother extending: the extension won't affect where the
// computation crosses zero.
if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy);
}
return VariableIdx;
}
// Otherwise, there is an index. The computation we will do will be modulo
// the pointer size, so get it.
uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
Offset &= PtrSizeMask;
VariableScale &= PtrSizeMask;
// To do this transformation, any constant index must be a multiple of the
// variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
// but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
// multiple of the variable scale.
int64_t NewOffs = Offset / (int64_t)VariableScale;
if (Offset != NewOffs*(int64_t)VariableScale)
return nullptr;
// Okay, we can do this evaluation. Start by converting the index to intptr.
if (VariableIdx->getType() != IntPtrTy)
VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy,
true /*Signed*/);
Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
return IC.Builder->CreateAdd(VariableIdx, OffsetVal, "offset");
}
Re-commit r257064, after it was reverted in r257340. This contains a fix for the issue that caused the revert: we no longer assume that we can insert instructions after the instruction that produces the base pointer. We previously assumed that this would be ok, because the instruction produces a value and therefore is not a terminator. This is false for invoke instructions. We will now insert these new instruction directly at the location of the users. Original commit message: [InstCombine] Look through PHIs, GEPs, IntToPtrs and PtrToInts to expose more constants when comparing GEPs Summary: When comparing two GEP instructions which have the same base pointer and one of them has a constant index, it is possible to only compare indices, transforming it to a compare with a constant. This removes one use for the GEP instruction with the constant index, can reduce register pressure and can sometimes lead to removing the comparisson entirely. InstCombine was already doing this when comparing two GEPs if the base pointers were the same. However, in the case where we have complex pointer arithmetic (GEPs applied to GEPs, PHIs of GEPs, conversions to or from integers, etc) the value of the original base pointer will be hidden to the optimizer and this transformation will be disabled. This change detects when the two sides of the comparison can be expressed as GEPs with the same base pointer, even if they don't appear as such in the IR. The transformation will convert all the pointer arithmetic to arithmetic done on indices and all the relevant uses of GEPs to GEPs with a common base pointer. The GEP comparison will be converted to a comparison done on indices. Reviewers: majnemer, jmolloy Subscribers: hfinkel, jevinskie, jmolloy, aadg, llvm-commits Differential Revision: http://reviews.llvm.org/D15146 llvm-svn: 257897
2016-01-15 23:52:05 +08:00
/// Returns true if we can rewrite Start as a GEP with pointer Base
/// and some integer offset. The nodes that need to be re-written
/// for this transformation will be added to Explored.
static bool canRewriteGEPAsOffset(Value *Start, Value *Base,
const DataLayout &DL,
SetVector<Value *> &Explored) {
SmallVector<Value *, 16> WorkList(1, Start);
Explored.insert(Base);
// The following traversal gives us an order which can be used
// when doing the final transformation. Since in the final
// transformation we create the PHI replacement instructions first,
// we don't have to get them in any particular order.
//
// However, for other instructions we will have to traverse the
// operands of an instruction first, which means that we have to
// do a post-order traversal.
while (!WorkList.empty()) {
SetVector<PHINode *> PHIs;
while (!WorkList.empty()) {
if (Explored.size() >= 100)
return false;
Value *V = WorkList.back();
if (Explored.count(V) != 0) {
WorkList.pop_back();
continue;
}
if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) &&
!isa<GetElementPtrInst>(V) && !isa<PHINode>(V))
Re-commit r257064, after it was reverted in r257340. This contains a fix for the issue that caused the revert: we no longer assume that we can insert instructions after the instruction that produces the base pointer. We previously assumed that this would be ok, because the instruction produces a value and therefore is not a terminator. This is false for invoke instructions. We will now insert these new instruction directly at the location of the users. Original commit message: [InstCombine] Look through PHIs, GEPs, IntToPtrs and PtrToInts to expose more constants when comparing GEPs Summary: When comparing two GEP instructions which have the same base pointer and one of them has a constant index, it is possible to only compare indices, transforming it to a compare with a constant. This removes one use for the GEP instruction with the constant index, can reduce register pressure and can sometimes lead to removing the comparisson entirely. InstCombine was already doing this when comparing two GEPs if the base pointers were the same. However, in the case where we have complex pointer arithmetic (GEPs applied to GEPs, PHIs of GEPs, conversions to or from integers, etc) the value of the original base pointer will be hidden to the optimizer and this transformation will be disabled. This change detects when the two sides of the comparison can be expressed as GEPs with the same base pointer, even if they don't appear as such in the IR. The transformation will convert all the pointer arithmetic to arithmetic done on indices and all the relevant uses of GEPs to GEPs with a common base pointer. The GEP comparison will be converted to a comparison done on indices. Reviewers: majnemer, jmolloy Subscribers: hfinkel, jevinskie, jmolloy, aadg, llvm-commits Differential Revision: http://reviews.llvm.org/D15146 llvm-svn: 257897
2016-01-15 23:52:05 +08:00
// We've found some value that we can't explore which is different from
// the base. Therefore we can't do this transformation.
return false;
if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) {
auto *CI = dyn_cast<CastInst>(V);
if (!CI->isNoopCast(DL))
return false;
if (Explored.count(CI->getOperand(0)) == 0)
WorkList.push_back(CI->getOperand(0));
}
if (auto *GEP = dyn_cast<GEPOperator>(V)) {
// We're limiting the GEP to having one index. This will preserve
// the original pointer type. We could handle more cases in the
// future.
if (GEP->getNumIndices() != 1 || !GEP->isInBounds() ||
GEP->getType() != Start->getType())
return false;
if (Explored.count(GEP->getOperand(0)) == 0)
WorkList.push_back(GEP->getOperand(0));
}
if (WorkList.back() == V) {
WorkList.pop_back();
// We've finished visiting this node, mark it as such.
Explored.insert(V);
}
if (auto *PN = dyn_cast<PHINode>(V)) {
// We cannot transform PHIs on unsplittable basic blocks.
if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
return false;
Re-commit r257064, after it was reverted in r257340. This contains a fix for the issue that caused the revert: we no longer assume that we can insert instructions after the instruction that produces the base pointer. We previously assumed that this would be ok, because the instruction produces a value and therefore is not a terminator. This is false for invoke instructions. We will now insert these new instruction directly at the location of the users. Original commit message: [InstCombine] Look through PHIs, GEPs, IntToPtrs and PtrToInts to expose more constants when comparing GEPs Summary: When comparing two GEP instructions which have the same base pointer and one of them has a constant index, it is possible to only compare indices, transforming it to a compare with a constant. This removes one use for the GEP instruction with the constant index, can reduce register pressure and can sometimes lead to removing the comparisson entirely. InstCombine was already doing this when comparing two GEPs if the base pointers were the same. However, in the case where we have complex pointer arithmetic (GEPs applied to GEPs, PHIs of GEPs, conversions to or from integers, etc) the value of the original base pointer will be hidden to the optimizer and this transformation will be disabled. This change detects when the two sides of the comparison can be expressed as GEPs with the same base pointer, even if they don't appear as such in the IR. The transformation will convert all the pointer arithmetic to arithmetic done on indices and all the relevant uses of GEPs to GEPs with a common base pointer. The GEP comparison will be converted to a comparison done on indices. Reviewers: majnemer, jmolloy Subscribers: hfinkel, jevinskie, jmolloy, aadg, llvm-commits Differential Revision: http://reviews.llvm.org/D15146 llvm-svn: 257897
2016-01-15 23:52:05 +08:00
Explored.insert(PN);
PHIs.insert(PN);
}
}
// Explore the PHI nodes further.
for (auto *PN : PHIs)
for (Value *Op : PN->incoming_values())
if (Explored.count(Op) == 0)
WorkList.push_back(Op);
}
// Make sure that we can do this. Since we can't insert GEPs in a basic
// block before a PHI node, we can't easily do this transformation if
// we have PHI node users of transformed instructions.
for (Value *Val : Explored) {
for (Value *Use : Val->uses()) {
auto *PHI = dyn_cast<PHINode>(Use);
auto *Inst = dyn_cast<Instruction>(Val);
if (Inst == Base || Inst == PHI || !Inst || !PHI ||
Explored.count(PHI) == 0)
continue;
if (PHI->getParent() == Inst->getParent())
return false;
}
}
return true;
}
// Sets the appropriate insert point on Builder where we can add
// a replacement Instruction for V (if that is possible).
static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
bool Before = true) {
if (auto *PHI = dyn_cast<PHINode>(V)) {
Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt());
return;
}
if (auto *I = dyn_cast<Instruction>(V)) {
if (!Before)
I = &*std::next(I->getIterator());
Builder.SetInsertPoint(I);
return;
}
if (auto *A = dyn_cast<Argument>(V)) {
// Set the insertion point in the entry block.
BasicBlock &Entry = A->getParent()->getEntryBlock();
Builder.SetInsertPoint(&*Entry.getFirstInsertionPt());
return;
}
// Otherwise, this is a constant and we don't need to set a new
// insertion point.
assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
}
/// Returns a re-written value of Start as an indexed GEP using Base as a
/// pointer.
static Value *rewriteGEPAsOffset(Value *Start, Value *Base,
const DataLayout &DL,
SetVector<Value *> &Explored) {
// Perform all the substitutions. This is a bit tricky because we can
// have cycles in our use-def chains.
// 1. Create the PHI nodes without any incoming values.
// 2. Create all the other values.
// 3. Add the edges for the PHI nodes.
// 4. Emit GEPs to get the original pointers.
// 5. Remove the original instructions.
Type *IndexType = IntegerType::get(
Base->getContext(), DL.getPointerTypeSizeInBits(Start->getType()));
DenseMap<Value *, Value *> NewInsts;
NewInsts[Base] = ConstantInt::getNullValue(IndexType);
// Create the new PHI nodes, without adding any incoming values.
for (Value *Val : Explored) {
if (Val == Base)
continue;
// Create empty phi nodes. This avoids cyclic dependencies when creating
// the remaining instructions.
if (auto *PHI = dyn_cast<PHINode>(Val))
NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
PHI->getName() + ".idx", PHI);
}
IRBuilder<> Builder(Base->getContext());
// Create all the other instructions.
for (Value *Val : Explored) {
if (NewInsts.find(Val) != NewInsts.end())
continue;
if (auto *CI = dyn_cast<CastInst>(Val)) {
NewInsts[CI] = NewInsts[CI->getOperand(0)];
continue;
}
if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)]
: GEP->getOperand(1);
setInsertionPoint(Builder, GEP);
// Indices might need to be sign extended. GEPs will magically do
// this, but we need to do it ourselves here.
if (Index->getType()->getScalarSizeInBits() !=
NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) {
Index = Builder.CreateSExtOrTrunc(
Index, NewInsts[GEP->getOperand(0)]->getType(),
GEP->getOperand(0)->getName() + ".sext");
}
auto *Op = NewInsts[GEP->getOperand(0)];
if (isa<ConstantInt>(Op) && dyn_cast<ConstantInt>(Op)->isZero())
NewInsts[GEP] = Index;
else
NewInsts[GEP] = Builder.CreateNSWAdd(
Op, Index, GEP->getOperand(0)->getName() + ".add");
continue;
}
if (isa<PHINode>(Val))
continue;
llvm_unreachable("Unexpected instruction type");
}
// Add the incoming values to the PHI nodes.
for (Value *Val : Explored) {
if (Val == Base)
continue;
// All the instructions have been created, we can now add edges to the
// phi nodes.
if (auto *PHI = dyn_cast<PHINode>(Val)) {
PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
Value *NewIncoming = PHI->getIncomingValue(I);
if (NewInsts.find(NewIncoming) != NewInsts.end())
NewIncoming = NewInsts[NewIncoming];
NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
}
}
}
for (Value *Val : Explored) {
if (Val == Base)
continue;
// Depending on the type, for external users we have to emit
// a GEP or a GEP + ptrtoint.
setInsertionPoint(Builder, Val, false);
// If required, create an inttoptr instruction for Base.
Value *NewBase = Base;
if (!Base->getType()->isPointerTy())
NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(),
Start->getName() + "to.ptr");
Value *GEP = Builder.CreateInBoundsGEP(
Start->getType()->getPointerElementType(), NewBase,
makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr");
if (!Val->getType()->isPointerTy()) {
Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(),
Val->getName() + ".conv");
GEP = Cast;
}
Val->replaceAllUsesWith(GEP);
}
return NewInsts[Start];
}
/// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
/// the input Value as a constant indexed GEP. Returns a pair containing
/// the GEPs Pointer and Index.
static std::pair<Value *, Value *>
getAsConstantIndexedAddress(Value *V, const DataLayout &DL) {
Type *IndexType = IntegerType::get(V->getContext(),
DL.getPointerTypeSizeInBits(V->getType()));
Constant *Index = ConstantInt::getNullValue(IndexType);
while (true) {
if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
// We accept only inbouds GEPs here to exclude the possibility of
// overflow.
if (!GEP->isInBounds())
break;
if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 &&
GEP->getType() == V->getType()) {
V = GEP->getOperand(0);
Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1));
Index = ConstantExpr::getAdd(
Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType));
continue;
}
break;
}
if (auto *CI = dyn_cast<IntToPtrInst>(V)) {
if (!CI->isNoopCast(DL))
break;
V = CI->getOperand(0);
continue;
}
if (auto *CI = dyn_cast<PtrToIntInst>(V)) {
if (!CI->isNoopCast(DL))
break;
V = CI->getOperand(0);
continue;
}
break;
}
return {V, Index};
}
/// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
/// We can look through PHIs, GEPs and casts in order to determine a common base
/// between GEPLHS and RHS.
Re-commit r257064, after it was reverted in r257340. This contains a fix for the issue that caused the revert: we no longer assume that we can insert instructions after the instruction that produces the base pointer. We previously assumed that this would be ok, because the instruction produces a value and therefore is not a terminator. This is false for invoke instructions. We will now insert these new instruction directly at the location of the users. Original commit message: [InstCombine] Look through PHIs, GEPs, IntToPtrs and PtrToInts to expose more constants when comparing GEPs Summary: When comparing two GEP instructions which have the same base pointer and one of them has a constant index, it is possible to only compare indices, transforming it to a compare with a constant. This removes one use for the GEP instruction with the constant index, can reduce register pressure and can sometimes lead to removing the comparisson entirely. InstCombine was already doing this when comparing two GEPs if the base pointers were the same. However, in the case where we have complex pointer arithmetic (GEPs applied to GEPs, PHIs of GEPs, conversions to or from integers, etc) the value of the original base pointer will be hidden to the optimizer and this transformation will be disabled. This change detects when the two sides of the comparison can be expressed as GEPs with the same base pointer, even if they don't appear as such in the IR. The transformation will convert all the pointer arithmetic to arithmetic done on indices and all the relevant uses of GEPs to GEPs with a common base pointer. The GEP comparison will be converted to a comparison done on indices. Reviewers: majnemer, jmolloy Subscribers: hfinkel, jevinskie, jmolloy, aadg, llvm-commits Differential Revision: http://reviews.llvm.org/D15146 llvm-svn: 257897
2016-01-15 23:52:05 +08:00
static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
ICmpInst::Predicate Cond,
const DataLayout &DL) {
if (!GEPLHS->hasAllConstantIndices())
return nullptr;
Value *PtrBase, *Index;
std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL);
// The set of nodes that will take part in this transformation.
SetVector<Value *> Nodes;
if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes))
return nullptr;
// We know we can re-write this as
// ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
// Since we've only looked through inbouds GEPs we know that we
// can't have overflow on either side. We can therefore re-write
// this as:
// OFFSET1 cmp OFFSET2
Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes);
// RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
// GEP having PtrBase as the pointer base, and has returned in NewRHS the
// offset. Since Index is the offset of LHS to the base pointer, we will now
// compare the offsets instead of comparing the pointers.
return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS);
}
/// Fold comparisons between a GEP instruction and something else. At this point
/// we know that the GEP is on the LHS of the comparison.
Instruction *InstCombiner::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
ICmpInst::Predicate Cond,
Instruction &I) {
// Don't transform signed compares of GEPs into index compares. Even if the
// GEP is inbounds, the final add of the base pointer can have signed overflow
// and would change the result of the icmp.
// e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
// the maximum signed value for the pointer type.
if (ICmpInst::isSigned(Cond))
return nullptr;
// Look through bitcasts and addrspacecasts. We do not however want to remove
// 0 GEPs.
if (!isa<GetElementPtrInst>(RHS))
RHS = RHS->stripPointerCasts();
Value *PtrBase = GEPLHS->getOperand(0);
if (PtrBase == RHS && GEPLHS->isInBounds()) {
// ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
// This transformation (ignoring the base and scales) is valid because we
// know pointers can't overflow since the gep is inbounds. See if we can
// output an optimized form.
Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL);
// If not, synthesize the offset the hard way.
if (!Offset)
Offset = EmitGEPOffset(GEPLHS);
return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
Constant::getNullValue(Offset->getType()));
} else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
// If the base pointers are different, but the indices are the same, just
// compare the base pointer.
if (PtrBase != GEPRHS->getOperand(0)) {
bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
GEPRHS->getOperand(0)->getType();
if (IndicesTheSame)
for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
IndicesTheSame = false;
break;
}
// If all indices are the same, just compare the base pointers.
if (IndicesTheSame)
return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
// If we're comparing GEPs with two base pointers that only differ in type
// and both GEPs have only constant indices or just one use, then fold
// the compare with the adjusted indices.
if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
(GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
(GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
PtrBase->stripPointerCasts() ==
GEPRHS->getOperand(0)->stripPointerCasts()) {
Value *LOffset = EmitGEPOffset(GEPLHS);
Value *ROffset = EmitGEPOffset(GEPRHS);
// If we looked through an addrspacecast between different sized address
// spaces, the LHS and RHS pointers are different sized
// integers. Truncate to the smaller one.
Type *LHSIndexTy = LOffset->getType();
Type *RHSIndexTy = ROffset->getType();
if (LHSIndexTy != RHSIndexTy) {
if (LHSIndexTy->getPrimitiveSizeInBits() <
RHSIndexTy->getPrimitiveSizeInBits()) {
ROffset = Builder->CreateTrunc(ROffset, LHSIndexTy);
} else
LOffset = Builder->CreateTrunc(LOffset, RHSIndexTy);
}
Value *Cmp = Builder->CreateICmp(ICmpInst::getSignedPredicate(Cond),
LOffset, ROffset);
return replaceInstUsesWith(I, Cmp);
}
// Otherwise, the base pointers are different and the indices are
Re-commit r257064, after it was reverted in r257340. This contains a fix for the issue that caused the revert: we no longer assume that we can insert instructions after the instruction that produces the base pointer. We previously assumed that this would be ok, because the instruction produces a value and therefore is not a terminator. This is false for invoke instructions. We will now insert these new instruction directly at the location of the users. Original commit message: [InstCombine] Look through PHIs, GEPs, IntToPtrs and PtrToInts to expose more constants when comparing GEPs Summary: When comparing two GEP instructions which have the same base pointer and one of them has a constant index, it is possible to only compare indices, transforming it to a compare with a constant. This removes one use for the GEP instruction with the constant index, can reduce register pressure and can sometimes lead to removing the comparisson entirely. InstCombine was already doing this when comparing two GEPs if the base pointers were the same. However, in the case where we have complex pointer arithmetic (GEPs applied to GEPs, PHIs of GEPs, conversions to or from integers, etc) the value of the original base pointer will be hidden to the optimizer and this transformation will be disabled. This change detects when the two sides of the comparison can be expressed as GEPs with the same base pointer, even if they don't appear as such in the IR. The transformation will convert all the pointer arithmetic to arithmetic done on indices and all the relevant uses of GEPs to GEPs with a common base pointer. The GEP comparison will be converted to a comparison done on indices. Reviewers: majnemer, jmolloy Subscribers: hfinkel, jevinskie, jmolloy, aadg, llvm-commits Differential Revision: http://reviews.llvm.org/D15146 llvm-svn: 257897
2016-01-15 23:52:05 +08:00
// different. Try convert this to an indexed compare by looking through
// PHIs/casts.
return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
}
// If one of the GEPs has all zero indices, recurse.
if (GEPLHS->hasAllZeroIndices())
return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
ICmpInst::getSwappedPredicate(Cond), I);
// If the other GEP has all zero indices, recurse.
if (GEPRHS->hasAllZeroIndices())
return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
// If the GEPs only differ by one index, compare it.
unsigned NumDifferences = 0; // Keep track of # differences.
unsigned DiffOperand = 0; // The operand that differs.
for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
// Irreconcilable differences.
NumDifferences = 2;
break;
} else {
if (NumDifferences++) break;
DiffOperand = i;
}
}
if (NumDifferences == 0) // SAME GEP?
return replaceInstUsesWith(I, // No comparison is needed here.
Builder->getInt1(ICmpInst::isTrueWhenEqual(Cond)));
else if (NumDifferences == 1 && GEPsInBounds) {
Value *LHSV = GEPLHS->getOperand(DiffOperand);
Value *RHSV = GEPRHS->getOperand(DiffOperand);
// Make sure we do a signed comparison here.
return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
}
}
// Only lower this if the icmp is the only user of the GEP or if we expect
// the result to fold to a constant!
if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
(isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
// ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
Value *L = EmitGEPOffset(GEPLHS);
Value *R = EmitGEPOffset(GEPRHS);
return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
}
}
Re-commit r257064, after it was reverted in r257340. This contains a fix for the issue that caused the revert: we no longer assume that we can insert instructions after the instruction that produces the base pointer. We previously assumed that this would be ok, because the instruction produces a value and therefore is not a terminator. This is false for invoke instructions. We will now insert these new instruction directly at the location of the users. Original commit message: [InstCombine] Look through PHIs, GEPs, IntToPtrs and PtrToInts to expose more constants when comparing GEPs Summary: When comparing two GEP instructions which have the same base pointer and one of them has a constant index, it is possible to only compare indices, transforming it to a compare with a constant. This removes one use for the GEP instruction with the constant index, can reduce register pressure and can sometimes lead to removing the comparisson entirely. InstCombine was already doing this when comparing two GEPs if the base pointers were the same. However, in the case where we have complex pointer arithmetic (GEPs applied to GEPs, PHIs of GEPs, conversions to or from integers, etc) the value of the original base pointer will be hidden to the optimizer and this transformation will be disabled. This change detects when the two sides of the comparison can be expressed as GEPs with the same base pointer, even if they don't appear as such in the IR. The transformation will convert all the pointer arithmetic to arithmetic done on indices and all the relevant uses of GEPs to GEPs with a common base pointer. The GEP comparison will be converted to a comparison done on indices. Reviewers: majnemer, jmolloy Subscribers: hfinkel, jevinskie, jmolloy, aadg, llvm-commits Differential Revision: http://reviews.llvm.org/D15146 llvm-svn: 257897
2016-01-15 23:52:05 +08:00
// Try convert this to an indexed compare by looking through PHIs/casts as a
// last resort.
return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
}
Instruction *InstCombiner::foldAllocaCmp(ICmpInst &ICI,
const AllocaInst *Alloca,
const Value *Other) {
assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
// It would be tempting to fold away comparisons between allocas and any
// pointer not based on that alloca (e.g. an argument). However, even
// though such pointers cannot alias, they can still compare equal.
//
// But LLVM doesn't specify where allocas get their memory, so if the alloca
// doesn't escape we can argue that it's impossible to guess its value, and we
// can therefore act as if any such guesses are wrong.
//
// The code below checks that the alloca doesn't escape, and that it's only
// used in a comparison once (the current instruction). The
// single-comparison-use condition ensures that we're trivially folding all
// comparisons against the alloca consistently, and avoids the risk of
// erroneously folding a comparison of the pointer with itself.
unsigned MaxIter = 32; // Break cycles and bound to constant-time.
SmallVector<const Use *, 32> Worklist;
for (const Use &U : Alloca->uses()) {
if (Worklist.size() >= MaxIter)
return nullptr;
Worklist.push_back(&U);
}
unsigned NumCmps = 0;
while (!Worklist.empty()) {
assert(Worklist.size() <= MaxIter);
const Use *U = Worklist.pop_back_val();
const Value *V = U->getUser();
--MaxIter;
if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
isa<SelectInst>(V)) {
// Track the uses.
} else if (isa<LoadInst>(V)) {
// Loading from the pointer doesn't escape it.
continue;
} else if (const auto *SI = dyn_cast<StoreInst>(V)) {
// Storing *to* the pointer is fine, but storing the pointer escapes it.
if (SI->getValueOperand() == U->get())
return nullptr;
continue;
} else if (isa<ICmpInst>(V)) {
if (NumCmps++)
return nullptr; // Found more than one cmp.
continue;
} else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
switch (Intrin->getIntrinsicID()) {
// These intrinsics don't escape or compare the pointer. Memset is safe
// because we don't allow ptrtoint. Memcpy and memmove are safe because
// we don't allow stores, so src cannot point to V.
case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
case Intrinsic::dbg_declare: case Intrinsic::dbg_value:
case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
continue;
default:
return nullptr;
}
} else {
return nullptr;
}
for (const Use &U : V->uses()) {
if (Worklist.size() >= MaxIter)
return nullptr;
Worklist.push_back(&U);
}
}
Type *CmpTy = CmpInst::makeCmpResultType(Other->getType());
return replaceInstUsesWith(
ICI,
ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate())));
}
/// Fold "icmp pred (X+CI), X".
Instruction *InstCombiner::foldICmpAddOpConst(Instruction &ICI,
Value *X, ConstantInt *CI,
ICmpInst::Predicate Pred) {
// From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
// so the values can never be equal. Similarly for all other "or equals"
// operators.
// (X+1) <u X --> X >u (MAXUINT-1) --> X == 255
// (X+2) <u X --> X >u (MAXUINT-2) --> X > 253
// (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0
if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
Value *R =
ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
}
// (X+1) >u X --> X <u (0-1) --> X != 255
// (X+2) >u X --> X <u (0-2) --> X <u 254
// (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0
if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
ConstantInt *SMax = ConstantInt::get(X->getContext(),
APInt::getSignedMaxValue(BitWidth));
// (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127
// (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125
// (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0
// (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1
// (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126
// (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127
if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
// (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127
// (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126
// (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
// (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
// (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126
// (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128
assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
Constant *C = Builder->getInt(CI->getValue()-1);
return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
}
/// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
/// (icmp eq/ne A, Log2(AP2/AP1)) ->
/// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
Instruction *InstCombiner::foldICmpShrConstConst(ICmpInst &I, Value *A,
const APInt &AP1,
const APInt &AP2) {
assert(I.isEquality() && "Cannot fold icmp gt/lt");
auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
if (I.getPredicate() == I.ICMP_NE)
Pred = CmpInst::getInversePredicate(Pred);
return new ICmpInst(Pred, LHS, RHS);
};
// Don't bother doing any work for cases which InstSimplify handles.
if (AP2 == 0)
return nullptr;
bool IsAShr = isa<AShrOperator>(I.getOperand(0));
if (IsAShr) {
if (AP2.isAllOnesValue())
return nullptr;
if (AP2.isNegative() != AP1.isNegative())
return nullptr;
if (AP2.sgt(AP1))
return nullptr;
}
if (!AP1)
// 'A' must be large enough to shift out the highest set bit.
return getICmp(I.ICMP_UGT, A,
ConstantInt::get(A->getType(), AP2.logBase2()));
if (AP1 == AP2)
return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
int Shift;
if (IsAShr && AP1.isNegative())
Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
else
Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
if (Shift > 0) {
if (IsAShr && AP1 == AP2.ashr(Shift)) {
// There are multiple solutions if we are comparing against -1 and the LHS
// of the ashr is not a power of two.
if (AP1.isAllOnesValue() && !AP2.isPowerOf2())
return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
} else if (AP1 == AP2.lshr(Shift)) {
return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
}
}
// Shifting const2 will never be equal to const1.
// FIXME: This should always be handled by InstSimplify?
auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
return replaceInstUsesWith(I, TorF);
}
/// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
/// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
Instruction *InstCombiner::foldICmpShlConstConst(ICmpInst &I, Value *A,
const APInt &AP1,
const APInt &AP2) {
assert(I.isEquality() && "Cannot fold icmp gt/lt");
auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
if (I.getPredicate() == I.ICMP_NE)
Pred = CmpInst::getInversePredicate(Pred);
return new ICmpInst(Pred, LHS, RHS);
};
// Don't bother doing any work for cases which InstSimplify handles.
if (AP2 == 0)
return nullptr;
unsigned AP2TrailingZeros = AP2.countTrailingZeros();
if (!AP1 && AP2TrailingZeros != 0)
return getICmp(
I.ICMP_UGE, A,
ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
if (AP1 == AP2)
return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
// Get the distance between the lowest bits that are set.
int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
if (Shift > 0 && AP2.shl(Shift) == AP1)
return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
// Shifting const2 will never be equal to const1.
// FIXME: This should always be handled by InstSimplify?
auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
return replaceInstUsesWith(I, TorF);
}
/// The caller has matched a pattern of the form:
/// I = icmp ugt (add (add A, B), CI2), CI1
/// If this is of the form:
/// sum = a + b
/// if (sum+128 >u 255)
/// Then replace it with llvm.sadd.with.overflow.i8.
///
static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
ConstantInt *CI2, ConstantInt *CI1,
InstCombiner &IC) {
// The transformation we're trying to do here is to transform this into an
// llvm.sadd.with.overflow. To do this, we have to replace the original add
// with a narrower add, and discard the add-with-constant that is part of the
// range check (if we can't eliminate it, this isn't profitable).
// In order to eliminate the add-with-constant, the compare can be its only
// use.
Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
if (!AddWithCst->hasOneUse())
return nullptr;
// If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
if (!CI2->getValue().isPowerOf2())
return nullptr;
unsigned NewWidth = CI2->getValue().countTrailingZeros();
if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
return nullptr;
// The width of the new add formed is 1 more than the bias.
++NewWidth;
// Check to see that CI1 is an all-ones value with NewWidth bits.
if (CI1->getBitWidth() == NewWidth ||
CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
return nullptr;
// This is only really a signed overflow check if the inputs have been
// sign-extended; check for that condition. For example, if CI2 is 2^31 and
// the operands of the add are 64 bits wide, we need at least 33 sign bits.
unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits ||
IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits)
return nullptr;
// In order to replace the original add with a narrower
// llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
// and truncates that discard the high bits of the add. Verify that this is
// the case.
Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
for (User *U : OrigAdd->users()) {
if (U == AddWithCst)
continue;
// Only accept truncates for now. We would really like a nice recursive
// predicate like SimplifyDemandedBits, but which goes downwards the use-def
// chain to see which bits of a value are actually demanded. If the
// original add had another add which was then immediately truncated, we
// could still do the transformation.
TruncInst *TI = dyn_cast<TruncInst>(U);
if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
return nullptr;
}
// If the pattern matches, truncate the inputs to the narrower type and
// use the sadd_with_overflow intrinsic to efficiently compute both the
// result and the overflow bit.
Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
Value *F = Intrinsic::getDeclaration(I.getModule(),
Intrinsic::sadd_with_overflow, NewType);
InstCombiner::BuilderTy *Builder = IC.Builder;
// Put the new code above the original add, in case there are any uses of the
// add between the add and the compare.
Builder->SetInsertPoint(OrigAdd);
Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName() + ".trunc");
Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName() + ".trunc");
CallInst *Call = Builder->CreateCall(F, {TruncA, TruncB}, "sadd");
Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result");
Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType());
// The inner add was the result of the narrow add, zero extended to the
// wider type. Replace it with the result computed by the intrinsic.
IC.replaceInstUsesWith(*OrigAdd, ZExt);
// The original icmp gets replaced with the overflow value.
return ExtractValueInst::Create(Call, 1, "sadd.overflow");
}
// Fold icmp Pred X, C.
Instruction *InstCombiner::foldICmpWithConstant(ICmpInst &Cmp) {
CmpInst::Predicate Pred = Cmp.getPredicate();
Value *X = Cmp.getOperand(0);
const APInt *C;
if (!match(Cmp.getOperand(1), m_APInt(C)))
return nullptr;
Value *A = nullptr, *B = nullptr;
// Match the following pattern, which is a common idiom when writing
// overflow-safe integer arithmetic functions. The source performs an addition
// in wider type and explicitly checks for overflow using comparisons against
// INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
//
// TODO: This could probably be generalized to handle other overflow-safe
// operations if we worked out the formulas to compute the appropriate magic
// constants.
//
// sum = a + b
// if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8
{
ConstantInt *CI2; // I = icmp ugt (add (add A, B), CI2), CI
if (Pred == ICmpInst::ICMP_UGT &&
match(X, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
if (Instruction *Res = processUGT_ADDCST_ADD(
Cmp, A, B, CI2, cast<ConstantInt>(Cmp.getOperand(1)), *this))
return Res;
}
// (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
if (*C == 0 && Pred == ICmpInst::ICMP_SGT) {
SelectPatternResult SPR = matchSelectPattern(X, A, B);
if (SPR.Flavor == SPF_SMIN) {
if (isKnownPositive(A, DL))
return new ICmpInst(Pred, B, Cmp.getOperand(1));
if (isKnownPositive(B, DL))
return new ICmpInst(Pred, A, Cmp.getOperand(1));
}
}
// FIXME: Use m_APInt to allow folds for splat constants.
ConstantInt *CI = dyn_cast<ConstantInt>(Cmp.getOperand(1));
if (!CI)
return nullptr;
// Canonicalize icmp instructions based on dominating conditions.
BasicBlock *Parent = Cmp.getParent();
BasicBlock *Dom = Parent->getSinglePredecessor();
auto *BI = Dom ? dyn_cast<BranchInst>(Dom->getTerminator()) : nullptr;
ICmpInst::Predicate Pred2;
BasicBlock *TrueBB, *FalseBB;
ConstantInt *CI2;
if (BI && match(BI, m_Br(m_ICmp(Pred2, m_Specific(X), m_ConstantInt(CI2)),
TrueBB, FalseBB)) &&
TrueBB != FalseBB) {
ConstantRange CR =
ConstantRange::makeAllowedICmpRegion(Pred, CI->getValue());
ConstantRange DominatingCR =
(Parent == TrueBB)
? ConstantRange::makeExactICmpRegion(Pred2, CI2->getValue())
: ConstantRange::makeExactICmpRegion(
CmpInst::getInversePredicate(Pred2), CI2->getValue());
ConstantRange Intersection = DominatingCR.intersectWith(CR);
ConstantRange Difference = DominatingCR.difference(CR);
if (Intersection.isEmptySet())
return replaceInstUsesWith(Cmp, Builder->getFalse());
if (Difference.isEmptySet())
return replaceInstUsesWith(Cmp, Builder->getTrue());
// If this is a normal comparison, it demands all bits. If it is a sign
// bit comparison, it only demands the sign bit.
bool UnusedBit;
bool IsSignBit = isSignBitCheck(Pred, CI->getValue(), UnusedBit);
// Canonicalizing a sign bit comparison that gets used in a branch,
// pessimizes codegen by generating branch on zero instruction instead
// of a test and branch. So we avoid canonicalizing in such situations
// because test and branch instruction has better branch displacement
// than compare and branch instruction.
if (!isBranchOnSignBitCheck(Cmp, IsSignBit) && !Cmp.isEquality()) {
if (auto *AI = Intersection.getSingleElement())
return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder->getInt(*AI));
if (auto *AD = Difference.getSingleElement())
return new ICmpInst(ICmpInst::ICMP_NE, X, Builder->getInt(*AD));
}
}
return nullptr;
}
/// Fold icmp (trunc X, Y), C.
Instruction *InstCombiner::foldICmpTruncConstant(ICmpInst &Cmp,
Instruction *Trunc,
const APInt *C) {
ICmpInst::Predicate Pred = Cmp.getPredicate();
Value *X = Trunc->getOperand(0);
if (*C == 1 && C->getBitWidth() > 1) {
// icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
Value *V = nullptr;
if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
return new ICmpInst(ICmpInst::ICMP_SLT, V,
ConstantInt::get(V->getType(), 1));
}
if (Cmp.isEquality() && Trunc->hasOneUse()) {
// Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
// of the high bits truncated out of x are known.
unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
SrcBits = X->getType()->getScalarSizeInBits();
APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
computeKnownBits(X, KnownZero, KnownOne, 0, &Cmp);
// If all the high bits are known, we can do this xform.
if ((KnownZero | KnownOne).countLeadingOnes() >= SrcBits - DstBits) {
// Pull in the high bits from known-ones set.
APInt NewRHS = C->zext(SrcBits);
NewRHS |= KnownOne & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS));
}
}
return nullptr;
}
/// Fold icmp (xor X, Y), C.
Instruction *InstCombiner::foldICmpXorConstant(ICmpInst &Cmp,
BinaryOperator *Xor,
const APInt *C) {
Value *X = Xor->getOperand(0);
Value *Y = Xor->getOperand(1);
const APInt *XorC;
if (!match(Y, m_APInt(XorC)))
return nullptr;
// If this is a comparison that tests the signbit (X < 0) or (x > -1),
// fold the xor.
ICmpInst::Predicate Pred = Cmp.getPredicate();
if ((Pred == ICmpInst::ICMP_SLT && *C == 0) ||
(Pred == ICmpInst::ICMP_SGT && C->isAllOnesValue())) {
// If the sign bit of the XorCst is not set, there is no change to
// the operation, just stop using the Xor.
if (!XorC->isNegative()) {
Cmp.setOperand(0, X);
Worklist.Add(Xor);
return &Cmp;
}
// Was the old condition true if the operand is positive?
bool isTrueIfPositive = Pred == ICmpInst::ICMP_SGT;
// If so, the new one isn't.
isTrueIfPositive ^= true;
Constant *CmpConstant = cast<Constant>(Cmp.getOperand(1));
if (isTrueIfPositive)
return new ICmpInst(ICmpInst::ICMP_SGT, X, SubOne(CmpConstant));
else
return new ICmpInst(ICmpInst::ICMP_SLT, X, AddOne(CmpConstant));
}
if (Xor->hasOneUse()) {
// (icmp u/s (xor X SignBit), C) -> (icmp s/u X, (xor C SignBit))
if (!Cmp.isEquality() && XorC->isSignBit()) {
Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
: Cmp.getSignedPredicate();
return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), *C ^ *XorC));
}
// (icmp u/s (xor X ~SignBit), C) -> (icmp s/u X, (xor C ~SignBit))
if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
: Cmp.getSignedPredicate();
Pred = Cmp.getSwappedPredicate(Pred);
return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), *C ^ *XorC));
}
}
// (icmp ugt (xor X, C), ~C) -> (icmp ult X, C)
// iff -C is a power of 2
if (Pred == ICmpInst::ICMP_UGT && *XorC == ~(*C) && (*C + 1).isPowerOf2())
return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
// (icmp ult (xor X, C), -C) -> (icmp uge X, C)
// iff -C is a power of 2
if (Pred == ICmpInst::ICMP_ULT && *XorC == -(*C) && C->isPowerOf2())
return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
return nullptr;
}
/// Fold icmp (and (sh X, Y), C2), C1.
Instruction *InstCombiner::foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And,
const APInt *C1, const APInt *C2) {
BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
if (!Shift || !Shift->isShift())
return nullptr;
// If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
// exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
// code produced by the clang front-end, for bitfield access.
// This seemingly simple opportunity to fold away a shift turns out to be
// rather complicated. See PR17827 for details.
unsigned ShiftOpcode = Shift->getOpcode();
bool IsShl = ShiftOpcode == Instruction::Shl;
const APInt *C3;
if (match(Shift->getOperand(1), m_APInt(C3))) {
bool CanFold = false;
if (ShiftOpcode == Instruction::AShr) {
// There may be some constraints that make this possible, but nothing
// simple has been discovered yet.
CanFold = false;
} else if (ShiftOpcode == Instruction::Shl) {
// For a left shift, we can fold if the comparison is not signed. We can
// also fold a signed comparison if the mask value and comparison value
// are not negative. These constraints may not be obvious, but we can
// prove that they are correct using an SMT solver.
if (!Cmp.isSigned() || (!C2->isNegative() && !C1->isNegative()))
CanFold = true;
} else if (ShiftOpcode == Instruction::LShr) {
// For a logical right shift, we can fold if the comparison is not signed.
// We can also fold a signed comparison if the shifted mask value and the
// shifted comparison value are not negative. These constraints may not be
// obvious, but we can prove that they are correct using an SMT solver.
if (!Cmp.isSigned() ||
(!C2->shl(*C3).isNegative() && !C1->shl(*C3).isNegative()))
CanFold = true;
}
if (CanFold) {
APInt NewCst = IsShl ? C1->lshr(*C3) : C1->shl(*C3);
APInt SameAsC1 = IsShl ? NewCst.shl(*C3) : NewCst.lshr(*C3);
// Check to see if we are shifting out any of the bits being compared.
if (SameAsC1 != *C1) {
// If we shifted bits out, the fold is not going to work out. As a
// special case, check to see if this means that the result is always
// true or false now.
if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
} else {
Cmp.setOperand(1, ConstantInt::get(And->getType(), NewCst));
APInt NewAndCst = IsShl ? C2->lshr(*C3) : C2->shl(*C3);
And->setOperand(1, ConstantInt::get(And->getType(), NewAndCst));
And->setOperand(0, Shift->getOperand(0));
Worklist.Add(Shift); // Shift is dead.
return &Cmp;
}
}
}
// Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is
// preferable because it allows the C2 << Y expression to be hoisted out of a
// loop if Y is invariant and X is not.
if (Shift->hasOneUse() && *C1 == 0 && Cmp.isEquality() &&
!Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) {
// Compute C2 << Y.
Value *NewShift =
IsShl ? Builder->CreateLShr(And->getOperand(1), Shift->getOperand(1))
: Builder->CreateShl(And->getOperand(1), Shift->getOperand(1));
// Compute X & (C2 << Y).
Value *NewAnd = Builder->CreateAnd(Shift->getOperand(0), NewShift);
Cmp.setOperand(0, NewAnd);
return &Cmp;
}
return nullptr;
}
/// Fold icmp (and X, C2), C1.
Instruction *InstCombiner::foldICmpAndConstConst(ICmpInst &Cmp,
BinaryOperator *And,
const APInt *C1) {
const APInt *C2;
if (!match(And->getOperand(1), m_APInt(C2)))
return nullptr;
if (!And->hasOneUse() || !And->getOperand(0)->hasOneUse())
return nullptr;
// If the LHS is an 'and' of a truncate and we can widen the and/compare to
// the input width without changing the value produced, eliminate the cast:
//
// icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
//
// We can do this transformation if the constants do not have their sign bits
// set or if it is an equality comparison. Extending a relational comparison
// when we're checking the sign bit would not work.
Value *W;
if (match(And->getOperand(0), m_Trunc(m_Value(W))) &&
(Cmp.isEquality() || (!C1->isNegative() && !C2->isNegative()))) {
// TODO: Is this a good transform for vectors? Wider types may reduce
// throughput. Should this transform be limited (even for scalars) by using
// ShouldChangeType()?
if (!Cmp.getType()->isVectorTy()) {
Type *WideType = W->getType();
unsigned WideScalarBits = WideType->getScalarSizeInBits();
Constant *ZextC1 = ConstantInt::get(WideType, C1->zext(WideScalarBits));
Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
Value *NewAnd = Builder->CreateAnd(W, ZextC2, And->getName());
return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
}
}
if (Instruction *I = foldICmpAndShift(Cmp, And, C1, C2))
return I;
// (icmp pred (and (or (lshr A, B), A), 1), 0) -->
// (icmp pred (and A, (or (shl 1, B), 1), 0))
//
// iff pred isn't signed
if (!Cmp.isSigned() && *C1 == 0 && match(And->getOperand(1), m_One())) {
Constant *One = cast<Constant>(And->getOperand(1));
Value *Or = And->getOperand(0);
Value *A, *B, *LShr;
if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
unsigned UsesRemoved = 0;
if (And->hasOneUse())
++UsesRemoved;
if (Or->hasOneUse())
++UsesRemoved;
if (LShr->hasOneUse())
++UsesRemoved;
// Compute A & ((1 << B) | 1)
Value *NewOr = nullptr;
if (auto *C = dyn_cast<Constant>(B)) {
if (UsesRemoved >= 1)
NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
} else {
if (UsesRemoved >= 3)
NewOr = Builder->CreateOr(Builder->CreateShl(One, B, LShr->getName(),
/*HasNUW=*/true),
One, Or->getName());
}
if (NewOr) {
Value *NewAnd = Builder->CreateAnd(A, NewOr, And->getName());
Cmp.setOperand(0, NewAnd);
return &Cmp;
}
}
}
// (X & C2) > C1 --> (X & C2) != 0, if any bit set in (X & C2) will produce a
// result greater than C1.
unsigned NumTZ = C2->countTrailingZeros();
if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && NumTZ < C2->getBitWidth() &&
APInt::getOneBitSet(C2->getBitWidth(), NumTZ).ugt(*C1)) {
Constant *Zero = Constant::getNullValue(And->getType());
return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
}
return nullptr;
}
/// Fold icmp (and X, Y), C.
Instruction *InstCombiner::foldICmpAndConstant(ICmpInst &Cmp,
BinaryOperator *And,
const APInt *C) {
if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
return I;
// TODO: These all require that Y is constant too, so refactor with the above.
// Try to optimize things like "A[i] & 42 == 0" to index computations.
Value *X = And->getOperand(0);
Value *Y = And->getOperand(1);
if (auto *LI = dyn_cast<LoadInst>(X))
if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
!LI->isVolatile() && isa<ConstantInt>(Y)) {
ConstantInt *C2 = cast<ConstantInt>(Y);
if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2))
return Res;
}
if (!Cmp.isEquality())
return nullptr;
// X & -C == -C -> X > u ~C
// X & -C != -C -> X <= u ~C
// iff C is a power of 2
if (Cmp.getOperand(1) == Y && (-(*C)).isPowerOf2()) {
auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT
: CmpInst::ICMP_ULE;
return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
}
// (X & C2) == 0 -> (trunc X) >= 0
// (X & C2) != 0 -> (trunc X) < 0
// iff C2 is a power of 2 and it masks the sign bit of a legal integer type.
const APInt *C2;
if (And->hasOneUse() && *C == 0 && match(Y, m_APInt(C2))) {
int32_t ExactLogBase2 = C2->exactLogBase2();
if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) {
Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1);
if (And->getType()->isVectorTy())
NTy = VectorType::get(NTy, And->getType()->getVectorNumElements());
Value *Trunc = Builder->CreateTrunc(X, NTy);
auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE
: CmpInst::ICMP_SLT;
return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy));
}
}
return nullptr;
}
/// Fold icmp (or X, Y), C.
Instruction *InstCombiner::foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or,
const APInt *C) {
ICmpInst::Predicate Pred = Cmp.getPredicate();
if (*C == 1) {
// icmp slt signum(V) 1 --> icmp slt V, 1
Value *V = nullptr;
if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
return new ICmpInst(ICmpInst::ICMP_SLT, V,
ConstantInt::get(V->getType(), 1));
}
if (!Cmp.isEquality() || *C != 0 || !Or->hasOneUse())
return nullptr;
Value *P, *Q;
if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
// Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
// -> and (icmp eq P, null), (icmp eq Q, null).
Value *CmpP =
Builder->CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
Value *CmpQ =
Builder->CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType()));
auto LogicOpc = Pred == ICmpInst::Predicate::ICMP_EQ ? Instruction::And
: Instruction::Or;
return BinaryOperator::Create(LogicOpc, CmpP, CmpQ);
}
return nullptr;
}
/// Fold icmp (mul X, Y), C.
Instruction *InstCombiner::foldICmpMulConstant(ICmpInst &Cmp,
BinaryOperator *Mul,
const APInt *C) {
const APInt *MulC;
if (!match(Mul->getOperand(1), m_APInt(MulC)))
return nullptr;
// If this is a test of the sign bit and the multiply is sign-preserving with
// a constant operand, use the multiply LHS operand instead.
ICmpInst::Predicate Pred = Cmp.getPredicate();
if (isSignTest(Pred, *C) && Mul->hasNoSignedWrap()) {
if (MulC->isNegative())
Pred = ICmpInst::getSwappedPredicate(Pred);
return new ICmpInst(Pred, Mul->getOperand(0),
Constant::getNullValue(Mul->getType()));
}
return nullptr;
}
/// Fold icmp (shl 1, Y), C.
static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl,
const APInt *C) {
Value *Y;
if (!match(Shl, m_Shl(m_One(), m_Value(Y))))
return nullptr;
Type *ShiftType = Shl->getType();
uint32_t TypeBits = C->getBitWidth();
bool CIsPowerOf2 = C->isPowerOf2();
ICmpInst::Predicate Pred = Cmp.getPredicate();
if (Cmp.isUnsigned()) {
// (1 << Y) pred C -> Y pred Log2(C)
if (!CIsPowerOf2) {
// (1 << Y) < 30 -> Y <= 4
// (1 << Y) <= 30 -> Y <= 4
// (1 << Y) >= 30 -> Y > 4
// (1 << Y) > 30 -> Y > 4
if (Pred == ICmpInst::ICMP_ULT)
Pred = ICmpInst::ICMP_ULE;
else if (Pred == ICmpInst::ICMP_UGE)
Pred = ICmpInst::ICMP_UGT;
}
// (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31
// (1 << Y) < 2147483648 -> Y < 31 -> Y != 31
unsigned CLog2 = C->logBase2();
if (CLog2 == TypeBits - 1) {
if (Pred == ICmpInst::ICMP_UGE)
Pred = ICmpInst::ICMP_EQ;
else if (Pred == ICmpInst::ICMP_ULT)
Pred = ICmpInst::ICMP_NE;
}
return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
} else if (Cmp.isSigned()) {
Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
if (C->isAllOnesValue()) {
// (1 << Y) <= -1 -> Y == 31
if (Pred == ICmpInst::ICMP_SLE)
return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
// (1 << Y) > -1 -> Y != 31
if (Pred == ICmpInst::ICMP_SGT)
return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
} else if (!(*C)) {
// (1 << Y) < 0 -> Y == 31
// (1 << Y) <= 0 -> Y == 31
if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
// (1 << Y) >= 0 -> Y != 31
// (1 << Y) > 0 -> Y != 31
if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
}
} else if (Cmp.isEquality() && CIsPowerOf2) {
return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C->logBase2()));
}
return nullptr;
}
/// Fold icmp (shl X, Y), C.
Instruction *InstCombiner::foldICmpShlConstant(ICmpInst &Cmp,
BinaryOperator *Shl,
const APInt *C) {
const APInt *ShiftVal;
if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
return foldICmpShlConstConst(Cmp, Shl->getOperand(1), *C, *ShiftVal);
const APInt *ShiftAmt;
if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
return foldICmpShlOne(Cmp, Shl, C);
// Check that the shift amount is in range. If not, don't perform undefined
// shifts. When the shift is visited it will be simplified.
unsigned TypeBits = C->getBitWidth();
if (ShiftAmt->uge(TypeBits))
return nullptr;
ICmpInst::Predicate Pred = Cmp.getPredicate();
Value *X = Shl->getOperand(0);
if (Cmp.isEquality()) {
// If the shift is NUW, then it is just shifting out zeros, no need for an
// AND.
Constant *LShrC = ConstantInt::get(Shl->getType(), C->lshr(*ShiftAmt));
if (Shl->hasNoUnsignedWrap())
return new ICmpInst(Pred, X, LShrC);
// If the shift is NSW and we compare to 0, then it is just shifting out
// sign bits, no need for an AND either.
if (Shl->hasNoSignedWrap() && *C == 0)
return new ICmpInst(Pred, X, LShrC);
if (Shl->hasOneUse()) {
// Otherwise strength reduce the shift into an and.
Constant *Mask = ConstantInt::get(Shl->getType(),
APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
Value *And = Builder->CreateAnd(X, Mask, Shl->getName() + ".mask");
return new ICmpInst(Pred, And, LShrC);
}
}
// If this is a signed comparison to 0 and the shift is sign preserving,
// use the shift LHS operand instead; isSignTest may change 'Pred', so only
// do that if we're sure to not continue on in this function.
if (Shl->hasNoSignedWrap() && isSignTest(Pred, *C))
return new ICmpInst(Pred, X, Constant::getNullValue(X->getType()));
// Otherwise, if this is a comparison of the sign bit, simplify to and/test.
bool TrueIfSigned = false;
if (Shl->hasOneUse() && isSignBitCheck(Pred, *C, TrueIfSigned)) {
// (X << 31) <s 0 --> (X & 1) != 0
Constant *Mask = ConstantInt::get(
X->getType(),
APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
Value *And = Builder->CreateAnd(X, Mask, Shl->getName() + ".mask");
return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
And, Constant::getNullValue(And->getType()));
}
// When the shift is nuw and pred is >u or <=u, comparison only really happens
// in the pre-shifted bits. Since InstSimplify canoncalizes <=u into <u, the
// <=u case can be further converted to match <u (see below).
if (Shl->hasNoUnsignedWrap() &&
(Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT)) {
// Derivation for the ult case:
// (X << S) <=u C is equiv to X <=u (C >> S) for all C
// (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
// (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
assert((Pred != ICmpInst::ICMP_ULT || C->ugt(0)) &&
"Encountered `ult 0` that should have been eliminated by "
"InstSimplify.");
APInt ShiftedC = Pred == ICmpInst::ICMP_ULT ? (*C - 1).lshr(*ShiftAmt) + 1
: C->lshr(*ShiftAmt);
return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), ShiftedC));
}
// Transform (icmp pred iM (shl iM %v, N), C)
// -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
// Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
// This enables us to get rid of the shift in favor of a trunc which can be
// free on the target. It has the additional benefit of comparing to a
// smaller constant, which will be target friendly.
unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
if (Shl->hasOneUse() && Amt != 0 && C->countTrailingZeros() >= Amt &&
DL.isLegalInteger(TypeBits - Amt)) {
Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt);
if (X->getType()->isVectorTy())
TruncTy = VectorType::get(TruncTy, X->getType()->getVectorNumElements());
Constant *NewC =
ConstantInt::get(TruncTy, C->ashr(*ShiftAmt).trunc(TypeBits - Amt));
return new ICmpInst(Pred, Builder->CreateTrunc(X, TruncTy), NewC);
}
return nullptr;
}
/// Fold icmp ({al}shr X, Y), C.
Instruction *InstCombiner::foldICmpShrConstant(ICmpInst &Cmp,
BinaryOperator *Shr,
const APInt *C) {
// An exact shr only shifts out zero bits, so:
// icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
Value *X = Shr->getOperand(0);
CmpInst::Predicate Pred = Cmp.getPredicate();
if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() && *C == 0)
return new ICmpInst(Pred, X, Cmp.getOperand(1));
const APInt *ShiftVal;
if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal)))
return foldICmpShrConstConst(Cmp, Shr->getOperand(1), *C, *ShiftVal);
const APInt *ShiftAmt;
if (!match(Shr->getOperand(1), m_APInt(ShiftAmt)))
return nullptr;
// Check that the shift amount is in range. If not, don't perform undefined
// shifts. When the shift is visited it will be simplified.
unsigned TypeBits = C->getBitWidth();
unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits);
if (ShAmtVal >= TypeBits || ShAmtVal == 0)
return nullptr;
bool IsAShr = Shr->getOpcode() == Instruction::AShr;
if (!Cmp.isEquality()) {
// If we have an unsigned comparison and an ashr, we can't simplify this.
// Similarly for signed comparisons with lshr.
if (Cmp.isSigned() != IsAShr)
return nullptr;
// Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv
// by a power of 2. Since we already have logic to simplify these,
// transform to div and then simplify the resultant comparison.
if (IsAShr && (!Shr->isExact() || ShAmtVal == TypeBits - 1))
return nullptr;
// Revisit the shift (to delete it).
Worklist.Add(Shr);
Constant *DivCst = ConstantInt::get(
Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal));
Value *Tmp = IsAShr ? Builder->CreateSDiv(X, DivCst, "", Shr->isExact())
: Builder->CreateUDiv(X, DivCst, "", Shr->isExact());
Cmp.setOperand(0, Tmp);
// If the builder folded the binop, just return it.
BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp);
if (!TheDiv)
return &Cmp;
// Otherwise, fold this div/compare.
assert(TheDiv->getOpcode() == Instruction::SDiv ||
TheDiv->getOpcode() == Instruction::UDiv);
Instruction *Res = foldICmpDivConstant(Cmp, TheDiv, C);
assert(Res && "This div/cst should have folded!");
return Res;
}
// Handle equality comparisons of shift-by-constant.
// If the comparison constant changes with the shift, the comparison cannot
// succeed (bits of the comparison constant cannot match the shifted value).
// This should be known by InstSimplify and already be folded to true/false.
assert(((IsAShr && C->shl(ShAmtVal).ashr(ShAmtVal) == *C) ||
(!IsAShr && C->shl(ShAmtVal).lshr(ShAmtVal) == *C)) &&
"Expected icmp+shr simplify did not occur.");
// Check if the bits shifted out are known to be zero. If so, we can compare
// against the unshifted value:
// (X & 4) >> 1 == 2 --> (X & 4) == 4.
Constant *ShiftedCmpRHS = ConstantInt::get(Shr->getType(), *C << ShAmtVal);
if (Shr->hasOneUse()) {
if (Shr->isExact())
return new ICmpInst(Pred, X, ShiftedCmpRHS);
// Otherwise strength reduce the shift into an 'and'.
APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
Constant *Mask = ConstantInt::get(Shr->getType(), Val);
Value *And = Builder->CreateAnd(X, Mask, Shr->getName() + ".mask");
return new ICmpInst(Pred, And, ShiftedCmpRHS);
}
return nullptr;
}
/// Fold icmp (udiv X, Y), C.
Instruction *InstCombiner::foldICmpUDivConstant(ICmpInst &Cmp,
BinaryOperator *UDiv,
const APInt *C) {
const APInt *C2;
if (!match(UDiv->getOperand(0), m_APInt(C2)))
return nullptr;
assert(C2 != 0 && "udiv 0, X should have been simplified already.");
// (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
Value *Y = UDiv->getOperand(1);
if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) {
assert(!C->isMaxValue() &&
"icmp ugt X, UINT_MAX should have been simplified already.");
return new ICmpInst(ICmpInst::ICMP_ULE, Y,
ConstantInt::get(Y->getType(), C2->udiv(*C + 1)));
}
// (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) {
assert(C != 0 && "icmp ult X, 0 should have been simplified already.");
return new ICmpInst(ICmpInst::ICMP_UGT, Y,
ConstantInt::get(Y->getType(), C2->udiv(*C)));
}
return nullptr;
}
/// Fold icmp ({su}div X, Y), C.
Instruction *InstCombiner::foldICmpDivConstant(ICmpInst &Cmp,
BinaryOperator *Div,
const APInt *C) {
// Fold: icmp pred ([us]div X, C2), C -> range test
// Fold this div into the comparison, producing a range check.
// Determine, based on the divide type, what the range is being
// checked. If there is an overflow on the low or high side, remember
// it, otherwise compute the range [low, hi) bounding the new value.
// See: InsertRangeTest above for the kinds of replacements possible.
const APInt *C2;
if (!match(Div->getOperand(1), m_APInt(C2)))
return nullptr;
// FIXME: If the operand types don't match the type of the divide
// then don't attempt this transform. The code below doesn't have the
// logic to deal with a signed divide and an unsigned compare (and
// vice versa). This is because (x /s C2) <s C produces different
// results than (x /s C2) <u C or (x /u C2) <s C or even
// (x /u C2) <u C. Simply casting the operands and result won't
// work. :( The if statement below tests that condition and bails
// if it finds it.
bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
return nullptr;
// The ProdOV computation fails on divide by 0 and divide by -1. Cases with
// INT_MIN will also fail if the divisor is 1. Although folds of all these
// division-by-constant cases should be present, we can not assert that they
// have happened before we reach this icmp instruction.
if (*C2 == 0 || *C2 == 1 || (DivIsSigned && C2->isAllOnesValue()))
return nullptr;
// TODO: We could do all of the computations below using APInt.
Constant *CmpRHS = cast<Constant>(Cmp.getOperand(1));
Constant *DivRHS = cast<Constant>(Div->getOperand(1));
// Compute Prod = CmpRHS * DivRHS. We are essentially solving an equation of
// form X / C2 = C. We solve for X by multiplying C2 (DivRHS) and C (CmpRHS).
// By solving for X, we can turn this into a range check instead of computing
// a divide.
Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
// Determine if the product overflows by seeing if the product is not equal to
// the divide. Make sure we do the same kind of divide as in the LHS
// instruction that we're folding.
bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS)
: ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
ICmpInst::Predicate Pred = Cmp.getPredicate();
// If the division is known to be exact, then there is no remainder from the
// divide, so the covered range size is unit, otherwise it is the divisor.
Constant *RangeSize =
Div->isExact() ? ConstantInt::get(Div->getType(), 1) : DivRHS;
// Figure out the interval that is being checked. For example, a comparison
// like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
// Compute this interval based on the constants involved and the signedness of
// the compare/divide. This computes a half-open interval, keeping track of
// whether either value in the interval overflows. After analysis each
// overflow variable is set to 0 if it's corresponding bound variable is valid
// -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
int LoOverflow = 0, HiOverflow = 0;
Constant *LoBound = nullptr, *HiBound = nullptr;
if (!DivIsSigned) { // udiv
// e.g. X/5 op 3 --> [15, 20)
LoBound = Prod;
HiOverflow = LoOverflow = ProdOV;
if (!HiOverflow) {
// If this is not an exact divide, then many values in the range collapse
// to the same result value.
HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
}
} else if (C2->isStrictlyPositive()) { // Divisor is > 0.
if (*C == 0) { // (X / pos) op 0
// Can't overflow. e.g. X/2 op 0 --> [-1, 2)
LoBound = ConstantExpr::getNeg(SubOne(RangeSize));
HiBound = RangeSize;
} else if (C->isStrictlyPositive()) { // (X / pos) op pos
LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
HiOverflow = LoOverflow = ProdOV;
if (!HiOverflow)
HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
} else { // (X / pos) op neg
// e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
HiBound = AddOne(Prod);
LoOverflow = HiOverflow = ProdOV ? -1 : 0;
if (!LoOverflow) {
Constant *DivNeg = ConstantExpr::getNeg(RangeSize);
LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
}
}
} else if (C2->isNegative()) { // Divisor is < 0.
if (Div->isExact())
RangeSize = ConstantExpr::getNeg(RangeSize);
if (*C == 0) { // (X / neg) op 0
// e.g. X/-5 op 0 --> [-4, 5)
LoBound = AddOne(RangeSize);
HiBound = ConstantExpr::getNeg(RangeSize);
if (HiBound == DivRHS) { // -INTMIN = INTMIN
HiOverflow = 1; // [INTMIN+1, overflow)
HiBound = nullptr; // e.g. X/INTMIN = 0 --> X > INTMIN
}
} else if (C->isStrictlyPositive()) { // (X / neg) op pos
// e.g. X/-5 op 3 --> [-19, -14)
HiBound = AddOne(Prod);
HiOverflow = LoOverflow = ProdOV ? -1 : 0;
if (!LoOverflow)
LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
} else { // (X / neg) op neg
LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20)
LoOverflow = HiOverflow = ProdOV;
if (!HiOverflow)
HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
}
// Dividing by a negative swaps the condition. LT <-> GT
Pred = ICmpInst::getSwappedPredicate(Pred);
}
Value *X = Div->getOperand(0);
switch (Pred) {
default: llvm_unreachable("Unhandled icmp opcode!");
case ICmpInst::ICMP_EQ:
if (LoOverflow && HiOverflow)
return replaceInstUsesWith(Cmp, Builder->getFalse());
if (HiOverflow)
return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
ICmpInst::ICMP_UGE, X, LoBound);
if (LoOverflow)
return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
ICmpInst::ICMP_ULT, X, HiBound);
return replaceInstUsesWith(
Cmp, insertRangeTest(X, LoBound->getUniqueInteger(),
HiBound->getUniqueInteger(), DivIsSigned, true));
case ICmpInst::ICMP_NE:
if (LoOverflow && HiOverflow)
return replaceInstUsesWith(Cmp, Builder->getTrue());
if (HiOverflow)
return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
ICmpInst::ICMP_ULT, X, LoBound);
if (LoOverflow)
return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
ICmpInst::ICMP_UGE, X, HiBound);
return replaceInstUsesWith(Cmp,
insertRangeTest(X, LoBound->getUniqueInteger(),
HiBound->getUniqueInteger(),
DivIsSigned, false));
case ICmpInst::ICMP_ULT:
case ICmpInst::ICMP_SLT:
if (LoOverflow == +1) // Low bound is greater than input range.
return replaceInstUsesWith(Cmp, Builder->getTrue());
if (LoOverflow == -1) // Low bound is less than input range.
return replaceInstUsesWith(Cmp, Builder->getFalse());
return new ICmpInst(Pred, X, LoBound);
case ICmpInst::ICMP_UGT:
case ICmpInst::ICMP_SGT:
if (HiOverflow == +1) // High bound greater than input range.
return replaceInstUsesWith(Cmp, Builder->getFalse());
if (HiOverflow == -1) // High bound less than input range.
return replaceInstUsesWith(Cmp, Builder->getTrue());
if (Pred == ICmpInst::ICMP_UGT)
return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
}
return nullptr;
}
/// Fold icmp (sub X, Y), C.
Instruction *InstCombiner::foldICmpSubConstant(ICmpInst &Cmp,
BinaryOperator *Sub,
const APInt *C) {
Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
ICmpInst::Predicate Pred = Cmp.getPredicate();
// The following transforms are only worth it if the only user of the subtract
// is the icmp.
if (!Sub->hasOneUse())
return nullptr;
if (Sub->hasNoSignedWrap()) {
// (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
if (Pred == ICmpInst::ICMP_SGT && C->isAllOnesValue())
return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
// (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
if (Pred == ICmpInst::ICMP_SGT && *C == 0)
return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
// (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
if (Pred == ICmpInst::ICMP_SLT && *C == 0)
return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
// (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
if (Pred == ICmpInst::ICMP_SLT && *C == 1)
return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
}
const APInt *C2;
if (!match(X, m_APInt(C2)))
return nullptr;
// C2 - Y <u C -> (Y | (C - 1)) == C2
// iff (C2 & (C - 1)) == C - 1 and C is a power of 2
if (Pred == ICmpInst::ICMP_ULT && C->isPowerOf2() &&
(*C2 & (*C - 1)) == (*C - 1))
return new ICmpInst(ICmpInst::ICMP_EQ, Builder->CreateOr(Y, *C - 1), X);
// C2 - Y >u C -> (Y | C) != C2
// iff C2 & C == C and C + 1 is a power of 2
if (Pred == ICmpInst::ICMP_UGT && (*C + 1).isPowerOf2() && (*C2 & *C) == *C)
return new ICmpInst(ICmpInst::ICMP_NE, Builder->CreateOr(Y, *C), X);
return nullptr;
}
/// Fold icmp (add X, Y), C.
Instruction *InstCombiner::foldICmpAddConstant(ICmpInst &Cmp,
BinaryOperator *Add,
const APInt *C) {
Value *Y = Add->getOperand(1);
const APInt *C2;
if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
return nullptr;
// Fold icmp pred (add X, C2), C.
Value *X = Add->getOperand(0);
Type *Ty = Add->getType();
auto CR =
ConstantRange::makeExactICmpRegion(Cmp.getPredicate(), *C).subtract(*C2);
const APInt &Upper = CR.getUpper();
const APInt &Lower = CR.getLower();
if (Cmp.isSigned()) {
if (Lower.isSignBit())
return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
if (Upper.isSignBit())
return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
} else {
if (Lower.isMinValue())
return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
if (Upper.isMinValue())
return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
}
if (!Add->hasOneUse())
return nullptr;
// X+C <u C2 -> (X & -C2) == C
// iff C & (C2-1) == 0
// C2 is a power of 2
if (Cmp.getPredicate() == ICmpInst::ICMP_ULT && C->isPowerOf2() &&
(*C2 & (*C - 1)) == 0)
return new ICmpInst(ICmpInst::ICMP_EQ, Builder->CreateAnd(X, -(*C)),
ConstantExpr::getNeg(cast<Constant>(Y)));
// X+C >u C2 -> (X & ~C2) != C
// iff C & C2 == 0
// C2+1 is a power of 2
if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && (*C + 1).isPowerOf2() &&
(*C2 & *C) == 0)
return new ICmpInst(ICmpInst::ICMP_NE, Builder->CreateAnd(X, ~(*C)),
ConstantExpr::getNeg(cast<Constant>(Y)));
return nullptr;
}
/// Try to fold integer comparisons with a constant operand: icmp Pred X, C
/// where X is some kind of instruction.
Instruction *InstCombiner::foldICmpInstWithConstant(ICmpInst &Cmp) {
const APInt *C;
if (!match(Cmp.getOperand(1), m_APInt(C)))
return nullptr;
BinaryOperator *BO;
if (match(Cmp.getOperand(0), m_BinOp(BO))) {
switch (BO->getOpcode()) {
case Instruction::Xor:
if (Instruction *I = foldICmpXorConstant(Cmp, BO, C))
return I;
break;
case Instruction::And:
if (Instruction *I = foldICmpAndConstant(Cmp, BO, C))
return I;
break;
case Instruction::Or:
if (Instruction *I = foldICmpOrConstant(Cmp, BO, C))
return I;
break;
case Instruction::Mul:
if (Instruction *I = foldICmpMulConstant(Cmp, BO, C))
return I;
break;
case Instruction::Shl:
if (Instruction *I = foldICmpShlConstant(Cmp, BO, C))
return I;
break;
case Instruction::LShr:
case Instruction::AShr:
if (Instruction *I = foldICmpShrConstant(Cmp, BO, C))
return I;
break;
case Instruction::UDiv:
if (Instruction *I = foldICmpUDivConstant(Cmp, BO, C))
return I;
LLVM_FALLTHROUGH;
case Instruction::SDiv:
if (Instruction *I = foldICmpDivConstant(Cmp, BO, C))
return I;
break;
case Instruction::Sub:
if (Instruction *I = foldICmpSubConstant(Cmp, BO, C))
return I;
break;
case Instruction::Add:
if (Instruction *I = foldICmpAddConstant(Cmp, BO, C))
return I;
break;
default:
break;
}
// TODO: These folds could be refactored to be part of the above calls.
if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, C))
return I;
}
Instruction *LHSI;
if (match(Cmp.getOperand(0), m_Instruction(LHSI)) &&
LHSI->getOpcode() == Instruction::Trunc)
if (Instruction *I = foldICmpTruncConstant(Cmp, LHSI, C))
return I;
if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, C))
return I;
return nullptr;
}
/// Fold an icmp equality instruction with binary operator LHS and constant RHS:
/// icmp eq/ne BO, C.
Instruction *InstCombiner::foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp,
BinaryOperator *BO,
const APInt *C) {
// TODO: Some of these folds could work with arbitrary constants, but this
// function is limited to scalar and vector splat constants.
if (!Cmp.isEquality())
return nullptr;
ICmpInst::Predicate Pred = Cmp.getPredicate();
bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
Constant *RHS = cast<Constant>(Cmp.getOperand(1));
Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
switch (BO->getOpcode()) {
case Instruction::SRem:
// If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
if (*C == 0 && BO->hasOneUse()) {
const APInt *BOC;
if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
Value *NewRem = Builder->CreateURem(BOp0, BOp1, BO->getName());
return new ICmpInst(Pred, NewRem,
Constant::getNullValue(BO->getType()));
}
}
break;
case Instruction::Add: {
// Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
const APInt *BOC;
if (match(BOp1, m_APInt(BOC))) {
if (BO->hasOneUse()) {
Constant *SubC = ConstantExpr::getSub(RHS, cast<Constant>(BOp1));
return new ICmpInst(Pred, BOp0, SubC);
}
} else if (*C == 0) {
// Replace ((add A, B) != 0) with (A != -B) if A or B is
// efficiently invertible, or if the add has just this one use.
if (Value *NegVal = dyn_castNegVal(BOp1))
return new ICmpInst(Pred, BOp0, NegVal);
if (Value *NegVal = dyn_castNegVal(BOp0))
return new ICmpInst(Pred, NegVal, BOp1);
if (BO->hasOneUse()) {
Value *Neg = Builder->CreateNeg(BOp1);
Neg->takeName(BO);
return new ICmpInst(Pred, BOp0, Neg);
}
}
break;
}
case Instruction::Xor:
if (BO->hasOneUse()) {
if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
// For the xor case, we can xor two constants together, eliminating
// the explicit xor.
return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
} else if (*C == 0) {
// Replace ((xor A, B) != 0) with (A != B)
return new ICmpInst(Pred, BOp0, BOp1);
}
}
break;
case Instruction::Sub:
if (BO->hasOneUse()) {
const APInt *BOC;
if (match(BOp0, m_APInt(BOC))) {
// Replace ((sub BOC, B) != C) with (B != BOC-C).
Constant *SubC = ConstantExpr::getSub(cast<Constant>(BOp0), RHS);
return new ICmpInst(Pred, BOp1, SubC);
} else if (*C == 0) {
// Replace ((sub A, B) != 0) with (A != B).
return new ICmpInst(Pred, BOp0, BOp1);
}
}
break;
case Instruction::Or: {
const APInt *BOC;
if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
// Comparing if all bits outside of a constant mask are set?
// Replace (X | C) == -1 with (X & ~C) == ~C.
// This removes the -1 constant.
Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
Value *And = Builder->CreateAnd(BOp0, NotBOC);
return new ICmpInst(Pred, And, NotBOC);
}
break;
}
case Instruction::And: {
const APInt *BOC;
if (match(BOp1, m_APInt(BOC))) {
// If we have ((X & C) == C), turn it into ((X & C) != 0).
if (C == BOC && C->isPowerOf2())
return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
BO, Constant::getNullValue(RHS->getType()));
// Don't perform the following transforms if the AND has multiple uses
if (!BO->hasOneUse())
break;
// Replace (and X, (1 << size(X)-1) != 0) with x s< 0
if (BOC->isSignBit()) {
Constant *Zero = Constant::getNullValue(BOp0->getType());
auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
return new ICmpInst(NewPred, BOp0, Zero);
}
// ((X & ~7) == 0) --> X < 8
if (*C == 0 && (~(*BOC) + 1).isPowerOf2()) {
Constant *NegBOC = ConstantExpr::getNeg(cast<Constant>(BOp1));
auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
return new ICmpInst(NewPred, BOp0, NegBOC);
}
}
break;
}
case Instruction::Mul:
if (*C == 0 && BO->hasNoSignedWrap()) {
const APInt *BOC;
if (match(BOp1, m_APInt(BOC)) && *BOC != 0) {
// The trivial case (mul X, 0) is handled by InstSimplify.
// General case : (mul X, C) != 0 iff X != 0
// (mul X, C) == 0 iff X == 0
return new ICmpInst(Pred, BOp0, Constant::getNullValue(RHS->getType()));
}
}
break;
case Instruction::UDiv:
if (*C == 0) {
// (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
return new ICmpInst(NewPred, BOp1, BOp0);
}
break;
default:
break;
}
return nullptr;
}
/// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
Instruction *InstCombiner::foldICmpIntrinsicWithConstant(ICmpInst &Cmp,
const APInt *C) {
IntrinsicInst *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0));
if (!II || !Cmp.isEquality())
return nullptr;
// Handle icmp {eq|ne} <intrinsic>, intcst.
switch (II->getIntrinsicID()) {
case Intrinsic::bswap:
Worklist.Add(II);
Cmp.setOperand(0, II->getArgOperand(0));
Cmp.setOperand(1, Builder->getInt(C->byteSwap()));
return &Cmp;
case Intrinsic::ctlz:
case Intrinsic::cttz:
// ctz(A) == bitwidth(A) -> A == 0 and likewise for !=
if (*C == C->getBitWidth()) {
Worklist.Add(II);
Cmp.setOperand(0, II->getArgOperand(0));
Cmp.setOperand(1, ConstantInt::getNullValue(II->getType()));
return &Cmp;
}
break;
case Intrinsic::ctpop: {
// popcount(A) == 0 -> A == 0 and likewise for !=
// popcount(A) == bitwidth(A) -> A == -1 and likewise for !=
bool IsZero = *C == 0;
if (IsZero || *C == C->getBitWidth()) {
Worklist.Add(II);
Cmp.setOperand(0, II->getArgOperand(0));
auto *NewOp = IsZero ? Constant::getNullValue(II->getType())
: Constant::getAllOnesValue(II->getType());
Cmp.setOperand(1, NewOp);
return &Cmp;
}
break;
}
default:
break;
}
return nullptr;
}
/// Handle icmp with constant (but not simple integer constant) RHS.
Instruction *InstCombiner::foldICmpInstWithConstantNotInt(ICmpInst &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Constant *RHSC = dyn_cast<Constant>(Op1);
Instruction *LHSI = dyn_cast<Instruction>(Op0);
if (!RHSC || !LHSI)
return nullptr;
switch (LHSI->getOpcode()) {
case Instruction::GetElementPtr:
// icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
if (RHSC->isNullValue() &&
cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
return new ICmpInst(
I.getPredicate(), LHSI->getOperand(0),
Constant::getNullValue(LHSI->getOperand(0)->getType()));
break;
case Instruction::PHI:
// Only fold icmp into the PHI if the phi and icmp are in the same
// block. If in the same block, we're encouraging jump threading. If
// not, we are just pessimizing the code by making an i1 phi.
if (LHSI->getParent() == I.getParent())
if (Instruction *NV = FoldOpIntoPhi(I))
return NV;
break;
case Instruction::Select: {
// If either operand of the select is a constant, we can fold the
// comparison into the select arms, which will cause one to be
// constant folded and the select turned into a bitwise or.
Value *Op1 = nullptr, *Op2 = nullptr;
ConstantInt *CI = nullptr;
if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
CI = dyn_cast<ConstantInt>(Op1);
}
if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
CI = dyn_cast<ConstantInt>(Op2);
}
// We only want to perform this transformation if it will not lead to
// additional code. This is true if either both sides of the select
// fold to a constant (in which case the icmp is replaced with a select
// which will usually simplify) or this is the only user of the
// select (in which case we are trading a select+icmp for a simpler
// select+icmp) or all uses of the select can be replaced based on
// dominance information ("Global cases").
bool Transform = false;
if (Op1 && Op2)
Transform = true;
else if (Op1 || Op2) {
// Local case
if (LHSI->hasOneUse())
Transform = true;
// Global cases
else if (CI && !CI->isZero())
// When Op1 is constant try replacing select with second operand.
// Otherwise Op2 is constant and try replacing select with first
// operand.
Transform =
replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1);
}
if (Transform) {
if (!Op1)
Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC,
I.getName());
if (!Op2)
Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC,
I.getName());
return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
}
break;
}
case Instruction::IntToPtr:
// icmp pred inttoptr(X), null -> icmp pred X, 0
if (RHSC->isNullValue() &&
DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
return new ICmpInst(
I.getPredicate(), LHSI->getOperand(0),
Constant::getNullValue(LHSI->getOperand(0)->getType()));
break;
case Instruction::Load:
// Try to optimize things like "A[i] > 4" to index computations.
if (GetElementPtrInst *GEP =
dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
!cast<LoadInst>(LHSI)->isVolatile())
if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
return Res;
}
break;
}
return nullptr;
}
/// Try to fold icmp (binop), X or icmp X, (binop).
Instruction *InstCombiner::foldICmpBinOp(ICmpInst &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
// Special logic for binary operators.
BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
if (!BO0 && !BO1)
return nullptr;
CmpInst::Predicate Pred = I.getPredicate();
bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
if (BO0 && isa<OverflowingBinaryOperator>(BO0))
NoOp0WrapProblem =
ICmpInst::isEquality(Pred) ||
(CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
(CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
if (BO1 && isa<OverflowingBinaryOperator>(BO1))
NoOp1WrapProblem =
ICmpInst::isEquality(Pred) ||
(CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
(CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
// Analyze the case when either Op0 or Op1 is an add instruction.
// Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
if (BO0 && BO0->getOpcode() == Instruction::Add) {
A = BO0->getOperand(0);
B = BO0->getOperand(1);
}
if (BO1 && BO1->getOpcode() == Instruction::Add) {
C = BO1->getOperand(0);
D = BO1->getOperand(1);
}
// icmp (X+cst) < 0 --> X < -cst
if (NoOp0WrapProblem && ICmpInst::isSigned(Pred) && match(Op1, m_Zero()))
if (ConstantInt *RHSC = dyn_cast_or_null<ConstantInt>(B))
if (!RHSC->isMinValue(/*isSigned=*/true))
return new ICmpInst(Pred, A, ConstantExpr::getNeg(RHSC));
// icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
return new ICmpInst(Pred, A == Op1 ? B : A,
Constant::getNullValue(Op1->getType()));
// icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
C == Op0 ? D : C);
// icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow.
if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem &&
NoOp1WrapProblem &&
// Try not to increase register pressure.
BO0->hasOneUse() && BO1->hasOneUse()) {
// Determine Y and Z in the form icmp (X+Y), (X+Z).
Value *Y, *Z;
if (A == C) {
// C + B == C + D -> B == D
Y = B;
Z = D;
} else if (A == D) {
// D + B == C + D -> B == C
Y = B;
Z = C;
} else if (B == C) {
// A + C == C + D -> A == D
Y = A;
Z = D;
} else {
assert(B == D);
// A + D == C + D -> A == C
Y = A;
Z = C;
}
return new ICmpInst(Pred, Y, Z);
}
// icmp slt (X + -1), Y -> icmp sle X, Y
if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
match(B, m_AllOnes()))
return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
// icmp sge (X + -1), Y -> icmp sgt X, Y
if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
match(B, m_AllOnes()))
return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
// icmp sle (X + 1), Y -> icmp slt X, Y
if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One()))
return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
// icmp sgt (X + 1), Y -> icmp sge X, Y
if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One()))
return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
// icmp sgt X, (Y + -1) -> icmp sge X, Y
if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
match(D, m_AllOnes()))
return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
// icmp sle X, (Y + -1) -> icmp slt X, Y
if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
match(D, m_AllOnes()))
return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
// icmp sge X, (Y + 1) -> icmp sgt X, Y
if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One()))
return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
// icmp slt X, (Y + 1) -> icmp sle X, Y
if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
// if C1 has greater magnitude than C2:
// icmp (X + C1), (Y + C2) -> icmp (X + C3), Y
// s.t. C3 = C1 - C2
//
// if C2 has greater magnitude than C1:
// icmp (X + C1), (Y + C2) -> icmp X, (Y + C3)
// s.t. C3 = C2 - C1
if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
(BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
const APInt &AP1 = C1->getValue();
const APInt &AP2 = C2->getValue();
if (AP1.isNegative() == AP2.isNegative()) {
APInt AP1Abs = C1->getValue().abs();
APInt AP2Abs = C2->getValue().abs();
if (AP1Abs.uge(AP2Abs)) {
ConstantInt *C3 = Builder->getInt(AP1 - AP2);
Value *NewAdd = Builder->CreateNSWAdd(A, C3);
return new ICmpInst(Pred, NewAdd, C);
} else {
ConstantInt *C3 = Builder->getInt(AP2 - AP1);
Value *NewAdd = Builder->CreateNSWAdd(C, C3);
return new ICmpInst(Pred, A, NewAdd);
}
}
}
// Analyze the case when either Op0 or Op1 is a sub instruction.
// Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
A = nullptr;
B = nullptr;
C = nullptr;
D = nullptr;
if (BO0 && BO0->getOpcode() == Instruction::Sub) {
A = BO0->getOperand(0);
B = BO0->getOperand(1);
}
if (BO1 && BO1->getOpcode() == Instruction::Sub) {
C = BO1->getOperand(0);
D = BO1->getOperand(1);
}
// icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
if (A == Op1 && NoOp0WrapProblem)
return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
// icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow.
if (C == Op0 && NoOp1WrapProblem)
return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
// icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow.
if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem &&
// Try not to increase register pressure.
BO0->hasOneUse() && BO1->hasOneUse())
return new ICmpInst(Pred, A, C);
// icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow.
if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem &&
// Try not to increase register pressure.
BO0->hasOneUse() && BO1->hasOneUse())
return new ICmpInst(Pred, D, B);
// icmp (0-X) < cst --> x > -cst
if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
Value *X;
if (match(BO0, m_Neg(m_Value(X))))
if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
if (!RHSC->isMinValue(/*isSigned=*/true))
return new ICmpInst(I.getSwappedPredicate(), X,
ConstantExpr::getNeg(RHSC));
}
BinaryOperator *SRem = nullptr;
// icmp (srem X, Y), Y
if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1))
SRem = BO0;
// icmp Y, (srem X, Y)
else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
Op0 == BO1->getOperand(1))
SRem = BO1;
if (SRem) {
// We don't check hasOneUse to avoid increasing register pressure because
// the value we use is the same value this instruction was already using.
switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
default:
break;
case ICmpInst::ICMP_EQ:
return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
case ICmpInst::ICMP_NE:
return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
case ICmpInst::ICMP_SGT:
case ICmpInst::ICMP_SGE:
return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
Constant::getAllOnesValue(SRem->getType()));
case ICmpInst::ICMP_SLT:
case ICmpInst::ICMP_SLE:
return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
Constant::getNullValue(SRem->getType()));
}
}
if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() &&
BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) {
switch (BO0->getOpcode()) {
default:
break;
case Instruction::Add:
case Instruction::Sub:
case Instruction::Xor:
if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
BO1->getOperand(0));
// icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
if (CI->getValue().isSignBit()) {
ICmpInst::Predicate Pred =
I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate();
return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
}
if (BO0->getOpcode() == Instruction::Xor && CI->isMaxValue(true)) {
ICmpInst::Predicate Pred =
I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate();
Pred = I.getSwappedPredicate(Pred);
return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
}
}
break;
case Instruction::Mul:
if (!I.isEquality())
break;
if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
// a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
// Mask = -1 >> count-trailing-zeros(Cst).
if (!CI->isZero() && !CI->isOne()) {
const APInt &AP = CI->getValue();
ConstantInt *Mask = ConstantInt::get(
I.getContext(),
APInt::getLowBitsSet(AP.getBitWidth(),
AP.getBitWidth() - AP.countTrailingZeros()));
Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask);
Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask);
return new ICmpInst(I.getPredicate(), And1, And2);
}
}
break;
case Instruction::UDiv:
case Instruction::LShr:
if (I.isSigned())
break;
LLVM_FALLTHROUGH;
case Instruction::SDiv:
case Instruction::AShr:
if (!BO0->isExact() || !BO1->isExact())
break;
return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
BO1->getOperand(0));
case Instruction::Shl: {
bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
if (!NUW && !NSW)
break;
if (!NSW && I.isSigned())
break;
return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
BO1->getOperand(0));
}
}
}
if (BO0) {
// Transform A & (L - 1) `ult` L --> L != 0
auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
auto BitwiseAnd =
m_CombineOr(m_And(m_Value(), LSubOne), m_And(LSubOne, m_Value()));
if (match(BO0, BitwiseAnd) && I.getPredicate() == ICmpInst::ICMP_ULT) {
auto *Zero = Constant::getNullValue(BO0->getType());
return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
}
}
return nullptr;
}
/// Fold icmp Pred min|max(X, Y), X.
static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) {
ICmpInst::Predicate Pred = Cmp.getPredicate();
Value *Op0 = Cmp.getOperand(0);
Value *X = Cmp.getOperand(1);
// Canonicalize minimum or maximum operand to LHS of the icmp.
if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) ||
match(X, m_c_SMax(m_Specific(Op0), m_Value())) ||
match(X, m_c_UMin(m_Specific(Op0), m_Value())) ||
match(X, m_c_UMax(m_Specific(Op0), m_Value()))) {
std::swap(Op0, X);
Pred = Cmp.getSwappedPredicate();
}
Value *Y;
if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) {
// smin(X, Y) == X --> X s<= Y
// smin(X, Y) s>= X --> X s<= Y
if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE)
return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
// smin(X, Y) != X --> X s> Y
// smin(X, Y) s< X --> X s> Y
if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT)
return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
// These cases should be handled in InstSimplify:
// smin(X, Y) s<= X --> true
// smin(X, Y) s> X --> false
return nullptr;
}
if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) {
// smax(X, Y) == X --> X s>= Y
// smax(X, Y) s<= X --> X s>= Y
if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE)
return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
// smax(X, Y) != X --> X s< Y
// smax(X, Y) s> X --> X s< Y
if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT)
return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
// These cases should be handled in InstSimplify:
// smax(X, Y) s>= X --> true
// smax(X, Y) s< X --> false
return nullptr;
}
if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) {
// umin(X, Y) == X --> X u<= Y
// umin(X, Y) u>= X --> X u<= Y
if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE)
return new ICmpInst(ICmpInst::ICMP_ULE, X, Y);
// umin(X, Y) != X --> X u> Y
// umin(X, Y) u< X --> X u> Y
if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT)
return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
// These cases should be handled in InstSimplify:
// umin(X, Y) u<= X --> true
// umin(X, Y) u> X --> false
return nullptr;
}
if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) {
// umax(X, Y) == X --> X u>= Y
// umax(X, Y) u<= X --> X u>= Y
if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE)
return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
// umax(X, Y) != X --> X u< Y
// umax(X, Y) u> X --> X u< Y
if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT)
return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
// These cases should be handled in InstSimplify:
// umax(X, Y) u>= X --> true
// umax(X, Y) u< X --> false
return nullptr;
}
return nullptr;
}
Instruction *InstCombiner::foldICmpEquality(ICmpInst &I) {
if (!I.isEquality())
return nullptr;
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Value *A, *B, *C, *D;
if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
Value *OtherVal = A == Op1 ? B : A;
return new ICmpInst(I.getPredicate(), OtherVal,
Constant::getNullValue(A->getType()));
}
if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
// A^c1 == C^c2 --> A == C^(c1^c2)
ConstantInt *C1, *C2;
if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) &&
Op1->hasOneUse()) {
Constant *NC = Builder->getInt(C1->getValue() ^ C2->getValue());
Value *Xor = Builder->CreateXor(C, NC);
return new ICmpInst(I.getPredicate(), A, Xor);
}
// A^B == A^D -> B == D
if (A == C)
return new ICmpInst(I.getPredicate(), B, D);
if (A == D)
return new ICmpInst(I.getPredicate(), B, C);
if (B == C)
return new ICmpInst(I.getPredicate(), A, D);
if (B == D)
return new ICmpInst(I.getPredicate(), A, C);
}
}
if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) {
// A == (A^B) -> B == 0
Value *OtherVal = A == Op0 ? B : A;
return new ICmpInst(I.getPredicate(), OtherVal,
Constant::getNullValue(A->getType()));
}
// (X&Z) == (Y&Z) -> (X^Y) & Z == 0
if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
Value *X = nullptr, *Y = nullptr, *Z = nullptr;
if (A == C) {
X = B;
Y = D;
Z = A;
} else if (A == D) {
X = B;
Y = C;
Z = A;
} else if (B == C) {
X = A;
Y = D;
Z = B;
} else if (B == D) {
X = A;
Y = C;
Z = B;
}
if (X) { // Build (X^Y) & Z
Op1 = Builder->CreateXor(X, Y);
Op1 = Builder->CreateAnd(Op1, Z);
I.setOperand(0, Op1);
I.setOperand(1, Constant::getNullValue(Op1->getType()));
return &I;
}
}
// Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
// and (B & (1<<X)-1) == (zext A) --> A == (trunc B)
ConstantInt *Cst1;
if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) &&
match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
(Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
match(Op1, m_ZExt(m_Value(A))))) {
APInt Pow2 = Cst1->getValue() + 1;
if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
return new ICmpInst(I.getPredicate(), A,
Builder->CreateTrunc(B, A->getType()));
}
// (A >> C) == (B >> C) --> (A^B) u< (1 << C)
// For lshr and ashr pairs.
if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
(match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
unsigned TypeBits = Cst1->getBitWidth();
unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
if (ShAmt < TypeBits && ShAmt != 0) {
ICmpInst::Predicate Pred = I.getPredicate() == ICmpInst::ICMP_NE
? ICmpInst::ICMP_UGE
: ICmpInst::ICMP_ULT;
Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted");
APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
return new ICmpInst(Pred, Xor, Builder->getInt(CmpVal));
}
}
// (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
unsigned TypeBits = Cst1->getBitWidth();
unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
if (ShAmt < TypeBits && ShAmt != 0) {
Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted");
APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
Value *And = Builder->CreateAnd(Xor, Builder->getInt(AndVal),
I.getName() + ".mask");
return new ICmpInst(I.getPredicate(), And,
Constant::getNullValue(Cst1->getType()));
}
}
// Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
// "icmp (and X, mask), cst"
uint64_t ShAmt = 0;
if (Op0->hasOneUse() &&
match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) &&
match(Op1, m_ConstantInt(Cst1)) &&
// Only do this when A has multiple uses. This is most important to do
// when it exposes other optimizations.
!A->hasOneUse()) {
unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
if (ShAmt < ASize) {
APInt MaskV =
APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
MaskV <<= ShAmt;
APInt CmpV = Cst1->getValue().zext(ASize);
CmpV <<= ShAmt;
Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV));
return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV));
}
}
return nullptr;
}
/// Handle icmp (cast x to y), (cast/cst). We only handle extending casts so
/// far.
Instruction *InstCombiner::foldICmpWithCastAndCast(ICmpInst &ICmp) {
const CastInst *LHSCI = cast<CastInst>(ICmp.getOperand(0));
Value *LHSCIOp = LHSCI->getOperand(0);
Type *SrcTy = LHSCIOp->getType();
Type *DestTy = LHSCI->getType();
Value *RHSCIOp;
// Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
// integer type is the same size as the pointer type.
if (LHSCI->getOpcode() == Instruction::PtrToInt &&
DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth()) {
Value *RHSOp = nullptr;
if (auto *RHSC = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
Value *RHSCIOp = RHSC->getOperand(0);
if (RHSCIOp->getType()->getPointerAddressSpace() ==
LHSCIOp->getType()->getPointerAddressSpace()) {
RHSOp = RHSC->getOperand(0);
// If the pointer types don't match, insert a bitcast.
if (LHSCIOp->getType() != RHSOp->getType())
RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
}
} else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
}
if (RHSOp)
return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSOp);
}
// The code below only handles extension cast instructions, so far.
// Enforce this.
if (LHSCI->getOpcode() != Instruction::ZExt &&
LHSCI->getOpcode() != Instruction::SExt)
return nullptr;
bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
bool isSignedCmp = ICmp.isSigned();
if (auto *CI = dyn_cast<CastInst>(ICmp.getOperand(1))) {
// Not an extension from the same type?
RHSCIOp = CI->getOperand(0);
if (RHSCIOp->getType() != LHSCIOp->getType())
return nullptr;
// If the signedness of the two casts doesn't agree (i.e. one is a sext
// and the other is a zext), then we can't handle this.
if (CI->getOpcode() != LHSCI->getOpcode())
return nullptr;
// Deal with equality cases early.
if (ICmp.isEquality())
return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp);
// A signed comparison of sign extended values simplifies into a
// signed comparison.
if (isSignedCmp && isSignedExt)
return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp);
// The other three cases all fold into an unsigned comparison.
return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
}
// If we aren't dealing with a constant on the RHS, exit early.
auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
if (!C)
return nullptr;
// Compute the constant that would happen if we truncated to SrcTy then
2016-06-05 05:20:44 +08:00
// re-extended to DestTy.
Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy);
2016-06-05 05:20:44 +08:00
Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy);
// If the re-extended constant didn't change...
if (Res2 == C) {
// Deal with equality cases early.
if (ICmp.isEquality())
return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1);
// A signed comparison of sign extended values simplifies into a
// signed comparison.
if (isSignedExt && isSignedCmp)
return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1);
// The other three cases all fold into an unsigned comparison.
return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, Res1);
}
// The re-extended constant changed, partly changed (in the case of a vector),
// or could not be determined to be equal (in the case of a constant
// expression), so the constant cannot be represented in the shorter type.
// Consequently, we cannot emit a simple comparison.
// All the cases that fold to true or false will have already been handled
// by SimplifyICmpInst, so only deal with the tricky case.
if (isSignedCmp || !isSignedExt || !isa<ConstantInt>(C))
return nullptr;
// Evaluate the comparison for LT (we invert for GT below). LE and GE cases
// should have been folded away previously and not enter in here.
// We're performing an unsigned comp with a sign extended value.
// This is true if the input is >= 0. [aka >s -1]
Constant *NegOne = Constant::getAllOnesValue(SrcTy);
Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICmp.getName());
// Finally, return the value computed.
if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
return replaceInstUsesWith(ICmp, Result);
assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
return BinaryOperator::CreateNot(Result);
}
bool InstCombiner::OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS,
Value *RHS, Instruction &OrigI,
Value *&Result, Constant *&Overflow) {
if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
std::swap(LHS, RHS);
auto SetResult = [&](Value *OpResult, Constant *OverflowVal, bool ReuseName) {
Result = OpResult;
Overflow = OverflowVal;
if (ReuseName)
Result->takeName(&OrigI);
return true;
};
// If the overflow check was an add followed by a compare, the insertion point
// may be pointing to the compare. We want to insert the new instructions
// before the add in case there are uses of the add between the add and the
// compare.
Builder->SetInsertPoint(&OrigI);
switch (OCF) {
case OCF_INVALID:
llvm_unreachable("bad overflow check kind!");
case OCF_UNSIGNED_ADD: {
OverflowResult OR = computeOverflowForUnsignedAdd(LHS, RHS, &OrigI);
if (OR == OverflowResult::NeverOverflows)
return SetResult(Builder->CreateNUWAdd(LHS, RHS), Builder->getFalse(),
true);
if (OR == OverflowResult::AlwaysOverflows)
return SetResult(Builder->CreateAdd(LHS, RHS), Builder->getTrue(), true);
// Fall through uadd into sadd
LLVM_FALLTHROUGH;
}
case OCF_SIGNED_ADD: {
// X + 0 -> {X, false}
if (match(RHS, m_Zero()))
return SetResult(LHS, Builder->getFalse(), false);
// We can strength reduce this signed add into a regular add if we can prove
// that it will never overflow.
if (OCF == OCF_SIGNED_ADD)
if (WillNotOverflowSignedAdd(LHS, RHS, OrigI))
return SetResult(Builder->CreateNSWAdd(LHS, RHS), Builder->getFalse(),
true);
break;
}
case OCF_UNSIGNED_SUB:
case OCF_SIGNED_SUB: {
// X - 0 -> {X, false}
if (match(RHS, m_Zero()))
return SetResult(LHS, Builder->getFalse(), false);
if (OCF == OCF_SIGNED_SUB) {
if (WillNotOverflowSignedSub(LHS, RHS, OrigI))
return SetResult(Builder->CreateNSWSub(LHS, RHS), Builder->getFalse(),
true);
} else {
if (WillNotOverflowUnsignedSub(LHS, RHS, OrigI))
return SetResult(Builder->CreateNUWSub(LHS, RHS), Builder->getFalse(),
true);
}
break;
}
case OCF_UNSIGNED_MUL: {
OverflowResult OR = computeOverflowForUnsignedMul(LHS, RHS, &OrigI);
if (OR == OverflowResult::NeverOverflows)
return SetResult(Builder->CreateNUWMul(LHS, RHS), Builder->getFalse(),
true);
if (OR == OverflowResult::AlwaysOverflows)
return SetResult(Builder->CreateMul(LHS, RHS), Builder->getTrue(), true);
LLVM_FALLTHROUGH;
}
case OCF_SIGNED_MUL:
// X * undef -> undef
if (isa<UndefValue>(RHS))
return SetResult(RHS, UndefValue::get(Builder->getInt1Ty()), false);
// X * 0 -> {0, false}
if (match(RHS, m_Zero()))
return SetResult(RHS, Builder->getFalse(), false);
// X * 1 -> {X, false}
if (match(RHS, m_One()))
return SetResult(LHS, Builder->getFalse(), false);
if (OCF == OCF_SIGNED_MUL)
if (WillNotOverflowSignedMul(LHS, RHS, OrigI))
return SetResult(Builder->CreateNSWMul(LHS, RHS), Builder->getFalse(),
true);
break;
}
return false;
}
/// \brief Recognize and process idiom involving test for multiplication
/// overflow.
///
/// The caller has matched a pattern of the form:
/// I = cmp u (mul(zext A, zext B), V
/// The function checks if this is a test for overflow and if so replaces
/// multiplication with call to 'mul.with.overflow' intrinsic.
///
/// \param I Compare instruction.
/// \param MulVal Result of 'mult' instruction. It is one of the arguments of
/// the compare instruction. Must be of integer type.
/// \param OtherVal The other argument of compare instruction.
/// \returns Instruction which must replace the compare instruction, NULL if no
/// replacement required.
static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal,
Value *OtherVal, InstCombiner &IC) {
// Don't bother doing this transformation for pointers, don't do it for
// vectors.
if (!isa<IntegerType>(MulVal->getType()))
return nullptr;
assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
auto *MulInstr = dyn_cast<Instruction>(MulVal);
if (!MulInstr)
return nullptr;
assert(MulInstr->getOpcode() == Instruction::Mul);
auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
*RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
assert(LHS->getOpcode() == Instruction::ZExt);
assert(RHS->getOpcode() == Instruction::ZExt);
Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
// Calculate type and width of the result produced by mul.with.overflow.
Type *TyA = A->getType(), *TyB = B->getType();
unsigned WidthA = TyA->getPrimitiveSizeInBits(),
WidthB = TyB->getPrimitiveSizeInBits();
unsigned MulWidth;
Type *MulType;
if (WidthB > WidthA) {
MulWidth = WidthB;
MulType = TyB;
} else {
MulWidth = WidthA;
MulType = TyA;
}
// In order to replace the original mul with a narrower mul.with.overflow,
// all uses must ignore upper bits of the product. The number of used low
// bits must be not greater than the width of mul.with.overflow.
if (MulVal->hasNUsesOrMore(2))
for (User *U : MulVal->users()) {
if (U == &I)
continue;
if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
// Check if truncation ignores bits above MulWidth.
unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
if (TruncWidth > MulWidth)
return nullptr;
} else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
// Check if AND ignores bits above MulWidth.
if (BO->getOpcode() != Instruction::And)
return nullptr;
if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
const APInt &CVal = CI->getValue();
if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
return nullptr;
}
} else {
// Other uses prohibit this transformation.
return nullptr;
}
}
// Recognize patterns
switch (I.getPredicate()) {
case ICmpInst::ICMP_EQ:
case ICmpInst::ICMP_NE:
// Recognize pattern:
// mulval = mul(zext A, zext B)
// cmp eq/neq mulval, zext trunc mulval
if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal))
if (Zext->hasOneUse()) {
Value *ZextArg = Zext->getOperand(0);
if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg))
if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth)
break; //Recognized
}
// Recognize pattern:
// mulval = mul(zext A, zext B)
// cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
ConstantInt *CI;
Value *ValToMask;
if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
if (ValToMask != MulVal)
return nullptr;
const APInt &CVal = CI->getValue() + 1;
if (CVal.isPowerOf2()) {
unsigned MaskWidth = CVal.logBase2();
if (MaskWidth == MulWidth)
break; // Recognized
}
}
return nullptr;
case ICmpInst::ICMP_UGT:
// Recognize pattern:
// mulval = mul(zext A, zext B)
// cmp ugt mulval, max
if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
APInt MaxVal = APInt::getMaxValue(MulWidth);
MaxVal = MaxVal.zext(CI->getBitWidth());
if (MaxVal.eq(CI->getValue()))
break; // Recognized
}
return nullptr;
case ICmpInst::ICMP_UGE:
// Recognize pattern:
// mulval = mul(zext A, zext B)
// cmp uge mulval, max+1
if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
if (MaxVal.eq(CI->getValue()))
break; // Recognized
}
return nullptr;
case ICmpInst::ICMP_ULE:
// Recognize pattern:
// mulval = mul(zext A, zext B)
// cmp ule mulval, max
if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
APInt MaxVal = APInt::getMaxValue(MulWidth);
MaxVal = MaxVal.zext(CI->getBitWidth());
if (MaxVal.eq(CI->getValue()))
break; // Recognized
}
return nullptr;
case ICmpInst::ICMP_ULT:
// Recognize pattern:
// mulval = mul(zext A, zext B)
// cmp ule mulval, max + 1
if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
if (MaxVal.eq(CI->getValue()))
break; // Recognized
}
return nullptr;
default:
return nullptr;
}
InstCombiner::BuilderTy *Builder = IC.Builder;
Builder->SetInsertPoint(MulInstr);
// Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
Value *MulA = A, *MulB = B;
if (WidthA < MulWidth)
MulA = Builder->CreateZExt(A, MulType);
if (WidthB < MulWidth)
MulB = Builder->CreateZExt(B, MulType);
Value *F = Intrinsic::getDeclaration(I.getModule(),
Intrinsic::umul_with_overflow, MulType);
CallInst *Call = Builder->CreateCall(F, {MulA, MulB}, "umul");
IC.Worklist.Add(MulInstr);
// If there are uses of mul result other than the comparison, we know that
// they are truncation or binary AND. Change them to use result of
// mul.with.overflow and adjust properly mask/size.
if (MulVal->hasNUsesOrMore(2)) {
Value *Mul = Builder->CreateExtractValue(Call, 0, "umul.value");
for (User *U : MulVal->users()) {
if (U == &I || U == OtherVal)
continue;
if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
IC.replaceInstUsesWith(*TI, Mul);
else
TI->setOperand(0, Mul);
} else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
assert(BO->getOpcode() == Instruction::And);
// Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
APInt ShortMask = CI->getValue().trunc(MulWidth);
Value *ShortAnd = Builder->CreateAnd(Mul, ShortMask);
Instruction *Zext =
cast<Instruction>(Builder->CreateZExt(ShortAnd, BO->getType()));
IC.Worklist.Add(Zext);
IC.replaceInstUsesWith(*BO, Zext);
} else {
llvm_unreachable("Unexpected Binary operation");
}
IC.Worklist.Add(cast<Instruction>(U));
}
}
if (isa<Instruction>(OtherVal))
IC.Worklist.Add(cast<Instruction>(OtherVal));
// The original icmp gets replaced with the overflow value, maybe inverted
// depending on predicate.
bool Inverse = false;
switch (I.getPredicate()) {
case ICmpInst::ICMP_NE:
break;
case ICmpInst::ICMP_EQ:
Inverse = true;
break;
case ICmpInst::ICMP_UGT:
case ICmpInst::ICMP_UGE:
if (I.getOperand(0) == MulVal)
break;
Inverse = true;
break;
case ICmpInst::ICMP_ULT:
case ICmpInst::ICMP_ULE:
if (I.getOperand(1) == MulVal)
break;
Inverse = true;
break;
default:
llvm_unreachable("Unexpected predicate");
}
if (Inverse) {
Value *Res = Builder->CreateExtractValue(Call, 1);
return BinaryOperator::CreateNot(Res);
}
return ExtractValueInst::Create(Call, 1);
}
/// When performing a comparison against a constant, it is possible that not all
/// the bits in the LHS are demanded. This helper method computes the mask that
/// IS demanded.
static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth,
bool isSignCheck) {
if (isSignCheck)
return APInt::getSignBit(BitWidth);
ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
if (!CI) return APInt::getAllOnesValue(BitWidth);
const APInt &RHS = CI->getValue();
switch (I.getPredicate()) {
// For a UGT comparison, we don't care about any bits that
// correspond to the trailing ones of the comparand. The value of these
// bits doesn't impact the outcome of the comparison, because any value
// greater than the RHS must differ in a bit higher than these due to carry.
case ICmpInst::ICMP_UGT: {
unsigned trailingOnes = RHS.countTrailingOnes();
APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes);
return ~lowBitsSet;
}
// Similarly, for a ULT comparison, we don't care about the trailing zeros.
// Any value less than the RHS must differ in a higher bit because of carries.
case ICmpInst::ICMP_ULT: {
unsigned trailingZeros = RHS.countTrailingZeros();
APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros);
return ~lowBitsSet;
}
default:
return APInt::getAllOnesValue(BitWidth);
}
}
/// \brief Check if the order of \p Op0 and \p Op1 as operand in an ICmpInst
/// should be swapped.
/// The decision is based on how many times these two operands are reused
/// as subtract operands and their positions in those instructions.
/// The rational is that several architectures use the same instruction for
/// both subtract and cmp, thus it is better if the order of those operands
/// match.
/// \return true if Op0 and Op1 should be swapped.
static bool swapMayExposeCSEOpportunities(const Value * Op0,
const Value * Op1) {
// Filter out pointer value as those cannot appears directly in subtract.
// FIXME: we may want to go through inttoptrs or bitcasts.
if (Op0->getType()->isPointerTy())
return false;
// Count every uses of both Op0 and Op1 in a subtract.
// Each time Op0 is the first operand, count -1: swapping is bad, the
// subtract has already the same layout as the compare.
// Each time Op0 is the second operand, count +1: swapping is good, the
// subtract has a different layout as the compare.
// At the end, if the benefit is greater than 0, Op0 should come second to
// expose more CSE opportunities.
int GlobalSwapBenefits = 0;
[C++11] Add range based accessors for the Use-Def chain of a Value. This requires a number of steps. 1) Move value_use_iterator into the Value class as an implementation detail 2) Change it to actually be a *Use* iterator rather than a *User* iterator. 3) Add an adaptor which is a User iterator that always looks through the Use to the User. 4) Wrap these in Value::use_iterator and Value::user_iterator typedefs. 5) Add the range adaptors as Value::uses() and Value::users(). 6) Update *all* of the callers to correctly distinguish between whether they wanted a use_iterator (and to explicitly dig out the User when needed), or a user_iterator which makes the Use itself totally opaque. Because #6 requires churning essentially everything that walked the Use-Def chains, I went ahead and added all of the range adaptors and switched them to range-based loops where appropriate. Also because the renaming requires at least churning every line of code, it didn't make any sense to split these up into multiple commits -- all of which would touch all of the same lies of code. The result is still not quite optimal. The Value::use_iterator is a nice regular iterator, but Value::user_iterator is an iterator over User*s rather than over the User objects themselves. As a consequence, it fits a bit awkwardly into the range-based world and it has the weird extra-dereferencing 'operator->' that so many of our iterators have. I think this could be fixed by providing something which transforms a range of T&s into a range of T*s, but that *can* be separated into another patch, and it isn't yet 100% clear whether this is the right move. However, this change gets us most of the benefit and cleans up a substantial amount of code around Use and User. =] llvm-svn: 203364
2014-03-09 11:16:01 +08:00
for (const User *U : Op0->users()) {
const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(U);
if (!BinOp || BinOp->getOpcode() != Instruction::Sub)
continue;
// If Op0 is the first argument, this is not beneficial to swap the
// arguments.
int LocalSwapBenefits = -1;
unsigned Op1Idx = 1;
if (BinOp->getOperand(Op1Idx) == Op0) {
Op1Idx = 0;
LocalSwapBenefits = 1;
}
if (BinOp->getOperand(Op1Idx) != Op1)
continue;
GlobalSwapBenefits += LocalSwapBenefits;
}
return GlobalSwapBenefits > 0;
}
/// \brief Check that one use is in the same block as the definition and all
/// other uses are in blocks dominated by a given block.
///
/// \param DI Definition
/// \param UI Use
/// \param DB Block that must dominate all uses of \p DI outside
/// the parent block
/// \return true when \p UI is the only use of \p DI in the parent block
/// and all other uses of \p DI are in blocks dominated by \p DB.
///
bool InstCombiner::dominatesAllUses(const Instruction *DI,
const Instruction *UI,
const BasicBlock *DB) const {
assert(DI && UI && "Instruction not defined\n");
// Ignore incomplete definitions.
if (!DI->getParent())
return false;
// DI and UI must be in the same block.
if (DI->getParent() != UI->getParent())
return false;
// Protect from self-referencing blocks.
if (DI->getParent() == DB)
return false;
for (const User *U : DI->users()) {
auto *Usr = cast<Instruction>(U);
if (Usr != UI && !DT.dominates(DB, Usr->getParent()))
return false;
}
return true;
}
/// Return true when the instruction sequence within a block is select-cmp-br.
static bool isChainSelectCmpBranch(const SelectInst *SI) {
const BasicBlock *BB = SI->getParent();
if (!BB)
return false;
auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
if (!BI || BI->getNumSuccessors() != 2)
return false;
auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
return false;
return true;
}
/// \brief True when a select result is replaced by one of its operands
/// in select-icmp sequence. This will eventually result in the elimination
/// of the select.
///
/// \param SI Select instruction
/// \param Icmp Compare instruction
/// \param SIOpd Operand that replaces the select
///
/// Notes:
/// - The replacement is global and requires dominator information
/// - The caller is responsible for the actual replacement
///
/// Example:
///
/// entry:
/// %4 = select i1 %3, %C* %0, %C* null
/// %5 = icmp eq %C* %4, null
/// br i1 %5, label %9, label %7
/// ...
/// ; <label>:7 ; preds = %entry
/// %8 = getelementptr inbounds %C* %4, i64 0, i32 0
/// ...
///
/// can be transformed to
///
/// %5 = icmp eq %C* %0, null
/// %6 = select i1 %3, i1 %5, i1 true
/// br i1 %6, label %9, label %7
/// ...
/// ; <label>:7 ; preds = %entry
/// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0!
///
/// Similar when the first operand of the select is a constant or/and
/// the compare is for not equal rather than equal.
///
/// NOTE: The function is only called when the select and compare constants
/// are equal, the optimization can work only for EQ predicates. This is not a
/// major restriction since a NE compare should be 'normalized' to an equal
/// compare, which usually happens in the combiner and test case
/// select-cmp-br.ll checks for it.
bool InstCombiner::replacedSelectWithOperand(SelectInst *SI,
const ICmpInst *Icmp,
const unsigned SIOpd) {
assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
// The check for the unique predecessor is not the best that can be
// done. But it protects efficiently against cases like when SI's
// home block has two successors, Succ and Succ1, and Succ1 predecessor
// of Succ. Then SI can't be replaced by SIOpd because the use that gets
// replaced can be reached on either path. So the uniqueness check
// guarantees that the path all uses of SI (outside SI's parent) are on
// is disjoint from all other paths out of SI. But that information
// is more expensive to compute, and the trade-off here is in favor
// of compile-time.
if (Succ->getUniquePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
NumSel++;
SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
return true;
}
}
return false;
}
/// Try to fold the comparison based on range information we can get by checking
/// whether bits are known to be zero or one in the inputs.
Instruction *InstCombiner::foldICmpUsingKnownBits(ICmpInst &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Type *Ty = Op0->getType();
2016-09-12 23:52:28 +08:00
ICmpInst::Predicate Pred = I.getPredicate();
// Get scalar or pointer size.
unsigned BitWidth = Ty->isIntOrIntVectorTy()
? Ty->getScalarSizeInBits()
: DL.getTypeSizeInBits(Ty->getScalarType());
if (!BitWidth)
return nullptr;
// If this is a normal comparison, it demands all bits. If it is a sign bit
// comparison, it only demands the sign bit.
bool IsSignBit = false;
const APInt *CmpC;
if (match(Op1, m_APInt(CmpC))) {
bool UnusedBit;
IsSignBit = isSignBitCheck(Pred, *CmpC, UnusedBit);
}
APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
if (SimplifyDemandedBits(I.getOperandUse(0),
getDemandedBitsLHSMask(I, BitWidth, IsSignBit),
Op0KnownZero, Op0KnownOne, 0))
return &I;
if (SimplifyDemandedBits(I.getOperandUse(1), APInt::getAllOnesValue(BitWidth),
Op1KnownZero, Op1KnownOne, 0))
return &I;
// Given the known and unknown bits, compute a range that the LHS could be
// in. Compute the Min, Max and RHS values based on the known bits. For the
// EQ and NE we use unsigned values.
APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
if (I.isSigned()) {
computeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne, Op0Min,
Op0Max);
computeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne, Op1Min,
Op1Max);
} else {
computeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne, Op0Min,
Op0Max);
computeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne, Op1Min,
Op1Max);
}
// If Min and Max are known to be the same, then SimplifyDemandedBits
2016-09-12 23:52:28 +08:00
// figured out that the LHS is a constant. Constant fold this now, so that
// code below can assume that Min != Max.
if (!isa<Constant>(Op0) && Op0Min == Op0Max)
2016-09-12 23:52:28 +08:00
return new ICmpInst(Pred, ConstantInt::get(Op0->getType(), Op0Min), Op1);
if (!isa<Constant>(Op1) && Op1Min == Op1Max)
2016-09-12 23:52:28 +08:00
return new ICmpInst(Pred, Op0, ConstantInt::get(Op1->getType(), Op1Min));
// Based on the range information we know about the LHS, see if we can
// simplify this comparison. For example, (x&4) < 8 is always true.
2016-09-12 23:52:28 +08:00
switch (Pred) {
default:
llvm_unreachable("Unknown icmp opcode!");
case ICmpInst::ICMP_EQ:
case ICmpInst::ICMP_NE: {
if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) {
return Pred == CmpInst::ICMP_EQ
? replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()))
: replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
}
2016-09-12 23:52:28 +08:00
// If all bits are known zero except for one, then we know at most one bit
// is set. If the comparison is against zero, then this is a check to see if
// *that* bit is set.
APInt Op0KnownZeroInverted = ~Op0KnownZero;
if (~Op1KnownZero == 0) {
// If the LHS is an AND with the same constant, look through it.
Value *LHS = nullptr;
const APInt *LHSC;
if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) ||
*LHSC != Op0KnownZeroInverted)
LHS = Op0;
Value *X;
if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
APInt ValToCheck = Op0KnownZeroInverted;
Type *XTy = X->getType();
if (ValToCheck.isPowerOf2()) {
// ((1 << X) & 8) == 0 -> X != 3
// ((1 << X) & 8) != 0 -> X == 3
auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
auto NewPred = ICmpInst::getInversePredicate(Pred);
return new ICmpInst(NewPred, X, CmpC);
} else if ((++ValToCheck).isPowerOf2()) {
// ((1 << X) & 7) == 0 -> X >= 3
// ((1 << X) & 7) != 0 -> X < 3
auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
auto NewPred =
Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT;
return new ICmpInst(NewPred, X, CmpC);
}
}
// Check if the LHS is 8 >>u x and the result is a power of 2 like 1.
const APInt *CI;
if (Op0KnownZeroInverted == 1 &&
match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) {
// ((8 >>u X) & 1) == 0 -> X != 3
// ((8 >>u X) & 1) != 0 -> X == 3
unsigned CmpVal = CI->countTrailingZeros();
auto NewPred = ICmpInst::getInversePredicate(Pred);
return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal));
}
}
break;
}
case ICmpInst::ICMP_ULT: {
if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
const APInt *CmpC;
if (match(Op1, m_APInt(CmpC))) {
// A <u C -> A == C-1 if min(A)+1 == C
if (Op1Max == Op0Min + 1) {
Constant *CMinus1 = ConstantInt::get(Op0->getType(), *CmpC - 1);
return new ICmpInst(ICmpInst::ICMP_EQ, Op0, CMinus1);
}
// (x <u 2147483648) -> (x >s -1) -> true if sign bit clear
if (CmpC->isMinSignedValue()) {
Constant *AllOnes = Constant::getAllOnesValue(Op0->getType());
return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes);
}
}
break;
}
case ICmpInst::ICMP_UGT: {
if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
const APInt *CmpC;
if (match(Op1, m_APInt(CmpC))) {
// A >u C -> A == C+1 if max(a)-1 == C
if (*CmpC == Op0Max - 1)
return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
ConstantInt::get(Op1->getType(), *CmpC + 1));
// (x >u 2147483647) -> (x <s 0) -> true if sign bit set
if (CmpC->isMaxSignedValue())
return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
Constant::getNullValue(Op0->getType()));
}
break;
}
case ICmpInst::ICMP_SLT:
if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
if (Op1Max == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C
return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
Builder->getInt(CI->getValue() - 1));
}
break;
case ICmpInst::ICMP_SGT:
if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
if (Op1Min == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C
return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
Builder->getInt(CI->getValue() + 1));
}
break;
case ICmpInst::ICMP_SGE:
assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
break;
case ICmpInst::ICMP_SLE:
assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
break;
case ICmpInst::ICMP_UGE:
assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
break;
case ICmpInst::ICMP_ULE:
assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
break;
}
// Turn a signed comparison into an unsigned one if both operands are known to
// have the same sign.
if (I.isSigned() &&
((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
(Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
return nullptr;
}
/// If we have an icmp le or icmp ge instruction with a constant operand, turn
/// it into the appropriate icmp lt or icmp gt instruction. This transform
/// allows them to be folded in visitICmpInst.
static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
ICmpInst::Predicate Pred = I.getPredicate();
if (Pred != ICmpInst::ICMP_SLE && Pred != ICmpInst::ICMP_SGE &&
Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_UGE)
return nullptr;
Value *Op0 = I.getOperand(0);
Value *Op1 = I.getOperand(1);
auto *Op1C = dyn_cast<Constant>(Op1);
if (!Op1C)
return nullptr;
// Check if the constant operand can be safely incremented/decremented without
// overflowing/underflowing. For scalars, SimplifyICmpInst has already handled
// the edge cases for us, so we just assert on them. For vectors, we must
// handle the edge cases.
Type *Op1Type = Op1->getType();
bool IsSigned = I.isSigned();
bool IsLE = (Pred == ICmpInst::ICMP_SLE || Pred == ICmpInst::ICMP_ULE);
auto *CI = dyn_cast<ConstantInt>(Op1C);
if (CI) {
// A <= MAX -> TRUE ; A >= MIN -> TRUE
assert(IsLE ? !CI->isMaxValue(IsSigned) : !CI->isMinValue(IsSigned));
} else if (Op1Type->isVectorTy()) {
// TODO? If the edge cases for vectors were guaranteed to be handled as they
// are for scalar, we could remove the min/max checks. However, to do that,
// we would have to use insertelement/shufflevector to replace edge values.
unsigned NumElts = Op1Type->getVectorNumElements();
for (unsigned i = 0; i != NumElts; ++i) {
Constant *Elt = Op1C->getAggregateElement(i);
if (!Elt)
return nullptr;
if (isa<UndefValue>(Elt))
continue;
// Bail out if we can't determine if this constant is min/max or if we
// know that this constant is min/max.
auto *CI = dyn_cast<ConstantInt>(Elt);
if (!CI || (IsLE ? CI->isMaxValue(IsSigned) : CI->isMinValue(IsSigned)))
return nullptr;
}
} else {
// ConstantExpr?
return nullptr;
}
// Increment or decrement the constant and set the new comparison predicate:
// ULE -> ULT ; UGE -> UGT ; SLE -> SLT ; SGE -> SGT
Constant *OneOrNegOne = ConstantInt::get(Op1Type, IsLE ? 1 : -1, true);
CmpInst::Predicate NewPred = IsLE ? ICmpInst::ICMP_ULT: ICmpInst::ICMP_UGT;
NewPred = IsSigned ? ICmpInst::getSignedPredicate(NewPred) : NewPred;
return new ICmpInst(NewPred, Op0, ConstantExpr::getAdd(Op1C, OneOrNegOne));
}
Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
bool Changed = false;
2010-02-02 03:54:45 +08:00
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
unsigned Op0Cplxity = getComplexity(Op0);
unsigned Op1Cplxity = getComplexity(Op1);
/// Orders the operands of the compare so that they are listed from most
/// complex to least complex. This puts constants before unary operators,
/// before binary operators.
if (Op0Cplxity < Op1Cplxity ||
(Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) {
I.swapOperands();
2010-02-02 03:54:45 +08:00
std::swap(Op0, Op1);
Changed = true;
}
if (Value *V =
SimplifyICmpInst(I.getPredicate(), Op0, Op1, DL, &TLI, &DT, &AC, &I))
return replaceInstUsesWith(I, V);
// comparing -val or val with non-zero is the same as just comparing val
// ie, abs(val) != 0 -> val != 0
if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
Value *Cond, *SelectTrue, *SelectFalse;
if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
m_Value(SelectFalse)))) {
if (Value *V = dyn_castNegVal(SelectTrue)) {
if (V == SelectFalse)
return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
}
else if (Value *V = dyn_castNegVal(SelectFalse)) {
if (V == SelectTrue)
return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
}
}
}
Type *Ty = Op0->getType();
// icmp's with boolean values can always be turned into bitwise operations
if (Ty->getScalarType()->isIntegerTy(1)) {
switch (I.getPredicate()) {
default: llvm_unreachable("Invalid icmp instruction!");
case ICmpInst::ICMP_EQ: { // icmp eq i1 A, B -> ~(A^B)
Value *Xor = Builder->CreateXor(Op0, Op1, I.getName() + "tmp");
return BinaryOperator::CreateNot(Xor);
}
case ICmpInst::ICMP_NE: // icmp ne i1 A, B -> A^B
return BinaryOperator::CreateXor(Op0, Op1);
case ICmpInst::ICMP_UGT:
std::swap(Op0, Op1); // Change icmp ugt -> icmp ult
LLVM_FALLTHROUGH;
case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B
Value *Not = Builder->CreateNot(Op0, I.getName() + "tmp");
return BinaryOperator::CreateAnd(Not, Op1);
}
case ICmpInst::ICMP_SGT:
std::swap(Op0, Op1); // Change icmp sgt -> icmp slt
LLVM_FALLTHROUGH;
case ICmpInst::ICMP_SLT: { // icmp slt i1 A, B -> A & ~B
Value *Not = Builder->CreateNot(Op1, I.getName() + "tmp");
return BinaryOperator::CreateAnd(Not, Op0);
}
case ICmpInst::ICMP_UGE:
std::swap(Op0, Op1); // Change icmp uge -> icmp ule
LLVM_FALLTHROUGH;
case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B
Value *Not = Builder->CreateNot(Op0, I.getName() + "tmp");
return BinaryOperator::CreateOr(Not, Op1);
}
case ICmpInst::ICMP_SGE:
std::swap(Op0, Op1); // Change icmp sge -> icmp sle
LLVM_FALLTHROUGH;
case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B
Value *Not = Builder->CreateNot(Op1, I.getName() + "tmp");
return BinaryOperator::CreateOr(Not, Op0);
}
}
}
if (ICmpInst *NewICmp = canonicalizeCmpWithConstant(I))
return NewICmp;
if (Instruction *Res = foldICmpWithConstant(I))
return Res;
if (Instruction *Res = foldICmpUsingKnownBits(I))
return Res;
// Test if the ICmpInst instruction is used exclusively by a select as
// part of a minimum or maximum operation. If so, refrain from doing
// any other folding. This helps out other analyses which understand
// non-obfuscated minimum and maximum idioms, such as ScalarEvolution
// and CodeGen. And in this case, at least one of the comparison
// operands has at least one user besides the compare (the select),
// which would often largely negate the benefit of folding anyway.
if (I.hasOneUse())
[C++11] Add range based accessors for the Use-Def chain of a Value. This requires a number of steps. 1) Move value_use_iterator into the Value class as an implementation detail 2) Change it to actually be a *Use* iterator rather than a *User* iterator. 3) Add an adaptor which is a User iterator that always looks through the Use to the User. 4) Wrap these in Value::use_iterator and Value::user_iterator typedefs. 5) Add the range adaptors as Value::uses() and Value::users(). 6) Update *all* of the callers to correctly distinguish between whether they wanted a use_iterator (and to explicitly dig out the User when needed), or a user_iterator which makes the Use itself totally opaque. Because #6 requires churning essentially everything that walked the Use-Def chains, I went ahead and added all of the range adaptors and switched them to range-based loops where appropriate. Also because the renaming requires at least churning every line of code, it didn't make any sense to split these up into multiple commits -- all of which would touch all of the same lies of code. The result is still not quite optimal. The Value::use_iterator is a nice regular iterator, but Value::user_iterator is an iterator over User*s rather than over the User objects themselves. As a consequence, it fits a bit awkwardly into the range-based world and it has the weird extra-dereferencing 'operator->' that so many of our iterators have. I think this could be fixed by providing something which transforms a range of T&s into a range of T*s, but that *can* be separated into another patch, and it isn't yet 100% clear whether this is the right move. However, this change gets us most of the benefit and cleans up a substantial amount of code around Use and User. =] llvm-svn: 203364
2014-03-09 11:16:01 +08:00
if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin()))
if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
(SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
return nullptr;
if (Instruction *Res = foldICmpInstWithConstant(I))
return Res;
if (Instruction *Res = foldICmpInstWithConstantNotInt(I))
return Res;
// If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I))
return NI;
if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
if (Instruction *NI = foldGEPICmp(GEP, Op0,
ICmpInst::getSwappedPredicate(I.getPredicate()), I))
return NI;
// Try to optimize equality comparisons against alloca-based pointers.
if (Op0->getType()->isPointerTy() && I.isEquality()) {
assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op0, DL)))
if (Instruction *New = foldAllocaCmp(I, Alloca, Op1))
return New;
if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op1, DL)))
if (Instruction *New = foldAllocaCmp(I, Alloca, Op0))
return New;
}
// Test to see if the operands of the icmp are casted versions of other
// values. If the ptr->ptr cast can be stripped off both arguments, we do so
// now.
if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
if (Op0->getType()->isPointerTy() &&
(isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
// We keep moving the cast from the left operand over to the right
// operand, where it can often be eliminated completely.
Op0 = CI->getOperand(0);
// If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
// so eliminate it as well.
if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
Op1 = CI2->getOperand(0);
// If Op1 is a constant, we can fold the cast into the constant.
if (Op0->getType() != Op1->getType()) {
if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
} else {
// Otherwise, cast the RHS right before the icmp
Op1 = Builder->CreateBitCast(Op1, Op0->getType());
}
}
return new ICmpInst(I.getPredicate(), Op0, Op1);
}
}
if (isa<CastInst>(Op0)) {
// Handle the special case of: icmp (cast bool to X), <cst>
// This comes up when you have code like
// int X = A < B;
// if (X) ...
// For generality, we handle any zero-extension of any operand comparison
// with a constant or another cast from the same type.
if (isa<Constant>(Op1) || isa<CastInst>(Op1))
if (Instruction *R = foldICmpWithCastAndCast(I))
return R;
}
if (Instruction *Res = foldICmpBinOp(I))
return Res;
if (Instruction *Res = foldICmpWithMinMax(I))
return Res;
{
Value *A, *B;
// Transform (A & ~B) == 0 --> (A & B) != 0
// and (A & ~B) != 0 --> (A & B) == 0
// if A is a power of 2.
if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
match(Op1, m_Zero()) &&
isKnownToBeAPowerOfTwo(A, DL, false, 0, &AC, &I, &DT) && I.isEquality())
return new ICmpInst(I.getInversePredicate(),
Builder->CreateAnd(A, B),
Op1);
// ~x < ~y --> y < x
// ~x < cst --> ~cst < x
if (match(Op0, m_Not(m_Value(A)))) {
if (match(Op1, m_Not(m_Value(B))))
return new ICmpInst(I.getPredicate(), B, A);
2011-01-15 13:42:47 +08:00
if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A);
}
Instruction *AddI = nullptr;
if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
m_Instruction(AddI))) &&
isa<IntegerType>(A->getType())) {
Value *Result;
Constant *Overflow;
if (OptimizeOverflowCheck(OCF_UNSIGNED_ADD, A, B, *AddI, Result,
Overflow)) {
replaceInstUsesWith(*AddI, Result);
return replaceInstUsesWith(I, Overflow);
}
}
// (zext a) * (zext b) --> llvm.umul.with.overflow.
if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this))
return R;
}
if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this))
return R;
}
}
if (Instruction *Res = foldICmpEquality(I))
return Res;
// The 'cmpxchg' instruction returns an aggregate containing the old value and
// an i1 which indicates whether or not we successfully did the swap.
//
// Replace comparisons between the old value and the expected value with the
// indicator that 'cmpxchg' returns.
//
// N.B. This transform is only valid when the 'cmpxchg' is not permitted to
// spuriously fail. In those cases, the old value may equal the expected
// value but it is possible for the swap to not occur.
if (I.getPredicate() == ICmpInst::ICMP_EQ)
if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
!ACXI->isWeak())
return ExtractValueInst::Create(ACXI, 1);
{
Value *X; ConstantInt *Cst;
// icmp X+Cst, X
if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
return foldICmpAddOpConst(I, X, Cst, I.getPredicate());
// icmp X, X+Cst
if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
return foldICmpAddOpConst(I, X, Cst, I.getSwappedPredicate());
}
return Changed ? &I : nullptr;
}
/// Fold fcmp ([us]itofp x, cst) if possible.
Instruction *InstCombiner::foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI,
Constant *RHSC) {
if (!isa<ConstantFP>(RHSC)) return nullptr;
const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
// Get the width of the mantissa. We don't want to hack on conversions that
// might lose information from the integer, e.g. "i64 -> float"
int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
if (MantissaWidth == -1) return nullptr; // Unknown.
IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
bool LHSUnsigned = isa<UIToFPInst>(LHSI);
if (I.isEquality()) {
FCmpInst::Predicate P = I.getPredicate();
bool IsExact = false;
APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
// If the floating point constant isn't an integer value, we know if we will
// ever compare equal / not equal to it.
if (!IsExact) {
// TODO: Can never be -0.0 and other non-representable values
APFloat RHSRoundInt(RHS);
RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
if (RHS.compare(RHSRoundInt) != APFloat::cmpEqual) {
if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
return replaceInstUsesWith(I, Builder->getFalse());
assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
return replaceInstUsesWith(I, Builder->getTrue());
}
}
// TODO: If the constant is exactly representable, is it always OK to do
// equality compares as integer?
}
// Check to see that the input is converted from an integer type that is small
// enough that preserves all bits. TODO: check here for "known" sign bits.
// This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
unsigned InputSize = IntTy->getScalarSizeInBits();
// Following test does NOT adjust InputSize downwards for signed inputs,
// because the most negative value still requires all the mantissa bits
// to distinguish it from one less than that value.
if ((int)InputSize > MantissaWidth) {
// Conversion would lose accuracy. Check if loss can impact comparison.
int Exp = ilogb(RHS);
if (Exp == APFloat::IEK_Inf) {
int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
if (MaxExponent < (int)InputSize - !LHSUnsigned)
// Conversion could create infinity.
return nullptr;
} else {
// Note that if RHS is zero or NaN, then Exp is negative
// and first condition is trivially false.
if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
// Conversion could affect comparison.
return nullptr;
}
}
// Otherwise, we can potentially simplify the comparison. We know that it
// will always come through as an integer value and we know the constant is
// not a NAN (it would have been previously simplified).
assert(!RHS.isNaN() && "NaN comparison not already folded!");
ICmpInst::Predicate Pred;
switch (I.getPredicate()) {
default: llvm_unreachable("Unexpected predicate!");
case FCmpInst::FCMP_UEQ:
case FCmpInst::FCMP_OEQ:
Pred = ICmpInst::ICMP_EQ;
break;
case FCmpInst::FCMP_UGT:
case FCmpInst::FCMP_OGT:
Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
break;
case FCmpInst::FCMP_UGE:
case FCmpInst::FCMP_OGE:
Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
break;
case FCmpInst::FCMP_ULT:
case FCmpInst::FCMP_OLT:
Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
break;
case FCmpInst::FCMP_ULE:
case FCmpInst::FCMP_OLE:
Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
break;
case FCmpInst::FCMP_UNE:
case FCmpInst::FCMP_ONE:
Pred = ICmpInst::ICMP_NE;
break;
case FCmpInst::FCMP_ORD:
return replaceInstUsesWith(I, Builder->getTrue());
case FCmpInst::FCMP_UNO:
return replaceInstUsesWith(I, Builder->getFalse());
}
// Now we know that the APFloat is a normal number, zero or inf.
// See if the FP constant is too large for the integer. For example,
// comparing an i8 to 300.0.
unsigned IntWidth = IntTy->getScalarSizeInBits();
if (!LHSUnsigned) {
// If the RHS value is > SignedMax, fold the comparison. This handles +INF
// and large values.
APFloat SMax(RHS.getSemantics());
SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
APFloat::rmNearestTiesToEven);
if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0
if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT ||
Pred == ICmpInst::ICMP_SLE)
return replaceInstUsesWith(I, Builder->getTrue());
return replaceInstUsesWith(I, Builder->getFalse());
}
} else {
// If the RHS value is > UnsignedMax, fold the comparison. This handles
// +INF and large values.
APFloat UMax(RHS.getSemantics());
UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
APFloat::rmNearestTiesToEven);
if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0
if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT ||
Pred == ICmpInst::ICMP_ULE)
return replaceInstUsesWith(I, Builder->getTrue());
return replaceInstUsesWith(I, Builder->getFalse());
}
}
if (!LHSUnsigned) {
// See if the RHS value is < SignedMin.
APFloat SMin(RHS.getSemantics());
SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
APFloat::rmNearestTiesToEven);
if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
Pred == ICmpInst::ICMP_SGE)
return replaceInstUsesWith(I, Builder->getTrue());
return replaceInstUsesWith(I, Builder->getFalse());
}
} else {
// See if the RHS value is < UnsignedMin.
APFloat SMin(RHS.getSemantics());
SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true,
APFloat::rmNearestTiesToEven);
if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0
if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
Pred == ICmpInst::ICMP_UGE)
return replaceInstUsesWith(I, Builder->getTrue());
return replaceInstUsesWith(I, Builder->getFalse());
}
}
// Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
// [0, UMAX], but it may still be fractional. See if it is fractional by
// casting the FP value to the integer value and back, checking for equality.
// Don't do this for zero, because -0.0 is not fractional.
Constant *RHSInt = LHSUnsigned
? ConstantExpr::getFPToUI(RHSC, IntTy)
: ConstantExpr::getFPToSI(RHSC, IntTy);
if (!RHS.isZero()) {
bool Equal = LHSUnsigned
? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
: ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
if (!Equal) {
// If we had a comparison against a fractional value, we have to adjust
// the compare predicate and sometimes the value. RHSC is rounded towards
// zero at this point.
switch (Pred) {
default: llvm_unreachable("Unexpected integer comparison!");
case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true
return replaceInstUsesWith(I, Builder->getTrue());
case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false
return replaceInstUsesWith(I, Builder->getFalse());
case ICmpInst::ICMP_ULE:
// (float)int <= 4.4 --> int <= 4
// (float)int <= -4.4 --> false
if (RHS.isNegative())
return replaceInstUsesWith(I, Builder->getFalse());
break;
case ICmpInst::ICMP_SLE:
// (float)int <= 4.4 --> int <= 4
// (float)int <= -4.4 --> int < -4
if (RHS.isNegative())
Pred = ICmpInst::ICMP_SLT;
break;
case ICmpInst::ICMP_ULT:
// (float)int < -4.4 --> false
// (float)int < 4.4 --> int <= 4
if (RHS.isNegative())
return replaceInstUsesWith(I, Builder->getFalse());
Pred = ICmpInst::ICMP_ULE;
break;
case ICmpInst::ICMP_SLT:
// (float)int < -4.4 --> int < -4
// (float)int < 4.4 --> int <= 4
if (!RHS.isNegative())
Pred = ICmpInst::ICMP_SLE;
break;
case ICmpInst::ICMP_UGT:
// (float)int > 4.4 --> int > 4
// (float)int > -4.4 --> true
if (RHS.isNegative())
return replaceInstUsesWith(I, Builder->getTrue());
break;
case ICmpInst::ICMP_SGT:
// (float)int > 4.4 --> int > 4
// (float)int > -4.4 --> int >= -4
if (RHS.isNegative())
Pred = ICmpInst::ICMP_SGE;
break;
case ICmpInst::ICMP_UGE:
// (float)int >= -4.4 --> true
// (float)int >= 4.4 --> int > 4
if (RHS.isNegative())
return replaceInstUsesWith(I, Builder->getTrue());
Pred = ICmpInst::ICMP_UGT;
break;
case ICmpInst::ICMP_SGE:
// (float)int >= -4.4 --> int >= -4
// (float)int >= 4.4 --> int > 4
if (!RHS.isNegative())
Pred = ICmpInst::ICMP_SGT;
break;
}
}
}
// Lower this FP comparison into an appropriate integer version of the
// comparison.
return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
}
Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
bool Changed = false;
/// Orders the operands of the compare so that they are listed from most
/// complex to least complex. This puts constants before unary operators,
/// before binary operators.
if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
I.swapOperands();
Changed = true;
}
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1,
I.getFastMathFlags(), DL, &TLI, &DT, &AC, &I))
return replaceInstUsesWith(I, V);
// Simplify 'fcmp pred X, X'
if (Op0 == Op1) {
switch (I.getPredicate()) {
default: llvm_unreachable("Unknown predicate!");
case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
case FCmpInst::FCMP_ULT: // True if unordered or less than
case FCmpInst::FCMP_UGT: // True if unordered or greater than
case FCmpInst::FCMP_UNE: // True if unordered or not equal
// Canonicalize these to be 'fcmp uno %X, 0.0'.
I.setPredicate(FCmpInst::FCMP_UNO);
I.setOperand(1, Constant::getNullValue(Op0->getType()));
return &I;
case FCmpInst::FCMP_ORD: // True if ordered (no nans)
case FCmpInst::FCMP_OEQ: // True if ordered and equal
case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
// Canonicalize these to be 'fcmp ord %X, 0.0'.
I.setPredicate(FCmpInst::FCMP_ORD);
I.setOperand(1, Constant::getNullValue(Op0->getType()));
return &I;
}
}
// Test if the FCmpInst instruction is used exclusively by a select as
// part of a minimum or maximum operation. If so, refrain from doing
// any other folding. This helps out other analyses which understand
// non-obfuscated minimum and maximum idioms, such as ScalarEvolution
// and CodeGen. And in this case, at least one of the comparison
// operands has at least one user besides the compare (the select),
// which would often largely negate the benefit of folding anyway.
if (I.hasOneUse())
if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin()))
if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
(SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
return nullptr;
// Handle fcmp with constant RHS
if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
switch (LHSI->getOpcode()) {
case Instruction::FPExt: {
// fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless
FPExtInst *LHSExt = cast<FPExtInst>(LHSI);
ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC);
if (!RHSF)
break;
const fltSemantics *Sem;
// FIXME: This shouldn't be here.
if (LHSExt->getSrcTy()->isHalfTy())
Sem = &APFloat::IEEEhalf();
else if (LHSExt->getSrcTy()->isFloatTy())
Sem = &APFloat::IEEEsingle();
else if (LHSExt->getSrcTy()->isDoubleTy())
Sem = &APFloat::IEEEdouble();
else if (LHSExt->getSrcTy()->isFP128Ty())
Sem = &APFloat::IEEEquad();
else if (LHSExt->getSrcTy()->isX86_FP80Ty())
Sem = &APFloat::x87DoubleExtended();
else if (LHSExt->getSrcTy()->isPPC_FP128Ty())
Sem = &APFloat::PPCDoubleDouble();
else
break;
bool Lossy;
APFloat F = RHSF->getValueAPF();
F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy);
// Avoid lossy conversions and denormals. Zero is a special case
// that's OK to convert.
APFloat Fabs = F;
Fabs.clearSign();
if (!Lossy &&
((Fabs.compare(APFloat::getSmallestNormalized(*Sem)) !=
APFloat::cmpLessThan) || Fabs.isZero()))
return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
ConstantFP::get(RHSC->getContext(), F));
break;
}
case Instruction::PHI:
// Only fold fcmp into the PHI if the phi and fcmp are in the same
// block. If in the same block, we're encouraging jump threading. If
// not, we are just pessimizing the code by making an i1 phi.
if (LHSI->getParent() == I.getParent())
if (Instruction *NV = FoldOpIntoPhi(I))
return NV;
break;
case Instruction::SIToFP:
case Instruction::UIToFP:
if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC))
return NV;
break;
case Instruction::FSub: {
// fcmp pred (fneg x), C -> fcmp swap(pred) x, -C
Value *Op;
if (match(LHSI, m_FNeg(m_Value(Op))))
return new FCmpInst(I.getSwappedPredicate(), Op,
ConstantExpr::getFNeg(RHSC));
break;
}
2010-02-24 14:46:09 +08:00
case Instruction::Load:
if (GetElementPtrInst *GEP =
dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
!cast<LoadInst>(LHSI)->isVolatile())
if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
2010-02-24 14:46:09 +08:00
return Res;
}
break;
case Instruction::Call: {
if (!RHSC->isNullValue())
break;
CallInst *CI = cast<CallInst>(LHSI);
Intrinsic::ID IID = getIntrinsicForCallSite(CI, &TLI);
if (IID != Intrinsic::fabs)
break;
// Various optimization for fabs compared with zero.
switch (I.getPredicate()) {
default:
break;
// fabs(x) < 0 --> false
case FCmpInst::FCMP_OLT:
llvm_unreachable("handled by SimplifyFCmpInst");
// fabs(x) > 0 --> x != 0
case FCmpInst::FCMP_OGT:
return new FCmpInst(FCmpInst::FCMP_ONE, CI->getArgOperand(0), RHSC);
// fabs(x) <= 0 --> x == 0
case FCmpInst::FCMP_OLE:
return new FCmpInst(FCmpInst::FCMP_OEQ, CI->getArgOperand(0), RHSC);
// fabs(x) >= 0 --> !isnan(x)
case FCmpInst::FCMP_OGE:
return new FCmpInst(FCmpInst::FCMP_ORD, CI->getArgOperand(0), RHSC);
// fabs(x) == 0 --> x == 0
// fabs(x) != 0 --> x != 0
case FCmpInst::FCMP_OEQ:
case FCmpInst::FCMP_UEQ:
case FCmpInst::FCMP_ONE:
case FCmpInst::FCMP_UNE:
return new FCmpInst(I.getPredicate(), CI->getArgOperand(0), RHSC);
}
}
}
}
// fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y
Value *X, *Y;
if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
return new FCmpInst(I.getSwappedPredicate(), X, Y);
// fcmp (fpext x), (fpext y) -> fcmp x, y
if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0))
if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1))
if (LHSExt->getSrcTy() == RHSExt->getSrcTy())
return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
RHSExt->getOperand(0));
return Changed ? &I : nullptr;
}