llvm-project/llvm/lib/Target/ARM/ARMTargetMachine.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

568 lines
20 KiB
C++
Raw Normal View History

//===-- ARMTargetMachine.cpp - Define TargetMachine for ARM ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//
//===----------------------------------------------------------------------===//
#include "ARMTargetMachine.h"
#include "ARM.h"
#include "ARMMacroFusion.h"
#include "ARMSubtarget.h"
#include "ARMTargetObjectFile.h"
#include "ARMTargetTransformInfo.h"
#include "MCTargetDesc/ARMMCTargetDesc.h"
#include "TargetInfo/ARMTargetInfo.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/ExecutionDomainFix.h"
#include "llvm/CodeGen/GlobalISel/CallLowering.h"
#include "llvm/CodeGen/GlobalISel/IRTranslator.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
#include "llvm/CodeGen/GlobalISel/Legalizer.h"
#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
#include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
#include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineScheduler.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/Pass.h"
#include "llvm/Support/CodeGen.h"
Making use of VFP / NEON floating point multiply-accumulate / subtraction is difficult on current ARM implementations for a few reasons. 1. Even though a single vmla has latency that is one cycle shorter than a pair of vmul + vadd, a RAW hazard during the first (4? on Cortex-a8) can cause additional pipeline stall. So it's frequently better to single codegen vmul + vadd. 2. A vmla folowed by a vmul, vmadd, or vsub causes the second fp instruction to stall for 4 cycles. We need to schedule them apart. 3. A vmla followed vmla is a special case. Obvious issuing back to back RAW vmla + vmla is very bad. But this isn't ideal either: vmul vadd vmla Instead, we want to expand the second vmla: vmla vmul vadd Even with the 4 cycle vmul stall, the second sequence is still 2 cycles faster. Up to now, isel simply avoid codegen'ing fp vmla / vmls. This works well enough but it isn't the optimial solution. This patch attempts to make it possible to use vmla / vmls in cases where it is profitable. A. Add missing isel predicates which cause vmla to be codegen'ed. B. Make sure the fmul in (fadd (fmul)) has a single use. We don't want to compute a fmul and a fmla. C. Add additional isel checks for vmla, avoid cases where vmla is feeding into fp instructions (except for the #3 exceptional case). D. Add ARM hazard recognizer to model the vmla / vmls hazards. E. Add a special pre-regalloc case to expand vmla / vmls when it's likely the vmla / vmls will trigger one of the special hazards. Work in progress, only A+B are enabled. llvm-svn: 120960
2010-12-06 06:04:16 +08:00
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetParser.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Transforms/CFGuard.h"
#include "llvm/Transforms/Scalar.h"
#include <cassert>
#include <memory>
#include <string>
using namespace llvm;
static cl::opt<bool>
DisableA15SDOptimization("disable-a15-sd-optimization", cl::Hidden,
cl::desc("Inhibit optimization of S->D register accesses on A15"),
cl::init(false));
static cl::opt<bool>
EnableAtomicTidy("arm-atomic-cfg-tidy", cl::Hidden,
cl::desc("Run SimplifyCFG after expanding atomic operations"
" to make use of cmpxchg flow-based information"),
cl::init(true));
static cl::opt<bool>
EnableARMLoadStoreOpt("arm-load-store-opt", cl::Hidden,
cl::desc("Enable ARM load/store optimization pass"),
cl::init(true));
// FIXME: Unify control over GlobalMerge.
static cl::opt<cl::boolOrDefault>
EnableGlobalMerge("arm-global-merge", cl::Hidden,
cl::desc("Enable the global merge pass"));
namespace llvm {
Separate ExecutionDepsFix into 4 parts: 1. ReachingDefsAnalysis - Allows to identify for each instruction what is the “closest” reaching def of a certain register. Used by BreakFalseDeps (for clearance calculation) and ExecutionDomainFix (for arbitrating conflicting domains). 2. ExecutionDomainFix - Changes the variant of the instructions in order to minimize domain crossings. 3. BreakFalseDeps - Breaks false dependencies. 4. LoopTraversal - Creatws a traversal order of the basic blocks that is optimal for loops (introduced in revision L293571). Both ExecutionDomainFix and ReachingDefsAnalysis use this to determine the order they will traverse the basic blocks. This also included the following changes to ExcecutionDepsFix original logic: 1. BreakFalseDeps and ReachingDefsAnalysis logic no longer restricted by a register class. 2. ReachingDefsAnalysis tracks liveness of reg units instead of reg indices into a given reg class. Additional changes in affected files: 1. X86 and ARM targets now inherit from ExecutionDomainFix instead of ExecutionDepsFix. BreakFalseDeps also was added to the passes they activate. 2. Comments and references to ExecutionDepsFix replaced with ExecutionDomainFix and BreakFalseDeps, as appropriate. Additional refactoring changes will follow. This commit is (almost) NFC. The only functional change is that now BreakFalseDeps will break dependency for all register classes. Since no additional instructions were added to the list of instructions that have false dependencies, there is no actual change yet. In a future commit several instructions (and tests) will be added. This is the first of multiple patches that fix bugzilla https://bugs.llvm.org/show_bug.cgi?id=33869 Most of the patches are intended at refactoring the existent code. Additional relevant reviews: https://reviews.llvm.org/D40331 https://reviews.llvm.org/D40332 https://reviews.llvm.org/D40333 https://reviews.llvm.org/D40334 Differential Revision: https://reviews.llvm.org/D40330 Change-Id: Icaeb75e014eff96a8f721377783f9a3e6c679275 llvm-svn: 323087
2018-01-22 18:05:23 +08:00
void initializeARMExecutionDomainFixPass(PassRegistry&);
}
CMake: Make most target symbols hidden by default Summary: For builds with LLVM_BUILD_LLVM_DYLIB=ON and BUILD_SHARED_LIBS=OFF this change makes all symbols in the target specific libraries hidden by default. A new macro called LLVM_EXTERNAL_VISIBILITY has been added to mark symbols in these libraries public, which is mainly needed for the definitions of the LLVMInitialize* functions. This patch reduces the number of public symbols in libLLVM.so by about 25%. This should improve load times for the dynamic library and also make abi checker tools, like abidiff require less memory when analyzing libLLVM.so One side-effect of this change is that for builds with LLVM_BUILD_LLVM_DYLIB=ON and LLVM_LINK_LLVM_DYLIB=ON some unittests that access symbols that are no longer public will need to be statically linked. Before and after public symbol counts (using gcc 8.2.1, ld.bfd 2.31.1): nm before/libLLVM-9svn.so | grep ' [A-Zuvw] ' | wc -l 36221 nm after/libLLVM-9svn.so | grep ' [A-Zuvw] ' | wc -l 26278 Reviewers: chandlerc, beanz, mgorny, rnk, hans Reviewed By: rnk, hans Subscribers: merge_guards_bot, luismarques, smeenai, ldionne, lenary, s.egerton, pzheng, sameer.abuasal, MaskRay, wuzish, echristo, Jim, hiraditya, michaelplatings, chapuni, jholewinski, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, javed.absar, sbc100, jgravelle-google, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, zzheng, edward-jones, mgrang, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, kristina, jsji, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D54439
2020-01-15 11:15:07 +08:00
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMTarget() {
// Register the target.
RegisterTargetMachine<ARMLETargetMachine> X(getTheARMLETarget());
RegisterTargetMachine<ARMLETargetMachine> A(getTheThumbLETarget());
RegisterTargetMachine<ARMBETargetMachine> Y(getTheARMBETarget());
RegisterTargetMachine<ARMBETargetMachine> B(getTheThumbBETarget());
PassRegistry &Registry = *PassRegistry::getPassRegistry();
initializeGlobalISel(Registry);
initializeARMLoadStoreOptPass(Registry);
initializeARMPreAllocLoadStoreOptPass(Registry);
initializeARMParallelDSPPass(Registry);
initializeARMConstantIslandsPass(Registry);
Separate ExecutionDepsFix into 4 parts: 1. ReachingDefsAnalysis - Allows to identify for each instruction what is the “closest” reaching def of a certain register. Used by BreakFalseDeps (for clearance calculation) and ExecutionDomainFix (for arbitrating conflicting domains). 2. ExecutionDomainFix - Changes the variant of the instructions in order to minimize domain crossings. 3. BreakFalseDeps - Breaks false dependencies. 4. LoopTraversal - Creatws a traversal order of the basic blocks that is optimal for loops (introduced in revision L293571). Both ExecutionDomainFix and ReachingDefsAnalysis use this to determine the order they will traverse the basic blocks. This also included the following changes to ExcecutionDepsFix original logic: 1. BreakFalseDeps and ReachingDefsAnalysis logic no longer restricted by a register class. 2. ReachingDefsAnalysis tracks liveness of reg units instead of reg indices into a given reg class. Additional changes in affected files: 1. X86 and ARM targets now inherit from ExecutionDomainFix instead of ExecutionDepsFix. BreakFalseDeps also was added to the passes they activate. 2. Comments and references to ExecutionDepsFix replaced with ExecutionDomainFix and BreakFalseDeps, as appropriate. Additional refactoring changes will follow. This commit is (almost) NFC. The only functional change is that now BreakFalseDeps will break dependency for all register classes. Since no additional instructions were added to the list of instructions that have false dependencies, there is no actual change yet. In a future commit several instructions (and tests) will be added. This is the first of multiple patches that fix bugzilla https://bugs.llvm.org/show_bug.cgi?id=33869 Most of the patches are intended at refactoring the existent code. Additional relevant reviews: https://reviews.llvm.org/D40331 https://reviews.llvm.org/D40332 https://reviews.llvm.org/D40333 https://reviews.llvm.org/D40334 Differential Revision: https://reviews.llvm.org/D40330 Change-Id: Icaeb75e014eff96a8f721377783f9a3e6c679275 llvm-svn: 323087
2018-01-22 18:05:23 +08:00
initializeARMExecutionDomainFixPass(Registry);
initializeARMExpandPseudoPass(Registry);
initializeThumb2SizeReducePass(Registry);
initializeMVEVPTBlockPass(Registry);
initializeMVEVPTOptimisationsPass(Registry);
[ARM] MVE Tail Predication The MVE and LOB extensions of Armv8.1m can be combined to enable 'tail predication' which removes the need for a scalar remainder loop after vectorization. Lane predication is performed implicitly via a system register. The effects of predication is described in Section B5.6.3 of the Armv8.1-m Arch Reference Manual, the key points being: - For vector operations that perform reduction across the vector and produce a scalar result, whether the value is accumulated or not. - For non-load instructions, the predicate flags determine if the destination register byte is updated with the new value or if the previous value is preserved. - For vector store instructions, whether the store occurs or not. - For vector load instructions, whether the value that is loaded or whether zeros are written to that element of the destination register. This patch implements a pass that takes a hardware loop, containing masked vector instructions, and converts it something that resembles an MVE tail predicated loop. Currently, if we had code generation, we'd generate a loop in which the VCTP would generate the predicate and VPST would then setup the value of VPR.PO. The loads and stores would be placed in VPT blocks so this is not tail predication, but normal VPT predication with the predicate based upon a element counting induction variable. Further work needs to be done to finally produce a true tail predicated loop. Because only the loads and stores are predicated, in both the LLVM IR and MIR level, we will restrict support to only lane-wise operations (no horizontal reductions). We will perform a final check on MIR during loop finalisation too. Another restriction, specific to MVE, is that all the vector instructions need operate on the same number of elements. This is because predication is performed at the byte level and this is set on entry to the loop, or by the VCTP instead. Differential Revision: https://reviews.llvm.org/D65884 llvm-svn: 371179
2019-09-06 16:24:41 +08:00
initializeMVETailPredicationPass(Registry);
initializeARMLowOverheadLoopsPass(Registry);
initializeMVEGatherScatterLoweringPass(Registry);
[ARM] Implement harden-sls-retbr for ARM mode Some processors may speculatively execute the instructions immediately following indirect control flow, such as returns, indirect jumps and indirect function calls. To avoid a potential miss-speculatively executed gadget after these instructions leaking secrets through side channels, this pass places a speculation barrier immediately after every indirect control flow where control flow doesn't return to the next instruction, such as returns and indirect jumps, but not indirect function calls. Hardening of indirect function calls will be done in a later, independent patch. This patch is implementing the same functionality as the AArch64 counter part implemented in https://reviews.llvm.org/D81400. For AArch64, returns and indirect jumps only occur on RET and BR instructions and hence the function attribute to control the hardening is called "harden-sls-retbr" there. On AArch32, there is a much wider variety of instructions that can trigger an indirect unconditional control flow change. I've decided to stick with the name "harden-sls-retbr" as introduced for the corresponding AArch64 mitigation. This patch implements this for ARM mode. A future patch will extend this to also support Thumb mode. The inserted barriers are never on the correct, architectural execution path, and therefore performance overhead of this is expected to be low. To ensure these barriers are never on an architecturally executed path, when the harden-sls-retbr function attribute is present, indirect control flow is never conditionalized/predicated. On targets that implement that Armv8.0-SB Speculation Barrier extension, a single SB instruction is emitted that acts as a speculation barrier. On other targets, a DSB SYS followed by a ISB is emitted to act as a speculation barrier. These speculation barriers are implemented as pseudo instructions to avoid later passes to analyze them and potentially remove them. The mitigation is off by default and can be enabled by the harden-sls-retbr subtarget feature. Differential Revision: https://reviews.llvm.org/D92395
2020-10-29 05:04:11 +08:00
initializeARMSLSHardeningPass(Registry);
}
static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
if (TT.isOSBinFormatMachO())
return std::make_unique<TargetLoweringObjectFileMachO>();
if (TT.isOSWindows())
return std::make_unique<TargetLoweringObjectFileCOFF>();
return std::make_unique<ARMElfTargetObjectFile>();
}
static ARMBaseTargetMachine::ARMABI
computeTargetABI(const Triple &TT, StringRef CPU,
const TargetOptions &Options) {
StringRef ABIName = Options.MCOptions.getABIName();
if (ABIName.empty())
ABIName = ARM::computeDefaultTargetABI(TT, CPU);
if (ABIName == "aapcs16")
return ARMBaseTargetMachine::ARM_ABI_AAPCS16;
else if (ABIName.startswith("aapcs"))
return ARMBaseTargetMachine::ARM_ABI_AAPCS;
else if (ABIName.startswith("apcs"))
return ARMBaseTargetMachine::ARM_ABI_APCS;
llvm_unreachable("Unhandled/unknown ABI Name!");
return ARMBaseTargetMachine::ARM_ABI_UNKNOWN;
}
static std::string computeDataLayout(const Triple &TT, StringRef CPU,
const TargetOptions &Options,
bool isLittle) {
auto ABI = computeTargetABI(TT, CPU, Options);
std::string Ret;
if (isLittle)
// Little endian.
Ret += "e";
else
// Big endian.
Ret += "E";
Ret += DataLayout::getManglingComponent(TT);
// Pointers are 32 bits and aligned to 32 bits.
Ret += "-p:32:32";
// Function pointers are aligned to 8 bits (because the LSB stores the
// ARM/Thumb state).
Ret += "-Fi8";
// ABIs other than APCS have 64 bit integers with natural alignment.
if (ABI != ARMBaseTargetMachine::ARM_ABI_APCS)
Ret += "-i64:64";
// We have 64 bits floats. The APCS ABI requires them to be aligned to 32
// bits, others to 64 bits. We always try to align to 64 bits.
if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS)
Ret += "-f64:32:64";
// We have 128 and 64 bit vectors. The APCS ABI aligns them to 32 bits, others
// to 64. We always ty to give them natural alignment.
if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS)
Ret += "-v64:32:64-v128:32:128";
else if (ABI != ARMBaseTargetMachine::ARM_ABI_AAPCS16)
Ret += "-v128:64:128";
// Try to align aggregates to 32 bits (the default is 64 bits, which has no
// particular hardware support on 32-bit ARM).
Ret += "-a:0:32";
// Integer registers are 32 bits.
Ret += "-n32";
// The stack is 128 bit aligned on NaCl, 64 bit aligned on AAPCS and 32 bit
// aligned everywhere else.
if (TT.isOSNaCl() || ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16)
Ret += "-S128";
else if (ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS)
Ret += "-S64";
else
Ret += "-S32";
return Ret;
}
static Reloc::Model getEffectiveRelocModel(const Triple &TT,
Optional<Reloc::Model> RM) {
if (!RM.hasValue())
// Default relocation model on Darwin is PIC.
return TT.isOSBinFormatMachO() ? Reloc::PIC_ : Reloc::Static;
if (*RM == Reloc::ROPI || *RM == Reloc::RWPI || *RM == Reloc::ROPI_RWPI)
assert(TT.isOSBinFormatELF() &&
"ROPI/RWPI currently only supported for ELF");
// DynamicNoPIC is only used on darwin.
if (*RM == Reloc::DynamicNoPIC && !TT.isOSDarwin())
return Reloc::Static;
return *RM;
}
/// Create an ARM architecture model.
///
ARMBaseTargetMachine::ARMBaseTargetMachine(const Target &T, const Triple &TT,
StringRef CPU, StringRef FS,
const TargetOptions &Options,
Optional<Reloc::Model> RM,
Optional<CodeModel::Model> CM,
CodeGenOpt::Level OL, bool isLittle)
: LLVMTargetMachine(T, computeDataLayout(TT, CPU, Options, isLittle), TT,
CPU, FS, Options, getEffectiveRelocModel(TT, RM),
getEffectiveCodeModel(CM, CodeModel::Small), OL),
TargetABI(computeTargetABI(TT, CPU, Options)),
TLOF(createTLOF(getTargetTriple())), isLittle(isLittle) {
// Default to triple-appropriate float ABI
if (Options.FloatABIType == FloatABI::Default) {
if (isTargetHardFloat())
this->Options.FloatABIType = FloatABI::Hard;
else
this->Options.FloatABIType = FloatABI::Soft;
}
// Default to triple-appropriate EABI
if (Options.EABIVersion == EABI::Default ||
Options.EABIVersion == EABI::Unknown) {
// musl is compatible with glibc with regard to EABI version
if ((TargetTriple.getEnvironment() == Triple::GNUEABI ||
2017-08-28 14:47:47 +08:00
TargetTriple.getEnvironment() == Triple::GNUEABIHF ||
TargetTriple.getEnvironment() == Triple::MuslEABI ||
TargetTriple.getEnvironment() == Triple::MuslEABIHF) &&
!(TargetTriple.isOSWindows() || TargetTriple.isOSDarwin()))
this->Options.EABIVersion = EABI::GNU;
else
this->Options.EABIVersion = EABI::EABI5;
}
if (TT.isOSBinFormatMachO()) {
this->Options.TrapUnreachable = true;
this->Options.NoTrapAfterNoreturn = true;
}
// ARM supports the debug entry values.
setSupportsDebugEntryValues(true);
initAsmInfo();
// ARM supports the MachineOutliner.
setMachineOutliner(true);
setSupportsDefaultOutlining(true);
}
ARMBaseTargetMachine::~ARMBaseTargetMachine() = default;
const ARMSubtarget *
ARMBaseTargetMachine::getSubtargetImpl(const Function &F) const {
Attribute CPUAttr = F.getFnAttribute("target-cpu");
Attribute FSAttr = F.getFnAttribute("target-features");
std::string CPU =
CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU;
std::string FS =
FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS;
// FIXME: This is related to the code below to reset the target options,
// we need to know whether or not the soft float flag is set on the
// function before we can generate a subtarget. We also need to use
// it as a key for the subtarget since that can be the only difference
// between two functions.
bool SoftFloat =
F.getFnAttribute("use-soft-float").getValueAsString() == "true";
// If the soft float attribute is set on the function turn on the soft float
// subtarget feature.
if (SoftFloat)
FS += FS.empty() ? "+soft-float" : ",+soft-float";
// Use the optminsize to identify the subtarget, but don't use it in the
// feature string.
std::string Key = CPU + FS;
if (F.hasMinSize())
Key += "+minsize";
auto &I = SubtargetMap[Key];
if (!I) {
// This needs to be done before we create a new subtarget since any
// creation will depend on the TM and the code generation flags on the
// function that reside in TargetOptions.
resetTargetOptions(F);
I = std::make_unique<ARMSubtarget>(TargetTriple, CPU, FS, *this, isLittle,
F.hasMinSize());
if (!I->isThumb() && !I->hasARMOps())
F.getContext().emitError("Function '" + F.getName() + "' uses ARM "
"instructions, but the target does not support ARM mode execution.");
}
return I.get();
}
TargetTransformInfo
ARMBaseTargetMachine::getTargetTransformInfo(const Function &F) {
return TargetTransformInfo(ARMTTIImpl(this, F));
Switch TargetTransformInfo from an immutable analysis pass that requires a TargetMachine to construct (and thus isn't always available), to an analysis group that supports layered implementations much like AliasAnalysis does. This is a pretty massive change, with a few parts that I was unable to easily separate (sorry), so I'll walk through it. The first step of this conversion was to make TargetTransformInfo an analysis group, and to sink the nonce implementations in ScalarTargetTransformInfo and VectorTargetTranformInfo into a NoTargetTransformInfo pass. This allows other passes to add a hard requirement on TTI, and assume they will always get at least on implementation. The TargetTransformInfo analysis group leverages the delegation chaining trick that AliasAnalysis uses, where the base class for the analysis group delegates to the previous analysis *pass*, allowing all but tho NoFoo analysis passes to only implement the parts of the interfaces they support. It also introduces a new trick where each pass in the group retains a pointer to the top-most pass that has been initialized. This allows passes to implement one API in terms of another API and benefit when some other pass above them in the stack has more precise results for the second API. The second step of this conversion is to create a pass that implements the TargetTransformInfo analysis using the target-independent abstractions in the code generator. This replaces the ScalarTargetTransformImpl and VectorTargetTransformImpl classes in lib/Target with a single pass in lib/CodeGen called BasicTargetTransformInfo. This class actually provides most of the TTI functionality, basing it upon the TargetLowering abstraction and other information in the target independent code generator. The third step of the conversion adds support to all TargetMachines to register custom analysis passes. This allows building those passes with access to TargetLowering or other target-specific classes, and it also allows each target to customize the set of analysis passes desired in the pass manager. The baseline LLVMTargetMachine implements this interface to add the BasicTTI pass to the pass manager, and all of the tools that want to support target-aware TTI passes call this routine on whatever target machine they end up with to add the appropriate passes. The fourth step of the conversion created target-specific TTI analysis passes for the X86 and ARM backends. These passes contain the custom logic that was previously in their extensions of the ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces. I separated them into their own file, as now all of the interface bits are private and they just expose a function to create the pass itself. Then I extended these target machines to set up a custom set of analysis passes, first adding BasicTTI as a fallback, and then adding their customized TTI implementations. The fourth step required logic that was shared between the target independent layer and the specific targets to move to a different interface, as they no longer derive from each other. As a consequence, a helper functions were added to TargetLowering representing the common logic needed both in the target implementation and the codegen implementation of the TTI pass. While technically this is the only change that could have been committed separately, it would have been a nightmare to extract. The final step of the conversion was just to delete all the old boilerplate. This got rid of the ScalarTargetTransformInfo and VectorTargetTransformInfo classes, all of the support in all of the targets for producing instances of them, and all of the support in the tools for manually constructing a pass based around them. Now that TTI is a relatively normal analysis group, two things become straightforward. First, we can sink it into lib/Analysis which is a more natural layer for it to live. Second, clients of this interface can depend on it *always* being available which will simplify their code and behavior. These (and other) simplifications will follow in subsequent commits, this one is clearly big enough. Finally, I'm very aware that much of the comments and documentation needs to be updated. As soon as I had this working, and plausibly well commented, I wanted to get it committed and in front of the build bots. I'll be doing a few passes over documentation later if it sticks. Commits to update DragonEgg and Clang will be made presently. llvm-svn: 171681
2013-01-07 09:37:14 +08:00
}
ARMLETargetMachine::ARMLETargetMachine(const Target &T, const Triple &TT,
StringRef CPU, StringRef FS,
const TargetOptions &Options,
Optional<Reloc::Model> RM,
Optional<CodeModel::Model> CM,
CodeGenOpt::Level OL, bool JIT)
: ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}
ARMBETargetMachine::ARMBETargetMachine(const Target &T, const Triple &TT,
StringRef CPU, StringRef FS,
const TargetOptions &Options,
Optional<Reloc::Model> RM,
Optional<CodeModel::Model> CM,
CodeGenOpt::Level OL, bool JIT)
: ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}
namespace {
/// ARM Code Generator Pass Configuration Options.
class ARMPassConfig : public TargetPassConfig {
public:
ARMPassConfig(ARMBaseTargetMachine &TM, PassManagerBase &PM)
: TargetPassConfig(TM, PM) {}
ARMBaseTargetMachine &getARMTargetMachine() const {
return getTM<ARMBaseTargetMachine>();
}
ScheduleDAGInstrs *
createMachineScheduler(MachineSchedContext *C) const override {
ScheduleDAGMILive *DAG = createGenericSchedLive(C);
// add DAG Mutations here.
const ARMSubtarget &ST = C->MF->getSubtarget<ARMSubtarget>();
if (ST.hasFusion())
DAG->addMutation(createARMMacroFusionDAGMutation());
return DAG;
}
ScheduleDAGInstrs *
createPostMachineScheduler(MachineSchedContext *C) const override {
ScheduleDAGMI *DAG = createGenericSchedPostRA(C);
// add DAG Mutations here.
const ARMSubtarget &ST = C->MF->getSubtarget<ARMSubtarget>();
if (ST.hasFusion())
DAG->addMutation(createARMMacroFusionDAGMutation());
return DAG;
}
void addIRPasses() override;
void addCodeGenPrepare() override;
bool addPreISel() override;
bool addInstSelector() override;
bool addIRTranslator() override;
bool addLegalizeMachineIR() override;
bool addRegBankSelect() override;
bool addGlobalInstructionSelect() override;
void addPreRegAlloc() override;
void addPreSched2() override;
void addPreEmitPass() override;
void addPreEmitPass2() override;
std::unique_ptr<CSEConfigBase> getCSEConfig() const override;
};
Separate ExecutionDepsFix into 4 parts: 1. ReachingDefsAnalysis - Allows to identify for each instruction what is the “closest” reaching def of a certain register. Used by BreakFalseDeps (for clearance calculation) and ExecutionDomainFix (for arbitrating conflicting domains). 2. ExecutionDomainFix - Changes the variant of the instructions in order to minimize domain crossings. 3. BreakFalseDeps - Breaks false dependencies. 4. LoopTraversal - Creatws a traversal order of the basic blocks that is optimal for loops (introduced in revision L293571). Both ExecutionDomainFix and ReachingDefsAnalysis use this to determine the order they will traverse the basic blocks. This also included the following changes to ExcecutionDepsFix original logic: 1. BreakFalseDeps and ReachingDefsAnalysis logic no longer restricted by a register class. 2. ReachingDefsAnalysis tracks liveness of reg units instead of reg indices into a given reg class. Additional changes in affected files: 1. X86 and ARM targets now inherit from ExecutionDomainFix instead of ExecutionDepsFix. BreakFalseDeps also was added to the passes they activate. 2. Comments and references to ExecutionDepsFix replaced with ExecutionDomainFix and BreakFalseDeps, as appropriate. Additional refactoring changes will follow. This commit is (almost) NFC. The only functional change is that now BreakFalseDeps will break dependency for all register classes. Since no additional instructions were added to the list of instructions that have false dependencies, there is no actual change yet. In a future commit several instructions (and tests) will be added. This is the first of multiple patches that fix bugzilla https://bugs.llvm.org/show_bug.cgi?id=33869 Most of the patches are intended at refactoring the existent code. Additional relevant reviews: https://reviews.llvm.org/D40331 https://reviews.llvm.org/D40332 https://reviews.llvm.org/D40333 https://reviews.llvm.org/D40334 Differential Revision: https://reviews.llvm.org/D40330 Change-Id: Icaeb75e014eff96a8f721377783f9a3e6c679275 llvm-svn: 323087
2018-01-22 18:05:23 +08:00
class ARMExecutionDomainFix : public ExecutionDomainFix {
public:
static char ID;
Separate ExecutionDepsFix into 4 parts: 1. ReachingDefsAnalysis - Allows to identify for each instruction what is the “closest” reaching def of a certain register. Used by BreakFalseDeps (for clearance calculation) and ExecutionDomainFix (for arbitrating conflicting domains). 2. ExecutionDomainFix - Changes the variant of the instructions in order to minimize domain crossings. 3. BreakFalseDeps - Breaks false dependencies. 4. LoopTraversal - Creatws a traversal order of the basic blocks that is optimal for loops (introduced in revision L293571). Both ExecutionDomainFix and ReachingDefsAnalysis use this to determine the order they will traverse the basic blocks. This also included the following changes to ExcecutionDepsFix original logic: 1. BreakFalseDeps and ReachingDefsAnalysis logic no longer restricted by a register class. 2. ReachingDefsAnalysis tracks liveness of reg units instead of reg indices into a given reg class. Additional changes in affected files: 1. X86 and ARM targets now inherit from ExecutionDomainFix instead of ExecutionDepsFix. BreakFalseDeps also was added to the passes they activate. 2. Comments and references to ExecutionDepsFix replaced with ExecutionDomainFix and BreakFalseDeps, as appropriate. Additional refactoring changes will follow. This commit is (almost) NFC. The only functional change is that now BreakFalseDeps will break dependency for all register classes. Since no additional instructions were added to the list of instructions that have false dependencies, there is no actual change yet. In a future commit several instructions (and tests) will be added. This is the first of multiple patches that fix bugzilla https://bugs.llvm.org/show_bug.cgi?id=33869 Most of the patches are intended at refactoring the existent code. Additional relevant reviews: https://reviews.llvm.org/D40331 https://reviews.llvm.org/D40332 https://reviews.llvm.org/D40333 https://reviews.llvm.org/D40334 Differential Revision: https://reviews.llvm.org/D40330 Change-Id: Icaeb75e014eff96a8f721377783f9a3e6c679275 llvm-svn: 323087
2018-01-22 18:05:23 +08:00
ARMExecutionDomainFix() : ExecutionDomainFix(ID, ARM::DPRRegClass) {}
StringRef getPassName() const override {
Separate ExecutionDepsFix into 4 parts: 1. ReachingDefsAnalysis - Allows to identify for each instruction what is the “closest” reaching def of a certain register. Used by BreakFalseDeps (for clearance calculation) and ExecutionDomainFix (for arbitrating conflicting domains). 2. ExecutionDomainFix - Changes the variant of the instructions in order to minimize domain crossings. 3. BreakFalseDeps - Breaks false dependencies. 4. LoopTraversal - Creatws a traversal order of the basic blocks that is optimal for loops (introduced in revision L293571). Both ExecutionDomainFix and ReachingDefsAnalysis use this to determine the order they will traverse the basic blocks. This also included the following changes to ExcecutionDepsFix original logic: 1. BreakFalseDeps and ReachingDefsAnalysis logic no longer restricted by a register class. 2. ReachingDefsAnalysis tracks liveness of reg units instead of reg indices into a given reg class. Additional changes in affected files: 1. X86 and ARM targets now inherit from ExecutionDomainFix instead of ExecutionDepsFix. BreakFalseDeps also was added to the passes they activate. 2. Comments and references to ExecutionDepsFix replaced with ExecutionDomainFix and BreakFalseDeps, as appropriate. Additional refactoring changes will follow. This commit is (almost) NFC. The only functional change is that now BreakFalseDeps will break dependency for all register classes. Since no additional instructions were added to the list of instructions that have false dependencies, there is no actual change yet. In a future commit several instructions (and tests) will be added. This is the first of multiple patches that fix bugzilla https://bugs.llvm.org/show_bug.cgi?id=33869 Most of the patches are intended at refactoring the existent code. Additional relevant reviews: https://reviews.llvm.org/D40331 https://reviews.llvm.org/D40332 https://reviews.llvm.org/D40333 https://reviews.llvm.org/D40334 Differential Revision: https://reviews.llvm.org/D40330 Change-Id: Icaeb75e014eff96a8f721377783f9a3e6c679275 llvm-svn: 323087
2018-01-22 18:05:23 +08:00
return "ARM Execution Domain Fix";
}
};
Separate ExecutionDepsFix into 4 parts: 1. ReachingDefsAnalysis - Allows to identify for each instruction what is the “closest” reaching def of a certain register. Used by BreakFalseDeps (for clearance calculation) and ExecutionDomainFix (for arbitrating conflicting domains). 2. ExecutionDomainFix - Changes the variant of the instructions in order to minimize domain crossings. 3. BreakFalseDeps - Breaks false dependencies. 4. LoopTraversal - Creatws a traversal order of the basic blocks that is optimal for loops (introduced in revision L293571). Both ExecutionDomainFix and ReachingDefsAnalysis use this to determine the order they will traverse the basic blocks. This also included the following changes to ExcecutionDepsFix original logic: 1. BreakFalseDeps and ReachingDefsAnalysis logic no longer restricted by a register class. 2. ReachingDefsAnalysis tracks liveness of reg units instead of reg indices into a given reg class. Additional changes in affected files: 1. X86 and ARM targets now inherit from ExecutionDomainFix instead of ExecutionDepsFix. BreakFalseDeps also was added to the passes they activate. 2. Comments and references to ExecutionDepsFix replaced with ExecutionDomainFix and BreakFalseDeps, as appropriate. Additional refactoring changes will follow. This commit is (almost) NFC. The only functional change is that now BreakFalseDeps will break dependency for all register classes. Since no additional instructions were added to the list of instructions that have false dependencies, there is no actual change yet. In a future commit several instructions (and tests) will be added. This is the first of multiple patches that fix bugzilla https://bugs.llvm.org/show_bug.cgi?id=33869 Most of the patches are intended at refactoring the existent code. Additional relevant reviews: https://reviews.llvm.org/D40331 https://reviews.llvm.org/D40332 https://reviews.llvm.org/D40333 https://reviews.llvm.org/D40334 Differential Revision: https://reviews.llvm.org/D40330 Change-Id: Icaeb75e014eff96a8f721377783f9a3e6c679275 llvm-svn: 323087
2018-01-22 18:05:23 +08:00
char ARMExecutionDomainFix::ID;
} // end anonymous namespace
Separate ExecutionDepsFix into 4 parts: 1. ReachingDefsAnalysis - Allows to identify for each instruction what is the “closest” reaching def of a certain register. Used by BreakFalseDeps (for clearance calculation) and ExecutionDomainFix (for arbitrating conflicting domains). 2. ExecutionDomainFix - Changes the variant of the instructions in order to minimize domain crossings. 3. BreakFalseDeps - Breaks false dependencies. 4. LoopTraversal - Creatws a traversal order of the basic blocks that is optimal for loops (introduced in revision L293571). Both ExecutionDomainFix and ReachingDefsAnalysis use this to determine the order they will traverse the basic blocks. This also included the following changes to ExcecutionDepsFix original logic: 1. BreakFalseDeps and ReachingDefsAnalysis logic no longer restricted by a register class. 2. ReachingDefsAnalysis tracks liveness of reg units instead of reg indices into a given reg class. Additional changes in affected files: 1. X86 and ARM targets now inherit from ExecutionDomainFix instead of ExecutionDepsFix. BreakFalseDeps also was added to the passes they activate. 2. Comments and references to ExecutionDepsFix replaced with ExecutionDomainFix and BreakFalseDeps, as appropriate. Additional refactoring changes will follow. This commit is (almost) NFC. The only functional change is that now BreakFalseDeps will break dependency for all register classes. Since no additional instructions were added to the list of instructions that have false dependencies, there is no actual change yet. In a future commit several instructions (and tests) will be added. This is the first of multiple patches that fix bugzilla https://bugs.llvm.org/show_bug.cgi?id=33869 Most of the patches are intended at refactoring the existent code. Additional relevant reviews: https://reviews.llvm.org/D40331 https://reviews.llvm.org/D40332 https://reviews.llvm.org/D40333 https://reviews.llvm.org/D40334 Differential Revision: https://reviews.llvm.org/D40330 Change-Id: Icaeb75e014eff96a8f721377783f9a3e6c679275 llvm-svn: 323087
2018-01-22 18:05:23 +08:00
INITIALIZE_PASS_BEGIN(ARMExecutionDomainFix, "arm-execution-domain-fix",
"ARM Execution Domain Fix", false, false)
INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis)
INITIALIZE_PASS_END(ARMExecutionDomainFix, "arm-execution-domain-fix",
"ARM Execution Domain Fix", false, false)
TargetPassConfig *ARMBaseTargetMachine::createPassConfig(PassManagerBase &PM) {
return new ARMPassConfig(*this, PM);
}
std::unique_ptr<CSEConfigBase> ARMPassConfig::getCSEConfig() const {
return getStandardCSEConfigForOpt(TM->getOptLevel());
}
void ARMPassConfig::addIRPasses() {
if (TM->Options.ThreadModel == ThreadModel::Single)
addPass(createLowerAtomicPass());
else
addPass(createAtomicExpandPass());
// Cmpxchg instructions are often used with a subsequent comparison to
// determine whether it succeeded. We can exploit existing control-flow in
// ldrex/strex loops to simplify this, but it needs tidying up.
if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy)
addPass(createCFGSimplificationPass(
Reland [SimplifyCFG][LoopRotate] SimplifyCFG: disable common instruction hoisting by default, enable late in pipeline This was reverted in 503deec2183d466dad64b763bab4e15fd8804239 because it caused gigantic increase (3x) in branch mispredictions in certain benchmarks on certain CPU's, see https://reviews.llvm.org/D84108#2227365. It has since been investigated and here are the results: https://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20200907/827578.html > It's an amazingly severe regression, but it's also all due to branch > mispredicts (about 3x without this). The code layout looks ok so there's > probably something else to deal with. I'm not sure there's anything we can > reasonably do so we'll just have to take the hit for now and wait for > another code reorganization to make the branch predictor a bit more happy :) > > Thanks for giving us some time to investigate and feel free to recommit > whenever you'd like. > > -eric So let's just reland this. Original commit message: I've been looking at missed vectorizations in one codebase. One particular thing that stands out is that some of the loops reach vectorizer in a rather mangled form, with weird PHI's, and some of the loops aren't even in a rotated form. After taking a more detailed look, that happened because the loop's headers were too big by then. It is evident that SimplifyCFG's common code hoisting transform is at fault there, because the pattern it handles is precisely the unrotated loop basic block structure. Surprizingly, `SimplifyCFGOpt::HoistThenElseCodeToIf()` is enabled by default, and is always run, unlike it's friend, common code sinking transform, `SinkCommonCodeFromPredecessors()`, which is not enabled by default and is only run once very late in the pipeline. I'm proposing to harmonize this, and disable common code hoisting until //late// in pipeline. Definition of //late// may vary, here currently i've picked the same one as for code sinking, but i suppose we could enable it as soon as right after loop rotation happens. Experimentation shows that this does indeed unsurprizingly help, more loops got rotated, although other issues remain elsewhere. Now, this undoubtedly seriously shakes phase ordering. This will undoubtedly be a mixed bag in terms of both compile- and run- time performance, codesize. Since we no longer aggressively hoist+deduplicate common code, we don't pay the price of said hoisting (which wasn't big). That may allow more loops to be rotated, so we pay that price. That, in turn, that may enable all the transforms that require canonical (rotated) loop form, including but not limited to vectorization, so we pay that too. And in general, no deduplication means more [duplicate] instructions going through the optimizations. But there's still late hoisting, some of them will be caught late. As per benchmarks i've run {F12360204}, this is mostly within the noise, there are some small improvements, some small regressions. One big regression i saw i fixed in rG8d487668d09fb0e4e54f36207f07c1480ffabbfd, but i'm sure this will expose many more pre-existing missed optimizations, as usual :S llvm-compile-time-tracker.com thoughts on this: http://llvm-compile-time-tracker.com/compare.php?from=e40315d2b4ed1e38962a8f33ff151693ed4ada63&to=c8289c0ecbf235da9fb0e3bc052e3c0d6bff5cf9&stat=instructions * this does regress compile-time by +0.5% geomean (unsurprizingly) * size impact varies; for ThinLTO it's actually an improvement The largest fallout appears to be in GVN's load partial redundancy elimination, it spends *much* more time in `MemoryDependenceResults::getNonLocalPointerDependency()`. Non-local `MemoryDependenceResults` is widely-known to be, uh, costly. There does not appear to be a proper solution to this issue, other than silencing the compile-time performance regression by tuning cut-off thresholds in `MemoryDependenceResults`, at the cost of potentially regressing run-time performance. D84609 attempts to move in that direction, but the path is unclear and is going to take some time. If we look at stats before/after diffs, some excerpts: * RawSpeed (the target) {F12360200} * -14 (-73.68%) loops not rotated due to the header size (yay) * -272 (-0.67%) `"Number of live out of a loop variables"` - good for vectorizer * -3937 (-64.19%) common instructions hoisted * +561 (+0.06%) x86 asm instructions * -2 basic blocks * +2418 (+0.11%) IR instructions * vanilla test-suite + RawSpeed + darktable {F12360201} * -36396 (-65.29%) common instructions hoisted * +1676 (+0.02%) x86 asm instructions * +662 (+0.06%) basic blocks * +4395 (+0.04%) IR instructions It is likely to be sub-optimal for when optimizing for code size, so one might want to change tune pipeline by enabling sinking/hoisting when optimizing for size. Reviewed By: mkazantsev Differential Revision: https://reviews.llvm.org/D84108 This reverts commit 503deec2183d466dad64b763bab4e15fd8804239.
2020-09-08 04:54:06 +08:00
SimplifyCFGOptions().hoistCommonInsts(true).sinkCommonInsts(true),
[this](const Function &F) {
const auto &ST = this->TM->getSubtarget<ARMSubtarget>(F);
return ST.hasAnyDataBarrier() && !ST.isThumb1Only();
}));
addPass(createMVEGatherScatterLoweringPass());
TargetPassConfig::addIRPasses();
// Run the parallel DSP pass.
if (getOptLevel() == CodeGenOpt::Aggressive)
addPass(createARMParallelDSPPass());
// Match interleaved memory accesses to ldN/stN intrinsics.
if (TM->getOptLevel() != CodeGenOpt::None)
addPass(createInterleavedAccessPass());
// Add Control Flow Guard checks.
if (TM->getTargetTriple().isOSWindows())
addPass(createCFGuardCheckPass());
}
void ARMPassConfig::addCodeGenPrepare() {
if (getOptLevel() != CodeGenOpt::None)
addPass(createTypePromotionPass());
TargetPassConfig::addCodeGenPrepare();
}
bool ARMPassConfig::addPreISel() {
if ((TM->getOptLevel() != CodeGenOpt::None &&
EnableGlobalMerge == cl::BOU_UNSET) ||
EnableGlobalMerge == cl::BOU_TRUE) {
// FIXME: This is using the thumb1 only constant value for
// maximal global offset for merging globals. We may want
// to look into using the old value for non-thumb1 code of
// 4095 based on the TargetMachine, but this starts to become
// tricky when doing code gen per function.
bool OnlyOptimizeForSize = (TM->getOptLevel() < CodeGenOpt::Aggressive) &&
(EnableGlobalMerge == cl::BOU_UNSET);
// Merging of extern globals is enabled by default on non-Mach-O as we
// expect it to be generally either beneficial or harmless. On Mach-O it
// is disabled as we emit the .subsections_via_symbols directive which
// means that merging extern globals is not safe.
bool MergeExternalByDefault = !TM->getTargetTriple().isOSBinFormatMachO();
addPass(createGlobalMergePass(TM, 127, OnlyOptimizeForSize,
MergeExternalByDefault));
}
[ARM] MVE Tail Predication The MVE and LOB extensions of Armv8.1m can be combined to enable 'tail predication' which removes the need for a scalar remainder loop after vectorization. Lane predication is performed implicitly via a system register. The effects of predication is described in Section B5.6.3 of the Armv8.1-m Arch Reference Manual, the key points being: - For vector operations that perform reduction across the vector and produce a scalar result, whether the value is accumulated or not. - For non-load instructions, the predicate flags determine if the destination register byte is updated with the new value or if the previous value is preserved. - For vector store instructions, whether the store occurs or not. - For vector load instructions, whether the value that is loaded or whether zeros are written to that element of the destination register. This patch implements a pass that takes a hardware loop, containing masked vector instructions, and converts it something that resembles an MVE tail predicated loop. Currently, if we had code generation, we'd generate a loop in which the VCTP would generate the predicate and VPST would then setup the value of VPR.PO. The loads and stores would be placed in VPT blocks so this is not tail predication, but normal VPT predication with the predicate based upon a element counting induction variable. Further work needs to be done to finally produce a true tail predicated loop. Because only the loads and stores are predicated, in both the LLVM IR and MIR level, we will restrict support to only lane-wise operations (no horizontal reductions). We will perform a final check on MIR during loop finalisation too. Another restriction, specific to MVE, is that all the vector instructions need operate on the same number of elements. This is because predication is performed at the byte level and this is set on entry to the loop, or by the VCTP instead. Differential Revision: https://reviews.llvm.org/D65884 llvm-svn: 371179
2019-09-06 16:24:41 +08:00
if (TM->getOptLevel() != CodeGenOpt::None) {
addPass(createHardwareLoopsPass());
[ARM] MVE Tail Predication The MVE and LOB extensions of Armv8.1m can be combined to enable 'tail predication' which removes the need for a scalar remainder loop after vectorization. Lane predication is performed implicitly via a system register. The effects of predication is described in Section B5.6.3 of the Armv8.1-m Arch Reference Manual, the key points being: - For vector operations that perform reduction across the vector and produce a scalar result, whether the value is accumulated or not. - For non-load instructions, the predicate flags determine if the destination register byte is updated with the new value or if the previous value is preserved. - For vector store instructions, whether the store occurs or not. - For vector load instructions, whether the value that is loaded or whether zeros are written to that element of the destination register. This patch implements a pass that takes a hardware loop, containing masked vector instructions, and converts it something that resembles an MVE tail predicated loop. Currently, if we had code generation, we'd generate a loop in which the VCTP would generate the predicate and VPST would then setup the value of VPR.PO. The loads and stores would be placed in VPT blocks so this is not tail predication, but normal VPT predication with the predicate based upon a element counting induction variable. Further work needs to be done to finally produce a true tail predicated loop. Because only the loads and stores are predicated, in both the LLVM IR and MIR level, we will restrict support to only lane-wise operations (no horizontal reductions). We will perform a final check on MIR during loop finalisation too. Another restriction, specific to MVE, is that all the vector instructions need operate on the same number of elements. This is because predication is performed at the byte level and this is set on entry to the loop, or by the VCTP instead. Differential Revision: https://reviews.llvm.org/D65884 llvm-svn: 371179
2019-09-06 16:24:41 +08:00
addPass(createMVETailPredicationPass());
}
return false;
}
bool ARMPassConfig::addInstSelector() {
addPass(createARMISelDag(getARMTargetMachine(), getOptLevel()));
return false;
}
bool ARMPassConfig::addIRTranslator() {
addPass(new IRTranslator(getOptLevel()));
return false;
}
bool ARMPassConfig::addLegalizeMachineIR() {
addPass(new Legalizer());
return false;
}
bool ARMPassConfig::addRegBankSelect() {
addPass(new RegBankSelect());
return false;
}
bool ARMPassConfig::addGlobalInstructionSelect() {
addPass(new InstructionSelect());
return false;
}
void ARMPassConfig::addPreRegAlloc() {
if (getOptLevel() != CodeGenOpt::None) {
addPass(createMVEVPTOptimisationsPass());
addPass(createMLxExpansionPass());
if (EnableARMLoadStoreOpt)
addPass(createARMLoadStoreOptimizationPass(/* pre-register alloc */ true));
if (!DisableA15SDOptimization)
addPass(createA15SDOptimizerPass());
}
}
void ARMPassConfig::addPreSched2() {
if (getOptLevel() != CodeGenOpt::None) {
if (EnableARMLoadStoreOpt)
addPass(createARMLoadStoreOptimizationPass());
Separate ExecutionDepsFix into 4 parts: 1. ReachingDefsAnalysis - Allows to identify for each instruction what is the “closest” reaching def of a certain register. Used by BreakFalseDeps (for clearance calculation) and ExecutionDomainFix (for arbitrating conflicting domains). 2. ExecutionDomainFix - Changes the variant of the instructions in order to minimize domain crossings. 3. BreakFalseDeps - Breaks false dependencies. 4. LoopTraversal - Creatws a traversal order of the basic blocks that is optimal for loops (introduced in revision L293571). Both ExecutionDomainFix and ReachingDefsAnalysis use this to determine the order they will traverse the basic blocks. This also included the following changes to ExcecutionDepsFix original logic: 1. BreakFalseDeps and ReachingDefsAnalysis logic no longer restricted by a register class. 2. ReachingDefsAnalysis tracks liveness of reg units instead of reg indices into a given reg class. Additional changes in affected files: 1. X86 and ARM targets now inherit from ExecutionDomainFix instead of ExecutionDepsFix. BreakFalseDeps also was added to the passes they activate. 2. Comments and references to ExecutionDepsFix replaced with ExecutionDomainFix and BreakFalseDeps, as appropriate. Additional refactoring changes will follow. This commit is (almost) NFC. The only functional change is that now BreakFalseDeps will break dependency for all register classes. Since no additional instructions were added to the list of instructions that have false dependencies, there is no actual change yet. In a future commit several instructions (and tests) will be added. This is the first of multiple patches that fix bugzilla https://bugs.llvm.org/show_bug.cgi?id=33869 Most of the patches are intended at refactoring the existent code. Additional relevant reviews: https://reviews.llvm.org/D40331 https://reviews.llvm.org/D40332 https://reviews.llvm.org/D40333 https://reviews.llvm.org/D40334 Differential Revision: https://reviews.llvm.org/D40330 Change-Id: Icaeb75e014eff96a8f721377783f9a3e6c679275 llvm-svn: 323087
2018-01-22 18:05:23 +08:00
addPass(new ARMExecutionDomainFix());
addPass(createBreakFalseDeps());
}
// Expand some pseudo instructions into multiple instructions to allow
// proper scheduling.
addPass(createARMExpandPseudoPass());
if (getOptLevel() != CodeGenOpt::None) {
// When optimising for size, always run the Thumb2SizeReduction pass before
// IfConversion. Otherwise, check whether IT blocks are restricted
// (e.g. in v8, IfConversion depends on Thumb instruction widths)
addPass(createThumb2SizeReductionPass([this](const Function &F) {
return this->TM->getSubtarget<ARMSubtarget>(F).hasMinSize() ||
this->TM->getSubtarget<ARMSubtarget>(F).restrictIT();
}));
addPass(createIfConverter([](const MachineFunction &MF) {
return !MF.getSubtarget<ARMSubtarget>().isThumb1Only();
}));
}
addPass(createMVEVPTBlockPass());
addPass(createThumb2ITBlockPass());
// Add both scheduling passes to give the subtarget an opportunity to pick
// between them.
if (getOptLevel() != CodeGenOpt::None) {
addPass(&PostMachineSchedulerID);
addPass(&PostRASchedulerID);
}
[ARM] Implement harden-sls-retbr for ARM mode Some processors may speculatively execute the instructions immediately following indirect control flow, such as returns, indirect jumps and indirect function calls. To avoid a potential miss-speculatively executed gadget after these instructions leaking secrets through side channels, this pass places a speculation barrier immediately after every indirect control flow where control flow doesn't return to the next instruction, such as returns and indirect jumps, but not indirect function calls. Hardening of indirect function calls will be done in a later, independent patch. This patch is implementing the same functionality as the AArch64 counter part implemented in https://reviews.llvm.org/D81400. For AArch64, returns and indirect jumps only occur on RET and BR instructions and hence the function attribute to control the hardening is called "harden-sls-retbr" there. On AArch32, there is a much wider variety of instructions that can trigger an indirect unconditional control flow change. I've decided to stick with the name "harden-sls-retbr" as introduced for the corresponding AArch64 mitigation. This patch implements this for ARM mode. A future patch will extend this to also support Thumb mode. The inserted barriers are never on the correct, architectural execution path, and therefore performance overhead of this is expected to be low. To ensure these barriers are never on an architecturally executed path, when the harden-sls-retbr function attribute is present, indirect control flow is never conditionalized/predicated. On targets that implement that Armv8.0-SB Speculation Barrier extension, a single SB instruction is emitted that acts as a speculation barrier. On other targets, a DSB SYS followed by a ISB is emitted to act as a speculation barrier. These speculation barriers are implemented as pseudo instructions to avoid later passes to analyze them and potentially remove them. The mitigation is off by default and can be enabled by the harden-sls-retbr subtarget feature. Differential Revision: https://reviews.llvm.org/D92395
2020-10-29 05:04:11 +08:00
addPass(createARMIndirectThunks());
[ARM] Implement harden-sls-retbr for ARM mode Some processors may speculatively execute the instructions immediately following indirect control flow, such as returns, indirect jumps and indirect function calls. To avoid a potential miss-speculatively executed gadget after these instructions leaking secrets through side channels, this pass places a speculation barrier immediately after every indirect control flow where control flow doesn't return to the next instruction, such as returns and indirect jumps, but not indirect function calls. Hardening of indirect function calls will be done in a later, independent patch. This patch is implementing the same functionality as the AArch64 counter part implemented in https://reviews.llvm.org/D81400. For AArch64, returns and indirect jumps only occur on RET and BR instructions and hence the function attribute to control the hardening is called "harden-sls-retbr" there. On AArch32, there is a much wider variety of instructions that can trigger an indirect unconditional control flow change. I've decided to stick with the name "harden-sls-retbr" as introduced for the corresponding AArch64 mitigation. This patch implements this for ARM mode. A future patch will extend this to also support Thumb mode. The inserted barriers are never on the correct, architectural execution path, and therefore performance overhead of this is expected to be low. To ensure these barriers are never on an architecturally executed path, when the harden-sls-retbr function attribute is present, indirect control flow is never conditionalized/predicated. On targets that implement that Armv8.0-SB Speculation Barrier extension, a single SB instruction is emitted that acts as a speculation barrier. On other targets, a DSB SYS followed by a ISB is emitted to act as a speculation barrier. These speculation barriers are implemented as pseudo instructions to avoid later passes to analyze them and potentially remove them. The mitigation is off by default and can be enabled by the harden-sls-retbr subtarget feature. Differential Revision: https://reviews.llvm.org/D92395
2020-10-29 05:04:11 +08:00
addPass(createARMSLSHardeningPass());
}
void ARMPassConfig::addPreEmitPass() {
addPass(createThumb2SizeReductionPass());
// Constant island pass work on unbundled instructions.
addPass(createUnpackMachineBundles([](const MachineFunction &MF) {
return MF.getSubtarget<ARMSubtarget>().isThumb2();
}));
// Don't optimize barriers at -O0.
if (getOptLevel() != CodeGenOpt::None)
addPass(createARMOptimizeBarriersPass());
}
void ARMPassConfig::addPreEmitPass2() {
addPass(createARMConstantIslandPass());
addPass(createARMLowOverheadLoopsPass());
// Identify valid longjmp targets for Windows Control Flow Guard.
if (TM->getTargetTriple().isOSWindows())
addPass(createCFGuardLongjmpPass());
}