This is a major refactoring of the expression parser.
The goal is to separate the parser's data from the data
belonging to the parser's clients. This allows clients
to use the parser to obtain (for example) a JIT compiled
function or some DWARF code, and then discard the parser
state.
Previously, parser state was held in ClangExpression and
used liberally by ClangFunction, which inherited from
ClangExpression. The main effects of this refactoring
are:
- reducing ClangExpression to an abstract class that
declares methods that any client must expose to the
expression parser,
- moving the code specific to implementing the "expr"
command from ClangExpression and
CommandObjectExpression into ClangUserExpression,
a new class,
- moving the common parser interaction code from
ClangExpression into ClangExpressionParser, a new
class, and
- making ClangFunction rely only on
ClangExpressionParser and not depend on the
internal implementation of ClangExpression.
Side effects include:
- the compiler interaction code has been factored
out of ClangFunction and is now in an AST pass
(ASTStructExtractor),
- the header file for ClangFunction is now fully
documented,
- several bugs that only popped up when Clang was
deallocated (which never happened, since the
lifetime of the compiler was essentially infinite)
are now fixed, and
- the developer-only "call" command has been
disabled.
I have tested the expr command and the Objective-C
step-into code, which use ClangUserExpression and
ClangFunction, respectively, and verified that they
work. Please let me know if you encounter bugs or
poor documentation.
llvm-svn: 112249
2010-08-27 09:01:44 +08:00
|
|
|
//===-- ASTResultSynthesizer.cpp --------------------------------*- C++ -*-===//
|
2010-07-02 04:08:22 +08:00
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#include "stdlib.h"
|
|
|
|
#include "clang/AST/ASTContext.h"
|
|
|
|
#include "clang/AST/Decl.h"
|
|
|
|
#include "clang/AST/DeclCXX.h"
|
|
|
|
#include "clang/AST/DeclGroup.h"
|
2010-12-14 06:46:15 +08:00
|
|
|
#include "clang/AST/DeclObjC.h"
|
2010-07-02 04:08:22 +08:00
|
|
|
#include "clang/AST/Expr.h"
|
|
|
|
#include "clang/AST/Stmt.h"
|
|
|
|
#include "clang/Parse/Parser.h"
|
|
|
|
#include "llvm/Support/Casting.h"
|
|
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
#include "lldb/Core/Log.h"
|
This is a major refactoring of the expression parser.
The goal is to separate the parser's data from the data
belonging to the parser's clients. This allows clients
to use the parser to obtain (for example) a JIT compiled
function or some DWARF code, and then discard the parser
state.
Previously, parser state was held in ClangExpression and
used liberally by ClangFunction, which inherited from
ClangExpression. The main effects of this refactoring
are:
- reducing ClangExpression to an abstract class that
declares methods that any client must expose to the
expression parser,
- moving the code specific to implementing the "expr"
command from ClangExpression and
CommandObjectExpression into ClangUserExpression,
a new class,
- moving the common parser interaction code from
ClangExpression into ClangExpressionParser, a new
class, and
- making ClangFunction rely only on
ClangExpressionParser and not depend on the
internal implementation of ClangExpression.
Side effects include:
- the compiler interaction code has been factored
out of ClangFunction and is now in an AST pass
(ASTStructExtractor),
- the header file for ClangFunction is now fully
documented,
- several bugs that only popped up when Clang was
deallocated (which never happened, since the
lifetime of the compiler was essentially infinite)
are now fixed, and
- the developer-only "call" command has been
disabled.
I have tested the expr command and the Objective-C
step-into code, which use ClangUserExpression and
ClangFunction, respectively, and verified that they
work. Please let me know if you encounter bugs or
poor documentation.
llvm-svn: 112249
2010-08-27 09:01:44 +08:00
|
|
|
#include "lldb/Expression/ASTResultSynthesizer.h"
|
2010-07-02 04:08:22 +08:00
|
|
|
|
|
|
|
using namespace llvm;
|
|
|
|
using namespace clang;
|
|
|
|
using namespace lldb_private;
|
|
|
|
|
2010-11-19 10:52:21 +08:00
|
|
|
ASTResultSynthesizer::ASTResultSynthesizer(ASTConsumer *passthrough,
|
|
|
|
TypeFromUser desired_type) :
|
2010-07-13 07:14:00 +08:00
|
|
|
m_ast_context (NULL),
|
|
|
|
m_passthrough (passthrough),
|
|
|
|
m_passthrough_sema (NULL),
|
2010-11-19 10:52:21 +08:00
|
|
|
m_sema (NULL),
|
|
|
|
m_desired_type (desired_type)
|
2010-07-02 04:08:22 +08:00
|
|
|
{
|
|
|
|
if (!m_passthrough)
|
|
|
|
return;
|
|
|
|
|
|
|
|
m_passthrough_sema = dyn_cast<SemaConsumer>(passthrough);
|
|
|
|
}
|
|
|
|
|
This is a major refactoring of the expression parser.
The goal is to separate the parser's data from the data
belonging to the parser's clients. This allows clients
to use the parser to obtain (for example) a JIT compiled
function or some DWARF code, and then discard the parser
state.
Previously, parser state was held in ClangExpression and
used liberally by ClangFunction, which inherited from
ClangExpression. The main effects of this refactoring
are:
- reducing ClangExpression to an abstract class that
declares methods that any client must expose to the
expression parser,
- moving the code specific to implementing the "expr"
command from ClangExpression and
CommandObjectExpression into ClangUserExpression,
a new class,
- moving the common parser interaction code from
ClangExpression into ClangExpressionParser, a new
class, and
- making ClangFunction rely only on
ClangExpressionParser and not depend on the
internal implementation of ClangExpression.
Side effects include:
- the compiler interaction code has been factored
out of ClangFunction and is now in an AST pass
(ASTStructExtractor),
- the header file for ClangFunction is now fully
documented,
- several bugs that only popped up when Clang was
deallocated (which never happened, since the
lifetime of the compiler was essentially infinite)
are now fixed, and
- the developer-only "call" command has been
disabled.
I have tested the expr command and the Objective-C
step-into code, which use ClangUserExpression and
ClangFunction, respectively, and verified that they
work. Please let me know if you encounter bugs or
poor documentation.
llvm-svn: 112249
2010-08-27 09:01:44 +08:00
|
|
|
ASTResultSynthesizer::~ASTResultSynthesizer()
|
2010-07-02 04:08:22 +08:00
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
This is a major refactoring of the expression parser.
The goal is to separate the parser's data from the data
belonging to the parser's clients. This allows clients
to use the parser to obtain (for example) a JIT compiled
function or some DWARF code, and then discard the parser
state.
Previously, parser state was held in ClangExpression and
used liberally by ClangFunction, which inherited from
ClangExpression. The main effects of this refactoring
are:
- reducing ClangExpression to an abstract class that
declares methods that any client must expose to the
expression parser,
- moving the code specific to implementing the "expr"
command from ClangExpression and
CommandObjectExpression into ClangUserExpression,
a new class,
- moving the common parser interaction code from
ClangExpression into ClangExpressionParser, a new
class, and
- making ClangFunction rely only on
ClangExpressionParser and not depend on the
internal implementation of ClangExpression.
Side effects include:
- the compiler interaction code has been factored
out of ClangFunction and is now in an AST pass
(ASTStructExtractor),
- the header file for ClangFunction is now fully
documented,
- several bugs that only popped up when Clang was
deallocated (which never happened, since the
lifetime of the compiler was essentially infinite)
are now fixed, and
- the developer-only "call" command has been
disabled.
I have tested the expr command and the Objective-C
step-into code, which use ClangUserExpression and
ClangFunction, respectively, and verified that they
work. Please let me know if you encounter bugs or
poor documentation.
llvm-svn: 112249
2010-08-27 09:01:44 +08:00
|
|
|
ASTResultSynthesizer::Initialize(ASTContext &Context)
|
2010-07-02 04:08:22 +08:00
|
|
|
{
|
|
|
|
m_ast_context = &Context;
|
|
|
|
|
|
|
|
if (m_passthrough)
|
|
|
|
m_passthrough->Initialize(Context);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
This is a major refactoring of the expression parser.
The goal is to separate the parser's data from the data
belonging to the parser's clients. This allows clients
to use the parser to obtain (for example) a JIT compiled
function or some DWARF code, and then discard the parser
state.
Previously, parser state was held in ClangExpression and
used liberally by ClangFunction, which inherited from
ClangExpression. The main effects of this refactoring
are:
- reducing ClangExpression to an abstract class that
declares methods that any client must expose to the
expression parser,
- moving the code specific to implementing the "expr"
command from ClangExpression and
CommandObjectExpression into ClangUserExpression,
a new class,
- moving the common parser interaction code from
ClangExpression into ClangExpressionParser, a new
class, and
- making ClangFunction rely only on
ClangExpressionParser and not depend on the
internal implementation of ClangExpression.
Side effects include:
- the compiler interaction code has been factored
out of ClangFunction and is now in an AST pass
(ASTStructExtractor),
- the header file for ClangFunction is now fully
documented,
- several bugs that only popped up when Clang was
deallocated (which never happened, since the
lifetime of the compiler was essentially infinite)
are now fixed, and
- the developer-only "call" command has been
disabled.
I have tested the expr command and the Objective-C
step-into code, which use ClangUserExpression and
ClangFunction, respectively, and verified that they
work. Please let me know if you encounter bugs or
poor documentation.
llvm-svn: 112249
2010-08-27 09:01:44 +08:00
|
|
|
ASTResultSynthesizer::TransformTopLevelDecl(Decl* D)
|
2010-07-02 04:08:22 +08:00
|
|
|
{
|
2010-12-14 06:46:15 +08:00
|
|
|
lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));
|
|
|
|
|
|
|
|
if (NamedDecl *named_decl = dyn_cast<NamedDecl>(D))
|
|
|
|
{
|
|
|
|
if (log)
|
|
|
|
{
|
|
|
|
if (named_decl->getIdentifier())
|
|
|
|
log->Printf("TransformTopLevelDecl(%s)", named_decl->getIdentifier()->getNameStart());
|
|
|
|
else if (ObjCMethodDecl *method_decl = dyn_cast<ObjCMethodDecl>(D))
|
|
|
|
log->Printf("TransformTopLevelDecl(%s)", method_decl->getSelector().getAsString().c_str());
|
|
|
|
else
|
|
|
|
log->Printf("TransformTopLevelDecl(<complex>)");
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
2010-07-02 04:08:22 +08:00
|
|
|
|
2010-12-14 06:46:15 +08:00
|
|
|
if (LinkageSpecDecl *linkage_spec_decl = dyn_cast<LinkageSpecDecl>(D))
|
2010-07-02 04:08:22 +08:00
|
|
|
{
|
|
|
|
RecordDecl::decl_iterator decl_iterator;
|
|
|
|
|
|
|
|
for (decl_iterator = linkage_spec_decl->decls_begin();
|
|
|
|
decl_iterator != linkage_spec_decl->decls_end();
|
|
|
|
++decl_iterator)
|
|
|
|
{
|
|
|
|
TransformTopLevelDecl(*decl_iterator);
|
|
|
|
}
|
|
|
|
}
|
2010-12-14 06:46:15 +08:00
|
|
|
else if (ObjCMethodDecl *method_decl = dyn_cast<ObjCMethodDecl>(D))
|
2010-07-02 04:08:22 +08:00
|
|
|
{
|
2010-12-14 06:46:15 +08:00
|
|
|
if (m_ast_context &&
|
|
|
|
!method_decl->getSelector().getAsString().compare("$__lldb_expr:"))
|
|
|
|
{
|
|
|
|
SynthesizeObjCMethodResult(method_decl);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else if (FunctionDecl *function_decl = dyn_cast<FunctionDecl>(D))
|
|
|
|
{
|
|
|
|
if (m_ast_context &&
|
|
|
|
!function_decl->getNameInfo().getAsString().compare("$__lldb_expr"))
|
|
|
|
{
|
|
|
|
SynthesizeFunctionResult(function_decl);
|
|
|
|
}
|
2010-07-02 04:08:22 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
This is a major refactoring of the expression parser.
The goal is to separate the parser's data from the data
belonging to the parser's clients. This allows clients
to use the parser to obtain (for example) a JIT compiled
function or some DWARF code, and then discard the parser
state.
Previously, parser state was held in ClangExpression and
used liberally by ClangFunction, which inherited from
ClangExpression. The main effects of this refactoring
are:
- reducing ClangExpression to an abstract class that
declares methods that any client must expose to the
expression parser,
- moving the code specific to implementing the "expr"
command from ClangExpression and
CommandObjectExpression into ClangUserExpression,
a new class,
- moving the common parser interaction code from
ClangExpression into ClangExpressionParser, a new
class, and
- making ClangFunction rely only on
ClangExpressionParser and not depend on the
internal implementation of ClangExpression.
Side effects include:
- the compiler interaction code has been factored
out of ClangFunction and is now in an AST pass
(ASTStructExtractor),
- the header file for ClangFunction is now fully
documented,
- several bugs that only popped up when Clang was
deallocated (which never happened, since the
lifetime of the compiler was essentially infinite)
are now fixed, and
- the developer-only "call" command has been
disabled.
I have tested the expr command and the Objective-C
step-into code, which use ClangUserExpression and
ClangFunction, respectively, and verified that they
work. Please let me know if you encounter bugs or
poor documentation.
llvm-svn: 112249
2010-08-27 09:01:44 +08:00
|
|
|
ASTResultSynthesizer::HandleTopLevelDecl(DeclGroupRef D)
|
2010-07-02 04:08:22 +08:00
|
|
|
{
|
|
|
|
DeclGroupRef::iterator decl_iterator;
|
|
|
|
|
|
|
|
for (decl_iterator = D.begin();
|
|
|
|
decl_iterator != D.end();
|
|
|
|
++decl_iterator)
|
|
|
|
{
|
|
|
|
Decl *decl = *decl_iterator;
|
|
|
|
|
|
|
|
TransformTopLevelDecl(decl);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (m_passthrough)
|
|
|
|
m_passthrough->HandleTopLevelDecl(D);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool
|
2010-12-14 06:46:15 +08:00
|
|
|
ASTResultSynthesizer::SynthesizeFunctionResult (FunctionDecl *FunDecl)
|
2010-07-02 04:08:22 +08:00
|
|
|
{
|
2010-11-06 09:53:30 +08:00
|
|
|
lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));
|
2010-07-02 04:08:22 +08:00
|
|
|
|
2010-12-14 06:46:15 +08:00
|
|
|
ASTContext &Ctx(*m_ast_context);
|
|
|
|
|
2010-07-02 04:08:22 +08:00
|
|
|
if (!m_sema)
|
|
|
|
return false;
|
2010-12-14 06:46:15 +08:00
|
|
|
|
2010-07-02 04:08:22 +08:00
|
|
|
FunctionDecl *function_decl = FunDecl;
|
|
|
|
|
|
|
|
if (!function_decl)
|
|
|
|
return false;
|
|
|
|
|
2011-01-22 09:25:40 +08:00
|
|
|
if (log && log->GetVerbose())
|
2010-09-14 05:34:21 +08:00
|
|
|
{
|
|
|
|
std::string s;
|
|
|
|
raw_string_ostream os(s);
|
|
|
|
|
2010-09-22 08:33:31 +08:00
|
|
|
Ctx.getTranslationUnitDecl()->print(os);
|
2010-09-14 05:34:21 +08:00
|
|
|
|
|
|
|
os.flush();
|
|
|
|
|
2010-09-22 08:33:31 +08:00
|
|
|
log->Printf("AST context before transforming:\n%s", s.c_str());
|
2010-09-14 05:34:21 +08:00
|
|
|
}
|
|
|
|
|
2010-07-02 04:08:22 +08:00
|
|
|
Stmt *function_body = function_decl->getBody();
|
|
|
|
CompoundStmt *compound_stmt = dyn_cast<CompoundStmt>(function_body);
|
|
|
|
|
2010-12-14 06:46:15 +08:00
|
|
|
bool ret = SynthesizeBodyResult (compound_stmt,
|
|
|
|
function_decl);
|
2011-01-22 09:25:40 +08:00
|
|
|
|
|
|
|
if (log && log->GetVerbose())
|
2010-12-14 06:46:15 +08:00
|
|
|
{
|
|
|
|
std::string s;
|
|
|
|
raw_string_ostream os(s);
|
|
|
|
|
|
|
|
function_decl->print(os);
|
|
|
|
|
|
|
|
os.flush();
|
|
|
|
|
2011-01-22 09:25:40 +08:00
|
|
|
log->Printf ("Transformed function AST:\n%s", s.c_str());
|
2010-12-14 06:46:15 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool
|
|
|
|
ASTResultSynthesizer::SynthesizeObjCMethodResult (ObjCMethodDecl *MethodDecl)
|
|
|
|
{
|
|
|
|
lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));
|
|
|
|
|
|
|
|
ASTContext &Ctx(*m_ast_context);
|
|
|
|
|
|
|
|
if (!m_sema)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (!MethodDecl)
|
|
|
|
return false;
|
|
|
|
|
2011-01-22 09:25:40 +08:00
|
|
|
if (log && log->GetVerbose())
|
2010-12-14 06:46:15 +08:00
|
|
|
{
|
|
|
|
std::string s;
|
|
|
|
raw_string_ostream os(s);
|
|
|
|
|
|
|
|
Ctx.getTranslationUnitDecl()->print(os);
|
|
|
|
|
|
|
|
os.flush();
|
|
|
|
|
|
|
|
log->Printf("AST context before transforming:\n%s", s.c_str());
|
|
|
|
}
|
|
|
|
|
|
|
|
Stmt *method_body = MethodDecl->getBody();
|
|
|
|
CompoundStmt *compound_stmt = dyn_cast<CompoundStmt>(method_body);
|
|
|
|
|
|
|
|
bool ret = SynthesizeBodyResult (compound_stmt,
|
|
|
|
MethodDecl);
|
|
|
|
|
|
|
|
if (log)
|
|
|
|
{
|
|
|
|
std::string s;
|
|
|
|
raw_string_ostream os(s);
|
|
|
|
|
|
|
|
MethodDecl->print(os);
|
|
|
|
|
|
|
|
os.flush();
|
|
|
|
|
|
|
|
log->Printf("Transformed function AST:\n%s", s.c_str());
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool
|
|
|
|
ASTResultSynthesizer::SynthesizeBodyResult (CompoundStmt *Body,
|
|
|
|
DeclContext *DC)
|
|
|
|
{
|
|
|
|
lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));
|
|
|
|
|
|
|
|
ASTContext &Ctx(*m_ast_context);
|
|
|
|
|
|
|
|
CompoundStmt *compound_stmt = dyn_cast<CompoundStmt>(Body);
|
|
|
|
|
2010-07-02 04:08:22 +08:00
|
|
|
if (!compound_stmt)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (compound_stmt->body_empty())
|
|
|
|
return false;
|
|
|
|
|
|
|
|
Stmt **last_stmt_ptr = compound_stmt->body_end() - 1;
|
|
|
|
Stmt *last_stmt = *last_stmt_ptr;
|
|
|
|
|
2010-09-14 05:34:21 +08:00
|
|
|
while (dyn_cast<NullStmt>(last_stmt))
|
|
|
|
{
|
|
|
|
if (last_stmt_ptr != compound_stmt->body_begin())
|
|
|
|
{
|
|
|
|
last_stmt_ptr--;
|
|
|
|
last_stmt = *last_stmt_ptr;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2010-07-02 04:08:22 +08:00
|
|
|
Expr *last_expr = dyn_cast<Expr>(last_stmt);
|
|
|
|
|
|
|
|
if (!last_expr)
|
|
|
|
// No auxiliary variable necessary; expression returns void
|
|
|
|
return true;
|
|
|
|
|
2011-01-13 16:53:35 +08:00
|
|
|
// is_lvalue is used to record whether the expression returns an assignable Lvalue or an
|
|
|
|
// Rvalue. This is relevant because they are handled differently.
|
|
|
|
//
|
|
|
|
// For Lvalues
|
|
|
|
//
|
|
|
|
// - In AST result synthesis (here!) the expression E is transformed into an initialization
|
|
|
|
// T *$__lldb_expr_result_ptr = &E.
|
|
|
|
//
|
|
|
|
// - In structure allocation, a pointer-sized slot is allocated in the struct that is to be
|
|
|
|
// passed into the expression.
|
|
|
|
//
|
|
|
|
// - In IR transformations, reads and writes to $__lldb_expr_result_ptr are redirected at
|
|
|
|
// an entry in the struct ($__lldb_arg) passed into the expression. (Other persistent
|
|
|
|
// variables are treated similarly, having been materialized as references, but in those
|
|
|
|
// cases the value of the reference itself is never modified.)
|
|
|
|
//
|
|
|
|
// - During materialization, $0 (the result persistent variable) is ignored.
|
|
|
|
//
|
|
|
|
// - During dematerialization, $0 is marked up as a load address with value equal to the
|
|
|
|
// contents of the structure entry.
|
|
|
|
//
|
|
|
|
// For Rvalues
|
|
|
|
//
|
|
|
|
// - In AST result synthesis the expression E is transformed into an initialization
|
|
|
|
// static T $__lldb_expr_result = E.
|
|
|
|
//
|
|
|
|
// - In structure allocation, a pointer-sized slot is allocated in the struct that is to be
|
|
|
|
// passed into the expression.
|
|
|
|
//
|
|
|
|
// - In IR transformations, an instruction is inserted at the beginning of the function to
|
|
|
|
// dereference the pointer resident in the slot. Reads and writes to $__lldb_expr_result
|
|
|
|
// are redirected at that dereferenced version. Guard variables for the static variable
|
|
|
|
// are excised.
|
|
|
|
//
|
|
|
|
// - During materialization, $0 (the result persistent variable) is populated with the location
|
|
|
|
// of a newly-allocated area of memory.
|
|
|
|
//
|
|
|
|
// - During dematerialization, $0 is ignored.
|
|
|
|
|
|
|
|
bool is_lvalue =
|
|
|
|
(last_expr->getValueKind() == VK_LValue || last_expr->getValueKind() == VK_XValue) &&
|
|
|
|
(last_expr->getObjectKind() == OK_Ordinary);
|
|
|
|
|
2010-07-02 04:08:22 +08:00
|
|
|
QualType expr_qual_type = last_expr->getType();
|
2011-01-27 12:42:51 +08:00
|
|
|
const clang::Type *expr_type = expr_qual_type.getTypePtr();
|
2010-07-02 04:08:22 +08:00
|
|
|
|
|
|
|
if (!expr_type)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (expr_type->isVoidType())
|
|
|
|
return true;
|
|
|
|
|
|
|
|
if (log)
|
|
|
|
{
|
|
|
|
std::string s = expr_qual_type.getAsString();
|
|
|
|
|
2011-01-13 16:53:35 +08:00
|
|
|
log->Printf("Last statement is an %s with type: %s", (is_lvalue ? "lvalue" : "rvalue"), s.c_str());
|
2010-07-02 04:08:22 +08:00
|
|
|
}
|
|
|
|
|
2011-01-13 16:53:35 +08:00
|
|
|
clang::VarDecl *result_decl;
|
|
|
|
|
|
|
|
if (is_lvalue)
|
|
|
|
{
|
|
|
|
IdentifierInfo &result_ptr_id = Ctx.Idents.get("$__lldb_expr_result_ptr");
|
2010-07-24 09:37:44 +08:00
|
|
|
|
2011-01-13 16:53:35 +08:00
|
|
|
QualType ptr_qual_type = Ctx.getPointerType(expr_qual_type);
|
|
|
|
|
|
|
|
result_decl = VarDecl::Create(Ctx,
|
|
|
|
DC,
|
|
|
|
SourceLocation(),
|
|
|
|
&result_ptr_id,
|
|
|
|
ptr_qual_type,
|
|
|
|
NULL,
|
|
|
|
SC_Static,
|
|
|
|
SC_Static);
|
|
|
|
|
|
|
|
if (!result_decl)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
ExprResult address_of_expr = m_sema->CreateBuiltinUnaryOp(SourceLocation(), UO_AddrOf, last_expr);
|
|
|
|
|
|
|
|
m_sema->AddInitializerToDecl(result_decl, address_of_expr.take());
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
IdentifierInfo &result_id = Ctx.Idents.get("$__lldb_expr_result");
|
|
|
|
|
|
|
|
result_decl = VarDecl::Create(Ctx,
|
|
|
|
DC,
|
|
|
|
SourceLocation(),
|
|
|
|
&result_id,
|
|
|
|
expr_qual_type,
|
|
|
|
NULL,
|
|
|
|
SC_Static,
|
|
|
|
SC_Static);
|
|
|
|
|
|
|
|
if (!result_decl)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
m_sema->AddInitializerToDecl(result_decl, last_expr);
|
|
|
|
}
|
2010-07-02 04:08:22 +08:00
|
|
|
|
2010-12-14 06:46:15 +08:00
|
|
|
DC->addDecl(result_decl);
|
2010-07-02 04:08:22 +08:00
|
|
|
|
|
|
|
///////////////////////////////
|
|
|
|
// call AddInitializerToDecl
|
|
|
|
//
|
2010-09-23 11:01:22 +08:00
|
|
|
|
2011-01-13 16:53:35 +08:00
|
|
|
//m_sema->AddInitializerToDecl(result_decl, last_expr);
|
2010-07-02 04:08:22 +08:00
|
|
|
|
|
|
|
/////////////////////////////////
|
|
|
|
// call ConvertDeclToDeclGroup
|
|
|
|
//
|
|
|
|
|
2010-09-23 11:01:22 +08:00
|
|
|
Sema::DeclGroupPtrTy result_decl_group_ptr;
|
2010-07-02 04:08:22 +08:00
|
|
|
|
2010-09-23 11:01:22 +08:00
|
|
|
result_decl_group_ptr = m_sema->ConvertDeclToDeclGroup(result_decl);
|
2010-07-02 04:08:22 +08:00
|
|
|
|
|
|
|
////////////////////////
|
|
|
|
// call ActOnDeclStmt
|
|
|
|
//
|
|
|
|
|
2010-09-23 11:01:22 +08:00
|
|
|
StmtResult result_initialization_stmt_result(m_sema->ActOnDeclStmt(result_decl_group_ptr,
|
|
|
|
SourceLocation(),
|
|
|
|
SourceLocation()));
|
2010-07-02 04:08:22 +08:00
|
|
|
|
|
|
|
////////////////////////////////////////////////
|
|
|
|
// replace the old statement with the new one
|
|
|
|
//
|
|
|
|
|
2010-07-24 09:37:44 +08:00
|
|
|
*last_stmt_ptr = reinterpret_cast<Stmt*>(result_initialization_stmt_result.take());
|
2010-07-02 04:08:22 +08:00
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
This is a major refactoring of the expression parser.
The goal is to separate the parser's data from the data
belonging to the parser's clients. This allows clients
to use the parser to obtain (for example) a JIT compiled
function or some DWARF code, and then discard the parser
state.
Previously, parser state was held in ClangExpression and
used liberally by ClangFunction, which inherited from
ClangExpression. The main effects of this refactoring
are:
- reducing ClangExpression to an abstract class that
declares methods that any client must expose to the
expression parser,
- moving the code specific to implementing the "expr"
command from ClangExpression and
CommandObjectExpression into ClangUserExpression,
a new class,
- moving the common parser interaction code from
ClangExpression into ClangExpressionParser, a new
class, and
- making ClangFunction rely only on
ClangExpressionParser and not depend on the
internal implementation of ClangExpression.
Side effects include:
- the compiler interaction code has been factored
out of ClangFunction and is now in an AST pass
(ASTStructExtractor),
- the header file for ClangFunction is now fully
documented,
- several bugs that only popped up when Clang was
deallocated (which never happened, since the
lifetime of the compiler was essentially infinite)
are now fixed, and
- the developer-only "call" command has been
disabled.
I have tested the expr command and the Objective-C
step-into code, which use ClangUserExpression and
ClangFunction, respectively, and verified that they
work. Please let me know if you encounter bugs or
poor documentation.
llvm-svn: 112249
2010-08-27 09:01:44 +08:00
|
|
|
ASTResultSynthesizer::HandleTranslationUnit(ASTContext &Ctx)
|
2010-07-02 04:08:22 +08:00
|
|
|
{
|
|
|
|
if (m_passthrough)
|
|
|
|
m_passthrough->HandleTranslationUnit(Ctx);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
This is a major refactoring of the expression parser.
The goal is to separate the parser's data from the data
belonging to the parser's clients. This allows clients
to use the parser to obtain (for example) a JIT compiled
function or some DWARF code, and then discard the parser
state.
Previously, parser state was held in ClangExpression and
used liberally by ClangFunction, which inherited from
ClangExpression. The main effects of this refactoring
are:
- reducing ClangExpression to an abstract class that
declares methods that any client must expose to the
expression parser,
- moving the code specific to implementing the "expr"
command from ClangExpression and
CommandObjectExpression into ClangUserExpression,
a new class,
- moving the common parser interaction code from
ClangExpression into ClangExpressionParser, a new
class, and
- making ClangFunction rely only on
ClangExpressionParser and not depend on the
internal implementation of ClangExpression.
Side effects include:
- the compiler interaction code has been factored
out of ClangFunction and is now in an AST pass
(ASTStructExtractor),
- the header file for ClangFunction is now fully
documented,
- several bugs that only popped up when Clang was
deallocated (which never happened, since the
lifetime of the compiler was essentially infinite)
are now fixed, and
- the developer-only "call" command has been
disabled.
I have tested the expr command and the Objective-C
step-into code, which use ClangUserExpression and
ClangFunction, respectively, and verified that they
work. Please let me know if you encounter bugs or
poor documentation.
llvm-svn: 112249
2010-08-27 09:01:44 +08:00
|
|
|
ASTResultSynthesizer::HandleTagDeclDefinition(TagDecl *D)
|
2010-07-02 04:08:22 +08:00
|
|
|
{
|
|
|
|
if (m_passthrough)
|
|
|
|
m_passthrough->HandleTagDeclDefinition(D);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
This is a major refactoring of the expression parser.
The goal is to separate the parser's data from the data
belonging to the parser's clients. This allows clients
to use the parser to obtain (for example) a JIT compiled
function or some DWARF code, and then discard the parser
state.
Previously, parser state was held in ClangExpression and
used liberally by ClangFunction, which inherited from
ClangExpression. The main effects of this refactoring
are:
- reducing ClangExpression to an abstract class that
declares methods that any client must expose to the
expression parser,
- moving the code specific to implementing the "expr"
command from ClangExpression and
CommandObjectExpression into ClangUserExpression,
a new class,
- moving the common parser interaction code from
ClangExpression into ClangExpressionParser, a new
class, and
- making ClangFunction rely only on
ClangExpressionParser and not depend on the
internal implementation of ClangExpression.
Side effects include:
- the compiler interaction code has been factored
out of ClangFunction and is now in an AST pass
(ASTStructExtractor),
- the header file for ClangFunction is now fully
documented,
- several bugs that only popped up when Clang was
deallocated (which never happened, since the
lifetime of the compiler was essentially infinite)
are now fixed, and
- the developer-only "call" command has been
disabled.
I have tested the expr command and the Objective-C
step-into code, which use ClangUserExpression and
ClangFunction, respectively, and verified that they
work. Please let me know if you encounter bugs or
poor documentation.
llvm-svn: 112249
2010-08-27 09:01:44 +08:00
|
|
|
ASTResultSynthesizer::CompleteTentativeDefinition(VarDecl *D)
|
2010-07-02 04:08:22 +08:00
|
|
|
{
|
|
|
|
if (m_passthrough)
|
|
|
|
m_passthrough->CompleteTentativeDefinition(D);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
This is a major refactoring of the expression parser.
The goal is to separate the parser's data from the data
belonging to the parser's clients. This allows clients
to use the parser to obtain (for example) a JIT compiled
function or some DWARF code, and then discard the parser
state.
Previously, parser state was held in ClangExpression and
used liberally by ClangFunction, which inherited from
ClangExpression. The main effects of this refactoring
are:
- reducing ClangExpression to an abstract class that
declares methods that any client must expose to the
expression parser,
- moving the code specific to implementing the "expr"
command from ClangExpression and
CommandObjectExpression into ClangUserExpression,
a new class,
- moving the common parser interaction code from
ClangExpression into ClangExpressionParser, a new
class, and
- making ClangFunction rely only on
ClangExpressionParser and not depend on the
internal implementation of ClangExpression.
Side effects include:
- the compiler interaction code has been factored
out of ClangFunction and is now in an AST pass
(ASTStructExtractor),
- the header file for ClangFunction is now fully
documented,
- several bugs that only popped up when Clang was
deallocated (which never happened, since the
lifetime of the compiler was essentially infinite)
are now fixed, and
- the developer-only "call" command has been
disabled.
I have tested the expr command and the Objective-C
step-into code, which use ClangUserExpression and
ClangFunction, respectively, and verified that they
work. Please let me know if you encounter bugs or
poor documentation.
llvm-svn: 112249
2010-08-27 09:01:44 +08:00
|
|
|
ASTResultSynthesizer::HandleVTable(CXXRecordDecl *RD, bool DefinitionRequired)
|
2010-07-02 04:08:22 +08:00
|
|
|
{
|
|
|
|
if (m_passthrough)
|
|
|
|
m_passthrough->HandleVTable(RD, DefinitionRequired);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
This is a major refactoring of the expression parser.
The goal is to separate the parser's data from the data
belonging to the parser's clients. This allows clients
to use the parser to obtain (for example) a JIT compiled
function or some DWARF code, and then discard the parser
state.
Previously, parser state was held in ClangExpression and
used liberally by ClangFunction, which inherited from
ClangExpression. The main effects of this refactoring
are:
- reducing ClangExpression to an abstract class that
declares methods that any client must expose to the
expression parser,
- moving the code specific to implementing the "expr"
command from ClangExpression and
CommandObjectExpression into ClangUserExpression,
a new class,
- moving the common parser interaction code from
ClangExpression into ClangExpressionParser, a new
class, and
- making ClangFunction rely only on
ClangExpressionParser and not depend on the
internal implementation of ClangExpression.
Side effects include:
- the compiler interaction code has been factored
out of ClangFunction and is now in an AST pass
(ASTStructExtractor),
- the header file for ClangFunction is now fully
documented,
- several bugs that only popped up when Clang was
deallocated (which never happened, since the
lifetime of the compiler was essentially infinite)
are now fixed, and
- the developer-only "call" command has been
disabled.
I have tested the expr command and the Objective-C
step-into code, which use ClangUserExpression and
ClangFunction, respectively, and verified that they
work. Please let me know if you encounter bugs or
poor documentation.
llvm-svn: 112249
2010-08-27 09:01:44 +08:00
|
|
|
ASTResultSynthesizer::PrintStats()
|
2010-07-02 04:08:22 +08:00
|
|
|
{
|
|
|
|
if (m_passthrough)
|
|
|
|
m_passthrough->PrintStats();
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
This is a major refactoring of the expression parser.
The goal is to separate the parser's data from the data
belonging to the parser's clients. This allows clients
to use the parser to obtain (for example) a JIT compiled
function or some DWARF code, and then discard the parser
state.
Previously, parser state was held in ClangExpression and
used liberally by ClangFunction, which inherited from
ClangExpression. The main effects of this refactoring
are:
- reducing ClangExpression to an abstract class that
declares methods that any client must expose to the
expression parser,
- moving the code specific to implementing the "expr"
command from ClangExpression and
CommandObjectExpression into ClangUserExpression,
a new class,
- moving the common parser interaction code from
ClangExpression into ClangExpressionParser, a new
class, and
- making ClangFunction rely only on
ClangExpressionParser and not depend on the
internal implementation of ClangExpression.
Side effects include:
- the compiler interaction code has been factored
out of ClangFunction and is now in an AST pass
(ASTStructExtractor),
- the header file for ClangFunction is now fully
documented,
- several bugs that only popped up when Clang was
deallocated (which never happened, since the
lifetime of the compiler was essentially infinite)
are now fixed, and
- the developer-only "call" command has been
disabled.
I have tested the expr command and the Objective-C
step-into code, which use ClangUserExpression and
ClangFunction, respectively, and verified that they
work. Please let me know if you encounter bugs or
poor documentation.
llvm-svn: 112249
2010-08-27 09:01:44 +08:00
|
|
|
ASTResultSynthesizer::InitializeSema(Sema &S)
|
2010-07-02 04:08:22 +08:00
|
|
|
{
|
|
|
|
m_sema = &S;
|
|
|
|
|
|
|
|
if (m_passthrough_sema)
|
|
|
|
m_passthrough_sema->InitializeSema(S);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
This is a major refactoring of the expression parser.
The goal is to separate the parser's data from the data
belonging to the parser's clients. This allows clients
to use the parser to obtain (for example) a JIT compiled
function or some DWARF code, and then discard the parser
state.
Previously, parser state was held in ClangExpression and
used liberally by ClangFunction, which inherited from
ClangExpression. The main effects of this refactoring
are:
- reducing ClangExpression to an abstract class that
declares methods that any client must expose to the
expression parser,
- moving the code specific to implementing the "expr"
command from ClangExpression and
CommandObjectExpression into ClangUserExpression,
a new class,
- moving the common parser interaction code from
ClangExpression into ClangExpressionParser, a new
class, and
- making ClangFunction rely only on
ClangExpressionParser and not depend on the
internal implementation of ClangExpression.
Side effects include:
- the compiler interaction code has been factored
out of ClangFunction and is now in an AST pass
(ASTStructExtractor),
- the header file for ClangFunction is now fully
documented,
- several bugs that only popped up when Clang was
deallocated (which never happened, since the
lifetime of the compiler was essentially infinite)
are now fixed, and
- the developer-only "call" command has been
disabled.
I have tested the expr command and the Objective-C
step-into code, which use ClangUserExpression and
ClangFunction, respectively, and verified that they
work. Please let me know if you encounter bugs or
poor documentation.
llvm-svn: 112249
2010-08-27 09:01:44 +08:00
|
|
|
ASTResultSynthesizer::ForgetSema()
|
2010-07-02 04:08:22 +08:00
|
|
|
{
|
|
|
|
m_sema = NULL;
|
|
|
|
|
|
|
|
if (m_passthrough_sema)
|
|
|
|
m_passthrough_sema->ForgetSema();
|
|
|
|
}
|