llvm-project/polly/lib/External/isl/isl_scheduler.c

4149 lines
119 KiB
C
Raw Normal View History

/*
* Copyright 2011 INRIA Saclay
* Copyright 2012-2014 Ecole Normale Superieure
*
* Use of this software is governed by the MIT license
*
* Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
* Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
* 91893 Orsay, France
* and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
*/
#include <isl_ctx_private.h>
#include <isl_map_private.h>
#include <isl_space_private.h>
#include <isl_aff_private.h>
#include <isl/hash.h>
#include <isl/constraint.h>
#include <isl/schedule.h>
#include <isl_mat_private.h>
#include <isl_vec_private.h>
#include <isl/set.h>
#include <isl_seq.h>
#include <isl_tab.h>
#include <isl_dim_map.h>
#include <isl/map_to_basic_set.h>
#include <isl_sort.h>
#include <isl_schedule_private.h>
#include <isl_options_private.h>
#include <isl_tarjan.h>
#include <isl_morph.h>
/*
* The scheduling algorithm implemented in this file was inspired by
* Bondhugula et al., "Automatic Transformations for Communication-Minimized
* Parallelization and Locality Optimization in the Polyhedral Model".
*/
enum isl_edge_type {
isl_edge_validity = 0,
isl_edge_first = isl_edge_validity,
isl_edge_coincidence,
isl_edge_condition,
isl_edge_conditional_validity,
isl_edge_proximity,
isl_edge_last = isl_edge_proximity
};
/* The constraints that need to be satisfied by a schedule on "domain".
*
* "validity" constraints map domain elements i to domain elements
* that should be scheduled after i. (Hard constraint)
* "proximity" constraints map domain elements i to domains elements
* that should be scheduled as early as possible after i (or before i).
* (Soft constraint)
*
* "condition" and "conditional_validity" constraints map possibly "tagged"
* domain elements i -> s to "tagged" domain elements j -> t.
* The elements of the "conditional_validity" constraints, but without the
* tags (i.e., the elements i -> j) are treated as validity constraints,
* except that during the construction of a tilable band,
* the elements of the "conditional_validity" constraints may be violated
* provided that all adjacent elements of the "condition" constraints
* are local within the band.
* A dependence is local within a band if domain and range are mapped
* to the same schedule point by the band.
*/
struct isl_schedule_constraints {
isl_union_set *domain;
isl_union_map *constraint[isl_edge_last + 1];
};
__isl_give isl_schedule_constraints *isl_schedule_constraints_copy(
__isl_keep isl_schedule_constraints *sc)
{
isl_ctx *ctx;
isl_schedule_constraints *sc_copy;
enum isl_edge_type i;
ctx = isl_union_set_get_ctx(sc->domain);
sc_copy = isl_calloc_type(ctx, struct isl_schedule_constraints);
if (!sc_copy)
return NULL;
sc_copy->domain = isl_union_set_copy(sc->domain);
if (!sc_copy->domain)
return isl_schedule_constraints_free(sc_copy);
for (i = isl_edge_first; i <= isl_edge_last; ++i) {
sc_copy->constraint[i] = isl_union_map_copy(sc->constraint[i]);
if (!sc_copy->constraint[i])
return isl_schedule_constraints_free(sc_copy);
}
return sc_copy;
}
/* Construct an isl_schedule_constraints object for computing a schedule
* on "domain". The initial object does not impose any constraints.
*/
__isl_give isl_schedule_constraints *isl_schedule_constraints_on_domain(
__isl_take isl_union_set *domain)
{
isl_ctx *ctx;
isl_space *space;
isl_schedule_constraints *sc;
isl_union_map *empty;
enum isl_edge_type i;
if (!domain)
return NULL;
ctx = isl_union_set_get_ctx(domain);
sc = isl_calloc_type(ctx, struct isl_schedule_constraints);
if (!sc)
goto error;
space = isl_union_set_get_space(domain);
sc->domain = domain;
empty = isl_union_map_empty(space);
for (i = isl_edge_first; i <= isl_edge_last; ++i) {
sc->constraint[i] = isl_union_map_copy(empty);
if (!sc->constraint[i])
sc->domain = isl_union_set_free(sc->domain);
}
isl_union_map_free(empty);
if (!sc->domain)
return isl_schedule_constraints_free(sc);
return sc;
error:
isl_union_set_free(domain);
return NULL;
}
/* Replace the validity constraints of "sc" by "validity".
*/
__isl_give isl_schedule_constraints *isl_schedule_constraints_set_validity(
__isl_take isl_schedule_constraints *sc,
__isl_take isl_union_map *validity)
{
if (!sc || !validity)
goto error;
isl_union_map_free(sc->constraint[isl_edge_validity]);
sc->constraint[isl_edge_validity] = validity;
return sc;
error:
isl_schedule_constraints_free(sc);
isl_union_map_free(validity);
return NULL;
}
/* Replace the coincidence constraints of "sc" by "coincidence".
*/
__isl_give isl_schedule_constraints *isl_schedule_constraints_set_coincidence(
__isl_take isl_schedule_constraints *sc,
__isl_take isl_union_map *coincidence)
{
if (!sc || !coincidence)
goto error;
isl_union_map_free(sc->constraint[isl_edge_coincidence]);
sc->constraint[isl_edge_coincidence] = coincidence;
return sc;
error:
isl_schedule_constraints_free(sc);
isl_union_map_free(coincidence);
return NULL;
}
/* Replace the proximity constraints of "sc" by "proximity".
*/
__isl_give isl_schedule_constraints *isl_schedule_constraints_set_proximity(
__isl_take isl_schedule_constraints *sc,
__isl_take isl_union_map *proximity)
{
if (!sc || !proximity)
goto error;
isl_union_map_free(sc->constraint[isl_edge_proximity]);
sc->constraint[isl_edge_proximity] = proximity;
return sc;
error:
isl_schedule_constraints_free(sc);
isl_union_map_free(proximity);
return NULL;
}
/* Replace the conditional validity constraints of "sc" by "condition"
* and "validity".
*/
__isl_give isl_schedule_constraints *
isl_schedule_constraints_set_conditional_validity(
__isl_take isl_schedule_constraints *sc,
__isl_take isl_union_map *condition,
__isl_take isl_union_map *validity)
{
if (!sc || !condition || !validity)
goto error;
isl_union_map_free(sc->constraint[isl_edge_condition]);
sc->constraint[isl_edge_condition] = condition;
isl_union_map_free(sc->constraint[isl_edge_conditional_validity]);
sc->constraint[isl_edge_conditional_validity] = validity;
return sc;
error:
isl_schedule_constraints_free(sc);
isl_union_map_free(condition);
isl_union_map_free(validity);
return NULL;
}
__isl_null isl_schedule_constraints *isl_schedule_constraints_free(
__isl_take isl_schedule_constraints *sc)
{
enum isl_edge_type i;
if (!sc)
return NULL;
isl_union_set_free(sc->domain);
for (i = isl_edge_first; i <= isl_edge_last; ++i)
isl_union_map_free(sc->constraint[i]);
free(sc);
return NULL;
}
isl_ctx *isl_schedule_constraints_get_ctx(
__isl_keep isl_schedule_constraints *sc)
{
return sc ? isl_union_set_get_ctx(sc->domain) : NULL;
}
void isl_schedule_constraints_dump(__isl_keep isl_schedule_constraints *sc)
{
if (!sc)
return;
fprintf(stderr, "domain: ");
isl_union_set_dump(sc->domain);
fprintf(stderr, "validity: ");
isl_union_map_dump(sc->constraint[isl_edge_validity]);
fprintf(stderr, "proximity: ");
isl_union_map_dump(sc->constraint[isl_edge_proximity]);
fprintf(stderr, "coincidence: ");
isl_union_map_dump(sc->constraint[isl_edge_coincidence]);
fprintf(stderr, "condition: ");
isl_union_map_dump(sc->constraint[isl_edge_condition]);
fprintf(stderr, "conditional_validity: ");
isl_union_map_dump(sc->constraint[isl_edge_conditional_validity]);
}
/* Align the parameters of the fields of "sc".
*/
static __isl_give isl_schedule_constraints *
isl_schedule_constraints_align_params(__isl_take isl_schedule_constraints *sc)
{
isl_space *space;
enum isl_edge_type i;
if (!sc)
return NULL;
space = isl_union_set_get_space(sc->domain);
for (i = isl_edge_first; i <= isl_edge_last; ++i)
space = isl_space_align_params(space,
isl_union_map_get_space(sc->constraint[i]));
for (i = isl_edge_first; i <= isl_edge_last; ++i) {
sc->constraint[i] = isl_union_map_align_params(
sc->constraint[i], isl_space_copy(space));
if (!sc->constraint[i])
space = isl_space_free(space);
}
sc->domain = isl_union_set_align_params(sc->domain, space);
if (!sc->domain)
return isl_schedule_constraints_free(sc);
return sc;
}
/* Return the total number of isl_maps in the constraints of "sc".
*/
static __isl_give int isl_schedule_constraints_n_map(
__isl_keep isl_schedule_constraints *sc)
{
enum isl_edge_type i;
int n = 0;
for (i = isl_edge_first; i <= isl_edge_last; ++i)
n += isl_union_map_n_map(sc->constraint[i]);
return n;
}
/* Internal information about a node that is used during the construction
* of a schedule.
* space represents the space in which the domain lives
* sched is a matrix representation of the schedule being constructed
* for this node; if compressed is set, then this schedule is
* defined over the compressed domain space
* sched_map is an isl_map representation of the same (partial) schedule
* sched_map may be NULL; if compressed is set, then this map
* is defined over the uncompressed domain space
* rank is the number of linearly independent rows in the linear part
* of sched
* the columns of cmap represent a change of basis for the schedule
* coefficients; the first rank columns span the linear part of
* the schedule rows
* cinv is the inverse of cmap.
* start is the first variable in the LP problem in the sequences that
* represents the schedule coefficients of this node
* nvar is the dimension of the domain
* nparam is the number of parameters or 0 if we are not constructing
* a parametric schedule
*
* If compressed is set, then hull represents the constraints
* that were used to derive the compression, while compress and
* decompress map the original space to the compressed space and
* vice versa.
*
* scc is the index of SCC (or WCC) this node belongs to
*
* band contains the band index for each of the rows of the schedule.
* band_id is used to differentiate between separate bands at the same
* level within the same parent band, i.e., bands that are separated
* by the parent band or bands that are independent of each other.
* coincident contains a boolean for each of the rows of the schedule,
* indicating whether the corresponding scheduling dimension satisfies
* the coincidence constraints in the sense that the corresponding
* dependence distances are zero.
*/
struct isl_sched_node {
isl_space *space;
int compressed;
isl_set *hull;
isl_multi_aff *compress;
isl_multi_aff *decompress;
isl_mat *sched;
isl_map *sched_map;
int rank;
isl_mat *cmap;
isl_mat *cinv;
int start;
int nvar;
int nparam;
int scc;
int *band;
int *band_id;
int *coincident;
};
static int node_has_space(const void *entry, const void *val)
{
struct isl_sched_node *node = (struct isl_sched_node *)entry;
isl_space *dim = (isl_space *)val;
return isl_space_is_equal(node->space, dim);
}
/* An edge in the dependence graph. An edge may be used to
* ensure validity of the generated schedule, to minimize the dependence
* distance or both
*
* map is the dependence relation, with i -> j in the map if j depends on i
* tagged_condition and tagged_validity contain the union of all tagged
* condition or conditional validity dependence relations that
* specialize the dependence relation "map"; that is,
* if (i -> a) -> (j -> b) is an element of "tagged_condition"
* or "tagged_validity", then i -> j is an element of "map".
* If these fields are NULL, then they represent the empty relation.
* src is the source node
* dst is the sink node
* validity is set if the edge is used to ensure correctness
* coincidence is used to enforce zero dependence distances
* proximity is set if the edge is used to minimize dependence distances
* condition is set if the edge represents a condition
* for a conditional validity schedule constraint
* local can only be set for condition edges and indicates that
* the dependence distance over the edge should be zero
* conditional_validity is set if the edge is used to conditionally
* ensure correctness
*
* For validity edges, start and end mark the sequence of inequality
* constraints in the LP problem that encode the validity constraint
* corresponding to this edge.
*/
struct isl_sched_edge {
isl_map *map;
isl_union_map *tagged_condition;
isl_union_map *tagged_validity;
struct isl_sched_node *src;
struct isl_sched_node *dst;
unsigned validity : 1;
unsigned coincidence : 1;
unsigned proximity : 1;
unsigned local : 1;
unsigned condition : 1;
unsigned conditional_validity : 1;
int start;
int end;
};
/* Internal information about the dependence graph used during
* the construction of the schedule.
*
* intra_hmap is a cache, mapping dependence relations to their dual,
* for dependences from a node to itself
* inter_hmap is a cache, mapping dependence relations to their dual,
* for dependences between distinct nodes
* if compression is involved then the key for these maps
* it the original, uncompressed dependence relation, while
* the value is the dual of the compressed dependence relation.
*
* n is the number of nodes
* node is the list of nodes
* maxvar is the maximal number of variables over all nodes
* max_row is the allocated number of rows in the schedule
* n_row is the current (maximal) number of linearly independent
* rows in the node schedules
* n_total_row is the current number of rows in the node schedules
* n_band is the current number of completed bands
* band_start is the starting row in the node schedules of the current band
* root is set if this graph is the original dependence graph,
* without any splitting
*
* sorted contains a list of node indices sorted according to the
* SCC to which a node belongs
*
* n_edge is the number of edges
* edge is the list of edges
* max_edge contains the maximal number of edges of each type;
* in particular, it contains the number of edges in the inital graph.
* edge_table contains pointers into the edge array, hashed on the source
* and sink spaces; there is one such table for each type;
* a given edge may be referenced from more than one table
* if the corresponding relation appears in more than of the
* sets of dependences
*
* node_table contains pointers into the node array, hashed on the space
*
* region contains a list of variable sequences that should be non-trivial
*
* lp contains the (I)LP problem used to obtain new schedule rows
*
* src_scc and dst_scc are the source and sink SCCs of an edge with
* conflicting constraints
*
* scc represents the number of components
*/
struct isl_sched_graph {
isl_map_to_basic_set *intra_hmap;
isl_map_to_basic_set *inter_hmap;
struct isl_sched_node *node;
int n;
int maxvar;
int max_row;
int n_row;
int *sorted;
int n_band;
int n_total_row;
int band_start;
int root;
struct isl_sched_edge *edge;
int n_edge;
int max_edge[isl_edge_last + 1];
struct isl_hash_table *edge_table[isl_edge_last + 1];
struct isl_hash_table *node_table;
struct isl_region *region;
isl_basic_set *lp;
int src_scc;
int dst_scc;
int scc;
};
/* Initialize node_table based on the list of nodes.
*/
static int graph_init_table(isl_ctx *ctx, struct isl_sched_graph *graph)
{
int i;
graph->node_table = isl_hash_table_alloc(ctx, graph->n);
if (!graph->node_table)
return -1;
for (i = 0; i < graph->n; ++i) {
struct isl_hash_table_entry *entry;
uint32_t hash;
hash = isl_space_get_hash(graph->node[i].space);
entry = isl_hash_table_find(ctx, graph->node_table, hash,
&node_has_space,
graph->node[i].space, 1);
if (!entry)
return -1;
entry->data = &graph->node[i];
}
return 0;
}
/* Return a pointer to the node that lives within the given space,
* or NULL if there is no such node.
*/
static struct isl_sched_node *graph_find_node(isl_ctx *ctx,
struct isl_sched_graph *graph, __isl_keep isl_space *dim)
{
struct isl_hash_table_entry *entry;
uint32_t hash;
hash = isl_space_get_hash(dim);
entry = isl_hash_table_find(ctx, graph->node_table, hash,
&node_has_space, dim, 0);
return entry ? entry->data : NULL;
}
static int edge_has_src_and_dst(const void *entry, const void *val)
{
const struct isl_sched_edge *edge = entry;
const struct isl_sched_edge *temp = val;
return edge->src == temp->src && edge->dst == temp->dst;
}
/* Add the given edge to graph->edge_table[type].
*/
static int graph_edge_table_add(isl_ctx *ctx, struct isl_sched_graph *graph,
enum isl_edge_type type, struct isl_sched_edge *edge)
{
struct isl_hash_table_entry *entry;
uint32_t hash;
hash = isl_hash_init();
hash = isl_hash_builtin(hash, edge->src);
hash = isl_hash_builtin(hash, edge->dst);
entry = isl_hash_table_find(ctx, graph->edge_table[type], hash,
&edge_has_src_and_dst, edge, 1);
if (!entry)
return -1;
entry->data = edge;
return 0;
}
/* Allocate the edge_tables based on the maximal number of edges of
* each type.
*/
static int graph_init_edge_tables(isl_ctx *ctx, struct isl_sched_graph *graph)
{
int i;
for (i = 0; i <= isl_edge_last; ++i) {
graph->edge_table[i] = isl_hash_table_alloc(ctx,
graph->max_edge[i]);
if (!graph->edge_table[i])
return -1;
}
return 0;
}
/* If graph->edge_table[type] contains an edge from the given source
* to the given destination, then return the hash table entry of this edge.
* Otherwise, return NULL.
*/
static struct isl_hash_table_entry *graph_find_edge_entry(
struct isl_sched_graph *graph,
enum isl_edge_type type,
struct isl_sched_node *src, struct isl_sched_node *dst)
{
isl_ctx *ctx = isl_space_get_ctx(src->space);
uint32_t hash;
struct isl_sched_edge temp = { .src = src, .dst = dst };
hash = isl_hash_init();
hash = isl_hash_builtin(hash, temp.src);
hash = isl_hash_builtin(hash, temp.dst);
return isl_hash_table_find(ctx, graph->edge_table[type], hash,
&edge_has_src_and_dst, &temp, 0);
}
/* If graph->edge_table[type] contains an edge from the given source
* to the given destination, then return this edge.
* Otherwise, return NULL.
*/
static struct isl_sched_edge *graph_find_edge(struct isl_sched_graph *graph,
enum isl_edge_type type,
struct isl_sched_node *src, struct isl_sched_node *dst)
{
struct isl_hash_table_entry *entry;
entry = graph_find_edge_entry(graph, type, src, dst);
if (!entry)
return NULL;
return entry->data;
}
/* Check whether the dependence graph has an edge of the given type
* between the given two nodes.
*/
static int graph_has_edge(struct isl_sched_graph *graph,
enum isl_edge_type type,
struct isl_sched_node *src, struct isl_sched_node *dst)
{
struct isl_sched_edge *edge;
int empty;
edge = graph_find_edge(graph, type, src, dst);
if (!edge)
return 0;
empty = isl_map_plain_is_empty(edge->map);
if (empty < 0)
return -1;
return !empty;
}
/* Look for any edge with the same src, dst and map fields as "model".
*
* Return the matching edge if one can be found.
* Return "model" if no matching edge is found.
* Return NULL on error.
*/
static struct isl_sched_edge *graph_find_matching_edge(
struct isl_sched_graph *graph, struct isl_sched_edge *model)
{
enum isl_edge_type i;
struct isl_sched_edge *edge;
for (i = isl_edge_first; i <= isl_edge_last; ++i) {
int is_equal;
edge = graph_find_edge(graph, i, model->src, model->dst);
if (!edge)
continue;
is_equal = isl_map_plain_is_equal(model->map, edge->map);
if (is_equal < 0)
return NULL;
if (is_equal)
return edge;
}
return model;
}
/* Remove the given edge from all the edge_tables that refer to it.
*/
static void graph_remove_edge(struct isl_sched_graph *graph,
struct isl_sched_edge *edge)
{
isl_ctx *ctx = isl_map_get_ctx(edge->map);
enum isl_edge_type i;
for (i = isl_edge_first; i <= isl_edge_last; ++i) {
struct isl_hash_table_entry *entry;
entry = graph_find_edge_entry(graph, i, edge->src, edge->dst);
if (!entry)
continue;
if (entry->data != edge)
continue;
isl_hash_table_remove(ctx, graph->edge_table[i], entry);
}
}
/* Check whether the dependence graph has any edge
* between the given two nodes.
*/
static int graph_has_any_edge(struct isl_sched_graph *graph,
struct isl_sched_node *src, struct isl_sched_node *dst)
{
enum isl_edge_type i;
int r;
for (i = isl_edge_first; i <= isl_edge_last; ++i) {
r = graph_has_edge(graph, i, src, dst);
if (r < 0 || r)
return r;
}
return r;
}
/* Check whether the dependence graph has a validity edge
* between the given two nodes.
*
* Conditional validity edges are essentially validity edges that
* can be ignored if the corresponding condition edges are iteration private.
* Here, we are only checking for the presence of validity
* edges, so we need to consider the conditional validity edges too.
* In particular, this function is used during the detection
* of strongly connected components and we cannot ignore
* conditional validity edges during this detection.
*/
static int graph_has_validity_edge(struct isl_sched_graph *graph,
struct isl_sched_node *src, struct isl_sched_node *dst)
{
int r;
r = graph_has_edge(graph, isl_edge_validity, src, dst);
if (r < 0 || r)
return r;
return graph_has_edge(graph, isl_edge_conditional_validity, src, dst);
}
static int graph_alloc(isl_ctx *ctx, struct isl_sched_graph *graph,
int n_node, int n_edge)
{
int i;
graph->n = n_node;
graph->n_edge = n_edge;
graph->node = isl_calloc_array(ctx, struct isl_sched_node, graph->n);
graph->sorted = isl_calloc_array(ctx, int, graph->n);
graph->region = isl_alloc_array(ctx, struct isl_region, graph->n);
graph->edge = isl_calloc_array(ctx,
struct isl_sched_edge, graph->n_edge);
graph->intra_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
graph->inter_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
if (!graph->node || !graph->region || (graph->n_edge && !graph->edge) ||
!graph->sorted)
return -1;
for(i = 0; i < graph->n; ++i)
graph->sorted[i] = i;
return 0;
}
static void graph_free(isl_ctx *ctx, struct isl_sched_graph *graph)
{
int i;
isl_map_to_basic_set_free(graph->intra_hmap);
isl_map_to_basic_set_free(graph->inter_hmap);
if (graph->node)
for (i = 0; i < graph->n; ++i) {
isl_space_free(graph->node[i].space);
isl_set_free(graph->node[i].hull);
isl_multi_aff_free(graph->node[i].compress);
isl_multi_aff_free(graph->node[i].decompress);
isl_mat_free(graph->node[i].sched);
isl_map_free(graph->node[i].sched_map);
isl_mat_free(graph->node[i].cmap);
isl_mat_free(graph->node[i].cinv);
if (graph->root) {
free(graph->node[i].band);
free(graph->node[i].band_id);
free(graph->node[i].coincident);
}
}
free(graph->node);
free(graph->sorted);
if (graph->edge)
for (i = 0; i < graph->n_edge; ++i) {
isl_map_free(graph->edge[i].map);
isl_union_map_free(graph->edge[i].tagged_condition);
isl_union_map_free(graph->edge[i].tagged_validity);
}
free(graph->edge);
free(graph->region);
for (i = 0; i <= isl_edge_last; ++i)
isl_hash_table_free(ctx, graph->edge_table[i]);
isl_hash_table_free(ctx, graph->node_table);
isl_basic_set_free(graph->lp);
}
/* For each "set" on which this function is called, increment
* graph->n by one and update graph->maxvar.
*/
static int init_n_maxvar(__isl_take isl_set *set, void *user)
{
struct isl_sched_graph *graph = user;
int nvar = isl_set_dim(set, isl_dim_set);
graph->n++;
if (nvar > graph->maxvar)
graph->maxvar = nvar;
isl_set_free(set);
return 0;
}
/* Add the number of basic maps in "map" to *n.
*/
static int add_n_basic_map(__isl_take isl_map *map, void *user)
{
int *n = user;
*n += isl_map_n_basic_map(map);
isl_map_free(map);
return 0;
}
/* Compute the number of rows that should be allocated for the schedule.
* The graph can be split at most "n - 1" times, there can be at most
* one row for each dimension in the iteration domains plus two rows
* for each basic map in the dependences (in particular,
* we usually have one row, but it may be split by split_scaled),
* and there can be one extra row for ordering the statements.
* Note that if we have actually split "n - 1" times, then no ordering
* is needed, so in principle we could use "graph->n + 2 * graph->maxvar - 1".
* It is also practically impossible to exhaust both the number of dependences
* and the number of variables.
*/
static int compute_max_row(struct isl_sched_graph *graph,
__isl_keep isl_schedule_constraints *sc)
{
enum isl_edge_type i;
int n_edge;
graph->n = 0;
graph->maxvar = 0;
if (isl_union_set_foreach_set(sc->domain, &init_n_maxvar, graph) < 0)
return -1;
n_edge = 0;
for (i = isl_edge_first; i <= isl_edge_last; ++i)
if (isl_union_map_foreach_map(sc->constraint[i],
&add_n_basic_map, &n_edge) < 0)
return -1;
graph->max_row = graph->n + 2 * n_edge + graph->maxvar;
return 0;
}
/* Does "bset" have any defining equalities for its set variables?
*/
static int has_any_defining_equality(__isl_keep isl_basic_set *bset)
{
int i, n;
if (!bset)
return -1;
n = isl_basic_set_dim(bset, isl_dim_set);
for (i = 0; i < n; ++i) {
int has;
has = isl_basic_set_has_defining_equality(bset, isl_dim_set, i,
NULL);
if (has < 0 || has)
return has;
}
return 0;
}
/* Add a new node to the graph representing the given space.
* "nvar" is the (possibly compressed) number of variables and
* may be smaller than then number of set variables in "space"
* if "compressed" is set.
* If "compressed" is set, then "hull" represents the constraints
* that were used to derive the compression, while "compress" and
* "decompress" map the original space to the compressed space and
* vice versa.
* If "compressed" is not set, then "hull", "compress" and "decompress"
* should be NULL.
*/
static int add_node(struct isl_sched_graph *graph, __isl_take isl_space *space,
int nvar, int compressed, __isl_take isl_set *hull,
__isl_take isl_multi_aff *compress,
__isl_take isl_multi_aff *decompress)
{
int nparam;
isl_ctx *ctx;
isl_mat *sched;
int *band, *band_id, *coincident;
if (!space)
return -1;
ctx = isl_space_get_ctx(space);
nparam = isl_space_dim(space, isl_dim_param);
if (!ctx->opt->schedule_parametric)
nparam = 0;
sched = isl_mat_alloc(ctx, 0, 1 + nparam + nvar);
graph->node[graph->n].space = space;
graph->node[graph->n].nvar = nvar;
graph->node[graph->n].nparam = nparam;
graph->node[graph->n].sched = sched;
graph->node[graph->n].sched_map = NULL;
band = isl_alloc_array(ctx, int, graph->max_row);
graph->node[graph->n].band = band;
band_id = isl_calloc_array(ctx, int, graph->max_row);
graph->node[graph->n].band_id = band_id;
coincident = isl_calloc_array(ctx, int, graph->max_row);
graph->node[graph->n].coincident = coincident;
graph->node[graph->n].compressed = compressed;
graph->node[graph->n].hull = hull;
graph->node[graph->n].compress = compress;
graph->node[graph->n].decompress = decompress;
graph->n++;
if (!space || !sched ||
(graph->max_row && (!band || !band_id || !coincident)))
return -1;
if (compressed && (!hull || !compress || !decompress))
return -1;
return 0;
}
/* Add a new node to the graph representing the given set.
*
* If any of the set variables is defined by an equality, then
* we perform variable compression such that we can perform
* the scheduling on the compressed domain.
*/
static int extract_node(__isl_take isl_set *set, void *user)
{
int nvar;
int has_equality;
isl_space *space;
isl_basic_set *hull;
isl_set *hull_set;
isl_morph *morph;
isl_multi_aff *compress, *decompress;
struct isl_sched_graph *graph = user;
space = isl_set_get_space(set);
hull = isl_set_affine_hull(set);
hull = isl_basic_set_remove_divs(hull);
nvar = isl_space_dim(space, isl_dim_set);
has_equality = has_any_defining_equality(hull);
if (has_equality < 0)
goto error;
if (!has_equality) {
isl_basic_set_free(hull);
return add_node(graph, space, nvar, 0, NULL, NULL, NULL);
}
morph = isl_basic_set_variable_compression(hull, isl_dim_set);
nvar = isl_morph_ran_dim(morph, isl_dim_set);
compress = isl_morph_get_var_multi_aff(morph);
morph = isl_morph_inverse(morph);
decompress = isl_morph_get_var_multi_aff(morph);
isl_morph_free(morph);
hull_set = isl_set_from_basic_set(hull);
return add_node(graph, space, nvar, 1, hull_set, compress, decompress);
error:
isl_basic_set_free(hull);
isl_space_free(space);
return -1;
}
struct isl_extract_edge_data {
enum isl_edge_type type;
struct isl_sched_graph *graph;
};
/* Merge edge2 into edge1, freeing the contents of edge2.
* "type" is the type of the schedule constraint from which edge2 was
* extracted.
* Return 0 on success and -1 on failure.
*
* edge1 and edge2 are assumed to have the same value for the map field.
*/
static int merge_edge(enum isl_edge_type type, struct isl_sched_edge *edge1,
struct isl_sched_edge *edge2)
{
edge1->validity |= edge2->validity;
edge1->coincidence |= edge2->coincidence;
edge1->proximity |= edge2->proximity;
edge1->condition |= edge2->condition;
edge1->conditional_validity |= edge2->conditional_validity;
isl_map_free(edge2->map);
if (type == isl_edge_condition) {
if (!edge1->tagged_condition)
edge1->tagged_condition = edge2->tagged_condition;
else
edge1->tagged_condition =
isl_union_map_union(edge1->tagged_condition,
edge2->tagged_condition);
}
if (type == isl_edge_conditional_validity) {
if (!edge1->tagged_validity)
edge1->tagged_validity = edge2->tagged_validity;
else
edge1->tagged_validity =
isl_union_map_union(edge1->tagged_validity,
edge2->tagged_validity);
}
if (type == isl_edge_condition && !edge1->tagged_condition)
return -1;
if (type == isl_edge_conditional_validity && !edge1->tagged_validity)
return -1;
return 0;
}
/* Insert dummy tags in domain and range of "map".
*
* In particular, if "map" is of the form
*
* A -> B
*
* then return
*
* [A -> dummy_tag] -> [B -> dummy_tag]
*
* where the dummy_tags are identical and equal to any dummy tags
* introduced by any other call to this function.
*/
static __isl_give isl_map *insert_dummy_tags(__isl_take isl_map *map)
{
static char dummy;
isl_ctx *ctx;
isl_id *id;
isl_space *space;
isl_set *domain, *range;
ctx = isl_map_get_ctx(map);
id = isl_id_alloc(ctx, NULL, &dummy);
space = isl_space_params(isl_map_get_space(map));
space = isl_space_set_from_params(space);
space = isl_space_set_tuple_id(space, isl_dim_set, id);
space = isl_space_map_from_set(space);
domain = isl_map_wrap(map);
range = isl_map_wrap(isl_map_universe(space));
map = isl_map_from_domain_and_range(domain, range);
map = isl_map_zip(map);
return map;
}
/* Given that at least one of "src" or "dst" is compressed, return
* a map between the spaces of these nodes restricted to the affine
* hull that was used in the compression.
*/
static __isl_give isl_map *extract_hull(struct isl_sched_node *src,
struct isl_sched_node *dst)
{
isl_set *dom, *ran;
if (src->compressed)
dom = isl_set_copy(src->hull);
else
dom = isl_set_universe(isl_space_copy(src->space));
if (dst->compressed)
ran = isl_set_copy(dst->hull);
else
ran = isl_set_universe(isl_space_copy(dst->space));
return isl_map_from_domain_and_range(dom, ran);
}
/* Intersect the domains of the nested relations in domain and range
* of "tagged" with "map".
*/
static __isl_give isl_map *map_intersect_domains(__isl_take isl_map *tagged,
__isl_keep isl_map *map)
{
isl_set *set;
tagged = isl_map_zip(tagged);
set = isl_map_wrap(isl_map_copy(map));
tagged = isl_map_intersect_domain(tagged, set);
tagged = isl_map_zip(tagged);
return tagged;
}
/* Add a new edge to the graph based on the given map
* and add it to data->graph->edge_table[data->type].
* If a dependence relation of a given type happens to be identical
* to one of the dependence relations of a type that was added before,
* then we don't create a new edge, but instead mark the original edge
* as also representing a dependence of the current type.
*
* Edges of type isl_edge_condition or isl_edge_conditional_validity
* may be specified as "tagged" dependence relations. That is, "map"
* may contain elements (i -> a) -> (j -> b), where i -> j denotes
* the dependence on iterations and a and b are tags.
* edge->map is set to the relation containing the elements i -> j,
* while edge->tagged_condition and edge->tagged_validity contain
* the union of all the "map" relations
* for which extract_edge is called that result in the same edge->map.
*
* If the source or the destination node is compressed, then
* intersect both "map" and "tagged" with the constraints that
* were used to construct the compression.
* This ensures that there are no schedule constraints defined
* outside of these domains, while the scheduler no longer has
* any control over those outside parts.
*/
static int extract_edge(__isl_take isl_map *map, void *user)
{
isl_ctx *ctx = isl_map_get_ctx(map);
struct isl_extract_edge_data *data = user;
struct isl_sched_graph *graph = data->graph;
struct isl_sched_node *src, *dst;
isl_space *dim;
struct isl_sched_edge *edge;
isl_map *tagged = NULL;
if (data->type == isl_edge_condition ||
data->type == isl_edge_conditional_validity) {
if (isl_map_can_zip(map)) {
tagged = isl_map_copy(map);
map = isl_set_unwrap(isl_map_domain(isl_map_zip(map)));
} else {
tagged = insert_dummy_tags(isl_map_copy(map));
}
}
dim = isl_space_domain(isl_map_get_space(map));
src = graph_find_node(ctx, graph, dim);
isl_space_free(dim);
dim = isl_space_range(isl_map_get_space(map));
dst = graph_find_node(ctx, graph, dim);
isl_space_free(dim);
if (!src || !dst) {
isl_map_free(map);
isl_map_free(tagged);
return 0;
}
if (src->compressed || dst->compressed) {
isl_map *hull;
hull = extract_hull(src, dst);
if (tagged)
tagged = map_intersect_domains(tagged, hull);
map = isl_map_intersect(map, hull);
}
graph->edge[graph->n_edge].src = src;
graph->edge[graph->n_edge].dst = dst;
graph->edge[graph->n_edge].map = map;
graph->edge[graph->n_edge].validity = 0;
graph->edge[graph->n_edge].coincidence = 0;
graph->edge[graph->n_edge].proximity = 0;
graph->edge[graph->n_edge].condition = 0;
graph->edge[graph->n_edge].local = 0;
graph->edge[graph->n_edge].conditional_validity = 0;
graph->edge[graph->n_edge].tagged_condition = NULL;
graph->edge[graph->n_edge].tagged_validity = NULL;
if (data->type == isl_edge_validity)
graph->edge[graph->n_edge].validity = 1;
if (data->type == isl_edge_coincidence)
graph->edge[graph->n_edge].coincidence = 1;
if (data->type == isl_edge_proximity)
graph->edge[graph->n_edge].proximity = 1;
if (data->type == isl_edge_condition) {
graph->edge[graph->n_edge].condition = 1;
graph->edge[graph->n_edge].tagged_condition =
isl_union_map_from_map(tagged);
}
if (data->type == isl_edge_conditional_validity) {
graph->edge[graph->n_edge].conditional_validity = 1;
graph->edge[graph->n_edge].tagged_validity =
isl_union_map_from_map(tagged);
}
edge = graph_find_matching_edge(graph, &graph->edge[graph->n_edge]);
if (!edge) {
graph->n_edge++;
return -1;
}
if (edge == &graph->edge[graph->n_edge])
return graph_edge_table_add(ctx, graph, data->type,
&graph->edge[graph->n_edge++]);
if (merge_edge(data->type, edge, &graph->edge[graph->n_edge]) < 0)
return -1;
return graph_edge_table_add(ctx, graph, data->type, edge);
}
/* Check whether there is any dependence from node[j] to node[i]
* or from node[i] to node[j].
*/
static int node_follows_weak(int i, int j, void *user)
{
int f;
struct isl_sched_graph *graph = user;
f = graph_has_any_edge(graph, &graph->node[j], &graph->node[i]);
if (f < 0 || f)
return f;
return graph_has_any_edge(graph, &graph->node[i], &graph->node[j]);
}
/* Check whether there is a (conditional) validity dependence from node[j]
* to node[i], forcing node[i] to follow node[j].
*/
static int node_follows_strong(int i, int j, void *user)
{
struct isl_sched_graph *graph = user;
return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
}
/* Use Tarjan's algorithm for computing the strongly connected components
* in the dependence graph (only validity edges).
* If weak is set, we consider the graph to be undirected and
* we effectively compute the (weakly) connected components.
* Additionally, we also consider other edges when weak is set.
*/
static int detect_ccs(isl_ctx *ctx, struct isl_sched_graph *graph, int weak)
{
int i, n;
struct isl_tarjan_graph *g = NULL;
g = isl_tarjan_graph_init(ctx, graph->n,
weak ? &node_follows_weak : &node_follows_strong, graph);
if (!g)
return -1;
graph->scc = 0;
i = 0;
n = graph->n;
while (n) {
while (g->order[i] != -1) {
graph->node[g->order[i]].scc = graph->scc;
--n;
++i;
}
++i;
graph->scc++;
}
isl_tarjan_graph_free(g);
return 0;
}
/* Apply Tarjan's algorithm to detect the strongly connected components
* in the dependence graph.
*/
static int detect_sccs(isl_ctx *ctx, struct isl_sched_graph *graph)
{
return detect_ccs(ctx, graph, 0);
}
/* Apply Tarjan's algorithm to detect the (weakly) connected components
* in the dependence graph.
*/
static int detect_wccs(isl_ctx *ctx, struct isl_sched_graph *graph)
{
return detect_ccs(ctx, graph, 1);
}
static int cmp_scc(const void *a, const void *b, void *data)
{
struct isl_sched_graph *graph = data;
const int *i1 = a;
const int *i2 = b;
return graph->node[*i1].scc - graph->node[*i2].scc;
}
/* Sort the elements of graph->sorted according to the corresponding SCCs.
*/
static int sort_sccs(struct isl_sched_graph *graph)
{
return isl_sort(graph->sorted, graph->n, sizeof(int), &cmp_scc, graph);
}
/* Given a dependence relation R from "node" to itself,
* construct the set of coefficients of valid constraints for elements
* in that dependence relation.
* In particular, the result contains tuples of coefficients
* c_0, c_n, c_x such that
*
* c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
*
* or, equivalently,
*
* c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
*
* We choose here to compute the dual of delta R.
* Alternatively, we could have computed the dual of R, resulting
* in a set of tuples c_0, c_n, c_x, c_y, and then
* plugged in (c_0, c_n, c_x, -c_x).
*
* If "node" has been compressed, then the dependence relation
* is also compressed before the set of coefficients is computed.
*/
static __isl_give isl_basic_set *intra_coefficients(
struct isl_sched_graph *graph, struct isl_sched_node *node,
__isl_take isl_map *map)
{
isl_set *delta;
isl_map *key;
isl_basic_set *coef;
if (isl_map_to_basic_set_has(graph->intra_hmap, map))
return isl_map_to_basic_set_get(graph->intra_hmap, map);
key = isl_map_copy(map);
if (node->compressed) {
map = isl_map_preimage_domain_multi_aff(map,
isl_multi_aff_copy(node->decompress));
map = isl_map_preimage_range_multi_aff(map,
isl_multi_aff_copy(node->decompress));
}
delta = isl_set_remove_divs(isl_map_deltas(map));
coef = isl_set_coefficients(delta);
graph->intra_hmap = isl_map_to_basic_set_set(graph->intra_hmap, key,
isl_basic_set_copy(coef));
return coef;
}
/* Given a dependence relation R, construct the set of coefficients
* of valid constraints for elements in that dependence relation.
* In particular, the result contains tuples of coefficients
* c_0, c_n, c_x, c_y such that
*
* c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
*
* If the source or destination nodes of "edge" have been compressed,
* then the dependence relation is also compressed before
* the set of coefficients is computed.
*/
static __isl_give isl_basic_set *inter_coefficients(
struct isl_sched_graph *graph, struct isl_sched_edge *edge,
__isl_take isl_map *map)
{
isl_set *set;
isl_map *key;
isl_basic_set *coef;
if (isl_map_to_basic_set_has(graph->inter_hmap, map))
return isl_map_to_basic_set_get(graph->inter_hmap, map);
key = isl_map_copy(map);
if (edge->src->compressed)
map = isl_map_preimage_domain_multi_aff(map,
isl_multi_aff_copy(edge->src->decompress));
if (edge->dst->compressed)
map = isl_map_preimage_range_multi_aff(map,
isl_multi_aff_copy(edge->dst->decompress));
set = isl_map_wrap(isl_map_remove_divs(map));
coef = isl_set_coefficients(set);
graph->inter_hmap = isl_map_to_basic_set_set(graph->inter_hmap, key,
isl_basic_set_copy(coef));
return coef;
}
/* Add constraints to graph->lp that force validity for the given
* dependence from a node i to itself.
* That is, add constraints that enforce
*
* (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
* = c_i_x (y - x) >= 0
*
* for each (x,y) in R.
* We obtain general constraints on coefficients (c_0, c_n, c_x)
* of valid constraints for (y - x) and then plug in (0, 0, c_i_x^+ - c_i_x^-),
* where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
* In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
*
* Actually, we do not construct constraints for the c_i_x themselves,
* but for the coefficients of c_i_x written as a linear combination
* of the columns in node->cmap.
*/
static int add_intra_validity_constraints(struct isl_sched_graph *graph,
struct isl_sched_edge *edge)
{
unsigned total;
isl_map *map = isl_map_copy(edge->map);
isl_ctx *ctx = isl_map_get_ctx(map);
isl_space *dim;
isl_dim_map *dim_map;
isl_basic_set *coef;
struct isl_sched_node *node = edge->src;
coef = intra_coefficients(graph, node, map);
dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
coef = isl_basic_set_transform_dims(coef, isl_dim_set,
isl_space_dim(dim, isl_dim_set), isl_mat_copy(node->cmap));
if (!coef)
goto error;
total = isl_basic_set_total_dim(graph->lp);
dim_map = isl_dim_map_alloc(ctx, total);
isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
isl_space_dim(dim, isl_dim_set), 1,
node->nvar, -1);
isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
isl_space_dim(dim, isl_dim_set), 1,
node->nvar, 1);
graph->lp = isl_basic_set_extend_constraints(graph->lp,
coef->n_eq, coef->n_ineq);
graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
coef, dim_map);
isl_space_free(dim);
return 0;
error:
isl_space_free(dim);
return -1;
}
/* Add constraints to graph->lp that force validity for the given
* dependence from node i to node j.
* That is, add constraints that enforce
*
* (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
*
* for each (x,y) in R.
* We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
* of valid constraints for R and then plug in
* (c_j_0 - c_i_0, c_j_n^+ - c_j_n^- - (c_i_n^+ - c_i_n^-),
* c_j_x^+ - c_j_x^- - (c_i_x^+ - c_i_x^-)),
* where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
* In graph->lp, the c_*^- appear before their c_*^+ counterpart.
*
* Actually, we do not construct constraints for the c_*_x themselves,
* but for the coefficients of c_*_x written as a linear combination
* of the columns in node->cmap.
*/
static int add_inter_validity_constraints(struct isl_sched_graph *graph,
struct isl_sched_edge *edge)
{
unsigned total;
isl_map *map = isl_map_copy(edge->map);
isl_ctx *ctx = isl_map_get_ctx(map);
isl_space *dim;
isl_dim_map *dim_map;
isl_basic_set *coef;
struct isl_sched_node *src = edge->src;
struct isl_sched_node *dst = edge->dst;
coef = inter_coefficients(graph, edge, map);
dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
coef = isl_basic_set_transform_dims(coef, isl_dim_set,
isl_space_dim(dim, isl_dim_set), isl_mat_copy(src->cmap));
coef = isl_basic_set_transform_dims(coef, isl_dim_set,
isl_space_dim(dim, isl_dim_set) + src->nvar,
isl_mat_copy(dst->cmap));
if (!coef)
goto error;
total = isl_basic_set_total_dim(graph->lp);
dim_map = isl_dim_map_alloc(ctx, total);
isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, 1);
isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, -1);
isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, 1);
isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
dst->nvar, -1);
isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
dst->nvar, 1);
isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, -1);
isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, 1);
isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, -1);
isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
isl_space_dim(dim, isl_dim_set), 1,
src->nvar, 1);
isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
isl_space_dim(dim, isl_dim_set), 1,
src->nvar, -1);
edge->start = graph->lp->n_ineq;
graph->lp = isl_basic_set_extend_constraints(graph->lp,
coef->n_eq, coef->n_ineq);
graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
coef, dim_map);
if (!graph->lp)
goto error;
isl_space_free(dim);
edge->end = graph->lp->n_ineq;
return 0;
error:
isl_space_free(dim);
return -1;
}
/* Add constraints to graph->lp that bound the dependence distance for the given
* dependence from a node i to itself.
* If s = 1, we add the constraint
*
* c_i_x (y - x) <= m_0 + m_n n
*
* or
*
* -c_i_x (y - x) + m_0 + m_n n >= 0
*
* for each (x,y) in R.
* If s = -1, we add the constraint
*
* -c_i_x (y - x) <= m_0 + m_n n
*
* or
*
* c_i_x (y - x) + m_0 + m_n n >= 0
*
* for each (x,y) in R.
* We obtain general constraints on coefficients (c_0, c_n, c_x)
* of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
* with each coefficient (except m_0) represented as a pair of non-negative
* coefficients.
*
* Actually, we do not construct constraints for the c_i_x themselves,
* but for the coefficients of c_i_x written as a linear combination
* of the columns in node->cmap.
*
*
* If "local" is set, then we add constraints
*
* c_i_x (y - x) <= 0
*
* or
*
* -c_i_x (y - x) <= 0
*
* instead, forcing the dependence distance to be (less than or) equal to 0.
* That is, we plug in (0, 0, -s * c_i_x),
* Note that dependences marked local are treated as validity constraints
* by add_all_validity_constraints and therefore also have
* their distances bounded by 0 from below.
*/
static int add_intra_proximity_constraints(struct isl_sched_graph *graph,
struct isl_sched_edge *edge, int s, int local)
{
unsigned total;
unsigned nparam;
isl_map *map = isl_map_copy(edge->map);
isl_ctx *ctx = isl_map_get_ctx(map);
isl_space *dim;
isl_dim_map *dim_map;
isl_basic_set *coef;
struct isl_sched_node *node = edge->src;
coef = intra_coefficients(graph, node, map);
dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
coef = isl_basic_set_transform_dims(coef, isl_dim_set,
isl_space_dim(dim, isl_dim_set), isl_mat_copy(node->cmap));
if (!coef)
goto error;
nparam = isl_space_dim(node->space, isl_dim_param);
total = isl_basic_set_total_dim(graph->lp);
dim_map = isl_dim_map_alloc(ctx, total);
if (!local) {
isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
}
isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
isl_space_dim(dim, isl_dim_set), 1,
node->nvar, s);
isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
isl_space_dim(dim, isl_dim_set), 1,
node->nvar, -s);
graph->lp = isl_basic_set_extend_constraints(graph->lp,
coef->n_eq, coef->n_ineq);
graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
coef, dim_map);
isl_space_free(dim);
return 0;
error:
isl_space_free(dim);
return -1;
}
/* Add constraints to graph->lp that bound the dependence distance for the given
* dependence from node i to node j.
* If s = 1, we add the constraint
*
* (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
* <= m_0 + m_n n
*
* or
*
* -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
* m_0 + m_n n >= 0
*
* for each (x,y) in R.
* If s = -1, we add the constraint
*
* -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
* <= m_0 + m_n n
*
* or
*
* (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
* m_0 + m_n n >= 0
*
* for each (x,y) in R.
* We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
* of valid constraints for R and then plug in
* (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
* -s*c_j_x+s*c_i_x)
* with each coefficient (except m_0, c_j_0 and c_i_0)
* represented as a pair of non-negative coefficients.
*
* Actually, we do not construct constraints for the c_*_x themselves,
* but for the coefficients of c_*_x written as a linear combination
* of the columns in node->cmap.
*
*
* If "local" is set, then we add constraints
*
* (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) <= 0
*
* or
*
* -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)) <= 0
*
* instead, forcing the dependence distance to be (less than or) equal to 0.
* That is, we plug in
* (-s*c_j_0 + s*c_i_0, -s*c_j_n + s*c_i_n, -s*c_j_x+s*c_i_x).
* Note that dependences marked local are treated as validity constraints
* by add_all_validity_constraints and therefore also have
* their distances bounded by 0 from below.
*/
static int add_inter_proximity_constraints(struct isl_sched_graph *graph,
struct isl_sched_edge *edge, int s, int local)
{
unsigned total;
unsigned nparam;
isl_map *map = isl_map_copy(edge->map);
isl_ctx *ctx = isl_map_get_ctx(map);
isl_space *dim;
isl_dim_map *dim_map;
isl_basic_set *coef;
struct isl_sched_node *src = edge->src;
struct isl_sched_node *dst = edge->dst;
coef = inter_coefficients(graph, edge, map);
dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
coef = isl_basic_set_transform_dims(coef, isl_dim_set,
isl_space_dim(dim, isl_dim_set), isl_mat_copy(src->cmap));
coef = isl_basic_set_transform_dims(coef, isl_dim_set,
isl_space_dim(dim, isl_dim_set) + src->nvar,
isl_mat_copy(dst->cmap));
if (!coef)
goto error;
nparam = isl_space_dim(src->space, isl_dim_param);
total = isl_basic_set_total_dim(graph->lp);
dim_map = isl_dim_map_alloc(ctx, total);
if (!local) {
isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
}
isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, -s);
isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, s);
isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, -s);
isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
dst->nvar, s);
isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
dst->nvar, -s);
isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, s);
isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, -s);
isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, s);
isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
isl_space_dim(dim, isl_dim_set), 1,
src->nvar, -s);
isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
isl_space_dim(dim, isl_dim_set), 1,
src->nvar, s);
graph->lp = isl_basic_set_extend_constraints(graph->lp,
coef->n_eq, coef->n_ineq);
graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
coef, dim_map);
isl_space_free(dim);
return 0;
error:
isl_space_free(dim);
return -1;
}
/* Add all validity constraints to graph->lp.
*
* An edge that is forced to be local needs to have its dependence
* distances equal to zero. We take care of bounding them by 0 from below
* here. add_all_proximity_constraints takes care of bounding them by 0
* from above.
*
* If "use_coincidence" is set, then we treat coincidence edges as local edges.
* Otherwise, we ignore them.
*/
static int add_all_validity_constraints(struct isl_sched_graph *graph,
int use_coincidence)
{
int i;
for (i = 0; i < graph->n_edge; ++i) {
struct isl_sched_edge *edge= &graph->edge[i];
int local;
local = edge->local || (edge->coincidence && use_coincidence);
if (!edge->validity && !local)
continue;
if (edge->src != edge->dst)
continue;
if (add_intra_validity_constraints(graph, edge) < 0)
return -1;
}
for (i = 0; i < graph->n_edge; ++i) {
struct isl_sched_edge *edge = &graph->edge[i];
int local;
local = edge->local || (edge->coincidence && use_coincidence);
if (!edge->validity && !local)
continue;
if (edge->src == edge->dst)
continue;
if (add_inter_validity_constraints(graph, edge) < 0)
return -1;
}
return 0;
}
/* Add constraints to graph->lp that bound the dependence distance
* for all dependence relations.
* If a given proximity dependence is identical to a validity
* dependence, then the dependence distance is already bounded
* from below (by zero), so we only need to bound the distance
* from above. (This includes the case of "local" dependences
* which are treated as validity dependence by add_all_validity_constraints.)
* Otherwise, we need to bound the distance both from above and from below.
*
* If "use_coincidence" is set, then we treat coincidence edges as local edges.
* Otherwise, we ignore them.
*/
static int add_all_proximity_constraints(struct isl_sched_graph *graph,
int use_coincidence)
{
int i;
for (i = 0; i < graph->n_edge; ++i) {
struct isl_sched_edge *edge= &graph->edge[i];
int local;
local = edge->local || (edge->coincidence && use_coincidence);
if (!edge->proximity && !local)
continue;
if (edge->src == edge->dst &&
add_intra_proximity_constraints(graph, edge, 1, local) < 0)
return -1;
if (edge->src != edge->dst &&
add_inter_proximity_constraints(graph, edge, 1, local) < 0)
return -1;
if (edge->validity || local)
continue;
if (edge->src == edge->dst &&
add_intra_proximity_constraints(graph, edge, -1, 0) < 0)
return -1;
if (edge->src != edge->dst &&
add_inter_proximity_constraints(graph, edge, -1, 0) < 0)
return -1;
}
return 0;
}
/* Compute a basis for the rows in the linear part of the schedule
* and extend this basis to a full basis. The remaining rows
* can then be used to force linear independence from the rows
* in the schedule.
*
* In particular, given the schedule rows S, we compute
*
* S = H Q
* S U = H
*
* with H the Hermite normal form of S. That is, all but the
* first rank columns of H are zero and so each row in S is
* a linear combination of the first rank rows of Q.
* The matrix Q is then transposed because we will write the
* coefficients of the next schedule row as a column vector s
* and express this s as a linear combination s = Q c of the
* computed basis.
* Similarly, the matrix U is transposed such that we can
* compute the coefficients c = U s from a schedule row s.
*/
static int node_update_cmap(struct isl_sched_node *node)
{
isl_mat *H, *U, *Q;
int n_row = isl_mat_rows(node->sched);
H = isl_mat_sub_alloc(node->sched, 0, n_row,
1 + node->nparam, node->nvar);
H = isl_mat_left_hermite(H, 0, &U, &Q);
isl_mat_free(node->cmap);
isl_mat_free(node->cinv);
node->cmap = isl_mat_transpose(Q);
node->cinv = isl_mat_transpose(U);
node->rank = isl_mat_initial_non_zero_cols(H);
isl_mat_free(H);
if (!node->cmap || !node->cinv || node->rank < 0)
return -1;
return 0;
}
/* How many times should we count the constraints in "edge"?
*
* If carry is set, then we are counting the number of
* (validity or conditional validity) constraints that will be added
* in setup_carry_lp and we count each edge exactly once.
*
* Otherwise, we count as follows
* validity -> 1 (>= 0)
* validity+proximity -> 2 (>= 0 and upper bound)
* proximity -> 2 (lower and upper bound)
* local(+any) -> 2 (>= 0 and <= 0)
*
* If an edge is only marked conditional_validity then it counts
* as zero since it is only checked afterwards.
*
* If "use_coincidence" is set, then we treat coincidence edges as local edges.
* Otherwise, we ignore them.
*/
static int edge_multiplicity(struct isl_sched_edge *edge, int carry,
int use_coincidence)
{
if (carry && !edge->validity && !edge->conditional_validity)
return 0;
if (carry)
return 1;
if (edge->proximity || edge->local)
return 2;
if (use_coincidence && edge->coincidence)
return 2;
if (edge->validity)
return 1;
return 0;
}
/* Count the number of equality and inequality constraints
* that will be added for the given map.
*
* "use_coincidence" is set if we should take into account coincidence edges.
*/
static int count_map_constraints(struct isl_sched_graph *graph,
struct isl_sched_edge *edge, __isl_take isl_map *map,
int *n_eq, int *n_ineq, int carry, int use_coincidence)
{
isl_basic_set *coef;
int f = edge_multiplicity(edge, carry, use_coincidence);
if (f == 0) {
isl_map_free(map);
return 0;
}
if (edge->src == edge->dst)
coef = intra_coefficients(graph, edge->src, map);
else
coef = inter_coefficients(graph, edge, map);
if (!coef)
return -1;
*n_eq += f * coef->n_eq;
*n_ineq += f * coef->n_ineq;
isl_basic_set_free(coef);
return 0;
}
/* Count the number of equality and inequality constraints
* that will be added to the main lp problem.
* We count as follows
* validity -> 1 (>= 0)
* validity+proximity -> 2 (>= 0 and upper bound)
* proximity -> 2 (lower and upper bound)
* local(+any) -> 2 (>= 0 and <= 0)
*
* If "use_coincidence" is set, then we treat coincidence edges as local edges.
* Otherwise, we ignore them.
*/
static int count_constraints(struct isl_sched_graph *graph,
int *n_eq, int *n_ineq, int use_coincidence)
{
int i;
*n_eq = *n_ineq = 0;
for (i = 0; i < graph->n_edge; ++i) {
struct isl_sched_edge *edge= &graph->edge[i];
isl_map *map = isl_map_copy(edge->map);
if (count_map_constraints(graph, edge, map, n_eq, n_ineq,
0, use_coincidence) < 0)
return -1;
}
return 0;
}
/* Count the number of constraints that will be added by
* add_bound_coefficient_constraints and increment *n_eq and *n_ineq
* accordingly.
*
* In practice, add_bound_coefficient_constraints only adds inequalities.
*/
static int count_bound_coefficient_constraints(isl_ctx *ctx,
struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
{
int i;
if (ctx->opt->schedule_max_coefficient == -1)
return 0;
for (i = 0; i < graph->n; ++i)
*n_ineq += 2 * graph->node[i].nparam + 2 * graph->node[i].nvar;
return 0;
}
/* Add constraints that bound the values of the variable and parameter
* coefficients of the schedule.
*
* The maximal value of the coefficients is defined by the option
* 'schedule_max_coefficient'.
*/
static int add_bound_coefficient_constraints(isl_ctx *ctx,
struct isl_sched_graph *graph)
{
int i, j, k;
int max_coefficient;
int total;
max_coefficient = ctx->opt->schedule_max_coefficient;
if (max_coefficient == -1)
return 0;
total = isl_basic_set_total_dim(graph->lp);
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
for (j = 0; j < 2 * node->nparam + 2 * node->nvar; ++j) {
int dim;
k = isl_basic_set_alloc_inequality(graph->lp);
if (k < 0)
return -1;
dim = 1 + node->start + 1 + j;
isl_seq_clr(graph->lp->ineq[k], 1 + total);
isl_int_set_si(graph->lp->ineq[k][dim], -1);
isl_int_set_si(graph->lp->ineq[k][0], max_coefficient);
}
}
return 0;
}
/* Construct an ILP problem for finding schedule coefficients
* that result in non-negative, but small dependence distances
* over all dependences.
* In particular, the dependence distances over proximity edges
* are bounded by m_0 + m_n n and we compute schedule coefficients
* with small values (preferably zero) of m_n and m_0.
*
* All variables of the ILP are non-negative. The actual coefficients
* may be negative, so each coefficient is represented as the difference
* of two non-negative variables. The negative part always appears
* immediately before the positive part.
* Other than that, the variables have the following order
*
* - sum of positive and negative parts of m_n coefficients
* - m_0
* - sum of positive and negative parts of all c_n coefficients
* (unconstrained when computing non-parametric schedules)
* - sum of positive and negative parts of all c_x coefficients
* - positive and negative parts of m_n coefficients
* - for each node
* - c_i_0
* - positive and negative parts of c_i_n (if parametric)
* - positive and negative parts of c_i_x
*
* The c_i_x are not represented directly, but through the columns of
* node->cmap. That is, the computed values are for variable t_i_x
* such that c_i_x = Q t_i_x with Q equal to node->cmap.
*
* The constraints are those from the edges plus two or three equalities
* to express the sums.
*
* If "use_coincidence" is set, then we treat coincidence edges as local edges.
* Otherwise, we ignore them.
*/
static int setup_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
int use_coincidence)
{
int i, j;
int k;
unsigned nparam;
unsigned total;
isl_space *dim;
int parametric;
int param_pos;
int n_eq, n_ineq;
int max_constant_term;
max_constant_term = ctx->opt->schedule_max_constant_term;
parametric = ctx->opt->schedule_parametric;
nparam = isl_space_dim(graph->node[0].space, isl_dim_param);
param_pos = 4;
total = param_pos + 2 * nparam;
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[graph->sorted[i]];
if (node_update_cmap(node) < 0)
return -1;
node->start = total;
total += 1 + 2 * (node->nparam + node->nvar);
}
if (count_constraints(graph, &n_eq, &n_ineq, use_coincidence) < 0)
return -1;
if (count_bound_coefficient_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
return -1;
dim = isl_space_set_alloc(ctx, 0, total);
isl_basic_set_free(graph->lp);
n_eq += 2 + parametric;
if (max_constant_term != -1)
n_ineq += graph->n;
graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq);
k = isl_basic_set_alloc_equality(graph->lp);
if (k < 0)
return -1;
isl_seq_clr(graph->lp->eq[k], 1 + total);
isl_int_set_si(graph->lp->eq[k][1], -1);
for (i = 0; i < 2 * nparam; ++i)
isl_int_set_si(graph->lp->eq[k][1 + param_pos + i], 1);
if (parametric) {
k = isl_basic_set_alloc_equality(graph->lp);
if (k < 0)
return -1;
isl_seq_clr(graph->lp->eq[k], 1 + total);
isl_int_set_si(graph->lp->eq[k][3], -1);
for (i = 0; i < graph->n; ++i) {
int pos = 1 + graph->node[i].start + 1;
for (j = 0; j < 2 * graph->node[i].nparam; ++j)
isl_int_set_si(graph->lp->eq[k][pos + j], 1);
}
}
k = isl_basic_set_alloc_equality(graph->lp);
if (k < 0)
return -1;
isl_seq_clr(graph->lp->eq[k], 1 + total);
isl_int_set_si(graph->lp->eq[k][4], -1);
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
int pos = 1 + node->start + 1 + 2 * node->nparam;
for (j = 0; j < 2 * node->nvar; ++j)
isl_int_set_si(graph->lp->eq[k][pos + j], 1);
}
if (max_constant_term != -1)
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
k = isl_basic_set_alloc_inequality(graph->lp);
if (k < 0)
return -1;
isl_seq_clr(graph->lp->ineq[k], 1 + total);
isl_int_set_si(graph->lp->ineq[k][1 + node->start], -1);
isl_int_set_si(graph->lp->ineq[k][0], max_constant_term);
}
if (add_bound_coefficient_constraints(ctx, graph) < 0)
return -1;
if (add_all_validity_constraints(graph, use_coincidence) < 0)
return -1;
if (add_all_proximity_constraints(graph, use_coincidence) < 0)
return -1;
return 0;
}
/* Analyze the conflicting constraint found by
* isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
* constraint of one of the edges between distinct nodes, living, moreover
* in distinct SCCs, then record the source and sink SCC as this may
* be a good place to cut between SCCs.
*/
static int check_conflict(int con, void *user)
{
int i;
struct isl_sched_graph *graph = user;
if (graph->src_scc >= 0)
return 0;
con -= graph->lp->n_eq;
if (con >= graph->lp->n_ineq)
return 0;
for (i = 0; i < graph->n_edge; ++i) {
if (!graph->edge[i].validity)
continue;
if (graph->edge[i].src == graph->edge[i].dst)
continue;
if (graph->edge[i].src->scc == graph->edge[i].dst->scc)
continue;
if (graph->edge[i].start > con)
continue;
if (graph->edge[i].end <= con)
continue;
graph->src_scc = graph->edge[i].src->scc;
graph->dst_scc = graph->edge[i].dst->scc;
}
return 0;
}
/* Check whether the next schedule row of the given node needs to be
* non-trivial. Lower-dimensional domains may have some trivial rows,
* but as soon as the number of remaining required non-trivial rows
* is as large as the number or remaining rows to be computed,
* all remaining rows need to be non-trivial.
*/
static int needs_row(struct isl_sched_graph *graph, struct isl_sched_node *node)
{
return node->nvar - node->rank >= graph->maxvar - graph->n_row;
}
/* Solve the ILP problem constructed in setup_lp.
* For each node such that all the remaining rows of its schedule
* need to be non-trivial, we construct a non-triviality region.
* This region imposes that the next row is independent of previous rows.
* In particular the coefficients c_i_x are represented by t_i_x
* variables with c_i_x = Q t_i_x and Q a unimodular matrix such that
* its first columns span the rows of the previously computed part
* of the schedule. The non-triviality region enforces that at least
* one of the remaining components of t_i_x is non-zero, i.e.,
* that the new schedule row depends on at least one of the remaining
* columns of Q.
*/
static __isl_give isl_vec *solve_lp(struct isl_sched_graph *graph)
{
int i;
isl_vec *sol;
isl_basic_set *lp;
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
int skip = node->rank;
graph->region[i].pos = node->start + 1 + 2*(node->nparam+skip);
if (needs_row(graph, node))
graph->region[i].len = 2 * (node->nvar - skip);
else
graph->region[i].len = 0;
}
lp = isl_basic_set_copy(graph->lp);
sol = isl_tab_basic_set_non_trivial_lexmin(lp, 2, graph->n,
graph->region, &check_conflict, graph);
return sol;
}
/* Update the schedules of all nodes based on the given solution
* of the LP problem.
* The new row is added to the current band.
* All possibly negative coefficients are encoded as a difference
* of two non-negative variables, so we need to perform the subtraction
* here. Moreover, if use_cmap is set, then the solution does
* not refer to the actual coefficients c_i_x, but instead to variables
* t_i_x such that c_i_x = Q t_i_x and Q is equal to node->cmap.
* In this case, we then also need to perform this multiplication
* to obtain the values of c_i_x.
*
* If coincident is set, then the caller guarantees that the new
* row satisfies the coincidence constraints.
*/
static int update_schedule(struct isl_sched_graph *graph,
__isl_take isl_vec *sol, int use_cmap, int coincident)
{
int i, j;
isl_vec *csol = NULL;
if (!sol)
goto error;
if (sol->size == 0)
isl_die(sol->ctx, isl_error_internal,
"no solution found", goto error);
if (graph->n_total_row >= graph->max_row)
isl_die(sol->ctx, isl_error_internal,
"too many schedule rows", goto error);
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
int pos = node->start;
int row = isl_mat_rows(node->sched);
isl_vec_free(csol);
csol = isl_vec_alloc(sol->ctx, node->nvar);
if (!csol)
goto error;
isl_map_free(node->sched_map);
node->sched_map = NULL;
node->sched = isl_mat_add_rows(node->sched, 1);
if (!node->sched)
goto error;
node->sched = isl_mat_set_element(node->sched, row, 0,
sol->el[1 + pos]);
for (j = 0; j < node->nparam + node->nvar; ++j)
isl_int_sub(sol->el[1 + pos + 1 + 2 * j + 1],
sol->el[1 + pos + 1 + 2 * j + 1],
sol->el[1 + pos + 1 + 2 * j]);
for (j = 0; j < node->nparam; ++j)
node->sched = isl_mat_set_element(node->sched,
row, 1 + j, sol->el[1+pos+1+2*j+1]);
for (j = 0; j < node->nvar; ++j)
isl_int_set(csol->el[j],
sol->el[1+pos+1+2*(node->nparam+j)+1]);
if (use_cmap)
csol = isl_mat_vec_product(isl_mat_copy(node->cmap),
csol);
if (!csol)
goto error;
for (j = 0; j < node->nvar; ++j)
node->sched = isl_mat_set_element(node->sched,
row, 1 + node->nparam + j, csol->el[j]);
node->band[graph->n_total_row] = graph->n_band;
node->coincident[graph->n_total_row] = coincident;
}
isl_vec_free(sol);
isl_vec_free(csol);
graph->n_row++;
graph->n_total_row++;
return 0;
error:
isl_vec_free(sol);
isl_vec_free(csol);
return -1;
}
/* Convert row "row" of node->sched into an isl_aff living in "ls"
* and return this isl_aff.
*/
static __isl_give isl_aff *extract_schedule_row(__isl_take isl_local_space *ls,
struct isl_sched_node *node, int row)
{
int j;
isl_int v;
isl_aff *aff;
isl_int_init(v);
aff = isl_aff_zero_on_domain(ls);
isl_mat_get_element(node->sched, row, 0, &v);
aff = isl_aff_set_constant(aff, v);
for (j = 0; j < node->nparam; ++j) {
isl_mat_get_element(node->sched, row, 1 + j, &v);
aff = isl_aff_set_coefficient(aff, isl_dim_param, j, v);
}
for (j = 0; j < node->nvar; ++j) {
isl_mat_get_element(node->sched, row, 1 + node->nparam + j, &v);
aff = isl_aff_set_coefficient(aff, isl_dim_in, j, v);
}
isl_int_clear(v);
return aff;
}
/* Convert node->sched into a multi_aff and return this multi_aff.
*
* The result is defined over the uncompressed node domain.
*/
static __isl_give isl_multi_aff *node_extract_schedule_multi_aff(
struct isl_sched_node *node)
{
int i;
isl_space *space;
isl_local_space *ls;
isl_aff *aff;
isl_multi_aff *ma;
int nrow, ncol;
nrow = isl_mat_rows(node->sched);
ncol = isl_mat_cols(node->sched) - 1;
if (node->compressed)
space = isl_multi_aff_get_domain_space(node->decompress);
else
space = isl_space_copy(node->space);
ls = isl_local_space_from_space(isl_space_copy(space));
space = isl_space_from_domain(space);
space = isl_space_add_dims(space, isl_dim_out, nrow);
ma = isl_multi_aff_zero(space);
for (i = 0; i < nrow; ++i) {
aff = extract_schedule_row(isl_local_space_copy(ls), node, i);
ma = isl_multi_aff_set_aff(ma, i, aff);
}
isl_local_space_free(ls);
if (node->compressed)
ma = isl_multi_aff_pullback_multi_aff(ma,
isl_multi_aff_copy(node->compress));
return ma;
}
/* Convert node->sched into a map and return this map.
*
* The result is cached in node->sched_map, which needs to be released
* whenever node->sched is updated.
* It is defined over the uncompressed node domain.
*/
static __isl_give isl_map *node_extract_schedule(struct isl_sched_node *node)
{
if (!node->sched_map) {
isl_multi_aff *ma;
ma = node_extract_schedule_multi_aff(node);
node->sched_map = isl_map_from_multi_aff(ma);
}
return isl_map_copy(node->sched_map);
}
/* Construct a map that can be used to update a dependence relation
* based on the current schedule.
* That is, construct a map expressing that source and sink
* are executed within the same iteration of the current schedule.
* This map can then be intersected with the dependence relation.
* This is not the most efficient way, but this shouldn't be a critical
* operation.
*/
static __isl_give isl_map *specializer(struct isl_sched_node *src,
struct isl_sched_node *dst)
{
isl_map *src_sched, *dst_sched;
src_sched = node_extract_schedule(src);
dst_sched = node_extract_schedule(dst);
return isl_map_apply_range(src_sched, isl_map_reverse(dst_sched));
}
/* Intersect the domains of the nested relations in domain and range
* of "umap" with "map".
*/
static __isl_give isl_union_map *intersect_domains(
__isl_take isl_union_map *umap, __isl_keep isl_map *map)
{
isl_union_set *uset;
umap = isl_union_map_zip(umap);
uset = isl_union_set_from_set(isl_map_wrap(isl_map_copy(map)));
umap = isl_union_map_intersect_domain(umap, uset);
umap = isl_union_map_zip(umap);
return umap;
}
/* Update the dependence relation of the given edge based
* on the current schedule.
* If the dependence is carried completely by the current schedule, then
* it is removed from the edge_tables. It is kept in the list of edges
* as otherwise all edge_tables would have to be recomputed.
*/
static int update_edge(struct isl_sched_graph *graph,
struct isl_sched_edge *edge)
{
isl_map *id;
id = specializer(edge->src, edge->dst);
edge->map = isl_map_intersect(edge->map, isl_map_copy(id));
if (!edge->map)
goto error;
if (edge->tagged_condition) {
edge->tagged_condition =
intersect_domains(edge->tagged_condition, id);
if (!edge->tagged_condition)
goto error;
}
if (edge->tagged_validity) {
edge->tagged_validity =
intersect_domains(edge->tagged_validity, id);
if (!edge->tagged_validity)
goto error;
}
isl_map_free(id);
if (isl_map_plain_is_empty(edge->map))
graph_remove_edge(graph, edge);
return 0;
error:
isl_map_free(id);
return -1;
}
/* Update the dependence relations of all edges based on the current schedule.
*/
static int update_edges(isl_ctx *ctx, struct isl_sched_graph *graph)
{
int i;
for (i = graph->n_edge - 1; i >= 0; --i) {
if (update_edge(graph, &graph->edge[i]) < 0)
return -1;
}
return 0;
}
static void next_band(struct isl_sched_graph *graph)
{
graph->band_start = graph->n_total_row;
graph->n_band++;
}
/* Topologically sort statements mapped to the same schedule iteration
* and add a row to the schedule corresponding to this order.
*/
static int sort_statements(isl_ctx *ctx, struct isl_sched_graph *graph)
{
int i, j;
if (graph->n <= 1)
return 0;
if (update_edges(ctx, graph) < 0)
return -1;
if (graph->n_edge == 0)
return 0;
if (detect_sccs(ctx, graph) < 0)
return -1;
if (graph->n_total_row >= graph->max_row)
isl_die(ctx, isl_error_internal,
"too many schedule rows", return -1);
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
int row = isl_mat_rows(node->sched);
int cols = isl_mat_cols(node->sched);
isl_map_free(node->sched_map);
node->sched_map = NULL;
node->sched = isl_mat_add_rows(node->sched, 1);
if (!node->sched)
return -1;
node->sched = isl_mat_set_element_si(node->sched, row, 0,
node->scc);
for (j = 1; j < cols; ++j)
node->sched = isl_mat_set_element_si(node->sched,
row, j, 0);
node->band[graph->n_total_row] = graph->n_band;
}
graph->n_total_row++;
next_band(graph);
return 0;
}
/* Construct an isl_schedule based on the computed schedule stored
* in graph and with parameters specified by dim.
*/
static __isl_give isl_schedule *extract_schedule(struct isl_sched_graph *graph,
__isl_take isl_space *dim)
{
int i;
isl_ctx *ctx;
isl_schedule *sched = NULL;
if (!dim)
return NULL;
ctx = isl_space_get_ctx(dim);
sched = isl_calloc(ctx, struct isl_schedule,
sizeof(struct isl_schedule) +
(graph->n - 1) * sizeof(struct isl_schedule_node));
if (!sched)
goto error;
sched->ref = 1;
sched->n = graph->n;
sched->n_band = graph->n_band;
sched->n_total_row = graph->n_total_row;
for (i = 0; i < sched->n; ++i) {
int r, b;
int *band_end, *band_id, *coincident;
sched->node[i].sched =
node_extract_schedule_multi_aff(&graph->node[i]);
if (!sched->node[i].sched)
goto error;
sched->node[i].n_band = graph->n_band;
if (graph->n_band == 0)
continue;
band_end = isl_alloc_array(ctx, int, graph->n_band);
band_id = isl_alloc_array(ctx, int, graph->n_band);
coincident = isl_alloc_array(ctx, int, graph->n_total_row);
sched->node[i].band_end = band_end;
sched->node[i].band_id = band_id;
sched->node[i].coincident = coincident;
if (!band_end || !band_id || !coincident)
goto error;
for (r = 0; r < graph->n_total_row; ++r)
coincident[r] = graph->node[i].coincident[r];
for (r = b = 0; r < graph->n_total_row; ++r) {
if (graph->node[i].band[r] == b)
continue;
band_end[b++] = r;
if (graph->node[i].band[r] == -1)
break;
}
if (r == graph->n_total_row)
band_end[b++] = r;
sched->node[i].n_band = b;
for (--b; b >= 0; --b)
band_id[b] = graph->node[i].band_id[b];
}
sched->dim = dim;
return sched;
error:
isl_space_free(dim);
isl_schedule_free(sched);
return NULL;
}
/* Copy nodes that satisfy node_pred from the src dependence graph
* to the dst dependence graph.
*/
static int copy_nodes(struct isl_sched_graph *dst, struct isl_sched_graph *src,
int (*node_pred)(struct isl_sched_node *node, int data), int data)
{
int i;
dst->n = 0;
for (i = 0; i < src->n; ++i) {
int j;
if (!node_pred(&src->node[i], data))
continue;
j = dst->n;
dst->node[j].space = isl_space_copy(src->node[i].space);
dst->node[j].compressed = src->node[i].compressed;
dst->node[j].hull = isl_set_copy(src->node[i].hull);
dst->node[j].compress =
isl_multi_aff_copy(src->node[i].compress);
dst->node[j].decompress =
isl_multi_aff_copy(src->node[i].decompress);
dst->node[j].nvar = src->node[i].nvar;
dst->node[j].nparam = src->node[i].nparam;
dst->node[j].sched = isl_mat_copy(src->node[i].sched);
dst->node[j].sched_map = isl_map_copy(src->node[i].sched_map);
dst->node[j].band = src->node[i].band;
dst->node[j].band_id = src->node[i].band_id;
dst->node[j].coincident = src->node[i].coincident;
dst->n++;
if (!dst->node[j].space || !dst->node[j].sched)
return -1;
if (dst->node[j].compressed &&
(!dst->node[j].hull || !dst->node[j].compress ||
!dst->node[j].decompress))
return -1;
}
return 0;
}
/* Copy non-empty edges that satisfy edge_pred from the src dependence graph
* to the dst dependence graph.
* If the source or destination node of the edge is not in the destination
* graph, then it must be a backward proximity edge and it should simply
* be ignored.
*/
static int copy_edges(isl_ctx *ctx, struct isl_sched_graph *dst,
struct isl_sched_graph *src,
int (*edge_pred)(struct isl_sched_edge *edge, int data), int data)
{
int i;
enum isl_edge_type t;
dst->n_edge = 0;
for (i = 0; i < src->n_edge; ++i) {
struct isl_sched_edge *edge = &src->edge[i];
isl_map *map;
isl_union_map *tagged_condition;
isl_union_map *tagged_validity;
struct isl_sched_node *dst_src, *dst_dst;
if (!edge_pred(edge, data))
continue;
if (isl_map_plain_is_empty(edge->map))
continue;
dst_src = graph_find_node(ctx, dst, edge->src->space);
dst_dst = graph_find_node(ctx, dst, edge->dst->space);
if (!dst_src || !dst_dst) {
if (edge->validity || edge->conditional_validity)
isl_die(ctx, isl_error_internal,
"backward (conditional) validity edge",
return -1);
continue;
}
map = isl_map_copy(edge->map);
tagged_condition = isl_union_map_copy(edge->tagged_condition);
tagged_validity = isl_union_map_copy(edge->tagged_validity);
dst->edge[dst->n_edge].src = dst_src;
dst->edge[dst->n_edge].dst = dst_dst;
dst->edge[dst->n_edge].map = map;
dst->edge[dst->n_edge].tagged_condition = tagged_condition;
dst->edge[dst->n_edge].tagged_validity = tagged_validity;
dst->edge[dst->n_edge].validity = edge->validity;
dst->edge[dst->n_edge].proximity = edge->proximity;
dst->edge[dst->n_edge].coincidence = edge->coincidence;
dst->edge[dst->n_edge].condition = edge->condition;
dst->edge[dst->n_edge].conditional_validity =
edge->conditional_validity;
dst->n_edge++;
if (edge->tagged_condition && !tagged_condition)
return -1;
if (edge->tagged_validity && !tagged_validity)
return -1;
for (t = isl_edge_first; t <= isl_edge_last; ++t) {
if (edge !=
graph_find_edge(src, t, edge->src, edge->dst))
continue;
if (graph_edge_table_add(ctx, dst, t,
&dst->edge[dst->n_edge - 1]) < 0)
return -1;
}
}
return 0;
}
/* Given a "src" dependence graph that contains the nodes from "dst"
* that satisfy node_pred, copy the schedule computed in "src"
* for those nodes back to "dst".
*/
static int copy_schedule(struct isl_sched_graph *dst,
struct isl_sched_graph *src,
int (*node_pred)(struct isl_sched_node *node, int data), int data)
{
int i;
src->n = 0;
for (i = 0; i < dst->n; ++i) {
if (!node_pred(&dst->node[i], data))
continue;
isl_mat_free(dst->node[i].sched);
isl_map_free(dst->node[i].sched_map);
dst->node[i].sched = isl_mat_copy(src->node[src->n].sched);
dst->node[i].sched_map =
isl_map_copy(src->node[src->n].sched_map);
src->n++;
}
dst->max_row = src->max_row;
dst->n_total_row = src->n_total_row;
dst->n_band = src->n_band;
return 0;
}
/* Compute the maximal number of variables over all nodes.
* This is the maximal number of linearly independent schedule
* rows that we need to compute.
* Just in case we end up in a part of the dependence graph
* with only lower-dimensional domains, we make sure we will
* compute the required amount of extra linearly independent rows.
*/
static int compute_maxvar(struct isl_sched_graph *graph)
{
int i;
graph->maxvar = 0;
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
int nvar;
if (node_update_cmap(node) < 0)
return -1;
nvar = node->nvar + graph->n_row - node->rank;
if (nvar > graph->maxvar)
graph->maxvar = nvar;
}
return 0;
}
static int compute_schedule(isl_ctx *ctx, struct isl_sched_graph *graph);
static int compute_schedule_wcc(isl_ctx *ctx, struct isl_sched_graph *graph);
/* Compute a schedule for a subgraph of "graph". In particular, for
* the graph composed of nodes that satisfy node_pred and edges that
* that satisfy edge_pred. The caller should precompute the number
* of nodes and edges that satisfy these predicates and pass them along
* as "n" and "n_edge".
* If the subgraph is known to consist of a single component, then wcc should
* be set and then we call compute_schedule_wcc on the constructed subgraph.
* Otherwise, we call compute_schedule, which will check whether the subgraph
* is connected.
*/
static int compute_sub_schedule(isl_ctx *ctx,
struct isl_sched_graph *graph, int n, int n_edge,
int (*node_pred)(struct isl_sched_node *node, int data),
int (*edge_pred)(struct isl_sched_edge *edge, int data),
int data, int wcc)
{
struct isl_sched_graph split = { 0 };
int t;
if (graph_alloc(ctx, &split, n, n_edge) < 0)
goto error;
if (copy_nodes(&split, graph, node_pred, data) < 0)
goto error;
if (graph_init_table(ctx, &split) < 0)
goto error;
for (t = 0; t <= isl_edge_last; ++t)
split.max_edge[t] = graph->max_edge[t];
if (graph_init_edge_tables(ctx, &split) < 0)
goto error;
if (copy_edges(ctx, &split, graph, edge_pred, data) < 0)
goto error;
split.n_row = graph->n_row;
split.max_row = graph->max_row;
split.n_total_row = graph->n_total_row;
split.n_band = graph->n_band;
split.band_start = graph->band_start;
if (wcc && compute_schedule_wcc(ctx, &split) < 0)
goto error;
if (!wcc && compute_schedule(ctx, &split) < 0)
goto error;
copy_schedule(graph, &split, node_pred, data);
graph_free(ctx, &split);
return 0;
error:
graph_free(ctx, &split);
return -1;
}
static int node_scc_exactly(struct isl_sched_node *node, int scc)
{
return node->scc == scc;
}
static int node_scc_at_most(struct isl_sched_node *node, int scc)
{
return node->scc <= scc;
}
static int node_scc_at_least(struct isl_sched_node *node, int scc)
{
return node->scc >= scc;
}
static int edge_scc_exactly(struct isl_sched_edge *edge, int scc)
{
return edge->src->scc == scc && edge->dst->scc == scc;
}
static int edge_dst_scc_at_most(struct isl_sched_edge *edge, int scc)
{
return edge->dst->scc <= scc;
}
static int edge_src_scc_at_least(struct isl_sched_edge *edge, int scc)
{
return edge->src->scc >= scc;
}
/* Pad the schedules of all nodes with zero rows such that in the end
* they all have graph->n_total_row rows.
* The extra rows don't belong to any band, so they get assigned band number -1.
*/
static int pad_schedule(struct isl_sched_graph *graph)
{
int i, j;
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
int row = isl_mat_rows(node->sched);
if (graph->n_total_row > row) {
isl_map_free(node->sched_map);
node->sched_map = NULL;
}
node->sched = isl_mat_add_zero_rows(node->sched,
graph->n_total_row - row);
if (!node->sched)
return -1;
for (j = row; j < graph->n_total_row; ++j)
node->band[j] = -1;
}
return 0;
}
/* Reset the current band by dropping all its schedule rows.
*/
static int reset_band(struct isl_sched_graph *graph)
{
int i;
int drop;
drop = graph->n_total_row - graph->band_start;
graph->n_total_row -= drop;
graph->n_row -= drop;
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
isl_map_free(node->sched_map);
node->sched_map = NULL;
node->sched = isl_mat_drop_rows(node->sched,
graph->band_start, drop);
if (!node->sched)
return -1;
}
return 0;
}
/* Split the current graph into two parts and compute a schedule for each
* part individually. In particular, one part consists of all SCCs up
* to and including graph->src_scc, while the other part contains the other
* SCCS.
*
* The split is enforced in the schedule by constant rows with two different
* values (0 and 1). These constant rows replace the previously computed rows
* in the current band.
* It would be possible to reuse them as the first rows in the next
* band, but recomputing them may result in better rows as we are looking
* at a smaller part of the dependence graph.
*
* Since we do not enforce coincidence, we conservatively mark the
* splitting row as not coincident.
*
* The band_id of the second group is set to n, where n is the number
* of nodes in the first group. This ensures that the band_ids over
* the two groups remain disjoint, even if either or both of the two
* groups contain independent components.
*/
static int compute_split_schedule(isl_ctx *ctx, struct isl_sched_graph *graph)
{
int i, j, n, e1, e2;
int n_total_row, orig_total_row;
int n_band, orig_band;
if (graph->n_total_row >= graph->max_row)
isl_die(ctx, isl_error_internal,
"too many schedule rows", return -1);
if (reset_band(graph) < 0)
return -1;
n = 0;
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
int row = isl_mat_rows(node->sched);
int cols = isl_mat_cols(node->sched);
int before = node->scc <= graph->src_scc;
if (before)
n++;
isl_map_free(node->sched_map);
node->sched_map = NULL;
node->sched = isl_mat_add_rows(node->sched, 1);
if (!node->sched)
return -1;
node->sched = isl_mat_set_element_si(node->sched, row, 0,
!before);
for (j = 1; j < cols; ++j)
node->sched = isl_mat_set_element_si(node->sched,
row, j, 0);
node->band[graph->n_total_row] = graph->n_band;
node->coincident[graph->n_total_row] = 0;
}
e1 = e2 = 0;
for (i = 0; i < graph->n_edge; ++i) {
if (graph->edge[i].dst->scc <= graph->src_scc)
e1++;
if (graph->edge[i].src->scc > graph->src_scc)
e2++;
}
graph->n_total_row++;
next_band(graph);
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
if (node->scc > graph->src_scc)
node->band_id[graph->n_band] = n;
}
orig_total_row = graph->n_total_row;
orig_band = graph->n_band;
if (compute_sub_schedule(ctx, graph, n, e1,
&node_scc_at_most, &edge_dst_scc_at_most,
graph->src_scc, 0) < 0)
return -1;
n_total_row = graph->n_total_row;
graph->n_total_row = orig_total_row;
n_band = graph->n_band;
graph->n_band = orig_band;
if (compute_sub_schedule(ctx, graph, graph->n - n, e2,
&node_scc_at_least, &edge_src_scc_at_least,
graph->src_scc + 1, 0) < 0)
return -1;
if (n_total_row > graph->n_total_row)
graph->n_total_row = n_total_row;
if (n_band > graph->n_band)
graph->n_band = n_band;
return pad_schedule(graph);
}
/* Compute the next band of the schedule after updating the dependence
* relations based on the the current schedule.
*/
static int compute_next_band(isl_ctx *ctx, struct isl_sched_graph *graph)
{
if (update_edges(ctx, graph) < 0)
return -1;
next_band(graph);
return compute_schedule(ctx, graph);
}
/* Add constraints to graph->lp that force the dependence "map" (which
* is part of the dependence relation of "edge")
* to be respected and attempt to carry it, where the edge is one from
* a node j to itself. "pos" is the sequence number of the given map.
* That is, add constraints that enforce
*
* (c_j_0 + c_j_n n + c_j_x y) - (c_j_0 + c_j_n n + c_j_x x)
* = c_j_x (y - x) >= e_i
*
* for each (x,y) in R.
* We obtain general constraints on coefficients (c_0, c_n, c_x)
* of valid constraints for (y - x) and then plug in (-e_i, 0, c_j_x),
* with each coefficient in c_j_x represented as a pair of non-negative
* coefficients.
*/
static int add_intra_constraints(struct isl_sched_graph *graph,
struct isl_sched_edge *edge, __isl_take isl_map *map, int pos)
{
unsigned total;
isl_ctx *ctx = isl_map_get_ctx(map);
isl_space *dim;
isl_dim_map *dim_map;
isl_basic_set *coef;
struct isl_sched_node *node = edge->src;
coef = intra_coefficients(graph, node, map);
if (!coef)
return -1;
dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
total = isl_basic_set_total_dim(graph->lp);
dim_map = isl_dim_map_alloc(ctx, total);
isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
isl_space_dim(dim, isl_dim_set), 1,
node->nvar, -1);
isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
isl_space_dim(dim, isl_dim_set), 1,
node->nvar, 1);
graph->lp = isl_basic_set_extend_constraints(graph->lp,
coef->n_eq, coef->n_ineq);
graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
coef, dim_map);
isl_space_free(dim);
return 0;
}
/* Add constraints to graph->lp that force the dependence "map" (which
* is part of the dependence relation of "edge")
* to be respected and attempt to carry it, where the edge is one from
* node j to node k. "pos" is the sequence number of the given map.
* That is, add constraints that enforce
*
* (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
*
* for each (x,y) in R.
* We obtain general constraints on coefficients (c_0, c_n, c_x)
* of valid constraints for R and then plug in
* (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, c_k_x - c_j_x)
* with each coefficient (except e_i, c_k_0 and c_j_0)
* represented as a pair of non-negative coefficients.
*/
static int add_inter_constraints(struct isl_sched_graph *graph,
struct isl_sched_edge *edge, __isl_take isl_map *map, int pos)
{
unsigned total;
isl_ctx *ctx = isl_map_get_ctx(map);
isl_space *dim;
isl_dim_map *dim_map;
isl_basic_set *coef;
struct isl_sched_node *src = edge->src;
struct isl_sched_node *dst = edge->dst;
coef = inter_coefficients(graph, edge, map);
if (!coef)
return -1;
dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
total = isl_basic_set_total_dim(graph->lp);
dim_map = isl_dim_map_alloc(ctx, total);
isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, 1);
isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, -1);
isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, 1);
isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
dst->nvar, -1);
isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
dst->nvar, 1);
isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, -1);
isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, 1);
isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, -1);
isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
isl_space_dim(dim, isl_dim_set), 1,
src->nvar, 1);
isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
isl_space_dim(dim, isl_dim_set), 1,
src->nvar, -1);
graph->lp = isl_basic_set_extend_constraints(graph->lp,
coef->n_eq, coef->n_ineq);
graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
coef, dim_map);
isl_space_free(dim);
return 0;
}
/* Add constraints to graph->lp that force all (conditional) validity
* dependences to be respected and attempt to carry them.
*/
static int add_all_constraints(struct isl_sched_graph *graph)
{
int i, j;
int pos;
pos = 0;
for (i = 0; i < graph->n_edge; ++i) {
struct isl_sched_edge *edge= &graph->edge[i];
if (!edge->validity && !edge->conditional_validity)
continue;
for (j = 0; j < edge->map->n; ++j) {
isl_basic_map *bmap;
isl_map *map;
bmap = isl_basic_map_copy(edge->map->p[j]);
map = isl_map_from_basic_map(bmap);
if (edge->src == edge->dst &&
add_intra_constraints(graph, edge, map, pos) < 0)
return -1;
if (edge->src != edge->dst &&
add_inter_constraints(graph, edge, map, pos) < 0)
return -1;
++pos;
}
}
return 0;
}
/* Count the number of equality and inequality constraints
* that will be added to the carry_lp problem.
* We count each edge exactly once.
*/
static int count_all_constraints(struct isl_sched_graph *graph,
int *n_eq, int *n_ineq)
{
int i, j;
*n_eq = *n_ineq = 0;
for (i = 0; i < graph->n_edge; ++i) {
struct isl_sched_edge *edge= &graph->edge[i];
for (j = 0; j < edge->map->n; ++j) {
isl_basic_map *bmap;
isl_map *map;
bmap = isl_basic_map_copy(edge->map->p[j]);
map = isl_map_from_basic_map(bmap);
if (count_map_constraints(graph, edge, map,
n_eq, n_ineq, 1, 0) < 0)
return -1;
}
}
return 0;
}
/* Construct an LP problem for finding schedule coefficients
* such that the schedule carries as many dependences as possible.
* In particular, for each dependence i, we bound the dependence distance
* from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
* of all e_i's. Dependence with e_i = 0 in the solution are simply
* respected, while those with e_i > 0 (in practice e_i = 1) are carried.
* Note that if the dependence relation is a union of basic maps,
* then we have to consider each basic map individually as it may only
* be possible to carry the dependences expressed by some of those
* basic maps and not all off them.
* Below, we consider each of those basic maps as a separate "edge".
*
* All variables of the LP are non-negative. The actual coefficients
* may be negative, so each coefficient is represented as the difference
* of two non-negative variables. The negative part always appears
* immediately before the positive part.
* Other than that, the variables have the following order
*
* - sum of (1 - e_i) over all edges
* - sum of positive and negative parts of all c_n coefficients
* (unconstrained when computing non-parametric schedules)
* - sum of positive and negative parts of all c_x coefficients
* - for each edge
* - e_i
* - for each node
* - c_i_0
* - positive and negative parts of c_i_n (if parametric)
* - positive and negative parts of c_i_x
*
* The constraints are those from the (validity) edges plus three equalities
* to express the sums and n_edge inequalities to express e_i <= 1.
*/
static int setup_carry_lp(isl_ctx *ctx, struct isl_sched_graph *graph)
{
int i, j;
int k;
isl_space *dim;
unsigned total;
int n_eq, n_ineq;
int n_edge;
n_edge = 0;
for (i = 0; i < graph->n_edge; ++i)
n_edge += graph->edge[i].map->n;
total = 3 + n_edge;
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[graph->sorted[i]];
node->start = total;
total += 1 + 2 * (node->nparam + node->nvar);
}
if (count_all_constraints(graph, &n_eq, &n_ineq) < 0)
return -1;
if (count_bound_coefficient_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
return -1;
dim = isl_space_set_alloc(ctx, 0, total);
isl_basic_set_free(graph->lp);
n_eq += 3;
n_ineq += n_edge;
graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq);
graph->lp = isl_basic_set_set_rational(graph->lp);
k = isl_basic_set_alloc_equality(graph->lp);
if (k < 0)
return -1;
isl_seq_clr(graph->lp->eq[k], 1 + total);
isl_int_set_si(graph->lp->eq[k][0], -n_edge);
isl_int_set_si(graph->lp->eq[k][1], 1);
for (i = 0; i < n_edge; ++i)
isl_int_set_si(graph->lp->eq[k][4 + i], 1);
k = isl_basic_set_alloc_equality(graph->lp);
if (k < 0)
return -1;
isl_seq_clr(graph->lp->eq[k], 1 + total);
isl_int_set_si(graph->lp->eq[k][2], -1);
for (i = 0; i < graph->n; ++i) {
int pos = 1 + graph->node[i].start + 1;
for (j = 0; j < 2 * graph->node[i].nparam; ++j)
isl_int_set_si(graph->lp->eq[k][pos + j], 1);
}
k = isl_basic_set_alloc_equality(graph->lp);
if (k < 0)
return -1;
isl_seq_clr(graph->lp->eq[k], 1 + total);
isl_int_set_si(graph->lp->eq[k][3], -1);
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
int pos = 1 + node->start + 1 + 2 * node->nparam;
for (j = 0; j < 2 * node->nvar; ++j)
isl_int_set_si(graph->lp->eq[k][pos + j], 1);
}
for (i = 0; i < n_edge; ++i) {
k = isl_basic_set_alloc_inequality(graph->lp);
if (k < 0)
return -1;
isl_seq_clr(graph->lp->ineq[k], 1 + total);
isl_int_set_si(graph->lp->ineq[k][4 + i], -1);
isl_int_set_si(graph->lp->ineq[k][0], 1);
}
if (add_bound_coefficient_constraints(ctx, graph) < 0)
return -1;
if (add_all_constraints(graph) < 0)
return -1;
return 0;
}
/* If the schedule_split_scaled option is set and if the linear
* parts of the scheduling rows for all nodes in the graphs have
* non-trivial common divisor, then split off the constant term
* from the linear part.
* The constant term is then placed in a separate band and
* the linear part is reduced.
*/
static int split_scaled(isl_ctx *ctx, struct isl_sched_graph *graph)
{
int i;
int row;
isl_int gcd, gcd_i;
if (!ctx->opt->schedule_split_scaled)
return 0;
if (graph->n <= 1)
return 0;
if (graph->n_total_row >= graph->max_row)
isl_die(ctx, isl_error_internal,
"too many schedule rows", return -1);
isl_int_init(gcd);
isl_int_init(gcd_i);
isl_int_set_si(gcd, 0);
row = isl_mat_rows(graph->node[0].sched) - 1;
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
int cols = isl_mat_cols(node->sched);
isl_seq_gcd(node->sched->row[row] + 1, cols - 1, &gcd_i);
isl_int_gcd(gcd, gcd, gcd_i);
}
isl_int_clear(gcd_i);
if (isl_int_cmp_si(gcd, 1) <= 0) {
isl_int_clear(gcd);
return 0;
}
next_band(graph);
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
isl_map_free(node->sched_map);
node->sched_map = NULL;
node->sched = isl_mat_add_zero_rows(node->sched, 1);
if (!node->sched)
goto error;
isl_int_fdiv_r(node->sched->row[row + 1][0],
node->sched->row[row][0], gcd);
isl_int_fdiv_q(node->sched->row[row][0],
node->sched->row[row][0], gcd);
isl_int_mul(node->sched->row[row][0],
node->sched->row[row][0], gcd);
node->sched = isl_mat_scale_down_row(node->sched, row, gcd);
if (!node->sched)
goto error;
node->band[graph->n_total_row] = graph->n_band;
}
graph->n_total_row++;
isl_int_clear(gcd);
return 0;
error:
isl_int_clear(gcd);
return -1;
}
static int compute_component_schedule(isl_ctx *ctx,
struct isl_sched_graph *graph);
/* Is the schedule row "sol" trivial on node "node"?
* That is, is the solution zero on the dimensions orthogonal to
* the previously found solutions?
* Return 1 if the solution is trivial, 0 if it is not and -1 on error.
*
* Each coefficient is represented as the difference between
* two non-negative values in "sol". "sol" has been computed
* in terms of the original iterators (i.e., without use of cmap).
* We construct the schedule row s and write it as a linear
* combination of (linear combinations of) previously computed schedule rows.
* s = Q c or c = U s.
* If the final entries of c are all zero, then the solution is trivial.
*/
static int is_trivial(struct isl_sched_node *node, __isl_keep isl_vec *sol)
{
int i;
int pos;
int trivial;
isl_ctx *ctx;
isl_vec *node_sol;
if (!sol)
return -1;
if (node->nvar == node->rank)
return 0;
ctx = isl_vec_get_ctx(sol);
node_sol = isl_vec_alloc(ctx, node->nvar);
if (!node_sol)
return -1;
pos = 1 + node->start + 1 + 2 * node->nparam;
for (i = 0; i < node->nvar; ++i)
isl_int_sub(node_sol->el[i],
sol->el[pos + 2 * i + 1], sol->el[pos + 2 * i]);
node_sol = isl_mat_vec_product(isl_mat_copy(node->cinv), node_sol);
if (!node_sol)
return -1;
trivial = isl_seq_first_non_zero(node_sol->el + node->rank,
node->nvar - node->rank) == -1;
isl_vec_free(node_sol);
return trivial;
}
/* Is the schedule row "sol" trivial on any node where it should
* not be trivial?
* "sol" has been computed in terms of the original iterators
* (i.e., without use of cmap).
* Return 1 if any solution is trivial, 0 if they are not and -1 on error.
*/
static int is_any_trivial(struct isl_sched_graph *graph,
__isl_keep isl_vec *sol)
{
int i;
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
int trivial;
if (!needs_row(graph, node))
continue;
trivial = is_trivial(node, sol);
if (trivial < 0 || trivial)
return trivial;
}
return 0;
}
/* Construct a schedule row for each node such that as many dependences
* as possible are carried and then continue with the next band.
*
* If the computed schedule row turns out to be trivial on one or
* more nodes where it should not be trivial, then we throw it away
* and try again on each component separately.
*
* If there is only one component, then we accept the schedule row anyway,
* but we do not consider it as a complete row and therefore do not
* increment graph->n_row. Note that the ranks of the nodes that
* do get a non-trivial schedule part will get updated regardless and
* graph->maxvar is computed based on these ranks. The test for
* whether more schedule rows are required in compute_schedule_wcc
* is therefore not affected.
*/
static int carry_dependences(isl_ctx *ctx, struct isl_sched_graph *graph)
{
int i;
int n_edge;
int trivial;
isl_vec *sol;
isl_basic_set *lp;
n_edge = 0;
for (i = 0; i < graph->n_edge; ++i)
n_edge += graph->edge[i].map->n;
if (setup_carry_lp(ctx, graph) < 0)
return -1;
lp = isl_basic_set_copy(graph->lp);
sol = isl_tab_basic_set_non_neg_lexmin(lp);
if (!sol)
return -1;
if (sol->size == 0) {
isl_vec_free(sol);
isl_die(ctx, isl_error_internal,
"error in schedule construction", return -1);
}
isl_int_divexact(sol->el[1], sol->el[1], sol->el[0]);
if (isl_int_cmp_si(sol->el[1], n_edge) >= 0) {
isl_vec_free(sol);
isl_die(ctx, isl_error_unknown,
"unable to carry dependences", return -1);
}
trivial = is_any_trivial(graph, sol);
if (trivial < 0) {
sol = isl_vec_free(sol);
} else if (trivial && graph->scc > 1) {
isl_vec_free(sol);
return compute_component_schedule(ctx, graph);
}
if (update_schedule(graph, sol, 0, 0) < 0)
return -1;
if (trivial)
graph->n_row--;
if (split_scaled(ctx, graph) < 0)
return -1;
return compute_next_band(ctx, graph);
}
/* Are there any (non-empty) (conditional) validity edges in the graph?
*/
static int has_validity_edges(struct isl_sched_graph *graph)
{
int i;
for (i = 0; i < graph->n_edge; ++i) {
int empty;
empty = isl_map_plain_is_empty(graph->edge[i].map);
if (empty < 0)
return -1;
if (empty)
continue;
if (graph->edge[i].validity ||
graph->edge[i].conditional_validity)
return 1;
}
return 0;
}
/* Should we apply a Feautrier step?
* That is, did the user request the Feautrier algorithm and are
* there any validity dependences (left)?
*/
static int need_feautrier_step(isl_ctx *ctx, struct isl_sched_graph *graph)
{
if (ctx->opt->schedule_algorithm != ISL_SCHEDULE_ALGORITHM_FEAUTRIER)
return 0;
return has_validity_edges(graph);
}
/* Compute a schedule for a connected dependence graph using Feautrier's
* multi-dimensional scheduling algorithm.
* The original algorithm is described in [1].
* The main idea is to minimize the number of scheduling dimensions, by
* trying to satisfy as many dependences as possible per scheduling dimension.
*
* [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
* Problem, Part II: Multi-Dimensional Time.
* In Intl. Journal of Parallel Programming, 1992.
*/
static int compute_schedule_wcc_feautrier(isl_ctx *ctx,
struct isl_sched_graph *graph)
{
return carry_dependences(ctx, graph);
}
/* Turn off the "local" bit on all (condition) edges.
*/
static void clear_local_edges(struct isl_sched_graph *graph)
{
int i;
for (i = 0; i < graph->n_edge; ++i)
if (graph->edge[i].condition)
graph->edge[i].local = 0;
}
/* Does "graph" have both condition and conditional validity edges?
*/
static int need_condition_check(struct isl_sched_graph *graph)
{
int i;
int any_condition = 0;
int any_conditional_validity = 0;
for (i = 0; i < graph->n_edge; ++i) {
if (graph->edge[i].condition)
any_condition = 1;
if (graph->edge[i].conditional_validity)
any_conditional_validity = 1;
}
return any_condition && any_conditional_validity;
}
/* Does "graph" contain any coincidence edge?
*/
static int has_any_coincidence(struct isl_sched_graph *graph)
{
int i;
for (i = 0; i < graph->n_edge; ++i)
if (graph->edge[i].coincidence)
return 1;
return 0;
}
/* Extract the final schedule row as a map with the iteration domain
* of "node" as domain.
*/
static __isl_give isl_map *final_row(struct isl_sched_node *node)
{
isl_local_space *ls;
isl_aff *aff;
int row;
row = isl_mat_rows(node->sched) - 1;
ls = isl_local_space_from_space(isl_space_copy(node->space));
aff = extract_schedule_row(ls, node, row);
return isl_map_from_aff(aff);
}
/* Is the conditional validity dependence in the edge with index "edge_index"
* violated by the latest (i.e., final) row of the schedule?
* That is, is i scheduled after j
* for any conditional validity dependence i -> j?
*/
static int is_violated(struct isl_sched_graph *graph, int edge_index)
{
isl_map *src_sched, *dst_sched, *map;
struct isl_sched_edge *edge = &graph->edge[edge_index];
int empty;
src_sched = final_row(edge->src);
dst_sched = final_row(edge->dst);
map = isl_map_copy(edge->map);
map = isl_map_apply_domain(map, src_sched);
map = isl_map_apply_range(map, dst_sched);
map = isl_map_order_gt(map, isl_dim_in, 0, isl_dim_out, 0);
empty = isl_map_is_empty(map);
isl_map_free(map);
if (empty < 0)
return -1;
return !empty;
}
/* Does the domain of "umap" intersect "uset"?
*/
static int domain_intersects(__isl_keep isl_union_map *umap,
__isl_keep isl_union_set *uset)
{
int empty;
umap = isl_union_map_copy(umap);
umap = isl_union_map_intersect_domain(umap, isl_union_set_copy(uset));
empty = isl_union_map_is_empty(umap);
isl_union_map_free(umap);
return empty < 0 ? -1 : !empty;
}
/* Does the range of "umap" intersect "uset"?
*/
static int range_intersects(__isl_keep isl_union_map *umap,
__isl_keep isl_union_set *uset)
{
int empty;
umap = isl_union_map_copy(umap);
umap = isl_union_map_intersect_range(umap, isl_union_set_copy(uset));
empty = isl_union_map_is_empty(umap);
isl_union_map_free(umap);
return empty < 0 ? -1 : !empty;
}
/* Are the condition dependences of "edge" local with respect to
* the current schedule?
*
* That is, are domain and range of the condition dependences mapped
* to the same point?
*
* In other words, is the condition false?
*/
static int is_condition_false(struct isl_sched_edge *edge)
{
isl_union_map *umap;
isl_map *map, *sched, *test;
int local;
umap = isl_union_map_copy(edge->tagged_condition);
umap = isl_union_map_zip(umap);
umap = isl_union_set_unwrap(isl_union_map_domain(umap));
map = isl_map_from_union_map(umap);
sched = node_extract_schedule(edge->src);
map = isl_map_apply_domain(map, sched);
sched = node_extract_schedule(edge->dst);
map = isl_map_apply_range(map, sched);
test = isl_map_identity(isl_map_get_space(map));
local = isl_map_is_subset(map, test);
isl_map_free(map);
isl_map_free(test);
return local;
}
/* Does "graph" have any satisfied condition edges that
* are adjacent to the conditional validity constraint with
* domain "conditional_source" and range "conditional_sink"?
*
* A satisfied condition is one that is not local.
* If a condition was forced to be local already (i.e., marked as local)
* then there is no need to check if it is in fact local.
*
* Additionally, mark all adjacent condition edges found as local.
*/
static int has_adjacent_true_conditions(struct isl_sched_graph *graph,
__isl_keep isl_union_set *conditional_source,
__isl_keep isl_union_set *conditional_sink)
{
int i;
int any = 0;
for (i = 0; i < graph->n_edge; ++i) {
int adjacent, local;
isl_union_map *condition;
if (!graph->edge[i].condition)
continue;
if (graph->edge[i].local)
continue;
condition = graph->edge[i].tagged_condition;
adjacent = domain_intersects(condition, conditional_sink);
if (adjacent >= 0 && !adjacent)
adjacent = range_intersects(condition,
conditional_source);
if (adjacent < 0)
return -1;
if (!adjacent)
continue;
graph->edge[i].local = 1;
local = is_condition_false(&graph->edge[i]);
if (local < 0)
return -1;
if (!local)
any = 1;
}
return any;
}
/* Are there any violated conditional validity dependences with
* adjacent condition dependences that are not local with respect
* to the current schedule?
* That is, is the conditional validity constraint violated?
*
* Additionally, mark all those adjacent condition dependences as local.
* We also mark those adjacent condition dependences that were not marked
* as local before, but just happened to be local already. This ensures
* that they remain local if the schedule is recomputed.
*
* We first collect domain and range of all violated conditional validity
* dependences and then check if there are any adjacent non-local
* condition dependences.
*/
static int has_violated_conditional_constraint(isl_ctx *ctx,
struct isl_sched_graph *graph)
{
int i;
int any = 0;
isl_union_set *source, *sink;
source = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
for (i = 0; i < graph->n_edge; ++i) {
isl_union_set *uset;
isl_union_map *umap;
int violated;
if (!graph->edge[i].conditional_validity)
continue;
violated = is_violated(graph, i);
if (violated < 0)
goto error;
if (!violated)
continue;
any = 1;
umap = isl_union_map_copy(graph->edge[i].tagged_validity);
uset = isl_union_map_domain(umap);
source = isl_union_set_union(source, uset);
source = isl_union_set_coalesce(source);
umap = isl_union_map_copy(graph->edge[i].tagged_validity);
uset = isl_union_map_range(umap);
sink = isl_union_set_union(sink, uset);
sink = isl_union_set_coalesce(sink);
}
if (any)
any = has_adjacent_true_conditions(graph, source, sink);
isl_union_set_free(source);
isl_union_set_free(sink);
return any;
error:
isl_union_set_free(source);
isl_union_set_free(sink);
return -1;
}
/* Compute a schedule for a connected dependence graph.
* We try to find a sequence of as many schedule rows as possible that result
* in non-negative dependence distances (independent of the previous rows
* in the sequence, i.e., such that the sequence is tilable), with as
* many of the initial rows as possible satisfying the coincidence constraints.
* If we can't find any more rows we either
* - split between SCCs and start over (assuming we found an interesting
* pair of SCCs between which to split)
* - continue with the next band (assuming the current band has at least
* one row)
* - try to carry as many dependences as possible and continue with the next
* band
*
* If Feautrier's algorithm is selected, we first recursively try to satisfy
* as many validity dependences as possible. When all validity dependences
* are satisfied we extend the schedule to a full-dimensional schedule.
*
* If we manage to complete the schedule, we finish off by topologically
* sorting the statements based on the remaining dependences.
*
* If ctx->opt->schedule_outer_coincidence is set, then we force the
* outermost dimension to satisfy the coincidence constraints. If this
* turns out to be impossible, we fall back on the general scheme above
* and try to carry as many dependences as possible.
*
* If "graph" contains both condition and conditional validity dependences,
* then we need to check that that the conditional schedule constraint
* is satisfied, i.e., there are no violated conditional validity dependences
* that are adjacent to any non-local condition dependences.
* If there are, then we mark all those adjacent condition dependences
* as local and recompute the current band. Those dependences that
* are marked local will then be forced to be local.
* The initial computation is performed with no dependences marked as local.
* If we are lucky, then there will be no violated conditional validity
* dependences adjacent to any non-local condition dependences.
* Otherwise, we mark some additional condition dependences as local and
* recompute. We continue this process until there are no violations left or
* until we are no longer able to compute a schedule.
* Since there are only a finite number of dependences,
* there will only be a finite number of iterations.
*/
static int compute_schedule_wcc(isl_ctx *ctx, struct isl_sched_graph *graph)
{
int has_coincidence;
int use_coincidence;
int force_coincidence = 0;
int check_conditional;
if (detect_sccs(ctx, graph) < 0)
return -1;
if (sort_sccs(graph) < 0)
return -1;
if (compute_maxvar(graph) < 0)
return -1;
if (need_feautrier_step(ctx, graph))
return compute_schedule_wcc_feautrier(ctx, graph);
clear_local_edges(graph);
check_conditional = need_condition_check(graph);
has_coincidence = has_any_coincidence(graph);
if (ctx->opt->schedule_outer_coincidence)
force_coincidence = 1;
use_coincidence = has_coincidence;
while (graph->n_row < graph->maxvar) {
isl_vec *sol;
int violated;
int coincident;
graph->src_scc = -1;
graph->dst_scc = -1;
if (setup_lp(ctx, graph, use_coincidence) < 0)
return -1;
sol = solve_lp(graph);
if (!sol)
return -1;
if (sol->size == 0) {
int empty = graph->n_total_row == graph->band_start;
isl_vec_free(sol);
if (use_coincidence && (!force_coincidence || !empty)) {
use_coincidence = 0;
continue;
}
if (!ctx->opt->schedule_maximize_band_depth && !empty)
return compute_next_band(ctx, graph);
if (graph->src_scc >= 0)
return compute_split_schedule(ctx, graph);
if (!empty)
return compute_next_band(ctx, graph);
return carry_dependences(ctx, graph);
}
coincident = !has_coincidence || use_coincidence;
if (update_schedule(graph, sol, 1, coincident) < 0)
return -1;
if (!check_conditional)
continue;
violated = has_violated_conditional_constraint(ctx, graph);
if (violated < 0)
return -1;
if (!violated)
continue;
if (reset_band(graph) < 0)
return -1;
use_coincidence = has_coincidence;
}
if (graph->n_total_row > graph->band_start)
next_band(graph);
return sort_statements(ctx, graph);
}
/* Add a row to the schedules that separates the SCCs and move
* to the next band.
*/
static int split_on_scc(isl_ctx *ctx, struct isl_sched_graph *graph)
{
int i;
if (graph->n_total_row >= graph->max_row)
isl_die(ctx, isl_error_internal,
"too many schedule rows", return -1);
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
int row = isl_mat_rows(node->sched);
isl_map_free(node->sched_map);
node->sched_map = NULL;
node->sched = isl_mat_add_zero_rows(node->sched, 1);
node->sched = isl_mat_set_element_si(node->sched, row, 0,
node->scc);
if (!node->sched)
return -1;
node->band[graph->n_total_row] = graph->n_band;
}
graph->n_total_row++;
next_band(graph);
return 0;
}
/* Compute a schedule for each component (identified by node->scc)
* of the dependence graph separately and then combine the results.
* Depending on the setting of schedule_fuse, a component may be
* either weakly or strongly connected.
*
* The band_id is adjusted such that each component has a separate id.
* Note that the band_id may have already been set to a value different
* from zero by compute_split_schedule.
*/
static int compute_component_schedule(isl_ctx *ctx,
struct isl_sched_graph *graph)
{
int wcc, i;
int n, n_edge;
int n_total_row, orig_total_row;
int n_band, orig_band;
if (ctx->opt->schedule_fuse == ISL_SCHEDULE_FUSE_MIN ||
ctx->opt->schedule_separate_components)
if (split_on_scc(ctx, graph) < 0)
return -1;
n_total_row = 0;
orig_total_row = graph->n_total_row;
n_band = 0;
orig_band = graph->n_band;
for (i = 0; i < graph->n; ++i)
graph->node[i].band_id[graph->n_band] += graph->node[i].scc;
for (wcc = 0; wcc < graph->scc; ++wcc) {
n = 0;
for (i = 0; i < graph->n; ++i)
if (graph->node[i].scc == wcc)
n++;
n_edge = 0;
for (i = 0; i < graph->n_edge; ++i)
if (graph->edge[i].src->scc == wcc &&
graph->edge[i].dst->scc == wcc)
n_edge++;
if (compute_sub_schedule(ctx, graph, n, n_edge,
&node_scc_exactly,
&edge_scc_exactly, wcc, 1) < 0)
return -1;
if (graph->n_total_row > n_total_row)
n_total_row = graph->n_total_row;
graph->n_total_row = orig_total_row;
if (graph->n_band > n_band)
n_band = graph->n_band;
graph->n_band = orig_band;
}
graph->n_total_row = n_total_row;
graph->n_band = n_band;
return pad_schedule(graph);
}
/* Compute a schedule for the given dependence graph.
* We first check if the graph is connected (through validity and conditional
* validity dependences) and, if not, compute a schedule
* for each component separately.
* If schedule_fuse is set to minimal fusion, then we check for strongly
* connected components instead and compute a separate schedule for
* each such strongly connected component.
*/
static int compute_schedule(isl_ctx *ctx, struct isl_sched_graph *graph)
{
if (ctx->opt->schedule_fuse == ISL_SCHEDULE_FUSE_MIN) {
if (detect_sccs(ctx, graph) < 0)
return -1;
} else {
if (detect_wccs(ctx, graph) < 0)
return -1;
}
if (graph->scc > 1)
return compute_component_schedule(ctx, graph);
return compute_schedule_wcc(ctx, graph);
}
/* Compute a schedule on sc->domain that respects the given schedule
* constraints.
*
* In particular, the schedule respects all the validity dependences.
* If the default isl scheduling algorithm is used, it tries to minimize
* the dependence distances over the proximity dependences.
* If Feautrier's scheduling algorithm is used, the proximity dependence
* distances are only minimized during the extension to a full-dimensional
* schedule.
*
* If there are any condition and conditional validity dependences,
* then the conditional validity dependences may be violated inside
* a tilable band, provided they have no adjacent non-local
* condition dependences.
*/
__isl_give isl_schedule *isl_schedule_constraints_compute_schedule(
__isl_take isl_schedule_constraints *sc)
{
isl_ctx *ctx = isl_schedule_constraints_get_ctx(sc);
struct isl_sched_graph graph = { 0 };
isl_schedule *sched;
struct isl_extract_edge_data data;
enum isl_edge_type i;
sc = isl_schedule_constraints_align_params(sc);
if (!sc)
return NULL;
graph.n = isl_union_set_n_set(sc->domain);
if (graph.n == 0)
goto empty;
if (graph_alloc(ctx, &graph, graph.n,
isl_schedule_constraints_n_map(sc)) < 0)
goto error;
if (compute_max_row(&graph, sc) < 0)
goto error;
graph.root = 1;
graph.n = 0;
if (isl_union_set_foreach_set(sc->domain, &extract_node, &graph) < 0)
goto error;
if (graph_init_table(ctx, &graph) < 0)
goto error;
for (i = isl_edge_first; i <= isl_edge_last; ++i)
graph.max_edge[i] = isl_union_map_n_map(sc->constraint[i]);
if (graph_init_edge_tables(ctx, &graph) < 0)
goto error;
graph.n_edge = 0;
data.graph = &graph;
for (i = isl_edge_first; i <= isl_edge_last; ++i) {
data.type = i;
if (isl_union_map_foreach_map(sc->constraint[i],
&extract_edge, &data) < 0)
goto error;
}
if (compute_schedule(ctx, &graph) < 0)
goto error;
empty:
sched = extract_schedule(&graph, isl_union_set_get_space(sc->domain));
graph_free(ctx, &graph);
isl_schedule_constraints_free(sc);
return sched;
error:
graph_free(ctx, &graph);
isl_schedule_constraints_free(sc);
return NULL;
}
/* Compute a schedule for the given union of domains that respects
* all the validity dependences and minimizes
* the dependence distances over the proximity dependences.
*
* This function is kept for backward compatibility.
*/
__isl_give isl_schedule *isl_union_set_compute_schedule(
__isl_take isl_union_set *domain,
__isl_take isl_union_map *validity,
__isl_take isl_union_map *proximity)
{
isl_schedule_constraints *sc;
sc = isl_schedule_constraints_on_domain(domain);
sc = isl_schedule_constraints_set_validity(sc, validity);
sc = isl_schedule_constraints_set_proximity(sc, proximity);
return isl_schedule_constraints_compute_schedule(sc);
}