llvm-project/llvm/tools/verify-uselistorder/verify-uselistorder.cpp

580 lines
17 KiB
C++
Raw Normal View History

//===- verify-uselistorder.cpp - The LLVM Modular Optimizer ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Verify that use-list order can be serialized correctly. After reading the
// provided IR, this tool shuffles the use-lists and then writes and reads to a
// separate Module whose use-list orders are compared to the original.
//
// The shuffles are deterministic, but guarantee that use-lists will change.
// The algorithm per iteration is as follows:
//
// 1. Seed the random number generator. The seed is different for each
// shuffle. Shuffle 0 uses default+0, shuffle 1 uses default+1, and so on.
//
// 2. Visit every Value in a deterministic order.
//
// 3. Assign a random number to each Use in the Value's use-list in order.
//
// 4. If the numbers are already in order, reassign numbers until they aren't.
//
// 5. Sort the use-list using Value::sortUseList(), which is a stable sort.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/Bitcode/BitcodeReader.h"
#include "llvm/Bitcode/BitcodeWriter.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/UseListOrder.h"
#include "llvm/IR/Verifier.h"
#include "llvm/IRReader/IRReader.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/FileUtilities.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/Signals.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/SystemUtils.h"
#include "llvm/Support/raw_ostream.h"
#include <random>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "uselistorder"
static cl::opt<std::string> InputFilename(cl::Positional,
cl::desc("<input bitcode file>"),
cl::init("-"),
cl::value_desc("filename"));
static cl::opt<bool> SaveTemps("save-temps", cl::desc("Save temp files"),
cl::init(false));
static cl::opt<unsigned>
NumShuffles("num-shuffles",
cl::desc("Number of times to shuffle and verify use-lists"),
cl::init(1));
namespace {
struct TempFile {
std::string Filename;
FileRemover Remover;
bool init(const std::string &Ext);
bool writeBitcode(const Module &M) const;
bool writeAssembly(const Module &M) const;
std::unique_ptr<Module> readBitcode(LLVMContext &Context) const;
std::unique_ptr<Module> readAssembly(LLVMContext &Context) const;
};
struct ValueMapping {
DenseMap<const Value *, unsigned> IDs;
std::vector<const Value *> Values;
/// \brief Construct a value mapping for module.
///
/// Creates mapping from every value in \c M to an ID. This mapping includes
/// un-referencable values.
///
/// Every \a Value that gets serialized in some way should be represented
/// here. The order needs to be deterministic, but it's unnecessary to match
/// the value-ids in the bitcode writer.
///
/// All constants that are referenced by other values are included in the
/// mapping, but others -- which wouldn't be serialized -- are not.
ValueMapping(const Module &M);
/// \brief Map a value.
///
/// Maps a value. If it's a constant, maps all of its operands first.
void map(const Value *V);
unsigned lookup(const Value *V) const { return IDs.lookup(V); }
};
} // end namespace
bool TempFile::init(const std::string &Ext) {
SmallVector<char, 64> Vector;
DEBUG(dbgs() << " - create-temp-file\n");
if (auto EC = sys::fs::createTemporaryFile("uselistorder", Ext, Vector)) {
errs() << "verify-uselistorder: error: " << EC.message() << "\n";
return true;
}
assert(!Vector.empty());
Filename.assign(Vector.data(), Vector.data() + Vector.size());
Remover.setFile(Filename, !SaveTemps);
if (SaveTemps)
outs() << " - filename = " << Filename << "\n";
return false;
}
bool TempFile::writeBitcode(const Module &M) const {
DEBUG(dbgs() << " - write bitcode\n");
std::error_code EC;
raw_fd_ostream OS(Filename, EC, sys::fs::F_None);
if (EC) {
errs() << "verify-uselistorder: error: " << EC.message() << "\n";
return true;
}
WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true);
return false;
}
bool TempFile::writeAssembly(const Module &M) const {
DEBUG(dbgs() << " - write assembly\n");
std::error_code EC;
raw_fd_ostream OS(Filename, EC, sys::fs::F_Text);
if (EC) {
errs() << "verify-uselistorder: error: " << EC.message() << "\n";
return true;
}
M.print(OS, nullptr, /* ShouldPreserveUseListOrder */ true);
return false;
}
std::unique_ptr<Module> TempFile::readBitcode(LLVMContext &Context) const {
DEBUG(dbgs() << " - read bitcode\n");
ErrorOr<std::unique_ptr<MemoryBuffer>> BufferOr =
MemoryBuffer::getFile(Filename);
if (!BufferOr) {
errs() << "verify-uselistorder: error: " << BufferOr.getError().message()
<< "\n";
return nullptr;
}
MemoryBuffer *Buffer = BufferOr.get().get();
Expected<std::unique_ptr<Module>> ModuleOr =
parseBitcodeFile(Buffer->getMemBufferRef(), Context);
if (!ModuleOr) {
logAllUnhandledErrors(ModuleOr.takeError(), errs(),
"verify-uselistorder: error: ");
return nullptr;
}
return std::move(ModuleOr.get());
}
std::unique_ptr<Module> TempFile::readAssembly(LLVMContext &Context) const {
DEBUG(dbgs() << " - read assembly\n");
SMDiagnostic Err;
std::unique_ptr<Module> M = parseAssemblyFile(Filename, Err, Context);
if (!M.get())
Err.print("verify-uselistorder", errs());
return M;
}
ValueMapping::ValueMapping(const Module &M) {
// Every value should be mapped, including things like void instructions and
// basic blocks that are kept out of the ValueEnumerator.
//
// The current mapping order makes it easier to debug the tables. It happens
// to be similar to the ID mapping when writing ValueEnumerator, but they
// aren't (and needn't be) in sync.
// Globals.
for (const GlobalVariable &G : M.globals())
map(&G);
for (const GlobalAlias &A : M.aliases())
map(&A);
for (const GlobalIFunc &IF : M.ifuncs())
map(&IF);
for (const Function &F : M)
map(&F);
// Constants used by globals.
for (const GlobalVariable &G : M.globals())
if (G.hasInitializer())
map(G.getInitializer());
for (const GlobalAlias &A : M.aliases())
map(A.getAliasee());
for (const GlobalIFunc &IF : M.ifuncs())
map(IF.getResolver());
Prologue support Patch by Ben Gamari! This redefines the `prefix` attribute introduced previously and introduces a `prologue` attribute. There are a two primary usecases that these attributes aim to serve, 1. Function prologue sigils 2. Function hot-patching: Enable the user to insert `nop` operations at the beginning of the function which can later be safely replaced with a call to some instrumentation facility 3. Runtime metadata: Allow a compiler to insert data for use by the runtime during execution. GHC is one example of a compiler that needs this functionality for its tables-next-to-code functionality. Previously `prefix` served cases (1) and (2) quite well by allowing the user to introduce arbitrary data at the entrypoint but before the function body. Case (3), however, was poorly handled by this approach as it required that prefix data was valid executable code. Here we redefine the notion of prefix data to instead be data which occurs immediately before the function entrypoint (i.e. the symbol address). Since prefix data now occurs before the function entrypoint, there is no need for the data to be valid code. The previous notion of prefix data now goes under the name "prologue data" to emphasize its duality with the function epilogue. The intention here is to handle cases (1) and (2) with prologue data and case (3) with prefix data. References ---------- This idea arose out of discussions[1] with Reid Kleckner in response to a proposal to introduce the notion of symbol offsets to enable handling of case (3). [1] http://lists.cs.uiuc.edu/pipermail/llvmdev/2014-May/073235.html Test Plan: testsuite Differential Revision: http://reviews.llvm.org/D6454 llvm-svn: 223189
2014-12-03 10:08:38 +08:00
for (const Function &F : M) {
if (F.hasPrefixData())
map(F.getPrefixData());
Prologue support Patch by Ben Gamari! This redefines the `prefix` attribute introduced previously and introduces a `prologue` attribute. There are a two primary usecases that these attributes aim to serve, 1. Function prologue sigils 2. Function hot-patching: Enable the user to insert `nop` operations at the beginning of the function which can later be safely replaced with a call to some instrumentation facility 3. Runtime metadata: Allow a compiler to insert data for use by the runtime during execution. GHC is one example of a compiler that needs this functionality for its tables-next-to-code functionality. Previously `prefix` served cases (1) and (2) quite well by allowing the user to introduce arbitrary data at the entrypoint but before the function body. Case (3), however, was poorly handled by this approach as it required that prefix data was valid executable code. Here we redefine the notion of prefix data to instead be data which occurs immediately before the function entrypoint (i.e. the symbol address). Since prefix data now occurs before the function entrypoint, there is no need for the data to be valid code. The previous notion of prefix data now goes under the name "prologue data" to emphasize its duality with the function epilogue. The intention here is to handle cases (1) and (2) with prologue data and case (3) with prefix data. References ---------- This idea arose out of discussions[1] with Reid Kleckner in response to a proposal to introduce the notion of symbol offsets to enable handling of case (3). [1] http://lists.cs.uiuc.edu/pipermail/llvmdev/2014-May/073235.html Test Plan: testsuite Differential Revision: http://reviews.llvm.org/D6454 llvm-svn: 223189
2014-12-03 10:08:38 +08:00
if (F.hasPrologueData())
map(F.getPrologueData());
if (F.hasPersonalityFn())
map(F.getPersonalityFn());
Prologue support Patch by Ben Gamari! This redefines the `prefix` attribute introduced previously and introduces a `prologue` attribute. There are a two primary usecases that these attributes aim to serve, 1. Function prologue sigils 2. Function hot-patching: Enable the user to insert `nop` operations at the beginning of the function which can later be safely replaced with a call to some instrumentation facility 3. Runtime metadata: Allow a compiler to insert data for use by the runtime during execution. GHC is one example of a compiler that needs this functionality for its tables-next-to-code functionality. Previously `prefix` served cases (1) and (2) quite well by allowing the user to introduce arbitrary data at the entrypoint but before the function body. Case (3), however, was poorly handled by this approach as it required that prefix data was valid executable code. Here we redefine the notion of prefix data to instead be data which occurs immediately before the function entrypoint (i.e. the symbol address). Since prefix data now occurs before the function entrypoint, there is no need for the data to be valid code. The previous notion of prefix data now goes under the name "prologue data" to emphasize its duality with the function epilogue. The intention here is to handle cases (1) and (2) with prologue data and case (3) with prefix data. References ---------- This idea arose out of discussions[1] with Reid Kleckner in response to a proposal to introduce the notion of symbol offsets to enable handling of case (3). [1] http://lists.cs.uiuc.edu/pipermail/llvmdev/2014-May/073235.html Test Plan: testsuite Differential Revision: http://reviews.llvm.org/D6454 llvm-svn: 223189
2014-12-03 10:08:38 +08:00
}
// Function bodies.
for (const Function &F : M) {
for (const Argument &A : F.args())
map(&A);
for (const BasicBlock &BB : F)
map(&BB);
for (const BasicBlock &BB : F)
for (const Instruction &I : BB)
map(&I);
// Constants used by instructions.
for (const BasicBlock &BB : F)
for (const Instruction &I : BB)
for (const Value *Op : I.operands())
if ((isa<Constant>(Op) && !isa<GlobalValue>(*Op)) ||
isa<InlineAsm>(Op))
map(Op);
}
}
void ValueMapping::map(const Value *V) {
if (IDs.lookup(V))
return;
if (auto *C = dyn_cast<Constant>(V))
if (!isa<GlobalValue>(C))
for (const Value *Op : C->operands())
map(Op);
Values.push_back(V);
IDs[V] = Values.size();
}
#ifndef NDEBUG
static void dumpMapping(const ValueMapping &VM) {
dbgs() << "value-mapping (size = " << VM.Values.size() << "):\n";
for (unsigned I = 0, E = VM.Values.size(); I != E; ++I) {
dbgs() << " - id = " << I << ", value = ";
VM.Values[I]->dump();
}
}
static void debugValue(const ValueMapping &M, unsigned I, StringRef Desc) {
const Value *V = M.Values[I];
dbgs() << " - " << Desc << " value = ";
V->dump();
for (const Use &U : V->uses()) {
dbgs() << " => use: op = " << U.getOperandNo()
<< ", user-id = " << M.IDs.lookup(U.getUser()) << ", user = ";
U.getUser()->dump();
}
}
static void debugUserMismatch(const ValueMapping &L, const ValueMapping &R,
unsigned I) {
dbgs() << " - fail: user mismatch: ID = " << I << "\n";
debugValue(L, I, "LHS");
debugValue(R, I, "RHS");
dbgs() << "\nlhs-";
dumpMapping(L);
dbgs() << "\nrhs-";
dumpMapping(R);
}
static void debugSizeMismatch(const ValueMapping &L, const ValueMapping &R) {
dbgs() << " - fail: map size: " << L.Values.size()
<< " != " << R.Values.size() << "\n";
dbgs() << "\nlhs-";
dumpMapping(L);
dbgs() << "\nrhs-";
dumpMapping(R);
}
#endif
static bool matches(const ValueMapping &LM, const ValueMapping &RM) {
DEBUG(dbgs() << "compare value maps\n");
if (LM.Values.size() != RM.Values.size()) {
DEBUG(debugSizeMismatch(LM, RM));
return false;
}
// This mapping doesn't include dangling constant users, since those don't
// get serialized. However, checking if users are constant and calling
// isConstantUsed() on every one is very expensive. Instead, just check if
// the user is mapped.
auto skipUnmappedUsers =
[&](Value::const_use_iterator &U, Value::const_use_iterator E,
const ValueMapping &M) {
while (U != E && !M.lookup(U->getUser()))
++U;
};
// Iterate through all values, and check that both mappings have the same
// users.
for (unsigned I = 0, E = LM.Values.size(); I != E; ++I) {
const Value *L = LM.Values[I];
const Value *R = RM.Values[I];
auto LU = L->use_begin(), LE = L->use_end();
auto RU = R->use_begin(), RE = R->use_end();
skipUnmappedUsers(LU, LE, LM);
skipUnmappedUsers(RU, RE, RM);
while (LU != LE) {
if (RU == RE) {
DEBUG(debugUserMismatch(LM, RM, I));
return false;
}
if (LM.lookup(LU->getUser()) != RM.lookup(RU->getUser())) {
DEBUG(debugUserMismatch(LM, RM, I));
return false;
}
if (LU->getOperandNo() != RU->getOperandNo()) {
DEBUG(debugUserMismatch(LM, RM, I));
return false;
}
skipUnmappedUsers(++LU, LE, LM);
skipUnmappedUsers(++RU, RE, RM);
}
if (RU != RE) {
DEBUG(debugUserMismatch(LM, RM, I));
return false;
}
}
return true;
}
static void verifyAfterRoundTrip(const Module &M,
std::unique_ptr<Module> OtherM) {
if (!OtherM)
report_fatal_error("parsing failed");
if (verifyModule(*OtherM, &errs()))
report_fatal_error("verification failed");
if (!matches(ValueMapping(M), ValueMapping(*OtherM)))
report_fatal_error("use-list order changed");
}
static void verifyBitcodeUseListOrder(const Module &M) {
TempFile F;
if (F.init("bc"))
report_fatal_error("failed to initialize bitcode file");
if (F.writeBitcode(M))
report_fatal_error("failed to write bitcode");
LLVMContext Context;
verifyAfterRoundTrip(M, F.readBitcode(Context));
}
static void verifyAssemblyUseListOrder(const Module &M) {
TempFile F;
if (F.init("ll"))
report_fatal_error("failed to initialize assembly file");
if (F.writeAssembly(M))
report_fatal_error("failed to write assembly");
LLVMContext Context;
verifyAfterRoundTrip(M, F.readAssembly(Context));
}
static void verifyUseListOrder(const Module &M) {
outs() << "verify bitcode\n";
verifyBitcodeUseListOrder(M);
outs() << "verify assembly\n";
verifyAssemblyUseListOrder(M);
}
static void shuffleValueUseLists(Value *V, std::minstd_rand0 &Gen,
DenseSet<Value *> &Seen) {
if (!Seen.insert(V).second)
return;
if (auto *C = dyn_cast<Constant>(V))
if (!isa<GlobalValue>(C))
for (Value *Op : C->operands())
shuffleValueUseLists(Op, Gen, Seen);
if (V->use_empty() || std::next(V->use_begin()) == V->use_end())
// Nothing to shuffle for 0 or 1 users.
return;
// Generate random numbers between 10 and 99, which will line up nicely in
// debug output. We're not worried about collisons here.
DEBUG(dbgs() << "V = "; V->dump());
std::uniform_int_distribution<short> Dist(10, 99);
SmallDenseMap<const Use *, short, 16> Order;
auto compareUses =
[&Order](const Use &L, const Use &R) { return Order[&L] < Order[&R]; };
do {
for (const Use &U : V->uses()) {
auto I = Dist(Gen);
Order[&U] = I;
DEBUG(dbgs() << " - order: " << I << ", op = " << U.getOperandNo()
<< ", U = ";
U.getUser()->dump());
}
} while (std::is_sorted(V->use_begin(), V->use_end(), compareUses));
DEBUG(dbgs() << " => shuffle\n");
V->sortUseList(compareUses);
DEBUG({
for (const Use &U : V->uses()) {
dbgs() << " - order: " << Order.lookup(&U)
<< ", op = " << U.getOperandNo() << ", U = ";
U.getUser()->dump();
}
});
}
static void reverseValueUseLists(Value *V, DenseSet<Value *> &Seen) {
if (!Seen.insert(V).second)
return;
if (auto *C = dyn_cast<Constant>(V))
if (!isa<GlobalValue>(C))
for (Value *Op : C->operands())
reverseValueUseLists(Op, Seen);
if (V->use_empty() || std::next(V->use_begin()) == V->use_end())
// Nothing to shuffle for 0 or 1 users.
return;
DEBUG({
dbgs() << "V = ";
V->dump();
for (const Use &U : V->uses()) {
dbgs() << " - order: op = " << U.getOperandNo() << ", U = ";
U.getUser()->dump();
}
dbgs() << " => reverse\n";
});
V->reverseUseList();
DEBUG({
for (const Use &U : V->uses()) {
dbgs() << " - order: op = " << U.getOperandNo() << ", U = ";
U.getUser()->dump();
}
});
}
template <class Changer>
static void changeUseLists(Module &M, Changer changeValueUseList) {
// Visit every value that would be serialized to an IR file.
//
// Globals.
for (GlobalVariable &G : M.globals())
changeValueUseList(&G);
for (GlobalAlias &A : M.aliases())
changeValueUseList(&A);
for (GlobalIFunc &IF : M.ifuncs())
changeValueUseList(&IF);
for (Function &F : M)
changeValueUseList(&F);
// Constants used by globals.
for (GlobalVariable &G : M.globals())
if (G.hasInitializer())
changeValueUseList(G.getInitializer());
for (GlobalAlias &A : M.aliases())
changeValueUseList(A.getAliasee());
for (GlobalIFunc &IF : M.ifuncs())
changeValueUseList(IF.getResolver());
Prologue support Patch by Ben Gamari! This redefines the `prefix` attribute introduced previously and introduces a `prologue` attribute. There are a two primary usecases that these attributes aim to serve, 1. Function prologue sigils 2. Function hot-patching: Enable the user to insert `nop` operations at the beginning of the function which can later be safely replaced with a call to some instrumentation facility 3. Runtime metadata: Allow a compiler to insert data for use by the runtime during execution. GHC is one example of a compiler that needs this functionality for its tables-next-to-code functionality. Previously `prefix` served cases (1) and (2) quite well by allowing the user to introduce arbitrary data at the entrypoint but before the function body. Case (3), however, was poorly handled by this approach as it required that prefix data was valid executable code. Here we redefine the notion of prefix data to instead be data which occurs immediately before the function entrypoint (i.e. the symbol address). Since prefix data now occurs before the function entrypoint, there is no need for the data to be valid code. The previous notion of prefix data now goes under the name "prologue data" to emphasize its duality with the function epilogue. The intention here is to handle cases (1) and (2) with prologue data and case (3) with prefix data. References ---------- This idea arose out of discussions[1] with Reid Kleckner in response to a proposal to introduce the notion of symbol offsets to enable handling of case (3). [1] http://lists.cs.uiuc.edu/pipermail/llvmdev/2014-May/073235.html Test Plan: testsuite Differential Revision: http://reviews.llvm.org/D6454 llvm-svn: 223189
2014-12-03 10:08:38 +08:00
for (Function &F : M) {
if (F.hasPrefixData())
changeValueUseList(F.getPrefixData());
Prologue support Patch by Ben Gamari! This redefines the `prefix` attribute introduced previously and introduces a `prologue` attribute. There are a two primary usecases that these attributes aim to serve, 1. Function prologue sigils 2. Function hot-patching: Enable the user to insert `nop` operations at the beginning of the function which can later be safely replaced with a call to some instrumentation facility 3. Runtime metadata: Allow a compiler to insert data for use by the runtime during execution. GHC is one example of a compiler that needs this functionality for its tables-next-to-code functionality. Previously `prefix` served cases (1) and (2) quite well by allowing the user to introduce arbitrary data at the entrypoint but before the function body. Case (3), however, was poorly handled by this approach as it required that prefix data was valid executable code. Here we redefine the notion of prefix data to instead be data which occurs immediately before the function entrypoint (i.e. the symbol address). Since prefix data now occurs before the function entrypoint, there is no need for the data to be valid code. The previous notion of prefix data now goes under the name "prologue data" to emphasize its duality with the function epilogue. The intention here is to handle cases (1) and (2) with prologue data and case (3) with prefix data. References ---------- This idea arose out of discussions[1] with Reid Kleckner in response to a proposal to introduce the notion of symbol offsets to enable handling of case (3). [1] http://lists.cs.uiuc.edu/pipermail/llvmdev/2014-May/073235.html Test Plan: testsuite Differential Revision: http://reviews.llvm.org/D6454 llvm-svn: 223189
2014-12-03 10:08:38 +08:00
if (F.hasPrologueData())
changeValueUseList(F.getPrologueData());
if (F.hasPersonalityFn())
changeValueUseList(F.getPersonalityFn());
Prologue support Patch by Ben Gamari! This redefines the `prefix` attribute introduced previously and introduces a `prologue` attribute. There are a two primary usecases that these attributes aim to serve, 1. Function prologue sigils 2. Function hot-patching: Enable the user to insert `nop` operations at the beginning of the function which can later be safely replaced with a call to some instrumentation facility 3. Runtime metadata: Allow a compiler to insert data for use by the runtime during execution. GHC is one example of a compiler that needs this functionality for its tables-next-to-code functionality. Previously `prefix` served cases (1) and (2) quite well by allowing the user to introduce arbitrary data at the entrypoint but before the function body. Case (3), however, was poorly handled by this approach as it required that prefix data was valid executable code. Here we redefine the notion of prefix data to instead be data which occurs immediately before the function entrypoint (i.e. the symbol address). Since prefix data now occurs before the function entrypoint, there is no need for the data to be valid code. The previous notion of prefix data now goes under the name "prologue data" to emphasize its duality with the function epilogue. The intention here is to handle cases (1) and (2) with prologue data and case (3) with prefix data. References ---------- This idea arose out of discussions[1] with Reid Kleckner in response to a proposal to introduce the notion of symbol offsets to enable handling of case (3). [1] http://lists.cs.uiuc.edu/pipermail/llvmdev/2014-May/073235.html Test Plan: testsuite Differential Revision: http://reviews.llvm.org/D6454 llvm-svn: 223189
2014-12-03 10:08:38 +08:00
}
// Function bodies.
for (Function &F : M) {
for (Argument &A : F.args())
changeValueUseList(&A);
for (BasicBlock &BB : F)
changeValueUseList(&BB);
for (BasicBlock &BB : F)
for (Instruction &I : BB)
changeValueUseList(&I);
// Constants used by instructions.
for (BasicBlock &BB : F)
for (Instruction &I : BB)
for (Value *Op : I.operands())
if ((isa<Constant>(Op) && !isa<GlobalValue>(*Op)) ||
isa<InlineAsm>(Op))
changeValueUseList(Op);
}
if (verifyModule(M, &errs()))
report_fatal_error("verification failed");
}
static void shuffleUseLists(Module &M, unsigned SeedOffset) {
std::minstd_rand0 Gen(std::minstd_rand0::default_seed + SeedOffset);
DenseSet<Value *> Seen;
changeUseLists(M, [&](Value *V) { shuffleValueUseLists(V, Gen, Seen); });
DEBUG(dbgs() << "\n");
}
static void reverseUseLists(Module &M) {
DenseSet<Value *> Seen;
changeUseLists(M, [&](Value *V) { reverseValueUseLists(V, Seen); });
DEBUG(dbgs() << "\n");
}
int main(int argc, char **argv) {
sys::PrintStackTraceOnErrorSignal(argv[0]);
llvm::PrettyStackTraceProgram X(argc, argv);
// Enable debug stream buffering.
EnableDebugBuffering = true;
llvm_shutdown_obj Y; // Call llvm_shutdown() on exit.
LLVMContext Context;
cl::ParseCommandLineOptions(argc, argv,
"llvm tool to verify use-list order\n");
SMDiagnostic Err;
// Load the input module...
std::unique_ptr<Module> M = parseIRFile(InputFilename, Err, Context);
if (!M.get()) {
Err.print(argv[0], errs());
return 1;
}
if (verifyModule(*M, &errs())) {
errs() << argv[0] << ": " << InputFilename
<< ": error: input module is broken!\n";
return 1;
}
// Verify the use lists now and after reversing them.
outs() << "*** verify-uselistorder ***\n";
verifyUseListOrder(*M);
outs() << "reverse\n";
reverseUseLists(*M);
verifyUseListOrder(*M);
for (unsigned I = 0, E = NumShuffles; I != E; ++I) {
outs() << "\n";
// Shuffle with a different (deterministic) seed each time.
outs() << "shuffle (" << I + 1 << " of " << E << ")\n";
shuffleUseLists(*M, I);
// Verify again before and after reversing.
verifyUseListOrder(*M);
outs() << "reverse\n";
reverseUseLists(*M);
verifyUseListOrder(*M);
}
return 0;
}