forked from OSchip/llvm-project
4149 lines
119 KiB
C
4149 lines
119 KiB
C
|
/*
|
||
|
* Copyright 2011 INRIA Saclay
|
||
|
* Copyright 2012-2014 Ecole Normale Superieure
|
||
|
*
|
||
|
* Use of this software is governed by the MIT license
|
||
|
*
|
||
|
* Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
|
||
|
* Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
|
||
|
* 91893 Orsay, France
|
||
|
* and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
|
||
|
*/
|
||
|
|
||
|
#include <isl_ctx_private.h>
|
||
|
#include <isl_map_private.h>
|
||
|
#include <isl_space_private.h>
|
||
|
#include <isl_aff_private.h>
|
||
|
#include <isl/hash.h>
|
||
|
#include <isl/constraint.h>
|
||
|
#include <isl/schedule.h>
|
||
|
#include <isl_mat_private.h>
|
||
|
#include <isl_vec_private.h>
|
||
|
#include <isl/set.h>
|
||
|
#include <isl_seq.h>
|
||
|
#include <isl_tab.h>
|
||
|
#include <isl_dim_map.h>
|
||
|
#include <isl/map_to_basic_set.h>
|
||
|
#include <isl_sort.h>
|
||
|
#include <isl_schedule_private.h>
|
||
|
#include <isl_options_private.h>
|
||
|
#include <isl_tarjan.h>
|
||
|
#include <isl_morph.h>
|
||
|
|
||
|
/*
|
||
|
* The scheduling algorithm implemented in this file was inspired by
|
||
|
* Bondhugula et al., "Automatic Transformations for Communication-Minimized
|
||
|
* Parallelization and Locality Optimization in the Polyhedral Model".
|
||
|
*/
|
||
|
|
||
|
enum isl_edge_type {
|
||
|
isl_edge_validity = 0,
|
||
|
isl_edge_first = isl_edge_validity,
|
||
|
isl_edge_coincidence,
|
||
|
isl_edge_condition,
|
||
|
isl_edge_conditional_validity,
|
||
|
isl_edge_proximity,
|
||
|
isl_edge_last = isl_edge_proximity
|
||
|
};
|
||
|
|
||
|
/* The constraints that need to be satisfied by a schedule on "domain".
|
||
|
*
|
||
|
* "validity" constraints map domain elements i to domain elements
|
||
|
* that should be scheduled after i. (Hard constraint)
|
||
|
* "proximity" constraints map domain elements i to domains elements
|
||
|
* that should be scheduled as early as possible after i (or before i).
|
||
|
* (Soft constraint)
|
||
|
*
|
||
|
* "condition" and "conditional_validity" constraints map possibly "tagged"
|
||
|
* domain elements i -> s to "tagged" domain elements j -> t.
|
||
|
* The elements of the "conditional_validity" constraints, but without the
|
||
|
* tags (i.e., the elements i -> j) are treated as validity constraints,
|
||
|
* except that during the construction of a tilable band,
|
||
|
* the elements of the "conditional_validity" constraints may be violated
|
||
|
* provided that all adjacent elements of the "condition" constraints
|
||
|
* are local within the band.
|
||
|
* A dependence is local within a band if domain and range are mapped
|
||
|
* to the same schedule point by the band.
|
||
|
*/
|
||
|
struct isl_schedule_constraints {
|
||
|
isl_union_set *domain;
|
||
|
|
||
|
isl_union_map *constraint[isl_edge_last + 1];
|
||
|
};
|
||
|
|
||
|
__isl_give isl_schedule_constraints *isl_schedule_constraints_copy(
|
||
|
__isl_keep isl_schedule_constraints *sc)
|
||
|
{
|
||
|
isl_ctx *ctx;
|
||
|
isl_schedule_constraints *sc_copy;
|
||
|
enum isl_edge_type i;
|
||
|
|
||
|
ctx = isl_union_set_get_ctx(sc->domain);
|
||
|
sc_copy = isl_calloc_type(ctx, struct isl_schedule_constraints);
|
||
|
if (!sc_copy)
|
||
|
return NULL;
|
||
|
|
||
|
sc_copy->domain = isl_union_set_copy(sc->domain);
|
||
|
if (!sc_copy->domain)
|
||
|
return isl_schedule_constraints_free(sc_copy);
|
||
|
|
||
|
for (i = isl_edge_first; i <= isl_edge_last; ++i) {
|
||
|
sc_copy->constraint[i] = isl_union_map_copy(sc->constraint[i]);
|
||
|
if (!sc_copy->constraint[i])
|
||
|
return isl_schedule_constraints_free(sc_copy);
|
||
|
}
|
||
|
|
||
|
return sc_copy;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Construct an isl_schedule_constraints object for computing a schedule
|
||
|
* on "domain". The initial object does not impose any constraints.
|
||
|
*/
|
||
|
__isl_give isl_schedule_constraints *isl_schedule_constraints_on_domain(
|
||
|
__isl_take isl_union_set *domain)
|
||
|
{
|
||
|
isl_ctx *ctx;
|
||
|
isl_space *space;
|
||
|
isl_schedule_constraints *sc;
|
||
|
isl_union_map *empty;
|
||
|
enum isl_edge_type i;
|
||
|
|
||
|
if (!domain)
|
||
|
return NULL;
|
||
|
|
||
|
ctx = isl_union_set_get_ctx(domain);
|
||
|
sc = isl_calloc_type(ctx, struct isl_schedule_constraints);
|
||
|
if (!sc)
|
||
|
goto error;
|
||
|
|
||
|
space = isl_union_set_get_space(domain);
|
||
|
sc->domain = domain;
|
||
|
empty = isl_union_map_empty(space);
|
||
|
for (i = isl_edge_first; i <= isl_edge_last; ++i) {
|
||
|
sc->constraint[i] = isl_union_map_copy(empty);
|
||
|
if (!sc->constraint[i])
|
||
|
sc->domain = isl_union_set_free(sc->domain);
|
||
|
}
|
||
|
isl_union_map_free(empty);
|
||
|
|
||
|
if (!sc->domain)
|
||
|
return isl_schedule_constraints_free(sc);
|
||
|
|
||
|
return sc;
|
||
|
error:
|
||
|
isl_union_set_free(domain);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/* Replace the validity constraints of "sc" by "validity".
|
||
|
*/
|
||
|
__isl_give isl_schedule_constraints *isl_schedule_constraints_set_validity(
|
||
|
__isl_take isl_schedule_constraints *sc,
|
||
|
__isl_take isl_union_map *validity)
|
||
|
{
|
||
|
if (!sc || !validity)
|
||
|
goto error;
|
||
|
|
||
|
isl_union_map_free(sc->constraint[isl_edge_validity]);
|
||
|
sc->constraint[isl_edge_validity] = validity;
|
||
|
|
||
|
return sc;
|
||
|
error:
|
||
|
isl_schedule_constraints_free(sc);
|
||
|
isl_union_map_free(validity);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/* Replace the coincidence constraints of "sc" by "coincidence".
|
||
|
*/
|
||
|
__isl_give isl_schedule_constraints *isl_schedule_constraints_set_coincidence(
|
||
|
__isl_take isl_schedule_constraints *sc,
|
||
|
__isl_take isl_union_map *coincidence)
|
||
|
{
|
||
|
if (!sc || !coincidence)
|
||
|
goto error;
|
||
|
|
||
|
isl_union_map_free(sc->constraint[isl_edge_coincidence]);
|
||
|
sc->constraint[isl_edge_coincidence] = coincidence;
|
||
|
|
||
|
return sc;
|
||
|
error:
|
||
|
isl_schedule_constraints_free(sc);
|
||
|
isl_union_map_free(coincidence);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/* Replace the proximity constraints of "sc" by "proximity".
|
||
|
*/
|
||
|
__isl_give isl_schedule_constraints *isl_schedule_constraints_set_proximity(
|
||
|
__isl_take isl_schedule_constraints *sc,
|
||
|
__isl_take isl_union_map *proximity)
|
||
|
{
|
||
|
if (!sc || !proximity)
|
||
|
goto error;
|
||
|
|
||
|
isl_union_map_free(sc->constraint[isl_edge_proximity]);
|
||
|
sc->constraint[isl_edge_proximity] = proximity;
|
||
|
|
||
|
return sc;
|
||
|
error:
|
||
|
isl_schedule_constraints_free(sc);
|
||
|
isl_union_map_free(proximity);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/* Replace the conditional validity constraints of "sc" by "condition"
|
||
|
* and "validity".
|
||
|
*/
|
||
|
__isl_give isl_schedule_constraints *
|
||
|
isl_schedule_constraints_set_conditional_validity(
|
||
|
__isl_take isl_schedule_constraints *sc,
|
||
|
__isl_take isl_union_map *condition,
|
||
|
__isl_take isl_union_map *validity)
|
||
|
{
|
||
|
if (!sc || !condition || !validity)
|
||
|
goto error;
|
||
|
|
||
|
isl_union_map_free(sc->constraint[isl_edge_condition]);
|
||
|
sc->constraint[isl_edge_condition] = condition;
|
||
|
isl_union_map_free(sc->constraint[isl_edge_conditional_validity]);
|
||
|
sc->constraint[isl_edge_conditional_validity] = validity;
|
||
|
|
||
|
return sc;
|
||
|
error:
|
||
|
isl_schedule_constraints_free(sc);
|
||
|
isl_union_map_free(condition);
|
||
|
isl_union_map_free(validity);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
__isl_null isl_schedule_constraints *isl_schedule_constraints_free(
|
||
|
__isl_take isl_schedule_constraints *sc)
|
||
|
{
|
||
|
enum isl_edge_type i;
|
||
|
|
||
|
if (!sc)
|
||
|
return NULL;
|
||
|
|
||
|
isl_union_set_free(sc->domain);
|
||
|
for (i = isl_edge_first; i <= isl_edge_last; ++i)
|
||
|
isl_union_map_free(sc->constraint[i]);
|
||
|
|
||
|
free(sc);
|
||
|
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
isl_ctx *isl_schedule_constraints_get_ctx(
|
||
|
__isl_keep isl_schedule_constraints *sc)
|
||
|
{
|
||
|
return sc ? isl_union_set_get_ctx(sc->domain) : NULL;
|
||
|
}
|
||
|
|
||
|
void isl_schedule_constraints_dump(__isl_keep isl_schedule_constraints *sc)
|
||
|
{
|
||
|
if (!sc)
|
||
|
return;
|
||
|
|
||
|
fprintf(stderr, "domain: ");
|
||
|
isl_union_set_dump(sc->domain);
|
||
|
fprintf(stderr, "validity: ");
|
||
|
isl_union_map_dump(sc->constraint[isl_edge_validity]);
|
||
|
fprintf(stderr, "proximity: ");
|
||
|
isl_union_map_dump(sc->constraint[isl_edge_proximity]);
|
||
|
fprintf(stderr, "coincidence: ");
|
||
|
isl_union_map_dump(sc->constraint[isl_edge_coincidence]);
|
||
|
fprintf(stderr, "condition: ");
|
||
|
isl_union_map_dump(sc->constraint[isl_edge_condition]);
|
||
|
fprintf(stderr, "conditional_validity: ");
|
||
|
isl_union_map_dump(sc->constraint[isl_edge_conditional_validity]);
|
||
|
}
|
||
|
|
||
|
/* Align the parameters of the fields of "sc".
|
||
|
*/
|
||
|
static __isl_give isl_schedule_constraints *
|
||
|
isl_schedule_constraints_align_params(__isl_take isl_schedule_constraints *sc)
|
||
|
{
|
||
|
isl_space *space;
|
||
|
enum isl_edge_type i;
|
||
|
|
||
|
if (!sc)
|
||
|
return NULL;
|
||
|
|
||
|
space = isl_union_set_get_space(sc->domain);
|
||
|
for (i = isl_edge_first; i <= isl_edge_last; ++i)
|
||
|
space = isl_space_align_params(space,
|
||
|
isl_union_map_get_space(sc->constraint[i]));
|
||
|
|
||
|
for (i = isl_edge_first; i <= isl_edge_last; ++i) {
|
||
|
sc->constraint[i] = isl_union_map_align_params(
|
||
|
sc->constraint[i], isl_space_copy(space));
|
||
|
if (!sc->constraint[i])
|
||
|
space = isl_space_free(space);
|
||
|
}
|
||
|
sc->domain = isl_union_set_align_params(sc->domain, space);
|
||
|
if (!sc->domain)
|
||
|
return isl_schedule_constraints_free(sc);
|
||
|
|
||
|
return sc;
|
||
|
}
|
||
|
|
||
|
/* Return the total number of isl_maps in the constraints of "sc".
|
||
|
*/
|
||
|
static __isl_give int isl_schedule_constraints_n_map(
|
||
|
__isl_keep isl_schedule_constraints *sc)
|
||
|
{
|
||
|
enum isl_edge_type i;
|
||
|
int n = 0;
|
||
|
|
||
|
for (i = isl_edge_first; i <= isl_edge_last; ++i)
|
||
|
n += isl_union_map_n_map(sc->constraint[i]);
|
||
|
|
||
|
return n;
|
||
|
}
|
||
|
|
||
|
/* Internal information about a node that is used during the construction
|
||
|
* of a schedule.
|
||
|
* space represents the space in which the domain lives
|
||
|
* sched is a matrix representation of the schedule being constructed
|
||
|
* for this node; if compressed is set, then this schedule is
|
||
|
* defined over the compressed domain space
|
||
|
* sched_map is an isl_map representation of the same (partial) schedule
|
||
|
* sched_map may be NULL; if compressed is set, then this map
|
||
|
* is defined over the uncompressed domain space
|
||
|
* rank is the number of linearly independent rows in the linear part
|
||
|
* of sched
|
||
|
* the columns of cmap represent a change of basis for the schedule
|
||
|
* coefficients; the first rank columns span the linear part of
|
||
|
* the schedule rows
|
||
|
* cinv is the inverse of cmap.
|
||
|
* start is the first variable in the LP problem in the sequences that
|
||
|
* represents the schedule coefficients of this node
|
||
|
* nvar is the dimension of the domain
|
||
|
* nparam is the number of parameters or 0 if we are not constructing
|
||
|
* a parametric schedule
|
||
|
*
|
||
|
* If compressed is set, then hull represents the constraints
|
||
|
* that were used to derive the compression, while compress and
|
||
|
* decompress map the original space to the compressed space and
|
||
|
* vice versa.
|
||
|
*
|
||
|
* scc is the index of SCC (or WCC) this node belongs to
|
||
|
*
|
||
|
* band contains the band index for each of the rows of the schedule.
|
||
|
* band_id is used to differentiate between separate bands at the same
|
||
|
* level within the same parent band, i.e., bands that are separated
|
||
|
* by the parent band or bands that are independent of each other.
|
||
|
* coincident contains a boolean for each of the rows of the schedule,
|
||
|
* indicating whether the corresponding scheduling dimension satisfies
|
||
|
* the coincidence constraints in the sense that the corresponding
|
||
|
* dependence distances are zero.
|
||
|
*/
|
||
|
struct isl_sched_node {
|
||
|
isl_space *space;
|
||
|
int compressed;
|
||
|
isl_set *hull;
|
||
|
isl_multi_aff *compress;
|
||
|
isl_multi_aff *decompress;
|
||
|
isl_mat *sched;
|
||
|
isl_map *sched_map;
|
||
|
int rank;
|
||
|
isl_mat *cmap;
|
||
|
isl_mat *cinv;
|
||
|
int start;
|
||
|
int nvar;
|
||
|
int nparam;
|
||
|
|
||
|
int scc;
|
||
|
|
||
|
int *band;
|
||
|
int *band_id;
|
||
|
int *coincident;
|
||
|
};
|
||
|
|
||
|
static int node_has_space(const void *entry, const void *val)
|
||
|
{
|
||
|
struct isl_sched_node *node = (struct isl_sched_node *)entry;
|
||
|
isl_space *dim = (isl_space *)val;
|
||
|
|
||
|
return isl_space_is_equal(node->space, dim);
|
||
|
}
|
||
|
|
||
|
/* An edge in the dependence graph. An edge may be used to
|
||
|
* ensure validity of the generated schedule, to minimize the dependence
|
||
|
* distance or both
|
||
|
*
|
||
|
* map is the dependence relation, with i -> j in the map if j depends on i
|
||
|
* tagged_condition and tagged_validity contain the union of all tagged
|
||
|
* condition or conditional validity dependence relations that
|
||
|
* specialize the dependence relation "map"; that is,
|
||
|
* if (i -> a) -> (j -> b) is an element of "tagged_condition"
|
||
|
* or "tagged_validity", then i -> j is an element of "map".
|
||
|
* If these fields are NULL, then they represent the empty relation.
|
||
|
* src is the source node
|
||
|
* dst is the sink node
|
||
|
* validity is set if the edge is used to ensure correctness
|
||
|
* coincidence is used to enforce zero dependence distances
|
||
|
* proximity is set if the edge is used to minimize dependence distances
|
||
|
* condition is set if the edge represents a condition
|
||
|
* for a conditional validity schedule constraint
|
||
|
* local can only be set for condition edges and indicates that
|
||
|
* the dependence distance over the edge should be zero
|
||
|
* conditional_validity is set if the edge is used to conditionally
|
||
|
* ensure correctness
|
||
|
*
|
||
|
* For validity edges, start and end mark the sequence of inequality
|
||
|
* constraints in the LP problem that encode the validity constraint
|
||
|
* corresponding to this edge.
|
||
|
*/
|
||
|
struct isl_sched_edge {
|
||
|
isl_map *map;
|
||
|
isl_union_map *tagged_condition;
|
||
|
isl_union_map *tagged_validity;
|
||
|
|
||
|
struct isl_sched_node *src;
|
||
|
struct isl_sched_node *dst;
|
||
|
|
||
|
unsigned validity : 1;
|
||
|
unsigned coincidence : 1;
|
||
|
unsigned proximity : 1;
|
||
|
unsigned local : 1;
|
||
|
unsigned condition : 1;
|
||
|
unsigned conditional_validity : 1;
|
||
|
|
||
|
int start;
|
||
|
int end;
|
||
|
};
|
||
|
|
||
|
/* Internal information about the dependence graph used during
|
||
|
* the construction of the schedule.
|
||
|
*
|
||
|
* intra_hmap is a cache, mapping dependence relations to their dual,
|
||
|
* for dependences from a node to itself
|
||
|
* inter_hmap is a cache, mapping dependence relations to their dual,
|
||
|
* for dependences between distinct nodes
|
||
|
* if compression is involved then the key for these maps
|
||
|
* it the original, uncompressed dependence relation, while
|
||
|
* the value is the dual of the compressed dependence relation.
|
||
|
*
|
||
|
* n is the number of nodes
|
||
|
* node is the list of nodes
|
||
|
* maxvar is the maximal number of variables over all nodes
|
||
|
* max_row is the allocated number of rows in the schedule
|
||
|
* n_row is the current (maximal) number of linearly independent
|
||
|
* rows in the node schedules
|
||
|
* n_total_row is the current number of rows in the node schedules
|
||
|
* n_band is the current number of completed bands
|
||
|
* band_start is the starting row in the node schedules of the current band
|
||
|
* root is set if this graph is the original dependence graph,
|
||
|
* without any splitting
|
||
|
*
|
||
|
* sorted contains a list of node indices sorted according to the
|
||
|
* SCC to which a node belongs
|
||
|
*
|
||
|
* n_edge is the number of edges
|
||
|
* edge is the list of edges
|
||
|
* max_edge contains the maximal number of edges of each type;
|
||
|
* in particular, it contains the number of edges in the inital graph.
|
||
|
* edge_table contains pointers into the edge array, hashed on the source
|
||
|
* and sink spaces; there is one such table for each type;
|
||
|
* a given edge may be referenced from more than one table
|
||
|
* if the corresponding relation appears in more than of the
|
||
|
* sets of dependences
|
||
|
*
|
||
|
* node_table contains pointers into the node array, hashed on the space
|
||
|
*
|
||
|
* region contains a list of variable sequences that should be non-trivial
|
||
|
*
|
||
|
* lp contains the (I)LP problem used to obtain new schedule rows
|
||
|
*
|
||
|
* src_scc and dst_scc are the source and sink SCCs of an edge with
|
||
|
* conflicting constraints
|
||
|
*
|
||
|
* scc represents the number of components
|
||
|
*/
|
||
|
struct isl_sched_graph {
|
||
|
isl_map_to_basic_set *intra_hmap;
|
||
|
isl_map_to_basic_set *inter_hmap;
|
||
|
|
||
|
struct isl_sched_node *node;
|
||
|
int n;
|
||
|
int maxvar;
|
||
|
int max_row;
|
||
|
int n_row;
|
||
|
|
||
|
int *sorted;
|
||
|
|
||
|
int n_band;
|
||
|
int n_total_row;
|
||
|
int band_start;
|
||
|
|
||
|
int root;
|
||
|
|
||
|
struct isl_sched_edge *edge;
|
||
|
int n_edge;
|
||
|
int max_edge[isl_edge_last + 1];
|
||
|
struct isl_hash_table *edge_table[isl_edge_last + 1];
|
||
|
|
||
|
struct isl_hash_table *node_table;
|
||
|
struct isl_region *region;
|
||
|
|
||
|
isl_basic_set *lp;
|
||
|
|
||
|
int src_scc;
|
||
|
int dst_scc;
|
||
|
|
||
|
int scc;
|
||
|
};
|
||
|
|
||
|
/* Initialize node_table based on the list of nodes.
|
||
|
*/
|
||
|
static int graph_init_table(isl_ctx *ctx, struct isl_sched_graph *graph)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
graph->node_table = isl_hash_table_alloc(ctx, graph->n);
|
||
|
if (!graph->node_table)
|
||
|
return -1;
|
||
|
|
||
|
for (i = 0; i < graph->n; ++i) {
|
||
|
struct isl_hash_table_entry *entry;
|
||
|
uint32_t hash;
|
||
|
|
||
|
hash = isl_space_get_hash(graph->node[i].space);
|
||
|
entry = isl_hash_table_find(ctx, graph->node_table, hash,
|
||
|
&node_has_space,
|
||
|
graph->node[i].space, 1);
|
||
|
if (!entry)
|
||
|
return -1;
|
||
|
entry->data = &graph->node[i];
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Return a pointer to the node that lives within the given space,
|
||
|
* or NULL if there is no such node.
|
||
|
*/
|
||
|
static struct isl_sched_node *graph_find_node(isl_ctx *ctx,
|
||
|
struct isl_sched_graph *graph, __isl_keep isl_space *dim)
|
||
|
{
|
||
|
struct isl_hash_table_entry *entry;
|
||
|
uint32_t hash;
|
||
|
|
||
|
hash = isl_space_get_hash(dim);
|
||
|
entry = isl_hash_table_find(ctx, graph->node_table, hash,
|
||
|
&node_has_space, dim, 0);
|
||
|
|
||
|
return entry ? entry->data : NULL;
|
||
|
}
|
||
|
|
||
|
static int edge_has_src_and_dst(const void *entry, const void *val)
|
||
|
{
|
||
|
const struct isl_sched_edge *edge = entry;
|
||
|
const struct isl_sched_edge *temp = val;
|
||
|
|
||
|
return edge->src == temp->src && edge->dst == temp->dst;
|
||
|
}
|
||
|
|
||
|
/* Add the given edge to graph->edge_table[type].
|
||
|
*/
|
||
|
static int graph_edge_table_add(isl_ctx *ctx, struct isl_sched_graph *graph,
|
||
|
enum isl_edge_type type, struct isl_sched_edge *edge)
|
||
|
{
|
||
|
struct isl_hash_table_entry *entry;
|
||
|
uint32_t hash;
|
||
|
|
||
|
hash = isl_hash_init();
|
||
|
hash = isl_hash_builtin(hash, edge->src);
|
||
|
hash = isl_hash_builtin(hash, edge->dst);
|
||
|
entry = isl_hash_table_find(ctx, graph->edge_table[type], hash,
|
||
|
&edge_has_src_and_dst, edge, 1);
|
||
|
if (!entry)
|
||
|
return -1;
|
||
|
entry->data = edge;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Allocate the edge_tables based on the maximal number of edges of
|
||
|
* each type.
|
||
|
*/
|
||
|
static int graph_init_edge_tables(isl_ctx *ctx, struct isl_sched_graph *graph)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i <= isl_edge_last; ++i) {
|
||
|
graph->edge_table[i] = isl_hash_table_alloc(ctx,
|
||
|
graph->max_edge[i]);
|
||
|
if (!graph->edge_table[i])
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* If graph->edge_table[type] contains an edge from the given source
|
||
|
* to the given destination, then return the hash table entry of this edge.
|
||
|
* Otherwise, return NULL.
|
||
|
*/
|
||
|
static struct isl_hash_table_entry *graph_find_edge_entry(
|
||
|
struct isl_sched_graph *graph,
|
||
|
enum isl_edge_type type,
|
||
|
struct isl_sched_node *src, struct isl_sched_node *dst)
|
||
|
{
|
||
|
isl_ctx *ctx = isl_space_get_ctx(src->space);
|
||
|
uint32_t hash;
|
||
|
struct isl_sched_edge temp = { .src = src, .dst = dst };
|
||
|
|
||
|
hash = isl_hash_init();
|
||
|
hash = isl_hash_builtin(hash, temp.src);
|
||
|
hash = isl_hash_builtin(hash, temp.dst);
|
||
|
return isl_hash_table_find(ctx, graph->edge_table[type], hash,
|
||
|
&edge_has_src_and_dst, &temp, 0);
|
||
|
}
|
||
|
|
||
|
|
||
|
/* If graph->edge_table[type] contains an edge from the given source
|
||
|
* to the given destination, then return this edge.
|
||
|
* Otherwise, return NULL.
|
||
|
*/
|
||
|
static struct isl_sched_edge *graph_find_edge(struct isl_sched_graph *graph,
|
||
|
enum isl_edge_type type,
|
||
|
struct isl_sched_node *src, struct isl_sched_node *dst)
|
||
|
{
|
||
|
struct isl_hash_table_entry *entry;
|
||
|
|
||
|
entry = graph_find_edge_entry(graph, type, src, dst);
|
||
|
if (!entry)
|
||
|
return NULL;
|
||
|
|
||
|
return entry->data;
|
||
|
}
|
||
|
|
||
|
/* Check whether the dependence graph has an edge of the given type
|
||
|
* between the given two nodes.
|
||
|
*/
|
||
|
static int graph_has_edge(struct isl_sched_graph *graph,
|
||
|
enum isl_edge_type type,
|
||
|
struct isl_sched_node *src, struct isl_sched_node *dst)
|
||
|
{
|
||
|
struct isl_sched_edge *edge;
|
||
|
int empty;
|
||
|
|
||
|
edge = graph_find_edge(graph, type, src, dst);
|
||
|
if (!edge)
|
||
|
return 0;
|
||
|
|
||
|
empty = isl_map_plain_is_empty(edge->map);
|
||
|
if (empty < 0)
|
||
|
return -1;
|
||
|
|
||
|
return !empty;
|
||
|
}
|
||
|
|
||
|
/* Look for any edge with the same src, dst and map fields as "model".
|
||
|
*
|
||
|
* Return the matching edge if one can be found.
|
||
|
* Return "model" if no matching edge is found.
|
||
|
* Return NULL on error.
|
||
|
*/
|
||
|
static struct isl_sched_edge *graph_find_matching_edge(
|
||
|
struct isl_sched_graph *graph, struct isl_sched_edge *model)
|
||
|
{
|
||
|
enum isl_edge_type i;
|
||
|
struct isl_sched_edge *edge;
|
||
|
|
||
|
for (i = isl_edge_first; i <= isl_edge_last; ++i) {
|
||
|
int is_equal;
|
||
|
|
||
|
edge = graph_find_edge(graph, i, model->src, model->dst);
|
||
|
if (!edge)
|
||
|
continue;
|
||
|
is_equal = isl_map_plain_is_equal(model->map, edge->map);
|
||
|
if (is_equal < 0)
|
||
|
return NULL;
|
||
|
if (is_equal)
|
||
|
return edge;
|
||
|
}
|
||
|
|
||
|
return model;
|
||
|
}
|
||
|
|
||
|
/* Remove the given edge from all the edge_tables that refer to it.
|
||
|
*/
|
||
|
static void graph_remove_edge(struct isl_sched_graph *graph,
|
||
|
struct isl_sched_edge *edge)
|
||
|
{
|
||
|
isl_ctx *ctx = isl_map_get_ctx(edge->map);
|
||
|
enum isl_edge_type i;
|
||
|
|
||
|
for (i = isl_edge_first; i <= isl_edge_last; ++i) {
|
||
|
struct isl_hash_table_entry *entry;
|
||
|
|
||
|
entry = graph_find_edge_entry(graph, i, edge->src, edge->dst);
|
||
|
if (!entry)
|
||
|
continue;
|
||
|
if (entry->data != edge)
|
||
|
continue;
|
||
|
isl_hash_table_remove(ctx, graph->edge_table[i], entry);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Check whether the dependence graph has any edge
|
||
|
* between the given two nodes.
|
||
|
*/
|
||
|
static int graph_has_any_edge(struct isl_sched_graph *graph,
|
||
|
struct isl_sched_node *src, struct isl_sched_node *dst)
|
||
|
{
|
||
|
enum isl_edge_type i;
|
||
|
int r;
|
||
|
|
||
|
for (i = isl_edge_first; i <= isl_edge_last; ++i) {
|
||
|
r = graph_has_edge(graph, i, src, dst);
|
||
|
if (r < 0 || r)
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
/* Check whether the dependence graph has a validity edge
|
||
|
* between the given two nodes.
|
||
|
*
|
||
|
* Conditional validity edges are essentially validity edges that
|
||
|
* can be ignored if the corresponding condition edges are iteration private.
|
||
|
* Here, we are only checking for the presence of validity
|
||
|
* edges, so we need to consider the conditional validity edges too.
|
||
|
* In particular, this function is used during the detection
|
||
|
* of strongly connected components and we cannot ignore
|
||
|
* conditional validity edges during this detection.
|
||
|
*/
|
||
|
static int graph_has_validity_edge(struct isl_sched_graph *graph,
|
||
|
struct isl_sched_node *src, struct isl_sched_node *dst)
|
||
|
{
|
||
|
int r;
|
||
|
|
||
|
r = graph_has_edge(graph, isl_edge_validity, src, dst);
|
||
|
if (r < 0 || r)
|
||
|
return r;
|
||
|
|
||
|
return graph_has_edge(graph, isl_edge_conditional_validity, src, dst);
|
||
|
}
|
||
|
|
||
|
static int graph_alloc(isl_ctx *ctx, struct isl_sched_graph *graph,
|
||
|
int n_node, int n_edge)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
graph->n = n_node;
|
||
|
graph->n_edge = n_edge;
|
||
|
graph->node = isl_calloc_array(ctx, struct isl_sched_node, graph->n);
|
||
|
graph->sorted = isl_calloc_array(ctx, int, graph->n);
|
||
|
graph->region = isl_alloc_array(ctx, struct isl_region, graph->n);
|
||
|
graph->edge = isl_calloc_array(ctx,
|
||
|
struct isl_sched_edge, graph->n_edge);
|
||
|
|
||
|
graph->intra_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
|
||
|
graph->inter_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
|
||
|
|
||
|
if (!graph->node || !graph->region || (graph->n_edge && !graph->edge) ||
|
||
|
!graph->sorted)
|
||
|
return -1;
|
||
|
|
||
|
for(i = 0; i < graph->n; ++i)
|
||
|
graph->sorted[i] = i;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void graph_free(isl_ctx *ctx, struct isl_sched_graph *graph)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
isl_map_to_basic_set_free(graph->intra_hmap);
|
||
|
isl_map_to_basic_set_free(graph->inter_hmap);
|
||
|
|
||
|
if (graph->node)
|
||
|
for (i = 0; i < graph->n; ++i) {
|
||
|
isl_space_free(graph->node[i].space);
|
||
|
isl_set_free(graph->node[i].hull);
|
||
|
isl_multi_aff_free(graph->node[i].compress);
|
||
|
isl_multi_aff_free(graph->node[i].decompress);
|
||
|
isl_mat_free(graph->node[i].sched);
|
||
|
isl_map_free(graph->node[i].sched_map);
|
||
|
isl_mat_free(graph->node[i].cmap);
|
||
|
isl_mat_free(graph->node[i].cinv);
|
||
|
if (graph->root) {
|
||
|
free(graph->node[i].band);
|
||
|
free(graph->node[i].band_id);
|
||
|
free(graph->node[i].coincident);
|
||
|
}
|
||
|
}
|
||
|
free(graph->node);
|
||
|
free(graph->sorted);
|
||
|
if (graph->edge)
|
||
|
for (i = 0; i < graph->n_edge; ++i) {
|
||
|
isl_map_free(graph->edge[i].map);
|
||
|
isl_union_map_free(graph->edge[i].tagged_condition);
|
||
|
isl_union_map_free(graph->edge[i].tagged_validity);
|
||
|
}
|
||
|
free(graph->edge);
|
||
|
free(graph->region);
|
||
|
for (i = 0; i <= isl_edge_last; ++i)
|
||
|
isl_hash_table_free(ctx, graph->edge_table[i]);
|
||
|
isl_hash_table_free(ctx, graph->node_table);
|
||
|
isl_basic_set_free(graph->lp);
|
||
|
}
|
||
|
|
||
|
/* For each "set" on which this function is called, increment
|
||
|
* graph->n by one and update graph->maxvar.
|
||
|
*/
|
||
|
static int init_n_maxvar(__isl_take isl_set *set, void *user)
|
||
|
{
|
||
|
struct isl_sched_graph *graph = user;
|
||
|
int nvar = isl_set_dim(set, isl_dim_set);
|
||
|
|
||
|
graph->n++;
|
||
|
if (nvar > graph->maxvar)
|
||
|
graph->maxvar = nvar;
|
||
|
|
||
|
isl_set_free(set);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Add the number of basic maps in "map" to *n.
|
||
|
*/
|
||
|
static int add_n_basic_map(__isl_take isl_map *map, void *user)
|
||
|
{
|
||
|
int *n = user;
|
||
|
|
||
|
*n += isl_map_n_basic_map(map);
|
||
|
isl_map_free(map);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Compute the number of rows that should be allocated for the schedule.
|
||
|
* The graph can be split at most "n - 1" times, there can be at most
|
||
|
* one row for each dimension in the iteration domains plus two rows
|
||
|
* for each basic map in the dependences (in particular,
|
||
|
* we usually have one row, but it may be split by split_scaled),
|
||
|
* and there can be one extra row for ordering the statements.
|
||
|
* Note that if we have actually split "n - 1" times, then no ordering
|
||
|
* is needed, so in principle we could use "graph->n + 2 * graph->maxvar - 1".
|
||
|
* It is also practically impossible to exhaust both the number of dependences
|
||
|
* and the number of variables.
|
||
|
*/
|
||
|
static int compute_max_row(struct isl_sched_graph *graph,
|
||
|
__isl_keep isl_schedule_constraints *sc)
|
||
|
{
|
||
|
enum isl_edge_type i;
|
||
|
int n_edge;
|
||
|
|
||
|
graph->n = 0;
|
||
|
graph->maxvar = 0;
|
||
|
if (isl_union_set_foreach_set(sc->domain, &init_n_maxvar, graph) < 0)
|
||
|
return -1;
|
||
|
n_edge = 0;
|
||
|
for (i = isl_edge_first; i <= isl_edge_last; ++i)
|
||
|
if (isl_union_map_foreach_map(sc->constraint[i],
|
||
|
&add_n_basic_map, &n_edge) < 0)
|
||
|
return -1;
|
||
|
graph->max_row = graph->n + 2 * n_edge + graph->maxvar;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Does "bset" have any defining equalities for its set variables?
|
||
|
*/
|
||
|
static int has_any_defining_equality(__isl_keep isl_basic_set *bset)
|
||
|
{
|
||
|
int i, n;
|
||
|
|
||
|
if (!bset)
|
||
|
return -1;
|
||
|
|
||
|
n = isl_basic_set_dim(bset, isl_dim_set);
|
||
|
for (i = 0; i < n; ++i) {
|
||
|
int has;
|
||
|
|
||
|
has = isl_basic_set_has_defining_equality(bset, isl_dim_set, i,
|
||
|
NULL);
|
||
|
if (has < 0 || has)
|
||
|
return has;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Add a new node to the graph representing the given space.
|
||
|
* "nvar" is the (possibly compressed) number of variables and
|
||
|
* may be smaller than then number of set variables in "space"
|
||
|
* if "compressed" is set.
|
||
|
* If "compressed" is set, then "hull" represents the constraints
|
||
|
* that were used to derive the compression, while "compress" and
|
||
|
* "decompress" map the original space to the compressed space and
|
||
|
* vice versa.
|
||
|
* If "compressed" is not set, then "hull", "compress" and "decompress"
|
||
|
* should be NULL.
|
||
|
*/
|
||
|
static int add_node(struct isl_sched_graph *graph, __isl_take isl_space *space,
|
||
|
int nvar, int compressed, __isl_take isl_set *hull,
|
||
|
__isl_take isl_multi_aff *compress,
|
||
|
__isl_take isl_multi_aff *decompress)
|
||
|
{
|
||
|
int nparam;
|
||
|
isl_ctx *ctx;
|
||
|
isl_mat *sched;
|
||
|
int *band, *band_id, *coincident;
|
||
|
|
||
|
if (!space)
|
||
|
return -1;
|
||
|
|
||
|
ctx = isl_space_get_ctx(space);
|
||
|
nparam = isl_space_dim(space, isl_dim_param);
|
||
|
if (!ctx->opt->schedule_parametric)
|
||
|
nparam = 0;
|
||
|
sched = isl_mat_alloc(ctx, 0, 1 + nparam + nvar);
|
||
|
graph->node[graph->n].space = space;
|
||
|
graph->node[graph->n].nvar = nvar;
|
||
|
graph->node[graph->n].nparam = nparam;
|
||
|
graph->node[graph->n].sched = sched;
|
||
|
graph->node[graph->n].sched_map = NULL;
|
||
|
band = isl_alloc_array(ctx, int, graph->max_row);
|
||
|
graph->node[graph->n].band = band;
|
||
|
band_id = isl_calloc_array(ctx, int, graph->max_row);
|
||
|
graph->node[graph->n].band_id = band_id;
|
||
|
coincident = isl_calloc_array(ctx, int, graph->max_row);
|
||
|
graph->node[graph->n].coincident = coincident;
|
||
|
graph->node[graph->n].compressed = compressed;
|
||
|
graph->node[graph->n].hull = hull;
|
||
|
graph->node[graph->n].compress = compress;
|
||
|
graph->node[graph->n].decompress = decompress;
|
||
|
graph->n++;
|
||
|
|
||
|
if (!space || !sched ||
|
||
|
(graph->max_row && (!band || !band_id || !coincident)))
|
||
|
return -1;
|
||
|
if (compressed && (!hull || !compress || !decompress))
|
||
|
return -1;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Add a new node to the graph representing the given set.
|
||
|
*
|
||
|
* If any of the set variables is defined by an equality, then
|
||
|
* we perform variable compression such that we can perform
|
||
|
* the scheduling on the compressed domain.
|
||
|
*/
|
||
|
static int extract_node(__isl_take isl_set *set, void *user)
|
||
|
{
|
||
|
int nvar;
|
||
|
int has_equality;
|
||
|
isl_space *space;
|
||
|
isl_basic_set *hull;
|
||
|
isl_set *hull_set;
|
||
|
isl_morph *morph;
|
||
|
isl_multi_aff *compress, *decompress;
|
||
|
struct isl_sched_graph *graph = user;
|
||
|
|
||
|
space = isl_set_get_space(set);
|
||
|
hull = isl_set_affine_hull(set);
|
||
|
hull = isl_basic_set_remove_divs(hull);
|
||
|
nvar = isl_space_dim(space, isl_dim_set);
|
||
|
has_equality = has_any_defining_equality(hull);
|
||
|
|
||
|
if (has_equality < 0)
|
||
|
goto error;
|
||
|
if (!has_equality) {
|
||
|
isl_basic_set_free(hull);
|
||
|
return add_node(graph, space, nvar, 0, NULL, NULL, NULL);
|
||
|
}
|
||
|
|
||
|
morph = isl_basic_set_variable_compression(hull, isl_dim_set);
|
||
|
nvar = isl_morph_ran_dim(morph, isl_dim_set);
|
||
|
compress = isl_morph_get_var_multi_aff(morph);
|
||
|
morph = isl_morph_inverse(morph);
|
||
|
decompress = isl_morph_get_var_multi_aff(morph);
|
||
|
isl_morph_free(morph);
|
||
|
|
||
|
hull_set = isl_set_from_basic_set(hull);
|
||
|
return add_node(graph, space, nvar, 1, hull_set, compress, decompress);
|
||
|
error:
|
||
|
isl_basic_set_free(hull);
|
||
|
isl_space_free(space);
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
struct isl_extract_edge_data {
|
||
|
enum isl_edge_type type;
|
||
|
struct isl_sched_graph *graph;
|
||
|
};
|
||
|
|
||
|
/* Merge edge2 into edge1, freeing the contents of edge2.
|
||
|
* "type" is the type of the schedule constraint from which edge2 was
|
||
|
* extracted.
|
||
|
* Return 0 on success and -1 on failure.
|
||
|
*
|
||
|
* edge1 and edge2 are assumed to have the same value for the map field.
|
||
|
*/
|
||
|
static int merge_edge(enum isl_edge_type type, struct isl_sched_edge *edge1,
|
||
|
struct isl_sched_edge *edge2)
|
||
|
{
|
||
|
edge1->validity |= edge2->validity;
|
||
|
edge1->coincidence |= edge2->coincidence;
|
||
|
edge1->proximity |= edge2->proximity;
|
||
|
edge1->condition |= edge2->condition;
|
||
|
edge1->conditional_validity |= edge2->conditional_validity;
|
||
|
isl_map_free(edge2->map);
|
||
|
|
||
|
if (type == isl_edge_condition) {
|
||
|
if (!edge1->tagged_condition)
|
||
|
edge1->tagged_condition = edge2->tagged_condition;
|
||
|
else
|
||
|
edge1->tagged_condition =
|
||
|
isl_union_map_union(edge1->tagged_condition,
|
||
|
edge2->tagged_condition);
|
||
|
}
|
||
|
|
||
|
if (type == isl_edge_conditional_validity) {
|
||
|
if (!edge1->tagged_validity)
|
||
|
edge1->tagged_validity = edge2->tagged_validity;
|
||
|
else
|
||
|
edge1->tagged_validity =
|
||
|
isl_union_map_union(edge1->tagged_validity,
|
||
|
edge2->tagged_validity);
|
||
|
}
|
||
|
|
||
|
if (type == isl_edge_condition && !edge1->tagged_condition)
|
||
|
return -1;
|
||
|
if (type == isl_edge_conditional_validity && !edge1->tagged_validity)
|
||
|
return -1;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Insert dummy tags in domain and range of "map".
|
||
|
*
|
||
|
* In particular, if "map" is of the form
|
||
|
*
|
||
|
* A -> B
|
||
|
*
|
||
|
* then return
|
||
|
*
|
||
|
* [A -> dummy_tag] -> [B -> dummy_tag]
|
||
|
*
|
||
|
* where the dummy_tags are identical and equal to any dummy tags
|
||
|
* introduced by any other call to this function.
|
||
|
*/
|
||
|
static __isl_give isl_map *insert_dummy_tags(__isl_take isl_map *map)
|
||
|
{
|
||
|
static char dummy;
|
||
|
isl_ctx *ctx;
|
||
|
isl_id *id;
|
||
|
isl_space *space;
|
||
|
isl_set *domain, *range;
|
||
|
|
||
|
ctx = isl_map_get_ctx(map);
|
||
|
|
||
|
id = isl_id_alloc(ctx, NULL, &dummy);
|
||
|
space = isl_space_params(isl_map_get_space(map));
|
||
|
space = isl_space_set_from_params(space);
|
||
|
space = isl_space_set_tuple_id(space, isl_dim_set, id);
|
||
|
space = isl_space_map_from_set(space);
|
||
|
|
||
|
domain = isl_map_wrap(map);
|
||
|
range = isl_map_wrap(isl_map_universe(space));
|
||
|
map = isl_map_from_domain_and_range(domain, range);
|
||
|
map = isl_map_zip(map);
|
||
|
|
||
|
return map;
|
||
|
}
|
||
|
|
||
|
/* Given that at least one of "src" or "dst" is compressed, return
|
||
|
* a map between the spaces of these nodes restricted to the affine
|
||
|
* hull that was used in the compression.
|
||
|
*/
|
||
|
static __isl_give isl_map *extract_hull(struct isl_sched_node *src,
|
||
|
struct isl_sched_node *dst)
|
||
|
{
|
||
|
isl_set *dom, *ran;
|
||
|
|
||
|
if (src->compressed)
|
||
|
dom = isl_set_copy(src->hull);
|
||
|
else
|
||
|
dom = isl_set_universe(isl_space_copy(src->space));
|
||
|
if (dst->compressed)
|
||
|
ran = isl_set_copy(dst->hull);
|
||
|
else
|
||
|
ran = isl_set_universe(isl_space_copy(dst->space));
|
||
|
|
||
|
return isl_map_from_domain_and_range(dom, ran);
|
||
|
}
|
||
|
|
||
|
/* Intersect the domains of the nested relations in domain and range
|
||
|
* of "tagged" with "map".
|
||
|
*/
|
||
|
static __isl_give isl_map *map_intersect_domains(__isl_take isl_map *tagged,
|
||
|
__isl_keep isl_map *map)
|
||
|
{
|
||
|
isl_set *set;
|
||
|
|
||
|
tagged = isl_map_zip(tagged);
|
||
|
set = isl_map_wrap(isl_map_copy(map));
|
||
|
tagged = isl_map_intersect_domain(tagged, set);
|
||
|
tagged = isl_map_zip(tagged);
|
||
|
return tagged;
|
||
|
}
|
||
|
|
||
|
/* Add a new edge to the graph based on the given map
|
||
|
* and add it to data->graph->edge_table[data->type].
|
||
|
* If a dependence relation of a given type happens to be identical
|
||
|
* to one of the dependence relations of a type that was added before,
|
||
|
* then we don't create a new edge, but instead mark the original edge
|
||
|
* as also representing a dependence of the current type.
|
||
|
*
|
||
|
* Edges of type isl_edge_condition or isl_edge_conditional_validity
|
||
|
* may be specified as "tagged" dependence relations. That is, "map"
|
||
|
* may contain elements (i -> a) -> (j -> b), where i -> j denotes
|
||
|
* the dependence on iterations and a and b are tags.
|
||
|
* edge->map is set to the relation containing the elements i -> j,
|
||
|
* while edge->tagged_condition and edge->tagged_validity contain
|
||
|
* the union of all the "map" relations
|
||
|
* for which extract_edge is called that result in the same edge->map.
|
||
|
*
|
||
|
* If the source or the destination node is compressed, then
|
||
|
* intersect both "map" and "tagged" with the constraints that
|
||
|
* were used to construct the compression.
|
||
|
* This ensures that there are no schedule constraints defined
|
||
|
* outside of these domains, while the scheduler no longer has
|
||
|
* any control over those outside parts.
|
||
|
*/
|
||
|
static int extract_edge(__isl_take isl_map *map, void *user)
|
||
|
{
|
||
|
isl_ctx *ctx = isl_map_get_ctx(map);
|
||
|
struct isl_extract_edge_data *data = user;
|
||
|
struct isl_sched_graph *graph = data->graph;
|
||
|
struct isl_sched_node *src, *dst;
|
||
|
isl_space *dim;
|
||
|
struct isl_sched_edge *edge;
|
||
|
isl_map *tagged = NULL;
|
||
|
|
||
|
if (data->type == isl_edge_condition ||
|
||
|
data->type == isl_edge_conditional_validity) {
|
||
|
if (isl_map_can_zip(map)) {
|
||
|
tagged = isl_map_copy(map);
|
||
|
map = isl_set_unwrap(isl_map_domain(isl_map_zip(map)));
|
||
|
} else {
|
||
|
tagged = insert_dummy_tags(isl_map_copy(map));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
dim = isl_space_domain(isl_map_get_space(map));
|
||
|
src = graph_find_node(ctx, graph, dim);
|
||
|
isl_space_free(dim);
|
||
|
dim = isl_space_range(isl_map_get_space(map));
|
||
|
dst = graph_find_node(ctx, graph, dim);
|
||
|
isl_space_free(dim);
|
||
|
|
||
|
if (!src || !dst) {
|
||
|
isl_map_free(map);
|
||
|
isl_map_free(tagged);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (src->compressed || dst->compressed) {
|
||
|
isl_map *hull;
|
||
|
hull = extract_hull(src, dst);
|
||
|
if (tagged)
|
||
|
tagged = map_intersect_domains(tagged, hull);
|
||
|
map = isl_map_intersect(map, hull);
|
||
|
}
|
||
|
|
||
|
graph->edge[graph->n_edge].src = src;
|
||
|
graph->edge[graph->n_edge].dst = dst;
|
||
|
graph->edge[graph->n_edge].map = map;
|
||
|
graph->edge[graph->n_edge].validity = 0;
|
||
|
graph->edge[graph->n_edge].coincidence = 0;
|
||
|
graph->edge[graph->n_edge].proximity = 0;
|
||
|
graph->edge[graph->n_edge].condition = 0;
|
||
|
graph->edge[graph->n_edge].local = 0;
|
||
|
graph->edge[graph->n_edge].conditional_validity = 0;
|
||
|
graph->edge[graph->n_edge].tagged_condition = NULL;
|
||
|
graph->edge[graph->n_edge].tagged_validity = NULL;
|
||
|
if (data->type == isl_edge_validity)
|
||
|
graph->edge[graph->n_edge].validity = 1;
|
||
|
if (data->type == isl_edge_coincidence)
|
||
|
graph->edge[graph->n_edge].coincidence = 1;
|
||
|
if (data->type == isl_edge_proximity)
|
||
|
graph->edge[graph->n_edge].proximity = 1;
|
||
|
if (data->type == isl_edge_condition) {
|
||
|
graph->edge[graph->n_edge].condition = 1;
|
||
|
graph->edge[graph->n_edge].tagged_condition =
|
||
|
isl_union_map_from_map(tagged);
|
||
|
}
|
||
|
if (data->type == isl_edge_conditional_validity) {
|
||
|
graph->edge[graph->n_edge].conditional_validity = 1;
|
||
|
graph->edge[graph->n_edge].tagged_validity =
|
||
|
isl_union_map_from_map(tagged);
|
||
|
}
|
||
|
|
||
|
edge = graph_find_matching_edge(graph, &graph->edge[graph->n_edge]);
|
||
|
if (!edge) {
|
||
|
graph->n_edge++;
|
||
|
return -1;
|
||
|
}
|
||
|
if (edge == &graph->edge[graph->n_edge])
|
||
|
return graph_edge_table_add(ctx, graph, data->type,
|
||
|
&graph->edge[graph->n_edge++]);
|
||
|
|
||
|
if (merge_edge(data->type, edge, &graph->edge[graph->n_edge]) < 0)
|
||
|
return -1;
|
||
|
|
||
|
return graph_edge_table_add(ctx, graph, data->type, edge);
|
||
|
}
|
||
|
|
||
|
/* Check whether there is any dependence from node[j] to node[i]
|
||
|
* or from node[i] to node[j].
|
||
|
*/
|
||
|
static int node_follows_weak(int i, int j, void *user)
|
||
|
{
|
||
|
int f;
|
||
|
struct isl_sched_graph *graph = user;
|
||
|
|
||
|
f = graph_has_any_edge(graph, &graph->node[j], &graph->node[i]);
|
||
|
if (f < 0 || f)
|
||
|
return f;
|
||
|
return graph_has_any_edge(graph, &graph->node[i], &graph->node[j]);
|
||
|
}
|
||
|
|
||
|
/* Check whether there is a (conditional) validity dependence from node[j]
|
||
|
* to node[i], forcing node[i] to follow node[j].
|
||
|
*/
|
||
|
static int node_follows_strong(int i, int j, void *user)
|
||
|
{
|
||
|
struct isl_sched_graph *graph = user;
|
||
|
|
||
|
return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
|
||
|
}
|
||
|
|
||
|
/* Use Tarjan's algorithm for computing the strongly connected components
|
||
|
* in the dependence graph (only validity edges).
|
||
|
* If weak is set, we consider the graph to be undirected and
|
||
|
* we effectively compute the (weakly) connected components.
|
||
|
* Additionally, we also consider other edges when weak is set.
|
||
|
*/
|
||
|
static int detect_ccs(isl_ctx *ctx, struct isl_sched_graph *graph, int weak)
|
||
|
{
|
||
|
int i, n;
|
||
|
struct isl_tarjan_graph *g = NULL;
|
||
|
|
||
|
g = isl_tarjan_graph_init(ctx, graph->n,
|
||
|
weak ? &node_follows_weak : &node_follows_strong, graph);
|
||
|
if (!g)
|
||
|
return -1;
|
||
|
|
||
|
graph->scc = 0;
|
||
|
i = 0;
|
||
|
n = graph->n;
|
||
|
while (n) {
|
||
|
while (g->order[i] != -1) {
|
||
|
graph->node[g->order[i]].scc = graph->scc;
|
||
|
--n;
|
||
|
++i;
|
||
|
}
|
||
|
++i;
|
||
|
graph->scc++;
|
||
|
}
|
||
|
|
||
|
isl_tarjan_graph_free(g);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Apply Tarjan's algorithm to detect the strongly connected components
|
||
|
* in the dependence graph.
|
||
|
*/
|
||
|
static int detect_sccs(isl_ctx *ctx, struct isl_sched_graph *graph)
|
||
|
{
|
||
|
return detect_ccs(ctx, graph, 0);
|
||
|
}
|
||
|
|
||
|
/* Apply Tarjan's algorithm to detect the (weakly) connected components
|
||
|
* in the dependence graph.
|
||
|
*/
|
||
|
static int detect_wccs(isl_ctx *ctx, struct isl_sched_graph *graph)
|
||
|
{
|
||
|
return detect_ccs(ctx, graph, 1);
|
||
|
}
|
||
|
|
||
|
static int cmp_scc(const void *a, const void *b, void *data)
|
||
|
{
|
||
|
struct isl_sched_graph *graph = data;
|
||
|
const int *i1 = a;
|
||
|
const int *i2 = b;
|
||
|
|
||
|
return graph->node[*i1].scc - graph->node[*i2].scc;
|
||
|
}
|
||
|
|
||
|
/* Sort the elements of graph->sorted according to the corresponding SCCs.
|
||
|
*/
|
||
|
static int sort_sccs(struct isl_sched_graph *graph)
|
||
|
{
|
||
|
return isl_sort(graph->sorted, graph->n, sizeof(int), &cmp_scc, graph);
|
||
|
}
|
||
|
|
||
|
/* Given a dependence relation R from "node" to itself,
|
||
|
* construct the set of coefficients of valid constraints for elements
|
||
|
* in that dependence relation.
|
||
|
* In particular, the result contains tuples of coefficients
|
||
|
* c_0, c_n, c_x such that
|
||
|
*
|
||
|
* c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
|
||
|
*
|
||
|
* or, equivalently,
|
||
|
*
|
||
|
* c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
|
||
|
*
|
||
|
* We choose here to compute the dual of delta R.
|
||
|
* Alternatively, we could have computed the dual of R, resulting
|
||
|
* in a set of tuples c_0, c_n, c_x, c_y, and then
|
||
|
* plugged in (c_0, c_n, c_x, -c_x).
|
||
|
*
|
||
|
* If "node" has been compressed, then the dependence relation
|
||
|
* is also compressed before the set of coefficients is computed.
|
||
|
*/
|
||
|
static __isl_give isl_basic_set *intra_coefficients(
|
||
|
struct isl_sched_graph *graph, struct isl_sched_node *node,
|
||
|
__isl_take isl_map *map)
|
||
|
{
|
||
|
isl_set *delta;
|
||
|
isl_map *key;
|
||
|
isl_basic_set *coef;
|
||
|
|
||
|
if (isl_map_to_basic_set_has(graph->intra_hmap, map))
|
||
|
return isl_map_to_basic_set_get(graph->intra_hmap, map);
|
||
|
|
||
|
key = isl_map_copy(map);
|
||
|
if (node->compressed) {
|
||
|
map = isl_map_preimage_domain_multi_aff(map,
|
||
|
isl_multi_aff_copy(node->decompress));
|
||
|
map = isl_map_preimage_range_multi_aff(map,
|
||
|
isl_multi_aff_copy(node->decompress));
|
||
|
}
|
||
|
delta = isl_set_remove_divs(isl_map_deltas(map));
|
||
|
coef = isl_set_coefficients(delta);
|
||
|
graph->intra_hmap = isl_map_to_basic_set_set(graph->intra_hmap, key,
|
||
|
isl_basic_set_copy(coef));
|
||
|
|
||
|
return coef;
|
||
|
}
|
||
|
|
||
|
/* Given a dependence relation R, construct the set of coefficients
|
||
|
* of valid constraints for elements in that dependence relation.
|
||
|
* In particular, the result contains tuples of coefficients
|
||
|
* c_0, c_n, c_x, c_y such that
|
||
|
*
|
||
|
* c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
|
||
|
*
|
||
|
* If the source or destination nodes of "edge" have been compressed,
|
||
|
* then the dependence relation is also compressed before
|
||
|
* the set of coefficients is computed.
|
||
|
*/
|
||
|
static __isl_give isl_basic_set *inter_coefficients(
|
||
|
struct isl_sched_graph *graph, struct isl_sched_edge *edge,
|
||
|
__isl_take isl_map *map)
|
||
|
{
|
||
|
isl_set *set;
|
||
|
isl_map *key;
|
||
|
isl_basic_set *coef;
|
||
|
|
||
|
if (isl_map_to_basic_set_has(graph->inter_hmap, map))
|
||
|
return isl_map_to_basic_set_get(graph->inter_hmap, map);
|
||
|
|
||
|
key = isl_map_copy(map);
|
||
|
if (edge->src->compressed)
|
||
|
map = isl_map_preimage_domain_multi_aff(map,
|
||
|
isl_multi_aff_copy(edge->src->decompress));
|
||
|
if (edge->dst->compressed)
|
||
|
map = isl_map_preimage_range_multi_aff(map,
|
||
|
isl_multi_aff_copy(edge->dst->decompress));
|
||
|
set = isl_map_wrap(isl_map_remove_divs(map));
|
||
|
coef = isl_set_coefficients(set);
|
||
|
graph->inter_hmap = isl_map_to_basic_set_set(graph->inter_hmap, key,
|
||
|
isl_basic_set_copy(coef));
|
||
|
|
||
|
return coef;
|
||
|
}
|
||
|
|
||
|
/* Add constraints to graph->lp that force validity for the given
|
||
|
* dependence from a node i to itself.
|
||
|
* That is, add constraints that enforce
|
||
|
*
|
||
|
* (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
|
||
|
* = c_i_x (y - x) >= 0
|
||
|
*
|
||
|
* for each (x,y) in R.
|
||
|
* We obtain general constraints on coefficients (c_0, c_n, c_x)
|
||
|
* of valid constraints for (y - x) and then plug in (0, 0, c_i_x^+ - c_i_x^-),
|
||
|
* where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
|
||
|
* In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
|
||
|
*
|
||
|
* Actually, we do not construct constraints for the c_i_x themselves,
|
||
|
* but for the coefficients of c_i_x written as a linear combination
|
||
|
* of the columns in node->cmap.
|
||
|
*/
|
||
|
static int add_intra_validity_constraints(struct isl_sched_graph *graph,
|
||
|
struct isl_sched_edge *edge)
|
||
|
{
|
||
|
unsigned total;
|
||
|
isl_map *map = isl_map_copy(edge->map);
|
||
|
isl_ctx *ctx = isl_map_get_ctx(map);
|
||
|
isl_space *dim;
|
||
|
isl_dim_map *dim_map;
|
||
|
isl_basic_set *coef;
|
||
|
struct isl_sched_node *node = edge->src;
|
||
|
|
||
|
coef = intra_coefficients(graph, node, map);
|
||
|
|
||
|
dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
|
||
|
|
||
|
coef = isl_basic_set_transform_dims(coef, isl_dim_set,
|
||
|
isl_space_dim(dim, isl_dim_set), isl_mat_copy(node->cmap));
|
||
|
if (!coef)
|
||
|
goto error;
|
||
|
|
||
|
total = isl_basic_set_total_dim(graph->lp);
|
||
|
dim_map = isl_dim_map_alloc(ctx, total);
|
||
|
isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
|
||
|
isl_space_dim(dim, isl_dim_set), 1,
|
||
|
node->nvar, -1);
|
||
|
isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
|
||
|
isl_space_dim(dim, isl_dim_set), 1,
|
||
|
node->nvar, 1);
|
||
|
graph->lp = isl_basic_set_extend_constraints(graph->lp,
|
||
|
coef->n_eq, coef->n_ineq);
|
||
|
graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
|
||
|
coef, dim_map);
|
||
|
isl_space_free(dim);
|
||
|
|
||
|
return 0;
|
||
|
error:
|
||
|
isl_space_free(dim);
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
/* Add constraints to graph->lp that force validity for the given
|
||
|
* dependence from node i to node j.
|
||
|
* That is, add constraints that enforce
|
||
|
*
|
||
|
* (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
|
||
|
*
|
||
|
* for each (x,y) in R.
|
||
|
* We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
|
||
|
* of valid constraints for R and then plug in
|
||
|
* (c_j_0 - c_i_0, c_j_n^+ - c_j_n^- - (c_i_n^+ - c_i_n^-),
|
||
|
* c_j_x^+ - c_j_x^- - (c_i_x^+ - c_i_x^-)),
|
||
|
* where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
|
||
|
* In graph->lp, the c_*^- appear before their c_*^+ counterpart.
|
||
|
*
|
||
|
* Actually, we do not construct constraints for the c_*_x themselves,
|
||
|
* but for the coefficients of c_*_x written as a linear combination
|
||
|
* of the columns in node->cmap.
|
||
|
*/
|
||
|
static int add_inter_validity_constraints(struct isl_sched_graph *graph,
|
||
|
struct isl_sched_edge *edge)
|
||
|
{
|
||
|
unsigned total;
|
||
|
isl_map *map = isl_map_copy(edge->map);
|
||
|
isl_ctx *ctx = isl_map_get_ctx(map);
|
||
|
isl_space *dim;
|
||
|
isl_dim_map *dim_map;
|
||
|
isl_basic_set *coef;
|
||
|
struct isl_sched_node *src = edge->src;
|
||
|
struct isl_sched_node *dst = edge->dst;
|
||
|
|
||
|
coef = inter_coefficients(graph, edge, map);
|
||
|
|
||
|
dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
|
||
|
|
||
|
coef = isl_basic_set_transform_dims(coef, isl_dim_set,
|
||
|
isl_space_dim(dim, isl_dim_set), isl_mat_copy(src->cmap));
|
||
|
coef = isl_basic_set_transform_dims(coef, isl_dim_set,
|
||
|
isl_space_dim(dim, isl_dim_set) + src->nvar,
|
||
|
isl_mat_copy(dst->cmap));
|
||
|
if (!coef)
|
||
|
goto error;
|
||
|
|
||
|
total = isl_basic_set_total_dim(graph->lp);
|
||
|
dim_map = isl_dim_map_alloc(ctx, total);
|
||
|
|
||
|
isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, 1);
|
||
|
isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, -1);
|
||
|
isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, 1);
|
||
|
isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
|
||
|
isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
|
||
|
dst->nvar, -1);
|
||
|
isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
|
||
|
isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
|
||
|
dst->nvar, 1);
|
||
|
|
||
|
isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, -1);
|
||
|
isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, 1);
|
||
|
isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, -1);
|
||
|
isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
|
||
|
isl_space_dim(dim, isl_dim_set), 1,
|
||
|
src->nvar, 1);
|
||
|
isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
|
||
|
isl_space_dim(dim, isl_dim_set), 1,
|
||
|
src->nvar, -1);
|
||
|
|
||
|
edge->start = graph->lp->n_ineq;
|
||
|
graph->lp = isl_basic_set_extend_constraints(graph->lp,
|
||
|
coef->n_eq, coef->n_ineq);
|
||
|
graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
|
||
|
coef, dim_map);
|
||
|
if (!graph->lp)
|
||
|
goto error;
|
||
|
isl_space_free(dim);
|
||
|
edge->end = graph->lp->n_ineq;
|
||
|
|
||
|
return 0;
|
||
|
error:
|
||
|
isl_space_free(dim);
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
/* Add constraints to graph->lp that bound the dependence distance for the given
|
||
|
* dependence from a node i to itself.
|
||
|
* If s = 1, we add the constraint
|
||
|
*
|
||
|
* c_i_x (y - x) <= m_0 + m_n n
|
||
|
*
|
||
|
* or
|
||
|
*
|
||
|
* -c_i_x (y - x) + m_0 + m_n n >= 0
|
||
|
*
|
||
|
* for each (x,y) in R.
|
||
|
* If s = -1, we add the constraint
|
||
|
*
|
||
|
* -c_i_x (y - x) <= m_0 + m_n n
|
||
|
*
|
||
|
* or
|
||
|
*
|
||
|
* c_i_x (y - x) + m_0 + m_n n >= 0
|
||
|
*
|
||
|
* for each (x,y) in R.
|
||
|
* We obtain general constraints on coefficients (c_0, c_n, c_x)
|
||
|
* of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
|
||
|
* with each coefficient (except m_0) represented as a pair of non-negative
|
||
|
* coefficients.
|
||
|
*
|
||
|
* Actually, we do not construct constraints for the c_i_x themselves,
|
||
|
* but for the coefficients of c_i_x written as a linear combination
|
||
|
* of the columns in node->cmap.
|
||
|
*
|
||
|
*
|
||
|
* If "local" is set, then we add constraints
|
||
|
*
|
||
|
* c_i_x (y - x) <= 0
|
||
|
*
|
||
|
* or
|
||
|
*
|
||
|
* -c_i_x (y - x) <= 0
|
||
|
*
|
||
|
* instead, forcing the dependence distance to be (less than or) equal to 0.
|
||
|
* That is, we plug in (0, 0, -s * c_i_x),
|
||
|
* Note that dependences marked local are treated as validity constraints
|
||
|
* by add_all_validity_constraints and therefore also have
|
||
|
* their distances bounded by 0 from below.
|
||
|
*/
|
||
|
static int add_intra_proximity_constraints(struct isl_sched_graph *graph,
|
||
|
struct isl_sched_edge *edge, int s, int local)
|
||
|
{
|
||
|
unsigned total;
|
||
|
unsigned nparam;
|
||
|
isl_map *map = isl_map_copy(edge->map);
|
||
|
isl_ctx *ctx = isl_map_get_ctx(map);
|
||
|
isl_space *dim;
|
||
|
isl_dim_map *dim_map;
|
||
|
isl_basic_set *coef;
|
||
|
struct isl_sched_node *node = edge->src;
|
||
|
|
||
|
coef = intra_coefficients(graph, node, map);
|
||
|
|
||
|
dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
|
||
|
|
||
|
coef = isl_basic_set_transform_dims(coef, isl_dim_set,
|
||
|
isl_space_dim(dim, isl_dim_set), isl_mat_copy(node->cmap));
|
||
|
if (!coef)
|
||
|
goto error;
|
||
|
|
||
|
nparam = isl_space_dim(node->space, isl_dim_param);
|
||
|
total = isl_basic_set_total_dim(graph->lp);
|
||
|
dim_map = isl_dim_map_alloc(ctx, total);
|
||
|
|
||
|
if (!local) {
|
||
|
isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
|
||
|
isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
|
||
|
isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
|
||
|
}
|
||
|
isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
|
||
|
isl_space_dim(dim, isl_dim_set), 1,
|
||
|
node->nvar, s);
|
||
|
isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
|
||
|
isl_space_dim(dim, isl_dim_set), 1,
|
||
|
node->nvar, -s);
|
||
|
graph->lp = isl_basic_set_extend_constraints(graph->lp,
|
||
|
coef->n_eq, coef->n_ineq);
|
||
|
graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
|
||
|
coef, dim_map);
|
||
|
isl_space_free(dim);
|
||
|
|
||
|
return 0;
|
||
|
error:
|
||
|
isl_space_free(dim);
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
/* Add constraints to graph->lp that bound the dependence distance for the given
|
||
|
* dependence from node i to node j.
|
||
|
* If s = 1, we add the constraint
|
||
|
*
|
||
|
* (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
|
||
|
* <= m_0 + m_n n
|
||
|
*
|
||
|
* or
|
||
|
*
|
||
|
* -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
|
||
|
* m_0 + m_n n >= 0
|
||
|
*
|
||
|
* for each (x,y) in R.
|
||
|
* If s = -1, we add the constraint
|
||
|
*
|
||
|
* -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
|
||
|
* <= m_0 + m_n n
|
||
|
*
|
||
|
* or
|
||
|
*
|
||
|
* (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
|
||
|
* m_0 + m_n n >= 0
|
||
|
*
|
||
|
* for each (x,y) in R.
|
||
|
* We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
|
||
|
* of valid constraints for R and then plug in
|
||
|
* (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
|
||
|
* -s*c_j_x+s*c_i_x)
|
||
|
* with each coefficient (except m_0, c_j_0 and c_i_0)
|
||
|
* represented as a pair of non-negative coefficients.
|
||
|
*
|
||
|
* Actually, we do not construct constraints for the c_*_x themselves,
|
||
|
* but for the coefficients of c_*_x written as a linear combination
|
||
|
* of the columns in node->cmap.
|
||
|
*
|
||
|
*
|
||
|
* If "local" is set, then we add constraints
|
||
|
*
|
||
|
* (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) <= 0
|
||
|
*
|
||
|
* or
|
||
|
*
|
||
|
* -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)) <= 0
|
||
|
*
|
||
|
* instead, forcing the dependence distance to be (less than or) equal to 0.
|
||
|
* That is, we plug in
|
||
|
* (-s*c_j_0 + s*c_i_0, -s*c_j_n + s*c_i_n, -s*c_j_x+s*c_i_x).
|
||
|
* Note that dependences marked local are treated as validity constraints
|
||
|
* by add_all_validity_constraints and therefore also have
|
||
|
* their distances bounded by 0 from below.
|
||
|
*/
|
||
|
static int add_inter_proximity_constraints(struct isl_sched_graph *graph,
|
||
|
struct isl_sched_edge *edge, int s, int local)
|
||
|
{
|
||
|
unsigned total;
|
||
|
unsigned nparam;
|
||
|
isl_map *map = isl_map_copy(edge->map);
|
||
|
isl_ctx *ctx = isl_map_get_ctx(map);
|
||
|
isl_space *dim;
|
||
|
isl_dim_map *dim_map;
|
||
|
isl_basic_set *coef;
|
||
|
struct isl_sched_node *src = edge->src;
|
||
|
struct isl_sched_node *dst = edge->dst;
|
||
|
|
||
|
coef = inter_coefficients(graph, edge, map);
|
||
|
|
||
|
dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
|
||
|
|
||
|
coef = isl_basic_set_transform_dims(coef, isl_dim_set,
|
||
|
isl_space_dim(dim, isl_dim_set), isl_mat_copy(src->cmap));
|
||
|
coef = isl_basic_set_transform_dims(coef, isl_dim_set,
|
||
|
isl_space_dim(dim, isl_dim_set) + src->nvar,
|
||
|
isl_mat_copy(dst->cmap));
|
||
|
if (!coef)
|
||
|
goto error;
|
||
|
|
||
|
nparam = isl_space_dim(src->space, isl_dim_param);
|
||
|
total = isl_basic_set_total_dim(graph->lp);
|
||
|
dim_map = isl_dim_map_alloc(ctx, total);
|
||
|
|
||
|
if (!local) {
|
||
|
isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
|
||
|
isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
|
||
|
isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
|
||
|
}
|
||
|
|
||
|
isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, -s);
|
||
|
isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, s);
|
||
|
isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, -s);
|
||
|
isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
|
||
|
isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
|
||
|
dst->nvar, s);
|
||
|
isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
|
||
|
isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
|
||
|
dst->nvar, -s);
|
||
|
|
||
|
isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, s);
|
||
|
isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, -s);
|
||
|
isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, s);
|
||
|
isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
|
||
|
isl_space_dim(dim, isl_dim_set), 1,
|
||
|
src->nvar, -s);
|
||
|
isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
|
||
|
isl_space_dim(dim, isl_dim_set), 1,
|
||
|
src->nvar, s);
|
||
|
|
||
|
graph->lp = isl_basic_set_extend_constraints(graph->lp,
|
||
|
coef->n_eq, coef->n_ineq);
|
||
|
graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
|
||
|
coef, dim_map);
|
||
|
isl_space_free(dim);
|
||
|
|
||
|
return 0;
|
||
|
error:
|
||
|
isl_space_free(dim);
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
/* Add all validity constraints to graph->lp.
|
||
|
*
|
||
|
* An edge that is forced to be local needs to have its dependence
|
||
|
* distances equal to zero. We take care of bounding them by 0 from below
|
||
|
* here. add_all_proximity_constraints takes care of bounding them by 0
|
||
|
* from above.
|
||
|
*
|
||
|
* If "use_coincidence" is set, then we treat coincidence edges as local edges.
|
||
|
* Otherwise, we ignore them.
|
||
|
*/
|
||
|
static int add_all_validity_constraints(struct isl_sched_graph *graph,
|
||
|
int use_coincidence)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < graph->n_edge; ++i) {
|
||
|
struct isl_sched_edge *edge= &graph->edge[i];
|
||
|
int local;
|
||
|
|
||
|
local = edge->local || (edge->coincidence && use_coincidence);
|
||
|
if (!edge->validity && !local)
|
||
|
continue;
|
||
|
if (edge->src != edge->dst)
|
||
|
continue;
|
||
|
if (add_intra_validity_constraints(graph, edge) < 0)
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < graph->n_edge; ++i) {
|
||
|
struct isl_sched_edge *edge = &graph->edge[i];
|
||
|
int local;
|
||
|
|
||
|
local = edge->local || (edge->coincidence && use_coincidence);
|
||
|
if (!edge->validity && !local)
|
||
|
continue;
|
||
|
if (edge->src == edge->dst)
|
||
|
continue;
|
||
|
if (add_inter_validity_constraints(graph, edge) < 0)
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Add constraints to graph->lp that bound the dependence distance
|
||
|
* for all dependence relations.
|
||
|
* If a given proximity dependence is identical to a validity
|
||
|
* dependence, then the dependence distance is already bounded
|
||
|
* from below (by zero), so we only need to bound the distance
|
||
|
* from above. (This includes the case of "local" dependences
|
||
|
* which are treated as validity dependence by add_all_validity_constraints.)
|
||
|
* Otherwise, we need to bound the distance both from above and from below.
|
||
|
*
|
||
|
* If "use_coincidence" is set, then we treat coincidence edges as local edges.
|
||
|
* Otherwise, we ignore them.
|
||
|
*/
|
||
|
static int add_all_proximity_constraints(struct isl_sched_graph *graph,
|
||
|
int use_coincidence)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < graph->n_edge; ++i) {
|
||
|
struct isl_sched_edge *edge= &graph->edge[i];
|
||
|
int local;
|
||
|
|
||
|
local = edge->local || (edge->coincidence && use_coincidence);
|
||
|
if (!edge->proximity && !local)
|
||
|
continue;
|
||
|
if (edge->src == edge->dst &&
|
||
|
add_intra_proximity_constraints(graph, edge, 1, local) < 0)
|
||
|
return -1;
|
||
|
if (edge->src != edge->dst &&
|
||
|
add_inter_proximity_constraints(graph, edge, 1, local) < 0)
|
||
|
return -1;
|
||
|
if (edge->validity || local)
|
||
|
continue;
|
||
|
if (edge->src == edge->dst &&
|
||
|
add_intra_proximity_constraints(graph, edge, -1, 0) < 0)
|
||
|
return -1;
|
||
|
if (edge->src != edge->dst &&
|
||
|
add_inter_proximity_constraints(graph, edge, -1, 0) < 0)
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Compute a basis for the rows in the linear part of the schedule
|
||
|
* and extend this basis to a full basis. The remaining rows
|
||
|
* can then be used to force linear independence from the rows
|
||
|
* in the schedule.
|
||
|
*
|
||
|
* In particular, given the schedule rows S, we compute
|
||
|
*
|
||
|
* S = H Q
|
||
|
* S U = H
|
||
|
*
|
||
|
* with H the Hermite normal form of S. That is, all but the
|
||
|
* first rank columns of H are zero and so each row in S is
|
||
|
* a linear combination of the first rank rows of Q.
|
||
|
* The matrix Q is then transposed because we will write the
|
||
|
* coefficients of the next schedule row as a column vector s
|
||
|
* and express this s as a linear combination s = Q c of the
|
||
|
* computed basis.
|
||
|
* Similarly, the matrix U is transposed such that we can
|
||
|
* compute the coefficients c = U s from a schedule row s.
|
||
|
*/
|
||
|
static int node_update_cmap(struct isl_sched_node *node)
|
||
|
{
|
||
|
isl_mat *H, *U, *Q;
|
||
|
int n_row = isl_mat_rows(node->sched);
|
||
|
|
||
|
H = isl_mat_sub_alloc(node->sched, 0, n_row,
|
||
|
1 + node->nparam, node->nvar);
|
||
|
|
||
|
H = isl_mat_left_hermite(H, 0, &U, &Q);
|
||
|
isl_mat_free(node->cmap);
|
||
|
isl_mat_free(node->cinv);
|
||
|
node->cmap = isl_mat_transpose(Q);
|
||
|
node->cinv = isl_mat_transpose(U);
|
||
|
node->rank = isl_mat_initial_non_zero_cols(H);
|
||
|
isl_mat_free(H);
|
||
|
|
||
|
if (!node->cmap || !node->cinv || node->rank < 0)
|
||
|
return -1;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* How many times should we count the constraints in "edge"?
|
||
|
*
|
||
|
* If carry is set, then we are counting the number of
|
||
|
* (validity or conditional validity) constraints that will be added
|
||
|
* in setup_carry_lp and we count each edge exactly once.
|
||
|
*
|
||
|
* Otherwise, we count as follows
|
||
|
* validity -> 1 (>= 0)
|
||
|
* validity+proximity -> 2 (>= 0 and upper bound)
|
||
|
* proximity -> 2 (lower and upper bound)
|
||
|
* local(+any) -> 2 (>= 0 and <= 0)
|
||
|
*
|
||
|
* If an edge is only marked conditional_validity then it counts
|
||
|
* as zero since it is only checked afterwards.
|
||
|
*
|
||
|
* If "use_coincidence" is set, then we treat coincidence edges as local edges.
|
||
|
* Otherwise, we ignore them.
|
||
|
*/
|
||
|
static int edge_multiplicity(struct isl_sched_edge *edge, int carry,
|
||
|
int use_coincidence)
|
||
|
{
|
||
|
if (carry && !edge->validity && !edge->conditional_validity)
|
||
|
return 0;
|
||
|
if (carry)
|
||
|
return 1;
|
||
|
if (edge->proximity || edge->local)
|
||
|
return 2;
|
||
|
if (use_coincidence && edge->coincidence)
|
||
|
return 2;
|
||
|
if (edge->validity)
|
||
|
return 1;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Count the number of equality and inequality constraints
|
||
|
* that will be added for the given map.
|
||
|
*
|
||
|
* "use_coincidence" is set if we should take into account coincidence edges.
|
||
|
*/
|
||
|
static int count_map_constraints(struct isl_sched_graph *graph,
|
||
|
struct isl_sched_edge *edge, __isl_take isl_map *map,
|
||
|
int *n_eq, int *n_ineq, int carry, int use_coincidence)
|
||
|
{
|
||
|
isl_basic_set *coef;
|
||
|
int f = edge_multiplicity(edge, carry, use_coincidence);
|
||
|
|
||
|
if (f == 0) {
|
||
|
isl_map_free(map);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (edge->src == edge->dst)
|
||
|
coef = intra_coefficients(graph, edge->src, map);
|
||
|
else
|
||
|
coef = inter_coefficients(graph, edge, map);
|
||
|
if (!coef)
|
||
|
return -1;
|
||
|
*n_eq += f * coef->n_eq;
|
||
|
*n_ineq += f * coef->n_ineq;
|
||
|
isl_basic_set_free(coef);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Count the number of equality and inequality constraints
|
||
|
* that will be added to the main lp problem.
|
||
|
* We count as follows
|
||
|
* validity -> 1 (>= 0)
|
||
|
* validity+proximity -> 2 (>= 0 and upper bound)
|
||
|
* proximity -> 2 (lower and upper bound)
|
||
|
* local(+any) -> 2 (>= 0 and <= 0)
|
||
|
*
|
||
|
* If "use_coincidence" is set, then we treat coincidence edges as local edges.
|
||
|
* Otherwise, we ignore them.
|
||
|
*/
|
||
|
static int count_constraints(struct isl_sched_graph *graph,
|
||
|
int *n_eq, int *n_ineq, int use_coincidence)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
*n_eq = *n_ineq = 0;
|
||
|
for (i = 0; i < graph->n_edge; ++i) {
|
||
|
struct isl_sched_edge *edge= &graph->edge[i];
|
||
|
isl_map *map = isl_map_copy(edge->map);
|
||
|
|
||
|
if (count_map_constraints(graph, edge, map, n_eq, n_ineq,
|
||
|
0, use_coincidence) < 0)
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Count the number of constraints that will be added by
|
||
|
* add_bound_coefficient_constraints and increment *n_eq and *n_ineq
|
||
|
* accordingly.
|
||
|
*
|
||
|
* In practice, add_bound_coefficient_constraints only adds inequalities.
|
||
|
*/
|
||
|
static int count_bound_coefficient_constraints(isl_ctx *ctx,
|
||
|
struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
if (ctx->opt->schedule_max_coefficient == -1)
|
||
|
return 0;
|
||
|
|
||
|
for (i = 0; i < graph->n; ++i)
|
||
|
*n_ineq += 2 * graph->node[i].nparam + 2 * graph->node[i].nvar;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Add constraints that bound the values of the variable and parameter
|
||
|
* coefficients of the schedule.
|
||
|
*
|
||
|
* The maximal value of the coefficients is defined by the option
|
||
|
* 'schedule_max_coefficient'.
|
||
|
*/
|
||
|
static int add_bound_coefficient_constraints(isl_ctx *ctx,
|
||
|
struct isl_sched_graph *graph)
|
||
|
{
|
||
|
int i, j, k;
|
||
|
int max_coefficient;
|
||
|
int total;
|
||
|
|
||
|
max_coefficient = ctx->opt->schedule_max_coefficient;
|
||
|
|
||
|
if (max_coefficient == -1)
|
||
|
return 0;
|
||
|
|
||
|
total = isl_basic_set_total_dim(graph->lp);
|
||
|
|
||
|
for (i = 0; i < graph->n; ++i) {
|
||
|
struct isl_sched_node *node = &graph->node[i];
|
||
|
for (j = 0; j < 2 * node->nparam + 2 * node->nvar; ++j) {
|
||
|
int dim;
|
||
|
k = isl_basic_set_alloc_inequality(graph->lp);
|
||
|
if (k < 0)
|
||
|
return -1;
|
||
|
dim = 1 + node->start + 1 + j;
|
||
|
isl_seq_clr(graph->lp->ineq[k], 1 + total);
|
||
|
isl_int_set_si(graph->lp->ineq[k][dim], -1);
|
||
|
isl_int_set_si(graph->lp->ineq[k][0], max_coefficient);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Construct an ILP problem for finding schedule coefficients
|
||
|
* that result in non-negative, but small dependence distances
|
||
|
* over all dependences.
|
||
|
* In particular, the dependence distances over proximity edges
|
||
|
* are bounded by m_0 + m_n n and we compute schedule coefficients
|
||
|
* with small values (preferably zero) of m_n and m_0.
|
||
|
*
|
||
|
* All variables of the ILP are non-negative. The actual coefficients
|
||
|
* may be negative, so each coefficient is represented as the difference
|
||
|
* of two non-negative variables. The negative part always appears
|
||
|
* immediately before the positive part.
|
||
|
* Other than that, the variables have the following order
|
||
|
*
|
||
|
* - sum of positive and negative parts of m_n coefficients
|
||
|
* - m_0
|
||
|
* - sum of positive and negative parts of all c_n coefficients
|
||
|
* (unconstrained when computing non-parametric schedules)
|
||
|
* - sum of positive and negative parts of all c_x coefficients
|
||
|
* - positive and negative parts of m_n coefficients
|
||
|
* - for each node
|
||
|
* - c_i_0
|
||
|
* - positive and negative parts of c_i_n (if parametric)
|
||
|
* - positive and negative parts of c_i_x
|
||
|
*
|
||
|
* The c_i_x are not represented directly, but through the columns of
|
||
|
* node->cmap. That is, the computed values are for variable t_i_x
|
||
|
* such that c_i_x = Q t_i_x with Q equal to node->cmap.
|
||
|
*
|
||
|
* The constraints are those from the edges plus two or three equalities
|
||
|
* to express the sums.
|
||
|
*
|
||
|
* If "use_coincidence" is set, then we treat coincidence edges as local edges.
|
||
|
* Otherwise, we ignore them.
|
||
|
*/
|
||
|
static int setup_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
|
||
|
int use_coincidence)
|
||
|
{
|
||
|
int i, j;
|
||
|
int k;
|
||
|
unsigned nparam;
|
||
|
unsigned total;
|
||
|
isl_space *dim;
|
||
|
int parametric;
|
||
|
int param_pos;
|
||
|
int n_eq, n_ineq;
|
||
|
int max_constant_term;
|
||
|
|
||
|
max_constant_term = ctx->opt->schedule_max_constant_term;
|
||
|
|
||
|
parametric = ctx->opt->schedule_parametric;
|
||
|
nparam = isl_space_dim(graph->node[0].space, isl_dim_param);
|
||
|
param_pos = 4;
|
||
|
total = param_pos + 2 * nparam;
|
||
|
for (i = 0; i < graph->n; ++i) {
|
||
|
struct isl_sched_node *node = &graph->node[graph->sorted[i]];
|
||
|
if (node_update_cmap(node) < 0)
|
||
|
return -1;
|
||
|
node->start = total;
|
||
|
total += 1 + 2 * (node->nparam + node->nvar);
|
||
|
}
|
||
|
|
||
|
if (count_constraints(graph, &n_eq, &n_ineq, use_coincidence) < 0)
|
||
|
return -1;
|
||
|
if (count_bound_coefficient_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
|
||
|
return -1;
|
||
|
|
||
|
dim = isl_space_set_alloc(ctx, 0, total);
|
||
|
isl_basic_set_free(graph->lp);
|
||
|
n_eq += 2 + parametric;
|
||
|
if (max_constant_term != -1)
|
||
|
n_ineq += graph->n;
|
||
|
|
||
|
graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq);
|
||
|
|
||
|
k = isl_basic_set_alloc_equality(graph->lp);
|
||
|
if (k < 0)
|
||
|
return -1;
|
||
|
isl_seq_clr(graph->lp->eq[k], 1 + total);
|
||
|
isl_int_set_si(graph->lp->eq[k][1], -1);
|
||
|
for (i = 0; i < 2 * nparam; ++i)
|
||
|
isl_int_set_si(graph->lp->eq[k][1 + param_pos + i], 1);
|
||
|
|
||
|
if (parametric) {
|
||
|
k = isl_basic_set_alloc_equality(graph->lp);
|
||
|
if (k < 0)
|
||
|
return -1;
|
||
|
isl_seq_clr(graph->lp->eq[k], 1 + total);
|
||
|
isl_int_set_si(graph->lp->eq[k][3], -1);
|
||
|
for (i = 0; i < graph->n; ++i) {
|
||
|
int pos = 1 + graph->node[i].start + 1;
|
||
|
|
||
|
for (j = 0; j < 2 * graph->node[i].nparam; ++j)
|
||
|
isl_int_set_si(graph->lp->eq[k][pos + j], 1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
k = isl_basic_set_alloc_equality(graph->lp);
|
||
|
if (k < 0)
|
||
|
return -1;
|
||
|
isl_seq_clr(graph->lp->eq[k], 1 + total);
|
||
|
isl_int_set_si(graph->lp->eq[k][4], -1);
|
||
|
for (i = 0; i < graph->n; ++i) {
|
||
|
struct isl_sched_node *node = &graph->node[i];
|
||
|
int pos = 1 + node->start + 1 + 2 * node->nparam;
|
||
|
|
||
|
for (j = 0; j < 2 * node->nvar; ++j)
|
||
|
isl_int_set_si(graph->lp->eq[k][pos + j], 1);
|
||
|
}
|
||
|
|
||
|
if (max_constant_term != -1)
|
||
|
for (i = 0; i < graph->n; ++i) {
|
||
|
struct isl_sched_node *node = &graph->node[i];
|
||
|
k = isl_basic_set_alloc_inequality(graph->lp);
|
||
|
if (k < 0)
|
||
|
return -1;
|
||
|
isl_seq_clr(graph->lp->ineq[k], 1 + total);
|
||
|
isl_int_set_si(graph->lp->ineq[k][1 + node->start], -1);
|
||
|
isl_int_set_si(graph->lp->ineq[k][0], max_constant_term);
|
||
|
}
|
||
|
|
||
|
if (add_bound_coefficient_constraints(ctx, graph) < 0)
|
||
|
return -1;
|
||
|
if (add_all_validity_constraints(graph, use_coincidence) < 0)
|
||
|
return -1;
|
||
|
if (add_all_proximity_constraints(graph, use_coincidence) < 0)
|
||
|
return -1;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Analyze the conflicting constraint found by
|
||
|
* isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
|
||
|
* constraint of one of the edges between distinct nodes, living, moreover
|
||
|
* in distinct SCCs, then record the source and sink SCC as this may
|
||
|
* be a good place to cut between SCCs.
|
||
|
*/
|
||
|
static int check_conflict(int con, void *user)
|
||
|
{
|
||
|
int i;
|
||
|
struct isl_sched_graph *graph = user;
|
||
|
|
||
|
if (graph->src_scc >= 0)
|
||
|
return 0;
|
||
|
|
||
|
con -= graph->lp->n_eq;
|
||
|
|
||
|
if (con >= graph->lp->n_ineq)
|
||
|
return 0;
|
||
|
|
||
|
for (i = 0; i < graph->n_edge; ++i) {
|
||
|
if (!graph->edge[i].validity)
|
||
|
continue;
|
||
|
if (graph->edge[i].src == graph->edge[i].dst)
|
||
|
continue;
|
||
|
if (graph->edge[i].src->scc == graph->edge[i].dst->scc)
|
||
|
continue;
|
||
|
if (graph->edge[i].start > con)
|
||
|
continue;
|
||
|
if (graph->edge[i].end <= con)
|
||
|
continue;
|
||
|
graph->src_scc = graph->edge[i].src->scc;
|
||
|
graph->dst_scc = graph->edge[i].dst->scc;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Check whether the next schedule row of the given node needs to be
|
||
|
* non-trivial. Lower-dimensional domains may have some trivial rows,
|
||
|
* but as soon as the number of remaining required non-trivial rows
|
||
|
* is as large as the number or remaining rows to be computed,
|
||
|
* all remaining rows need to be non-trivial.
|
||
|
*/
|
||
|
static int needs_row(struct isl_sched_graph *graph, struct isl_sched_node *node)
|
||
|
{
|
||
|
return node->nvar - node->rank >= graph->maxvar - graph->n_row;
|
||
|
}
|
||
|
|
||
|
/* Solve the ILP problem constructed in setup_lp.
|
||
|
* For each node such that all the remaining rows of its schedule
|
||
|
* need to be non-trivial, we construct a non-triviality region.
|
||
|
* This region imposes that the next row is independent of previous rows.
|
||
|
* In particular the coefficients c_i_x are represented by t_i_x
|
||
|
* variables with c_i_x = Q t_i_x and Q a unimodular matrix such that
|
||
|
* its first columns span the rows of the previously computed part
|
||
|
* of the schedule. The non-triviality region enforces that at least
|
||
|
* one of the remaining components of t_i_x is non-zero, i.e.,
|
||
|
* that the new schedule row depends on at least one of the remaining
|
||
|
* columns of Q.
|
||
|
*/
|
||
|
static __isl_give isl_vec *solve_lp(struct isl_sched_graph *graph)
|
||
|
{
|
||
|
int i;
|
||
|
isl_vec *sol;
|
||
|
isl_basic_set *lp;
|
||
|
|
||
|
for (i = 0; i < graph->n; ++i) {
|
||
|
struct isl_sched_node *node = &graph->node[i];
|
||
|
int skip = node->rank;
|
||
|
graph->region[i].pos = node->start + 1 + 2*(node->nparam+skip);
|
||
|
if (needs_row(graph, node))
|
||
|
graph->region[i].len = 2 * (node->nvar - skip);
|
||
|
else
|
||
|
graph->region[i].len = 0;
|
||
|
}
|
||
|
lp = isl_basic_set_copy(graph->lp);
|
||
|
sol = isl_tab_basic_set_non_trivial_lexmin(lp, 2, graph->n,
|
||
|
graph->region, &check_conflict, graph);
|
||
|
return sol;
|
||
|
}
|
||
|
|
||
|
/* Update the schedules of all nodes based on the given solution
|
||
|
* of the LP problem.
|
||
|
* The new row is added to the current band.
|
||
|
* All possibly negative coefficients are encoded as a difference
|
||
|
* of two non-negative variables, so we need to perform the subtraction
|
||
|
* here. Moreover, if use_cmap is set, then the solution does
|
||
|
* not refer to the actual coefficients c_i_x, but instead to variables
|
||
|
* t_i_x such that c_i_x = Q t_i_x and Q is equal to node->cmap.
|
||
|
* In this case, we then also need to perform this multiplication
|
||
|
* to obtain the values of c_i_x.
|
||
|
*
|
||
|
* If coincident is set, then the caller guarantees that the new
|
||
|
* row satisfies the coincidence constraints.
|
||
|
*/
|
||
|
static int update_schedule(struct isl_sched_graph *graph,
|
||
|
__isl_take isl_vec *sol, int use_cmap, int coincident)
|
||
|
{
|
||
|
int i, j;
|
||
|
isl_vec *csol = NULL;
|
||
|
|
||
|
if (!sol)
|
||
|
goto error;
|
||
|
if (sol->size == 0)
|
||
|
isl_die(sol->ctx, isl_error_internal,
|
||
|
"no solution found", goto error);
|
||
|
if (graph->n_total_row >= graph->max_row)
|
||
|
isl_die(sol->ctx, isl_error_internal,
|
||
|
"too many schedule rows", goto error);
|
||
|
|
||
|
for (i = 0; i < graph->n; ++i) {
|
||
|
struct isl_sched_node *node = &graph->node[i];
|
||
|
int pos = node->start;
|
||
|
int row = isl_mat_rows(node->sched);
|
||
|
|
||
|
isl_vec_free(csol);
|
||
|
csol = isl_vec_alloc(sol->ctx, node->nvar);
|
||
|
if (!csol)
|
||
|
goto error;
|
||
|
|
||
|
isl_map_free(node->sched_map);
|
||
|
node->sched_map = NULL;
|
||
|
node->sched = isl_mat_add_rows(node->sched, 1);
|
||
|
if (!node->sched)
|
||
|
goto error;
|
||
|
node->sched = isl_mat_set_element(node->sched, row, 0,
|
||
|
sol->el[1 + pos]);
|
||
|
for (j = 0; j < node->nparam + node->nvar; ++j)
|
||
|
isl_int_sub(sol->el[1 + pos + 1 + 2 * j + 1],
|
||
|
sol->el[1 + pos + 1 + 2 * j + 1],
|
||
|
sol->el[1 + pos + 1 + 2 * j]);
|
||
|
for (j = 0; j < node->nparam; ++j)
|
||
|
node->sched = isl_mat_set_element(node->sched,
|
||
|
row, 1 + j, sol->el[1+pos+1+2*j+1]);
|
||
|
for (j = 0; j < node->nvar; ++j)
|
||
|
isl_int_set(csol->el[j],
|
||
|
sol->el[1+pos+1+2*(node->nparam+j)+1]);
|
||
|
if (use_cmap)
|
||
|
csol = isl_mat_vec_product(isl_mat_copy(node->cmap),
|
||
|
csol);
|
||
|
if (!csol)
|
||
|
goto error;
|
||
|
for (j = 0; j < node->nvar; ++j)
|
||
|
node->sched = isl_mat_set_element(node->sched,
|
||
|
row, 1 + node->nparam + j, csol->el[j]);
|
||
|
node->band[graph->n_total_row] = graph->n_band;
|
||
|
node->coincident[graph->n_total_row] = coincident;
|
||
|
}
|
||
|
isl_vec_free(sol);
|
||
|
isl_vec_free(csol);
|
||
|
|
||
|
graph->n_row++;
|
||
|
graph->n_total_row++;
|
||
|
|
||
|
return 0;
|
||
|
error:
|
||
|
isl_vec_free(sol);
|
||
|
isl_vec_free(csol);
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
/* Convert row "row" of node->sched into an isl_aff living in "ls"
|
||
|
* and return this isl_aff.
|
||
|
*/
|
||
|
static __isl_give isl_aff *extract_schedule_row(__isl_take isl_local_space *ls,
|
||
|
struct isl_sched_node *node, int row)
|
||
|
{
|
||
|
int j;
|
||
|
isl_int v;
|
||
|
isl_aff *aff;
|
||
|
|
||
|
isl_int_init(v);
|
||
|
|
||
|
aff = isl_aff_zero_on_domain(ls);
|
||
|
isl_mat_get_element(node->sched, row, 0, &v);
|
||
|
aff = isl_aff_set_constant(aff, v);
|
||
|
for (j = 0; j < node->nparam; ++j) {
|
||
|
isl_mat_get_element(node->sched, row, 1 + j, &v);
|
||
|
aff = isl_aff_set_coefficient(aff, isl_dim_param, j, v);
|
||
|
}
|
||
|
for (j = 0; j < node->nvar; ++j) {
|
||
|
isl_mat_get_element(node->sched, row, 1 + node->nparam + j, &v);
|
||
|
aff = isl_aff_set_coefficient(aff, isl_dim_in, j, v);
|
||
|
}
|
||
|
|
||
|
isl_int_clear(v);
|
||
|
|
||
|
return aff;
|
||
|
}
|
||
|
|
||
|
/* Convert node->sched into a multi_aff and return this multi_aff.
|
||
|
*
|
||
|
* The result is defined over the uncompressed node domain.
|
||
|
*/
|
||
|
static __isl_give isl_multi_aff *node_extract_schedule_multi_aff(
|
||
|
struct isl_sched_node *node)
|
||
|
{
|
||
|
int i;
|
||
|
isl_space *space;
|
||
|
isl_local_space *ls;
|
||
|
isl_aff *aff;
|
||
|
isl_multi_aff *ma;
|
||
|
int nrow, ncol;
|
||
|
|
||
|
nrow = isl_mat_rows(node->sched);
|
||
|
ncol = isl_mat_cols(node->sched) - 1;
|
||
|
if (node->compressed)
|
||
|
space = isl_multi_aff_get_domain_space(node->decompress);
|
||
|
else
|
||
|
space = isl_space_copy(node->space);
|
||
|
ls = isl_local_space_from_space(isl_space_copy(space));
|
||
|
space = isl_space_from_domain(space);
|
||
|
space = isl_space_add_dims(space, isl_dim_out, nrow);
|
||
|
ma = isl_multi_aff_zero(space);
|
||
|
|
||
|
for (i = 0; i < nrow; ++i) {
|
||
|
aff = extract_schedule_row(isl_local_space_copy(ls), node, i);
|
||
|
ma = isl_multi_aff_set_aff(ma, i, aff);
|
||
|
}
|
||
|
|
||
|
isl_local_space_free(ls);
|
||
|
|
||
|
if (node->compressed)
|
||
|
ma = isl_multi_aff_pullback_multi_aff(ma,
|
||
|
isl_multi_aff_copy(node->compress));
|
||
|
|
||
|
return ma;
|
||
|
}
|
||
|
|
||
|
/* Convert node->sched into a map and return this map.
|
||
|
*
|
||
|
* The result is cached in node->sched_map, which needs to be released
|
||
|
* whenever node->sched is updated.
|
||
|
* It is defined over the uncompressed node domain.
|
||
|
*/
|
||
|
static __isl_give isl_map *node_extract_schedule(struct isl_sched_node *node)
|
||
|
{
|
||
|
if (!node->sched_map) {
|
||
|
isl_multi_aff *ma;
|
||
|
|
||
|
ma = node_extract_schedule_multi_aff(node);
|
||
|
node->sched_map = isl_map_from_multi_aff(ma);
|
||
|
}
|
||
|
|
||
|
return isl_map_copy(node->sched_map);
|
||
|
}
|
||
|
|
||
|
/* Construct a map that can be used to update a dependence relation
|
||
|
* based on the current schedule.
|
||
|
* That is, construct a map expressing that source and sink
|
||
|
* are executed within the same iteration of the current schedule.
|
||
|
* This map can then be intersected with the dependence relation.
|
||
|
* This is not the most efficient way, but this shouldn't be a critical
|
||
|
* operation.
|
||
|
*/
|
||
|
static __isl_give isl_map *specializer(struct isl_sched_node *src,
|
||
|
struct isl_sched_node *dst)
|
||
|
{
|
||
|
isl_map *src_sched, *dst_sched;
|
||
|
|
||
|
src_sched = node_extract_schedule(src);
|
||
|
dst_sched = node_extract_schedule(dst);
|
||
|
return isl_map_apply_range(src_sched, isl_map_reverse(dst_sched));
|
||
|
}
|
||
|
|
||
|
/* Intersect the domains of the nested relations in domain and range
|
||
|
* of "umap" with "map".
|
||
|
*/
|
||
|
static __isl_give isl_union_map *intersect_domains(
|
||
|
__isl_take isl_union_map *umap, __isl_keep isl_map *map)
|
||
|
{
|
||
|
isl_union_set *uset;
|
||
|
|
||
|
umap = isl_union_map_zip(umap);
|
||
|
uset = isl_union_set_from_set(isl_map_wrap(isl_map_copy(map)));
|
||
|
umap = isl_union_map_intersect_domain(umap, uset);
|
||
|
umap = isl_union_map_zip(umap);
|
||
|
return umap;
|
||
|
}
|
||
|
|
||
|
/* Update the dependence relation of the given edge based
|
||
|
* on the current schedule.
|
||
|
* If the dependence is carried completely by the current schedule, then
|
||
|
* it is removed from the edge_tables. It is kept in the list of edges
|
||
|
* as otherwise all edge_tables would have to be recomputed.
|
||
|
*/
|
||
|
static int update_edge(struct isl_sched_graph *graph,
|
||
|
struct isl_sched_edge *edge)
|
||
|
{
|
||
|
isl_map *id;
|
||
|
|
||
|
id = specializer(edge->src, edge->dst);
|
||
|
edge->map = isl_map_intersect(edge->map, isl_map_copy(id));
|
||
|
if (!edge->map)
|
||
|
goto error;
|
||
|
|
||
|
if (edge->tagged_condition) {
|
||
|
edge->tagged_condition =
|
||
|
intersect_domains(edge->tagged_condition, id);
|
||
|
if (!edge->tagged_condition)
|
||
|
goto error;
|
||
|
}
|
||
|
if (edge->tagged_validity) {
|
||
|
edge->tagged_validity =
|
||
|
intersect_domains(edge->tagged_validity, id);
|
||
|
if (!edge->tagged_validity)
|
||
|
goto error;
|
||
|
}
|
||
|
|
||
|
isl_map_free(id);
|
||
|
if (isl_map_plain_is_empty(edge->map))
|
||
|
graph_remove_edge(graph, edge);
|
||
|
|
||
|
return 0;
|
||
|
error:
|
||
|
isl_map_free(id);
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
/* Update the dependence relations of all edges based on the current schedule.
|
||
|
*/
|
||
|
static int update_edges(isl_ctx *ctx, struct isl_sched_graph *graph)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
for (i = graph->n_edge - 1; i >= 0; --i) {
|
||
|
if (update_edge(graph, &graph->edge[i]) < 0)
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void next_band(struct isl_sched_graph *graph)
|
||
|
{
|
||
|
graph->band_start = graph->n_total_row;
|
||
|
graph->n_band++;
|
||
|
}
|
||
|
|
||
|
/* Topologically sort statements mapped to the same schedule iteration
|
||
|
* and add a row to the schedule corresponding to this order.
|
||
|
*/
|
||
|
static int sort_statements(isl_ctx *ctx, struct isl_sched_graph *graph)
|
||
|
{
|
||
|
int i, j;
|
||
|
|
||
|
if (graph->n <= 1)
|
||
|
return 0;
|
||
|
|
||
|
if (update_edges(ctx, graph) < 0)
|
||
|
return -1;
|
||
|
|
||
|
if (graph->n_edge == 0)
|
||
|
return 0;
|
||
|
|
||
|
if (detect_sccs(ctx, graph) < 0)
|
||
|
return -1;
|
||
|
|
||
|
if (graph->n_total_row >= graph->max_row)
|
||
|
isl_die(ctx, isl_error_internal,
|
||
|
"too many schedule rows", return -1);
|
||
|
|
||
|
for (i = 0; i < graph->n; ++i) {
|
||
|
struct isl_sched_node *node = &graph->node[i];
|
||
|
int row = isl_mat_rows(node->sched);
|
||
|
int cols = isl_mat_cols(node->sched);
|
||
|
|
||
|
isl_map_free(node->sched_map);
|
||
|
node->sched_map = NULL;
|
||
|
node->sched = isl_mat_add_rows(node->sched, 1);
|
||
|
if (!node->sched)
|
||
|
return -1;
|
||
|
node->sched = isl_mat_set_element_si(node->sched, row, 0,
|
||
|
node->scc);
|
||
|
for (j = 1; j < cols; ++j)
|
||
|
node->sched = isl_mat_set_element_si(node->sched,
|
||
|
row, j, 0);
|
||
|
node->band[graph->n_total_row] = graph->n_band;
|
||
|
}
|
||
|
|
||
|
graph->n_total_row++;
|
||
|
next_band(graph);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Construct an isl_schedule based on the computed schedule stored
|
||
|
* in graph and with parameters specified by dim.
|
||
|
*/
|
||
|
static __isl_give isl_schedule *extract_schedule(struct isl_sched_graph *graph,
|
||
|
__isl_take isl_space *dim)
|
||
|
{
|
||
|
int i;
|
||
|
isl_ctx *ctx;
|
||
|
isl_schedule *sched = NULL;
|
||
|
|
||
|
if (!dim)
|
||
|
return NULL;
|
||
|
|
||
|
ctx = isl_space_get_ctx(dim);
|
||
|
sched = isl_calloc(ctx, struct isl_schedule,
|
||
|
sizeof(struct isl_schedule) +
|
||
|
(graph->n - 1) * sizeof(struct isl_schedule_node));
|
||
|
if (!sched)
|
||
|
goto error;
|
||
|
|
||
|
sched->ref = 1;
|
||
|
sched->n = graph->n;
|
||
|
sched->n_band = graph->n_band;
|
||
|
sched->n_total_row = graph->n_total_row;
|
||
|
|
||
|
for (i = 0; i < sched->n; ++i) {
|
||
|
int r, b;
|
||
|
int *band_end, *band_id, *coincident;
|
||
|
|
||
|
sched->node[i].sched =
|
||
|
node_extract_schedule_multi_aff(&graph->node[i]);
|
||
|
if (!sched->node[i].sched)
|
||
|
goto error;
|
||
|
|
||
|
sched->node[i].n_band = graph->n_band;
|
||
|
if (graph->n_band == 0)
|
||
|
continue;
|
||
|
|
||
|
band_end = isl_alloc_array(ctx, int, graph->n_band);
|
||
|
band_id = isl_alloc_array(ctx, int, graph->n_band);
|
||
|
coincident = isl_alloc_array(ctx, int, graph->n_total_row);
|
||
|
sched->node[i].band_end = band_end;
|
||
|
sched->node[i].band_id = band_id;
|
||
|
sched->node[i].coincident = coincident;
|
||
|
if (!band_end || !band_id || !coincident)
|
||
|
goto error;
|
||
|
|
||
|
for (r = 0; r < graph->n_total_row; ++r)
|
||
|
coincident[r] = graph->node[i].coincident[r];
|
||
|
for (r = b = 0; r < graph->n_total_row; ++r) {
|
||
|
if (graph->node[i].band[r] == b)
|
||
|
continue;
|
||
|
band_end[b++] = r;
|
||
|
if (graph->node[i].band[r] == -1)
|
||
|
break;
|
||
|
}
|
||
|
if (r == graph->n_total_row)
|
||
|
band_end[b++] = r;
|
||
|
sched->node[i].n_band = b;
|
||
|
for (--b; b >= 0; --b)
|
||
|
band_id[b] = graph->node[i].band_id[b];
|
||
|
}
|
||
|
|
||
|
sched->dim = dim;
|
||
|
|
||
|
return sched;
|
||
|
error:
|
||
|
isl_space_free(dim);
|
||
|
isl_schedule_free(sched);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/* Copy nodes that satisfy node_pred from the src dependence graph
|
||
|
* to the dst dependence graph.
|
||
|
*/
|
||
|
static int copy_nodes(struct isl_sched_graph *dst, struct isl_sched_graph *src,
|
||
|
int (*node_pred)(struct isl_sched_node *node, int data), int data)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
dst->n = 0;
|
||
|
for (i = 0; i < src->n; ++i) {
|
||
|
int j;
|
||
|
|
||
|
if (!node_pred(&src->node[i], data))
|
||
|
continue;
|
||
|
|
||
|
j = dst->n;
|
||
|
dst->node[j].space = isl_space_copy(src->node[i].space);
|
||
|
dst->node[j].compressed = src->node[i].compressed;
|
||
|
dst->node[j].hull = isl_set_copy(src->node[i].hull);
|
||
|
dst->node[j].compress =
|
||
|
isl_multi_aff_copy(src->node[i].compress);
|
||
|
dst->node[j].decompress =
|
||
|
isl_multi_aff_copy(src->node[i].decompress);
|
||
|
dst->node[j].nvar = src->node[i].nvar;
|
||
|
dst->node[j].nparam = src->node[i].nparam;
|
||
|
dst->node[j].sched = isl_mat_copy(src->node[i].sched);
|
||
|
dst->node[j].sched_map = isl_map_copy(src->node[i].sched_map);
|
||
|
dst->node[j].band = src->node[i].band;
|
||
|
dst->node[j].band_id = src->node[i].band_id;
|
||
|
dst->node[j].coincident = src->node[i].coincident;
|
||
|
dst->n++;
|
||
|
|
||
|
if (!dst->node[j].space || !dst->node[j].sched)
|
||
|
return -1;
|
||
|
if (dst->node[j].compressed &&
|
||
|
(!dst->node[j].hull || !dst->node[j].compress ||
|
||
|
!dst->node[j].decompress))
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Copy non-empty edges that satisfy edge_pred from the src dependence graph
|
||
|
* to the dst dependence graph.
|
||
|
* If the source or destination node of the edge is not in the destination
|
||
|
* graph, then it must be a backward proximity edge and it should simply
|
||
|
* be ignored.
|
||
|
*/
|
||
|
static int copy_edges(isl_ctx *ctx, struct isl_sched_graph *dst,
|
||
|
struct isl_sched_graph *src,
|
||
|
int (*edge_pred)(struct isl_sched_edge *edge, int data), int data)
|
||
|
{
|
||
|
int i;
|
||
|
enum isl_edge_type t;
|
||
|
|
||
|
dst->n_edge = 0;
|
||
|
for (i = 0; i < src->n_edge; ++i) {
|
||
|
struct isl_sched_edge *edge = &src->edge[i];
|
||
|
isl_map *map;
|
||
|
isl_union_map *tagged_condition;
|
||
|
isl_union_map *tagged_validity;
|
||
|
struct isl_sched_node *dst_src, *dst_dst;
|
||
|
|
||
|
if (!edge_pred(edge, data))
|
||
|
continue;
|
||
|
|
||
|
if (isl_map_plain_is_empty(edge->map))
|
||
|
continue;
|
||
|
|
||
|
dst_src = graph_find_node(ctx, dst, edge->src->space);
|
||
|
dst_dst = graph_find_node(ctx, dst, edge->dst->space);
|
||
|
if (!dst_src || !dst_dst) {
|
||
|
if (edge->validity || edge->conditional_validity)
|
||
|
isl_die(ctx, isl_error_internal,
|
||
|
"backward (conditional) validity edge",
|
||
|
return -1);
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
map = isl_map_copy(edge->map);
|
||
|
tagged_condition = isl_union_map_copy(edge->tagged_condition);
|
||
|
tagged_validity = isl_union_map_copy(edge->tagged_validity);
|
||
|
|
||
|
dst->edge[dst->n_edge].src = dst_src;
|
||
|
dst->edge[dst->n_edge].dst = dst_dst;
|
||
|
dst->edge[dst->n_edge].map = map;
|
||
|
dst->edge[dst->n_edge].tagged_condition = tagged_condition;
|
||
|
dst->edge[dst->n_edge].tagged_validity = tagged_validity;
|
||
|
dst->edge[dst->n_edge].validity = edge->validity;
|
||
|
dst->edge[dst->n_edge].proximity = edge->proximity;
|
||
|
dst->edge[dst->n_edge].coincidence = edge->coincidence;
|
||
|
dst->edge[dst->n_edge].condition = edge->condition;
|
||
|
dst->edge[dst->n_edge].conditional_validity =
|
||
|
edge->conditional_validity;
|
||
|
dst->n_edge++;
|
||
|
|
||
|
if (edge->tagged_condition && !tagged_condition)
|
||
|
return -1;
|
||
|
if (edge->tagged_validity && !tagged_validity)
|
||
|
return -1;
|
||
|
|
||
|
for (t = isl_edge_first; t <= isl_edge_last; ++t) {
|
||
|
if (edge !=
|
||
|
graph_find_edge(src, t, edge->src, edge->dst))
|
||
|
continue;
|
||
|
if (graph_edge_table_add(ctx, dst, t,
|
||
|
&dst->edge[dst->n_edge - 1]) < 0)
|
||
|
return -1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Given a "src" dependence graph that contains the nodes from "dst"
|
||
|
* that satisfy node_pred, copy the schedule computed in "src"
|
||
|
* for those nodes back to "dst".
|
||
|
*/
|
||
|
static int copy_schedule(struct isl_sched_graph *dst,
|
||
|
struct isl_sched_graph *src,
|
||
|
int (*node_pred)(struct isl_sched_node *node, int data), int data)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
src->n = 0;
|
||
|
for (i = 0; i < dst->n; ++i) {
|
||
|
if (!node_pred(&dst->node[i], data))
|
||
|
continue;
|
||
|
isl_mat_free(dst->node[i].sched);
|
||
|
isl_map_free(dst->node[i].sched_map);
|
||
|
dst->node[i].sched = isl_mat_copy(src->node[src->n].sched);
|
||
|
dst->node[i].sched_map =
|
||
|
isl_map_copy(src->node[src->n].sched_map);
|
||
|
src->n++;
|
||
|
}
|
||
|
|
||
|
dst->max_row = src->max_row;
|
||
|
dst->n_total_row = src->n_total_row;
|
||
|
dst->n_band = src->n_band;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Compute the maximal number of variables over all nodes.
|
||
|
* This is the maximal number of linearly independent schedule
|
||
|
* rows that we need to compute.
|
||
|
* Just in case we end up in a part of the dependence graph
|
||
|
* with only lower-dimensional domains, we make sure we will
|
||
|
* compute the required amount of extra linearly independent rows.
|
||
|
*/
|
||
|
static int compute_maxvar(struct isl_sched_graph *graph)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
graph->maxvar = 0;
|
||
|
for (i = 0; i < graph->n; ++i) {
|
||
|
struct isl_sched_node *node = &graph->node[i];
|
||
|
int nvar;
|
||
|
|
||
|
if (node_update_cmap(node) < 0)
|
||
|
return -1;
|
||
|
nvar = node->nvar + graph->n_row - node->rank;
|
||
|
if (nvar > graph->maxvar)
|
||
|
graph->maxvar = nvar;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int compute_schedule(isl_ctx *ctx, struct isl_sched_graph *graph);
|
||
|
static int compute_schedule_wcc(isl_ctx *ctx, struct isl_sched_graph *graph);
|
||
|
|
||
|
/* Compute a schedule for a subgraph of "graph". In particular, for
|
||
|
* the graph composed of nodes that satisfy node_pred and edges that
|
||
|
* that satisfy edge_pred. The caller should precompute the number
|
||
|
* of nodes and edges that satisfy these predicates and pass them along
|
||
|
* as "n" and "n_edge".
|
||
|
* If the subgraph is known to consist of a single component, then wcc should
|
||
|
* be set and then we call compute_schedule_wcc on the constructed subgraph.
|
||
|
* Otherwise, we call compute_schedule, which will check whether the subgraph
|
||
|
* is connected.
|
||
|
*/
|
||
|
static int compute_sub_schedule(isl_ctx *ctx,
|
||
|
struct isl_sched_graph *graph, int n, int n_edge,
|
||
|
int (*node_pred)(struct isl_sched_node *node, int data),
|
||
|
int (*edge_pred)(struct isl_sched_edge *edge, int data),
|
||
|
int data, int wcc)
|
||
|
{
|
||
|
struct isl_sched_graph split = { 0 };
|
||
|
int t;
|
||
|
|
||
|
if (graph_alloc(ctx, &split, n, n_edge) < 0)
|
||
|
goto error;
|
||
|
if (copy_nodes(&split, graph, node_pred, data) < 0)
|
||
|
goto error;
|
||
|
if (graph_init_table(ctx, &split) < 0)
|
||
|
goto error;
|
||
|
for (t = 0; t <= isl_edge_last; ++t)
|
||
|
split.max_edge[t] = graph->max_edge[t];
|
||
|
if (graph_init_edge_tables(ctx, &split) < 0)
|
||
|
goto error;
|
||
|
if (copy_edges(ctx, &split, graph, edge_pred, data) < 0)
|
||
|
goto error;
|
||
|
split.n_row = graph->n_row;
|
||
|
split.max_row = graph->max_row;
|
||
|
split.n_total_row = graph->n_total_row;
|
||
|
split.n_band = graph->n_band;
|
||
|
split.band_start = graph->band_start;
|
||
|
|
||
|
if (wcc && compute_schedule_wcc(ctx, &split) < 0)
|
||
|
goto error;
|
||
|
if (!wcc && compute_schedule(ctx, &split) < 0)
|
||
|
goto error;
|
||
|
|
||
|
copy_schedule(graph, &split, node_pred, data);
|
||
|
|
||
|
graph_free(ctx, &split);
|
||
|
return 0;
|
||
|
error:
|
||
|
graph_free(ctx, &split);
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
static int node_scc_exactly(struct isl_sched_node *node, int scc)
|
||
|
{
|
||
|
return node->scc == scc;
|
||
|
}
|
||
|
|
||
|
static int node_scc_at_most(struct isl_sched_node *node, int scc)
|
||
|
{
|
||
|
return node->scc <= scc;
|
||
|
}
|
||
|
|
||
|
static int node_scc_at_least(struct isl_sched_node *node, int scc)
|
||
|
{
|
||
|
return node->scc >= scc;
|
||
|
}
|
||
|
|
||
|
static int edge_scc_exactly(struct isl_sched_edge *edge, int scc)
|
||
|
{
|
||
|
return edge->src->scc == scc && edge->dst->scc == scc;
|
||
|
}
|
||
|
|
||
|
static int edge_dst_scc_at_most(struct isl_sched_edge *edge, int scc)
|
||
|
{
|
||
|
return edge->dst->scc <= scc;
|
||
|
}
|
||
|
|
||
|
static int edge_src_scc_at_least(struct isl_sched_edge *edge, int scc)
|
||
|
{
|
||
|
return edge->src->scc >= scc;
|
||
|
}
|
||
|
|
||
|
/* Pad the schedules of all nodes with zero rows such that in the end
|
||
|
* they all have graph->n_total_row rows.
|
||
|
* The extra rows don't belong to any band, so they get assigned band number -1.
|
||
|
*/
|
||
|
static int pad_schedule(struct isl_sched_graph *graph)
|
||
|
{
|
||
|
int i, j;
|
||
|
|
||
|
for (i = 0; i < graph->n; ++i) {
|
||
|
struct isl_sched_node *node = &graph->node[i];
|
||
|
int row = isl_mat_rows(node->sched);
|
||
|
if (graph->n_total_row > row) {
|
||
|
isl_map_free(node->sched_map);
|
||
|
node->sched_map = NULL;
|
||
|
}
|
||
|
node->sched = isl_mat_add_zero_rows(node->sched,
|
||
|
graph->n_total_row - row);
|
||
|
if (!node->sched)
|
||
|
return -1;
|
||
|
for (j = row; j < graph->n_total_row; ++j)
|
||
|
node->band[j] = -1;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Reset the current band by dropping all its schedule rows.
|
||
|
*/
|
||
|
static int reset_band(struct isl_sched_graph *graph)
|
||
|
{
|
||
|
int i;
|
||
|
int drop;
|
||
|
|
||
|
drop = graph->n_total_row - graph->band_start;
|
||
|
graph->n_total_row -= drop;
|
||
|
graph->n_row -= drop;
|
||
|
|
||
|
for (i = 0; i < graph->n; ++i) {
|
||
|
struct isl_sched_node *node = &graph->node[i];
|
||
|
|
||
|
isl_map_free(node->sched_map);
|
||
|
node->sched_map = NULL;
|
||
|
|
||
|
node->sched = isl_mat_drop_rows(node->sched,
|
||
|
graph->band_start, drop);
|
||
|
|
||
|
if (!node->sched)
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Split the current graph into two parts and compute a schedule for each
|
||
|
* part individually. In particular, one part consists of all SCCs up
|
||
|
* to and including graph->src_scc, while the other part contains the other
|
||
|
* SCCS.
|
||
|
*
|
||
|
* The split is enforced in the schedule by constant rows with two different
|
||
|
* values (0 and 1). These constant rows replace the previously computed rows
|
||
|
* in the current band.
|
||
|
* It would be possible to reuse them as the first rows in the next
|
||
|
* band, but recomputing them may result in better rows as we are looking
|
||
|
* at a smaller part of the dependence graph.
|
||
|
*
|
||
|
* Since we do not enforce coincidence, we conservatively mark the
|
||
|
* splitting row as not coincident.
|
||
|
*
|
||
|
* The band_id of the second group is set to n, where n is the number
|
||
|
* of nodes in the first group. This ensures that the band_ids over
|
||
|
* the two groups remain disjoint, even if either or both of the two
|
||
|
* groups contain independent components.
|
||
|
*/
|
||
|
static int compute_split_schedule(isl_ctx *ctx, struct isl_sched_graph *graph)
|
||
|
{
|
||
|
int i, j, n, e1, e2;
|
||
|
int n_total_row, orig_total_row;
|
||
|
int n_band, orig_band;
|
||
|
|
||
|
if (graph->n_total_row >= graph->max_row)
|
||
|
isl_die(ctx, isl_error_internal,
|
||
|
"too many schedule rows", return -1);
|
||
|
|
||
|
if (reset_band(graph) < 0)
|
||
|
return -1;
|
||
|
|
||
|
n = 0;
|
||
|
for (i = 0; i < graph->n; ++i) {
|
||
|
struct isl_sched_node *node = &graph->node[i];
|
||
|
int row = isl_mat_rows(node->sched);
|
||
|
int cols = isl_mat_cols(node->sched);
|
||
|
int before = node->scc <= graph->src_scc;
|
||
|
|
||
|
if (before)
|
||
|
n++;
|
||
|
|
||
|
isl_map_free(node->sched_map);
|
||
|
node->sched_map = NULL;
|
||
|
node->sched = isl_mat_add_rows(node->sched, 1);
|
||
|
if (!node->sched)
|
||
|
return -1;
|
||
|
node->sched = isl_mat_set_element_si(node->sched, row, 0,
|
||
|
!before);
|
||
|
for (j = 1; j < cols; ++j)
|
||
|
node->sched = isl_mat_set_element_si(node->sched,
|
||
|
row, j, 0);
|
||
|
node->band[graph->n_total_row] = graph->n_band;
|
||
|
node->coincident[graph->n_total_row] = 0;
|
||
|
}
|
||
|
|
||
|
e1 = e2 = 0;
|
||
|
for (i = 0; i < graph->n_edge; ++i) {
|
||
|
if (graph->edge[i].dst->scc <= graph->src_scc)
|
||
|
e1++;
|
||
|
if (graph->edge[i].src->scc > graph->src_scc)
|
||
|
e2++;
|
||
|
}
|
||
|
|
||
|
graph->n_total_row++;
|
||
|
next_band(graph);
|
||
|
|
||
|
for (i = 0; i < graph->n; ++i) {
|
||
|
struct isl_sched_node *node = &graph->node[i];
|
||
|
if (node->scc > graph->src_scc)
|
||
|
node->band_id[graph->n_band] = n;
|
||
|
}
|
||
|
|
||
|
orig_total_row = graph->n_total_row;
|
||
|
orig_band = graph->n_band;
|
||
|
if (compute_sub_schedule(ctx, graph, n, e1,
|
||
|
&node_scc_at_most, &edge_dst_scc_at_most,
|
||
|
graph->src_scc, 0) < 0)
|
||
|
return -1;
|
||
|
n_total_row = graph->n_total_row;
|
||
|
graph->n_total_row = orig_total_row;
|
||
|
n_band = graph->n_band;
|
||
|
graph->n_band = orig_band;
|
||
|
if (compute_sub_schedule(ctx, graph, graph->n - n, e2,
|
||
|
&node_scc_at_least, &edge_src_scc_at_least,
|
||
|
graph->src_scc + 1, 0) < 0)
|
||
|
return -1;
|
||
|
if (n_total_row > graph->n_total_row)
|
||
|
graph->n_total_row = n_total_row;
|
||
|
if (n_band > graph->n_band)
|
||
|
graph->n_band = n_band;
|
||
|
|
||
|
return pad_schedule(graph);
|
||
|
}
|
||
|
|
||
|
/* Compute the next band of the schedule after updating the dependence
|
||
|
* relations based on the the current schedule.
|
||
|
*/
|
||
|
static int compute_next_band(isl_ctx *ctx, struct isl_sched_graph *graph)
|
||
|
{
|
||
|
if (update_edges(ctx, graph) < 0)
|
||
|
return -1;
|
||
|
next_band(graph);
|
||
|
|
||
|
return compute_schedule(ctx, graph);
|
||
|
}
|
||
|
|
||
|
/* Add constraints to graph->lp that force the dependence "map" (which
|
||
|
* is part of the dependence relation of "edge")
|
||
|
* to be respected and attempt to carry it, where the edge is one from
|
||
|
* a node j to itself. "pos" is the sequence number of the given map.
|
||
|
* That is, add constraints that enforce
|
||
|
*
|
||
|
* (c_j_0 + c_j_n n + c_j_x y) - (c_j_0 + c_j_n n + c_j_x x)
|
||
|
* = c_j_x (y - x) >= e_i
|
||
|
*
|
||
|
* for each (x,y) in R.
|
||
|
* We obtain general constraints on coefficients (c_0, c_n, c_x)
|
||
|
* of valid constraints for (y - x) and then plug in (-e_i, 0, c_j_x),
|
||
|
* with each coefficient in c_j_x represented as a pair of non-negative
|
||
|
* coefficients.
|
||
|
*/
|
||
|
static int add_intra_constraints(struct isl_sched_graph *graph,
|
||
|
struct isl_sched_edge *edge, __isl_take isl_map *map, int pos)
|
||
|
{
|
||
|
unsigned total;
|
||
|
isl_ctx *ctx = isl_map_get_ctx(map);
|
||
|
isl_space *dim;
|
||
|
isl_dim_map *dim_map;
|
||
|
isl_basic_set *coef;
|
||
|
struct isl_sched_node *node = edge->src;
|
||
|
|
||
|
coef = intra_coefficients(graph, node, map);
|
||
|
if (!coef)
|
||
|
return -1;
|
||
|
|
||
|
dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
|
||
|
|
||
|
total = isl_basic_set_total_dim(graph->lp);
|
||
|
dim_map = isl_dim_map_alloc(ctx, total);
|
||
|
isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
|
||
|
isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
|
||
|
isl_space_dim(dim, isl_dim_set), 1,
|
||
|
node->nvar, -1);
|
||
|
isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
|
||
|
isl_space_dim(dim, isl_dim_set), 1,
|
||
|
node->nvar, 1);
|
||
|
graph->lp = isl_basic_set_extend_constraints(graph->lp,
|
||
|
coef->n_eq, coef->n_ineq);
|
||
|
graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
|
||
|
coef, dim_map);
|
||
|
isl_space_free(dim);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Add constraints to graph->lp that force the dependence "map" (which
|
||
|
* is part of the dependence relation of "edge")
|
||
|
* to be respected and attempt to carry it, where the edge is one from
|
||
|
* node j to node k. "pos" is the sequence number of the given map.
|
||
|
* That is, add constraints that enforce
|
||
|
*
|
||
|
* (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
|
||
|
*
|
||
|
* for each (x,y) in R.
|
||
|
* We obtain general constraints on coefficients (c_0, c_n, c_x)
|
||
|
* of valid constraints for R and then plug in
|
||
|
* (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, c_k_x - c_j_x)
|
||
|
* with each coefficient (except e_i, c_k_0 and c_j_0)
|
||
|
* represented as a pair of non-negative coefficients.
|
||
|
*/
|
||
|
static int add_inter_constraints(struct isl_sched_graph *graph,
|
||
|
struct isl_sched_edge *edge, __isl_take isl_map *map, int pos)
|
||
|
{
|
||
|
unsigned total;
|
||
|
isl_ctx *ctx = isl_map_get_ctx(map);
|
||
|
isl_space *dim;
|
||
|
isl_dim_map *dim_map;
|
||
|
isl_basic_set *coef;
|
||
|
struct isl_sched_node *src = edge->src;
|
||
|
struct isl_sched_node *dst = edge->dst;
|
||
|
|
||
|
coef = inter_coefficients(graph, edge, map);
|
||
|
if (!coef)
|
||
|
return -1;
|
||
|
|
||
|
dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
|
||
|
|
||
|
total = isl_basic_set_total_dim(graph->lp);
|
||
|
dim_map = isl_dim_map_alloc(ctx, total);
|
||
|
|
||
|
isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
|
||
|
|
||
|
isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, 1);
|
||
|
isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, -1);
|
||
|
isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, 1);
|
||
|
isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
|
||
|
isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
|
||
|
dst->nvar, -1);
|
||
|
isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
|
||
|
isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
|
||
|
dst->nvar, 1);
|
||
|
|
||
|
isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, -1);
|
||
|
isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, 1);
|
||
|
isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, -1);
|
||
|
isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
|
||
|
isl_space_dim(dim, isl_dim_set), 1,
|
||
|
src->nvar, 1);
|
||
|
isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
|
||
|
isl_space_dim(dim, isl_dim_set), 1,
|
||
|
src->nvar, -1);
|
||
|
|
||
|
graph->lp = isl_basic_set_extend_constraints(graph->lp,
|
||
|
coef->n_eq, coef->n_ineq);
|
||
|
graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
|
||
|
coef, dim_map);
|
||
|
isl_space_free(dim);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Add constraints to graph->lp that force all (conditional) validity
|
||
|
* dependences to be respected and attempt to carry them.
|
||
|
*/
|
||
|
static int add_all_constraints(struct isl_sched_graph *graph)
|
||
|
{
|
||
|
int i, j;
|
||
|
int pos;
|
||
|
|
||
|
pos = 0;
|
||
|
for (i = 0; i < graph->n_edge; ++i) {
|
||
|
struct isl_sched_edge *edge= &graph->edge[i];
|
||
|
|
||
|
if (!edge->validity && !edge->conditional_validity)
|
||
|
continue;
|
||
|
|
||
|
for (j = 0; j < edge->map->n; ++j) {
|
||
|
isl_basic_map *bmap;
|
||
|
isl_map *map;
|
||
|
|
||
|
bmap = isl_basic_map_copy(edge->map->p[j]);
|
||
|
map = isl_map_from_basic_map(bmap);
|
||
|
|
||
|
if (edge->src == edge->dst &&
|
||
|
add_intra_constraints(graph, edge, map, pos) < 0)
|
||
|
return -1;
|
||
|
if (edge->src != edge->dst &&
|
||
|
add_inter_constraints(graph, edge, map, pos) < 0)
|
||
|
return -1;
|
||
|
++pos;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Count the number of equality and inequality constraints
|
||
|
* that will be added to the carry_lp problem.
|
||
|
* We count each edge exactly once.
|
||
|
*/
|
||
|
static int count_all_constraints(struct isl_sched_graph *graph,
|
||
|
int *n_eq, int *n_ineq)
|
||
|
{
|
||
|
int i, j;
|
||
|
|
||
|
*n_eq = *n_ineq = 0;
|
||
|
for (i = 0; i < graph->n_edge; ++i) {
|
||
|
struct isl_sched_edge *edge= &graph->edge[i];
|
||
|
for (j = 0; j < edge->map->n; ++j) {
|
||
|
isl_basic_map *bmap;
|
||
|
isl_map *map;
|
||
|
|
||
|
bmap = isl_basic_map_copy(edge->map->p[j]);
|
||
|
map = isl_map_from_basic_map(bmap);
|
||
|
|
||
|
if (count_map_constraints(graph, edge, map,
|
||
|
n_eq, n_ineq, 1, 0) < 0)
|
||
|
return -1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Construct an LP problem for finding schedule coefficients
|
||
|
* such that the schedule carries as many dependences as possible.
|
||
|
* In particular, for each dependence i, we bound the dependence distance
|
||
|
* from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
|
||
|
* of all e_i's. Dependence with e_i = 0 in the solution are simply
|
||
|
* respected, while those with e_i > 0 (in practice e_i = 1) are carried.
|
||
|
* Note that if the dependence relation is a union of basic maps,
|
||
|
* then we have to consider each basic map individually as it may only
|
||
|
* be possible to carry the dependences expressed by some of those
|
||
|
* basic maps and not all off them.
|
||
|
* Below, we consider each of those basic maps as a separate "edge".
|
||
|
*
|
||
|
* All variables of the LP are non-negative. The actual coefficients
|
||
|
* may be negative, so each coefficient is represented as the difference
|
||
|
* of two non-negative variables. The negative part always appears
|
||
|
* immediately before the positive part.
|
||
|
* Other than that, the variables have the following order
|
||
|
*
|
||
|
* - sum of (1 - e_i) over all edges
|
||
|
* - sum of positive and negative parts of all c_n coefficients
|
||
|
* (unconstrained when computing non-parametric schedules)
|
||
|
* - sum of positive and negative parts of all c_x coefficients
|
||
|
* - for each edge
|
||
|
* - e_i
|
||
|
* - for each node
|
||
|
* - c_i_0
|
||
|
* - positive and negative parts of c_i_n (if parametric)
|
||
|
* - positive and negative parts of c_i_x
|
||
|
*
|
||
|
* The constraints are those from the (validity) edges plus three equalities
|
||
|
* to express the sums and n_edge inequalities to express e_i <= 1.
|
||
|
*/
|
||
|
static int setup_carry_lp(isl_ctx *ctx, struct isl_sched_graph *graph)
|
||
|
{
|
||
|
int i, j;
|
||
|
int k;
|
||
|
isl_space *dim;
|
||
|
unsigned total;
|
||
|
int n_eq, n_ineq;
|
||
|
int n_edge;
|
||
|
|
||
|
n_edge = 0;
|
||
|
for (i = 0; i < graph->n_edge; ++i)
|
||
|
n_edge += graph->edge[i].map->n;
|
||
|
|
||
|
total = 3 + n_edge;
|
||
|
for (i = 0; i < graph->n; ++i) {
|
||
|
struct isl_sched_node *node = &graph->node[graph->sorted[i]];
|
||
|
node->start = total;
|
||
|
total += 1 + 2 * (node->nparam + node->nvar);
|
||
|
}
|
||
|
|
||
|
if (count_all_constraints(graph, &n_eq, &n_ineq) < 0)
|
||
|
return -1;
|
||
|
if (count_bound_coefficient_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
|
||
|
return -1;
|
||
|
|
||
|
dim = isl_space_set_alloc(ctx, 0, total);
|
||
|
isl_basic_set_free(graph->lp);
|
||
|
n_eq += 3;
|
||
|
n_ineq += n_edge;
|
||
|
graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq);
|
||
|
graph->lp = isl_basic_set_set_rational(graph->lp);
|
||
|
|
||
|
k = isl_basic_set_alloc_equality(graph->lp);
|
||
|
if (k < 0)
|
||
|
return -1;
|
||
|
isl_seq_clr(graph->lp->eq[k], 1 + total);
|
||
|
isl_int_set_si(graph->lp->eq[k][0], -n_edge);
|
||
|
isl_int_set_si(graph->lp->eq[k][1], 1);
|
||
|
for (i = 0; i < n_edge; ++i)
|
||
|
isl_int_set_si(graph->lp->eq[k][4 + i], 1);
|
||
|
|
||
|
k = isl_basic_set_alloc_equality(graph->lp);
|
||
|
if (k < 0)
|
||
|
return -1;
|
||
|
isl_seq_clr(graph->lp->eq[k], 1 + total);
|
||
|
isl_int_set_si(graph->lp->eq[k][2], -1);
|
||
|
for (i = 0; i < graph->n; ++i) {
|
||
|
int pos = 1 + graph->node[i].start + 1;
|
||
|
|
||
|
for (j = 0; j < 2 * graph->node[i].nparam; ++j)
|
||
|
isl_int_set_si(graph->lp->eq[k][pos + j], 1);
|
||
|
}
|
||
|
|
||
|
k = isl_basic_set_alloc_equality(graph->lp);
|
||
|
if (k < 0)
|
||
|
return -1;
|
||
|
isl_seq_clr(graph->lp->eq[k], 1 + total);
|
||
|
isl_int_set_si(graph->lp->eq[k][3], -1);
|
||
|
for (i = 0; i < graph->n; ++i) {
|
||
|
struct isl_sched_node *node = &graph->node[i];
|
||
|
int pos = 1 + node->start + 1 + 2 * node->nparam;
|
||
|
|
||
|
for (j = 0; j < 2 * node->nvar; ++j)
|
||
|
isl_int_set_si(graph->lp->eq[k][pos + j], 1);
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < n_edge; ++i) {
|
||
|
k = isl_basic_set_alloc_inequality(graph->lp);
|
||
|
if (k < 0)
|
||
|
return -1;
|
||
|
isl_seq_clr(graph->lp->ineq[k], 1 + total);
|
||
|
isl_int_set_si(graph->lp->ineq[k][4 + i], -1);
|
||
|
isl_int_set_si(graph->lp->ineq[k][0], 1);
|
||
|
}
|
||
|
|
||
|
if (add_bound_coefficient_constraints(ctx, graph) < 0)
|
||
|
return -1;
|
||
|
if (add_all_constraints(graph) < 0)
|
||
|
return -1;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* If the schedule_split_scaled option is set and if the linear
|
||
|
* parts of the scheduling rows for all nodes in the graphs have
|
||
|
* non-trivial common divisor, then split off the constant term
|
||
|
* from the linear part.
|
||
|
* The constant term is then placed in a separate band and
|
||
|
* the linear part is reduced.
|
||
|
*/
|
||
|
static int split_scaled(isl_ctx *ctx, struct isl_sched_graph *graph)
|
||
|
{
|
||
|
int i;
|
||
|
int row;
|
||
|
isl_int gcd, gcd_i;
|
||
|
|
||
|
if (!ctx->opt->schedule_split_scaled)
|
||
|
return 0;
|
||
|
if (graph->n <= 1)
|
||
|
return 0;
|
||
|
|
||
|
if (graph->n_total_row >= graph->max_row)
|
||
|
isl_die(ctx, isl_error_internal,
|
||
|
"too many schedule rows", return -1);
|
||
|
|
||
|
isl_int_init(gcd);
|
||
|
isl_int_init(gcd_i);
|
||
|
|
||
|
isl_int_set_si(gcd, 0);
|
||
|
|
||
|
row = isl_mat_rows(graph->node[0].sched) - 1;
|
||
|
|
||
|
for (i = 0; i < graph->n; ++i) {
|
||
|
struct isl_sched_node *node = &graph->node[i];
|
||
|
int cols = isl_mat_cols(node->sched);
|
||
|
|
||
|
isl_seq_gcd(node->sched->row[row] + 1, cols - 1, &gcd_i);
|
||
|
isl_int_gcd(gcd, gcd, gcd_i);
|
||
|
}
|
||
|
|
||
|
isl_int_clear(gcd_i);
|
||
|
|
||
|
if (isl_int_cmp_si(gcd, 1) <= 0) {
|
||
|
isl_int_clear(gcd);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
next_band(graph);
|
||
|
|
||
|
for (i = 0; i < graph->n; ++i) {
|
||
|
struct isl_sched_node *node = &graph->node[i];
|
||
|
|
||
|
isl_map_free(node->sched_map);
|
||
|
node->sched_map = NULL;
|
||
|
node->sched = isl_mat_add_zero_rows(node->sched, 1);
|
||
|
if (!node->sched)
|
||
|
goto error;
|
||
|
isl_int_fdiv_r(node->sched->row[row + 1][0],
|
||
|
node->sched->row[row][0], gcd);
|
||
|
isl_int_fdiv_q(node->sched->row[row][0],
|
||
|
node->sched->row[row][0], gcd);
|
||
|
isl_int_mul(node->sched->row[row][0],
|
||
|
node->sched->row[row][0], gcd);
|
||
|
node->sched = isl_mat_scale_down_row(node->sched, row, gcd);
|
||
|
if (!node->sched)
|
||
|
goto error;
|
||
|
node->band[graph->n_total_row] = graph->n_band;
|
||
|
}
|
||
|
|
||
|
graph->n_total_row++;
|
||
|
|
||
|
isl_int_clear(gcd);
|
||
|
return 0;
|
||
|
error:
|
||
|
isl_int_clear(gcd);
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
static int compute_component_schedule(isl_ctx *ctx,
|
||
|
struct isl_sched_graph *graph);
|
||
|
|
||
|
/* Is the schedule row "sol" trivial on node "node"?
|
||
|
* That is, is the solution zero on the dimensions orthogonal to
|
||
|
* the previously found solutions?
|
||
|
* Return 1 if the solution is trivial, 0 if it is not and -1 on error.
|
||
|
*
|
||
|
* Each coefficient is represented as the difference between
|
||
|
* two non-negative values in "sol". "sol" has been computed
|
||
|
* in terms of the original iterators (i.e., without use of cmap).
|
||
|
* We construct the schedule row s and write it as a linear
|
||
|
* combination of (linear combinations of) previously computed schedule rows.
|
||
|
* s = Q c or c = U s.
|
||
|
* If the final entries of c are all zero, then the solution is trivial.
|
||
|
*/
|
||
|
static int is_trivial(struct isl_sched_node *node, __isl_keep isl_vec *sol)
|
||
|
{
|
||
|
int i;
|
||
|
int pos;
|
||
|
int trivial;
|
||
|
isl_ctx *ctx;
|
||
|
isl_vec *node_sol;
|
||
|
|
||
|
if (!sol)
|
||
|
return -1;
|
||
|
if (node->nvar == node->rank)
|
||
|
return 0;
|
||
|
|
||
|
ctx = isl_vec_get_ctx(sol);
|
||
|
node_sol = isl_vec_alloc(ctx, node->nvar);
|
||
|
if (!node_sol)
|
||
|
return -1;
|
||
|
|
||
|
pos = 1 + node->start + 1 + 2 * node->nparam;
|
||
|
|
||
|
for (i = 0; i < node->nvar; ++i)
|
||
|
isl_int_sub(node_sol->el[i],
|
||
|
sol->el[pos + 2 * i + 1], sol->el[pos + 2 * i]);
|
||
|
|
||
|
node_sol = isl_mat_vec_product(isl_mat_copy(node->cinv), node_sol);
|
||
|
|
||
|
if (!node_sol)
|
||
|
return -1;
|
||
|
|
||
|
trivial = isl_seq_first_non_zero(node_sol->el + node->rank,
|
||
|
node->nvar - node->rank) == -1;
|
||
|
|
||
|
isl_vec_free(node_sol);
|
||
|
|
||
|
return trivial;
|
||
|
}
|
||
|
|
||
|
/* Is the schedule row "sol" trivial on any node where it should
|
||
|
* not be trivial?
|
||
|
* "sol" has been computed in terms of the original iterators
|
||
|
* (i.e., without use of cmap).
|
||
|
* Return 1 if any solution is trivial, 0 if they are not and -1 on error.
|
||
|
*/
|
||
|
static int is_any_trivial(struct isl_sched_graph *graph,
|
||
|
__isl_keep isl_vec *sol)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < graph->n; ++i) {
|
||
|
struct isl_sched_node *node = &graph->node[i];
|
||
|
int trivial;
|
||
|
|
||
|
if (!needs_row(graph, node))
|
||
|
continue;
|
||
|
trivial = is_trivial(node, sol);
|
||
|
if (trivial < 0 || trivial)
|
||
|
return trivial;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Construct a schedule row for each node such that as many dependences
|
||
|
* as possible are carried and then continue with the next band.
|
||
|
*
|
||
|
* If the computed schedule row turns out to be trivial on one or
|
||
|
* more nodes where it should not be trivial, then we throw it away
|
||
|
* and try again on each component separately.
|
||
|
*
|
||
|
* If there is only one component, then we accept the schedule row anyway,
|
||
|
* but we do not consider it as a complete row and therefore do not
|
||
|
* increment graph->n_row. Note that the ranks of the nodes that
|
||
|
* do get a non-trivial schedule part will get updated regardless and
|
||
|
* graph->maxvar is computed based on these ranks. The test for
|
||
|
* whether more schedule rows are required in compute_schedule_wcc
|
||
|
* is therefore not affected.
|
||
|
*/
|
||
|
static int carry_dependences(isl_ctx *ctx, struct isl_sched_graph *graph)
|
||
|
{
|
||
|
int i;
|
||
|
int n_edge;
|
||
|
int trivial;
|
||
|
isl_vec *sol;
|
||
|
isl_basic_set *lp;
|
||
|
|
||
|
n_edge = 0;
|
||
|
for (i = 0; i < graph->n_edge; ++i)
|
||
|
n_edge += graph->edge[i].map->n;
|
||
|
|
||
|
if (setup_carry_lp(ctx, graph) < 0)
|
||
|
return -1;
|
||
|
|
||
|
lp = isl_basic_set_copy(graph->lp);
|
||
|
sol = isl_tab_basic_set_non_neg_lexmin(lp);
|
||
|
if (!sol)
|
||
|
return -1;
|
||
|
|
||
|
if (sol->size == 0) {
|
||
|
isl_vec_free(sol);
|
||
|
isl_die(ctx, isl_error_internal,
|
||
|
"error in schedule construction", return -1);
|
||
|
}
|
||
|
|
||
|
isl_int_divexact(sol->el[1], sol->el[1], sol->el[0]);
|
||
|
if (isl_int_cmp_si(sol->el[1], n_edge) >= 0) {
|
||
|
isl_vec_free(sol);
|
||
|
isl_die(ctx, isl_error_unknown,
|
||
|
"unable to carry dependences", return -1);
|
||
|
}
|
||
|
|
||
|
trivial = is_any_trivial(graph, sol);
|
||
|
if (trivial < 0) {
|
||
|
sol = isl_vec_free(sol);
|
||
|
} else if (trivial && graph->scc > 1) {
|
||
|
isl_vec_free(sol);
|
||
|
return compute_component_schedule(ctx, graph);
|
||
|
}
|
||
|
|
||
|
if (update_schedule(graph, sol, 0, 0) < 0)
|
||
|
return -1;
|
||
|
if (trivial)
|
||
|
graph->n_row--;
|
||
|
|
||
|
if (split_scaled(ctx, graph) < 0)
|
||
|
return -1;
|
||
|
|
||
|
return compute_next_band(ctx, graph);
|
||
|
}
|
||
|
|
||
|
/* Are there any (non-empty) (conditional) validity edges in the graph?
|
||
|
*/
|
||
|
static int has_validity_edges(struct isl_sched_graph *graph)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < graph->n_edge; ++i) {
|
||
|
int empty;
|
||
|
|
||
|
empty = isl_map_plain_is_empty(graph->edge[i].map);
|
||
|
if (empty < 0)
|
||
|
return -1;
|
||
|
if (empty)
|
||
|
continue;
|
||
|
if (graph->edge[i].validity ||
|
||
|
graph->edge[i].conditional_validity)
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Should we apply a Feautrier step?
|
||
|
* That is, did the user request the Feautrier algorithm and are
|
||
|
* there any validity dependences (left)?
|
||
|
*/
|
||
|
static int need_feautrier_step(isl_ctx *ctx, struct isl_sched_graph *graph)
|
||
|
{
|
||
|
if (ctx->opt->schedule_algorithm != ISL_SCHEDULE_ALGORITHM_FEAUTRIER)
|
||
|
return 0;
|
||
|
|
||
|
return has_validity_edges(graph);
|
||
|
}
|
||
|
|
||
|
/* Compute a schedule for a connected dependence graph using Feautrier's
|
||
|
* multi-dimensional scheduling algorithm.
|
||
|
* The original algorithm is described in [1].
|
||
|
* The main idea is to minimize the number of scheduling dimensions, by
|
||
|
* trying to satisfy as many dependences as possible per scheduling dimension.
|
||
|
*
|
||
|
* [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
|
||
|
* Problem, Part II: Multi-Dimensional Time.
|
||
|
* In Intl. Journal of Parallel Programming, 1992.
|
||
|
*/
|
||
|
static int compute_schedule_wcc_feautrier(isl_ctx *ctx,
|
||
|
struct isl_sched_graph *graph)
|
||
|
{
|
||
|
return carry_dependences(ctx, graph);
|
||
|
}
|
||
|
|
||
|
/* Turn off the "local" bit on all (condition) edges.
|
||
|
*/
|
||
|
static void clear_local_edges(struct isl_sched_graph *graph)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < graph->n_edge; ++i)
|
||
|
if (graph->edge[i].condition)
|
||
|
graph->edge[i].local = 0;
|
||
|
}
|
||
|
|
||
|
/* Does "graph" have both condition and conditional validity edges?
|
||
|
*/
|
||
|
static int need_condition_check(struct isl_sched_graph *graph)
|
||
|
{
|
||
|
int i;
|
||
|
int any_condition = 0;
|
||
|
int any_conditional_validity = 0;
|
||
|
|
||
|
for (i = 0; i < graph->n_edge; ++i) {
|
||
|
if (graph->edge[i].condition)
|
||
|
any_condition = 1;
|
||
|
if (graph->edge[i].conditional_validity)
|
||
|
any_conditional_validity = 1;
|
||
|
}
|
||
|
|
||
|
return any_condition && any_conditional_validity;
|
||
|
}
|
||
|
|
||
|
/* Does "graph" contain any coincidence edge?
|
||
|
*/
|
||
|
static int has_any_coincidence(struct isl_sched_graph *graph)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < graph->n_edge; ++i)
|
||
|
if (graph->edge[i].coincidence)
|
||
|
return 1;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Extract the final schedule row as a map with the iteration domain
|
||
|
* of "node" as domain.
|
||
|
*/
|
||
|
static __isl_give isl_map *final_row(struct isl_sched_node *node)
|
||
|
{
|
||
|
isl_local_space *ls;
|
||
|
isl_aff *aff;
|
||
|
int row;
|
||
|
|
||
|
row = isl_mat_rows(node->sched) - 1;
|
||
|
ls = isl_local_space_from_space(isl_space_copy(node->space));
|
||
|
aff = extract_schedule_row(ls, node, row);
|
||
|
return isl_map_from_aff(aff);
|
||
|
}
|
||
|
|
||
|
/* Is the conditional validity dependence in the edge with index "edge_index"
|
||
|
* violated by the latest (i.e., final) row of the schedule?
|
||
|
* That is, is i scheduled after j
|
||
|
* for any conditional validity dependence i -> j?
|
||
|
*/
|
||
|
static int is_violated(struct isl_sched_graph *graph, int edge_index)
|
||
|
{
|
||
|
isl_map *src_sched, *dst_sched, *map;
|
||
|
struct isl_sched_edge *edge = &graph->edge[edge_index];
|
||
|
int empty;
|
||
|
|
||
|
src_sched = final_row(edge->src);
|
||
|
dst_sched = final_row(edge->dst);
|
||
|
map = isl_map_copy(edge->map);
|
||
|
map = isl_map_apply_domain(map, src_sched);
|
||
|
map = isl_map_apply_range(map, dst_sched);
|
||
|
map = isl_map_order_gt(map, isl_dim_in, 0, isl_dim_out, 0);
|
||
|
empty = isl_map_is_empty(map);
|
||
|
isl_map_free(map);
|
||
|
|
||
|
if (empty < 0)
|
||
|
return -1;
|
||
|
|
||
|
return !empty;
|
||
|
}
|
||
|
|
||
|
/* Does the domain of "umap" intersect "uset"?
|
||
|
*/
|
||
|
static int domain_intersects(__isl_keep isl_union_map *umap,
|
||
|
__isl_keep isl_union_set *uset)
|
||
|
{
|
||
|
int empty;
|
||
|
|
||
|
umap = isl_union_map_copy(umap);
|
||
|
umap = isl_union_map_intersect_domain(umap, isl_union_set_copy(uset));
|
||
|
empty = isl_union_map_is_empty(umap);
|
||
|
isl_union_map_free(umap);
|
||
|
|
||
|
return empty < 0 ? -1 : !empty;
|
||
|
}
|
||
|
|
||
|
/* Does the range of "umap" intersect "uset"?
|
||
|
*/
|
||
|
static int range_intersects(__isl_keep isl_union_map *umap,
|
||
|
__isl_keep isl_union_set *uset)
|
||
|
{
|
||
|
int empty;
|
||
|
|
||
|
umap = isl_union_map_copy(umap);
|
||
|
umap = isl_union_map_intersect_range(umap, isl_union_set_copy(uset));
|
||
|
empty = isl_union_map_is_empty(umap);
|
||
|
isl_union_map_free(umap);
|
||
|
|
||
|
return empty < 0 ? -1 : !empty;
|
||
|
}
|
||
|
|
||
|
/* Are the condition dependences of "edge" local with respect to
|
||
|
* the current schedule?
|
||
|
*
|
||
|
* That is, are domain and range of the condition dependences mapped
|
||
|
* to the same point?
|
||
|
*
|
||
|
* In other words, is the condition false?
|
||
|
*/
|
||
|
static int is_condition_false(struct isl_sched_edge *edge)
|
||
|
{
|
||
|
isl_union_map *umap;
|
||
|
isl_map *map, *sched, *test;
|
||
|
int local;
|
||
|
|
||
|
umap = isl_union_map_copy(edge->tagged_condition);
|
||
|
umap = isl_union_map_zip(umap);
|
||
|
umap = isl_union_set_unwrap(isl_union_map_domain(umap));
|
||
|
map = isl_map_from_union_map(umap);
|
||
|
|
||
|
sched = node_extract_schedule(edge->src);
|
||
|
map = isl_map_apply_domain(map, sched);
|
||
|
sched = node_extract_schedule(edge->dst);
|
||
|
map = isl_map_apply_range(map, sched);
|
||
|
|
||
|
test = isl_map_identity(isl_map_get_space(map));
|
||
|
local = isl_map_is_subset(map, test);
|
||
|
isl_map_free(map);
|
||
|
isl_map_free(test);
|
||
|
|
||
|
return local;
|
||
|
}
|
||
|
|
||
|
/* Does "graph" have any satisfied condition edges that
|
||
|
* are adjacent to the conditional validity constraint with
|
||
|
* domain "conditional_source" and range "conditional_sink"?
|
||
|
*
|
||
|
* A satisfied condition is one that is not local.
|
||
|
* If a condition was forced to be local already (i.e., marked as local)
|
||
|
* then there is no need to check if it is in fact local.
|
||
|
*
|
||
|
* Additionally, mark all adjacent condition edges found as local.
|
||
|
*/
|
||
|
static int has_adjacent_true_conditions(struct isl_sched_graph *graph,
|
||
|
__isl_keep isl_union_set *conditional_source,
|
||
|
__isl_keep isl_union_set *conditional_sink)
|
||
|
{
|
||
|
int i;
|
||
|
int any = 0;
|
||
|
|
||
|
for (i = 0; i < graph->n_edge; ++i) {
|
||
|
int adjacent, local;
|
||
|
isl_union_map *condition;
|
||
|
|
||
|
if (!graph->edge[i].condition)
|
||
|
continue;
|
||
|
if (graph->edge[i].local)
|
||
|
continue;
|
||
|
|
||
|
condition = graph->edge[i].tagged_condition;
|
||
|
adjacent = domain_intersects(condition, conditional_sink);
|
||
|
if (adjacent >= 0 && !adjacent)
|
||
|
adjacent = range_intersects(condition,
|
||
|
conditional_source);
|
||
|
if (adjacent < 0)
|
||
|
return -1;
|
||
|
if (!adjacent)
|
||
|
continue;
|
||
|
|
||
|
graph->edge[i].local = 1;
|
||
|
|
||
|
local = is_condition_false(&graph->edge[i]);
|
||
|
if (local < 0)
|
||
|
return -1;
|
||
|
if (!local)
|
||
|
any = 1;
|
||
|
}
|
||
|
|
||
|
return any;
|
||
|
}
|
||
|
|
||
|
/* Are there any violated conditional validity dependences with
|
||
|
* adjacent condition dependences that are not local with respect
|
||
|
* to the current schedule?
|
||
|
* That is, is the conditional validity constraint violated?
|
||
|
*
|
||
|
* Additionally, mark all those adjacent condition dependences as local.
|
||
|
* We also mark those adjacent condition dependences that were not marked
|
||
|
* as local before, but just happened to be local already. This ensures
|
||
|
* that they remain local if the schedule is recomputed.
|
||
|
*
|
||
|
* We first collect domain and range of all violated conditional validity
|
||
|
* dependences and then check if there are any adjacent non-local
|
||
|
* condition dependences.
|
||
|
*/
|
||
|
static int has_violated_conditional_constraint(isl_ctx *ctx,
|
||
|
struct isl_sched_graph *graph)
|
||
|
{
|
||
|
int i;
|
||
|
int any = 0;
|
||
|
isl_union_set *source, *sink;
|
||
|
|
||
|
source = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
|
||
|
sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
|
||
|
for (i = 0; i < graph->n_edge; ++i) {
|
||
|
isl_union_set *uset;
|
||
|
isl_union_map *umap;
|
||
|
int violated;
|
||
|
|
||
|
if (!graph->edge[i].conditional_validity)
|
||
|
continue;
|
||
|
|
||
|
violated = is_violated(graph, i);
|
||
|
if (violated < 0)
|
||
|
goto error;
|
||
|
if (!violated)
|
||
|
continue;
|
||
|
|
||
|
any = 1;
|
||
|
|
||
|
umap = isl_union_map_copy(graph->edge[i].tagged_validity);
|
||
|
uset = isl_union_map_domain(umap);
|
||
|
source = isl_union_set_union(source, uset);
|
||
|
source = isl_union_set_coalesce(source);
|
||
|
|
||
|
umap = isl_union_map_copy(graph->edge[i].tagged_validity);
|
||
|
uset = isl_union_map_range(umap);
|
||
|
sink = isl_union_set_union(sink, uset);
|
||
|
sink = isl_union_set_coalesce(sink);
|
||
|
}
|
||
|
|
||
|
if (any)
|
||
|
any = has_adjacent_true_conditions(graph, source, sink);
|
||
|
|
||
|
isl_union_set_free(source);
|
||
|
isl_union_set_free(sink);
|
||
|
return any;
|
||
|
error:
|
||
|
isl_union_set_free(source);
|
||
|
isl_union_set_free(sink);
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
/* Compute a schedule for a connected dependence graph.
|
||
|
* We try to find a sequence of as many schedule rows as possible that result
|
||
|
* in non-negative dependence distances (independent of the previous rows
|
||
|
* in the sequence, i.e., such that the sequence is tilable), with as
|
||
|
* many of the initial rows as possible satisfying the coincidence constraints.
|
||
|
* If we can't find any more rows we either
|
||
|
* - split between SCCs and start over (assuming we found an interesting
|
||
|
* pair of SCCs between which to split)
|
||
|
* - continue with the next band (assuming the current band has at least
|
||
|
* one row)
|
||
|
* - try to carry as many dependences as possible and continue with the next
|
||
|
* band
|
||
|
*
|
||
|
* If Feautrier's algorithm is selected, we first recursively try to satisfy
|
||
|
* as many validity dependences as possible. When all validity dependences
|
||
|
* are satisfied we extend the schedule to a full-dimensional schedule.
|
||
|
*
|
||
|
* If we manage to complete the schedule, we finish off by topologically
|
||
|
* sorting the statements based on the remaining dependences.
|
||
|
*
|
||
|
* If ctx->opt->schedule_outer_coincidence is set, then we force the
|
||
|
* outermost dimension to satisfy the coincidence constraints. If this
|
||
|
* turns out to be impossible, we fall back on the general scheme above
|
||
|
* and try to carry as many dependences as possible.
|
||
|
*
|
||
|
* If "graph" contains both condition and conditional validity dependences,
|
||
|
* then we need to check that that the conditional schedule constraint
|
||
|
* is satisfied, i.e., there are no violated conditional validity dependences
|
||
|
* that are adjacent to any non-local condition dependences.
|
||
|
* If there are, then we mark all those adjacent condition dependences
|
||
|
* as local and recompute the current band. Those dependences that
|
||
|
* are marked local will then be forced to be local.
|
||
|
* The initial computation is performed with no dependences marked as local.
|
||
|
* If we are lucky, then there will be no violated conditional validity
|
||
|
* dependences adjacent to any non-local condition dependences.
|
||
|
* Otherwise, we mark some additional condition dependences as local and
|
||
|
* recompute. We continue this process until there are no violations left or
|
||
|
* until we are no longer able to compute a schedule.
|
||
|
* Since there are only a finite number of dependences,
|
||
|
* there will only be a finite number of iterations.
|
||
|
*/
|
||
|
static int compute_schedule_wcc(isl_ctx *ctx, struct isl_sched_graph *graph)
|
||
|
{
|
||
|
int has_coincidence;
|
||
|
int use_coincidence;
|
||
|
int force_coincidence = 0;
|
||
|
int check_conditional;
|
||
|
|
||
|
if (detect_sccs(ctx, graph) < 0)
|
||
|
return -1;
|
||
|
if (sort_sccs(graph) < 0)
|
||
|
return -1;
|
||
|
|
||
|
if (compute_maxvar(graph) < 0)
|
||
|
return -1;
|
||
|
|
||
|
if (need_feautrier_step(ctx, graph))
|
||
|
return compute_schedule_wcc_feautrier(ctx, graph);
|
||
|
|
||
|
clear_local_edges(graph);
|
||
|
check_conditional = need_condition_check(graph);
|
||
|
has_coincidence = has_any_coincidence(graph);
|
||
|
|
||
|
if (ctx->opt->schedule_outer_coincidence)
|
||
|
force_coincidence = 1;
|
||
|
|
||
|
use_coincidence = has_coincidence;
|
||
|
while (graph->n_row < graph->maxvar) {
|
||
|
isl_vec *sol;
|
||
|
int violated;
|
||
|
int coincident;
|
||
|
|
||
|
graph->src_scc = -1;
|
||
|
graph->dst_scc = -1;
|
||
|
|
||
|
if (setup_lp(ctx, graph, use_coincidence) < 0)
|
||
|
return -1;
|
||
|
sol = solve_lp(graph);
|
||
|
if (!sol)
|
||
|
return -1;
|
||
|
if (sol->size == 0) {
|
||
|
int empty = graph->n_total_row == graph->band_start;
|
||
|
|
||
|
isl_vec_free(sol);
|
||
|
if (use_coincidence && (!force_coincidence || !empty)) {
|
||
|
use_coincidence = 0;
|
||
|
continue;
|
||
|
}
|
||
|
if (!ctx->opt->schedule_maximize_band_depth && !empty)
|
||
|
return compute_next_band(ctx, graph);
|
||
|
if (graph->src_scc >= 0)
|
||
|
return compute_split_schedule(ctx, graph);
|
||
|
if (!empty)
|
||
|
return compute_next_band(ctx, graph);
|
||
|
return carry_dependences(ctx, graph);
|
||
|
}
|
||
|
coincident = !has_coincidence || use_coincidence;
|
||
|
if (update_schedule(graph, sol, 1, coincident) < 0)
|
||
|
return -1;
|
||
|
|
||
|
if (!check_conditional)
|
||
|
continue;
|
||
|
violated = has_violated_conditional_constraint(ctx, graph);
|
||
|
if (violated < 0)
|
||
|
return -1;
|
||
|
if (!violated)
|
||
|
continue;
|
||
|
if (reset_band(graph) < 0)
|
||
|
return -1;
|
||
|
use_coincidence = has_coincidence;
|
||
|
}
|
||
|
|
||
|
if (graph->n_total_row > graph->band_start)
|
||
|
next_band(graph);
|
||
|
return sort_statements(ctx, graph);
|
||
|
}
|
||
|
|
||
|
/* Add a row to the schedules that separates the SCCs and move
|
||
|
* to the next band.
|
||
|
*/
|
||
|
static int split_on_scc(isl_ctx *ctx, struct isl_sched_graph *graph)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
if (graph->n_total_row >= graph->max_row)
|
||
|
isl_die(ctx, isl_error_internal,
|
||
|
"too many schedule rows", return -1);
|
||
|
|
||
|
for (i = 0; i < graph->n; ++i) {
|
||
|
struct isl_sched_node *node = &graph->node[i];
|
||
|
int row = isl_mat_rows(node->sched);
|
||
|
|
||
|
isl_map_free(node->sched_map);
|
||
|
node->sched_map = NULL;
|
||
|
node->sched = isl_mat_add_zero_rows(node->sched, 1);
|
||
|
node->sched = isl_mat_set_element_si(node->sched, row, 0,
|
||
|
node->scc);
|
||
|
if (!node->sched)
|
||
|
return -1;
|
||
|
node->band[graph->n_total_row] = graph->n_band;
|
||
|
}
|
||
|
|
||
|
graph->n_total_row++;
|
||
|
next_band(graph);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Compute a schedule for each component (identified by node->scc)
|
||
|
* of the dependence graph separately and then combine the results.
|
||
|
* Depending on the setting of schedule_fuse, a component may be
|
||
|
* either weakly or strongly connected.
|
||
|
*
|
||
|
* The band_id is adjusted such that each component has a separate id.
|
||
|
* Note that the band_id may have already been set to a value different
|
||
|
* from zero by compute_split_schedule.
|
||
|
*/
|
||
|
static int compute_component_schedule(isl_ctx *ctx,
|
||
|
struct isl_sched_graph *graph)
|
||
|
{
|
||
|
int wcc, i;
|
||
|
int n, n_edge;
|
||
|
int n_total_row, orig_total_row;
|
||
|
int n_band, orig_band;
|
||
|
|
||
|
if (ctx->opt->schedule_fuse == ISL_SCHEDULE_FUSE_MIN ||
|
||
|
ctx->opt->schedule_separate_components)
|
||
|
if (split_on_scc(ctx, graph) < 0)
|
||
|
return -1;
|
||
|
|
||
|
n_total_row = 0;
|
||
|
orig_total_row = graph->n_total_row;
|
||
|
n_band = 0;
|
||
|
orig_band = graph->n_band;
|
||
|
for (i = 0; i < graph->n; ++i)
|
||
|
graph->node[i].band_id[graph->n_band] += graph->node[i].scc;
|
||
|
for (wcc = 0; wcc < graph->scc; ++wcc) {
|
||
|
n = 0;
|
||
|
for (i = 0; i < graph->n; ++i)
|
||
|
if (graph->node[i].scc == wcc)
|
||
|
n++;
|
||
|
n_edge = 0;
|
||
|
for (i = 0; i < graph->n_edge; ++i)
|
||
|
if (graph->edge[i].src->scc == wcc &&
|
||
|
graph->edge[i].dst->scc == wcc)
|
||
|
n_edge++;
|
||
|
|
||
|
if (compute_sub_schedule(ctx, graph, n, n_edge,
|
||
|
&node_scc_exactly,
|
||
|
&edge_scc_exactly, wcc, 1) < 0)
|
||
|
return -1;
|
||
|
if (graph->n_total_row > n_total_row)
|
||
|
n_total_row = graph->n_total_row;
|
||
|
graph->n_total_row = orig_total_row;
|
||
|
if (graph->n_band > n_band)
|
||
|
n_band = graph->n_band;
|
||
|
graph->n_band = orig_band;
|
||
|
}
|
||
|
|
||
|
graph->n_total_row = n_total_row;
|
||
|
graph->n_band = n_band;
|
||
|
|
||
|
return pad_schedule(graph);
|
||
|
}
|
||
|
|
||
|
/* Compute a schedule for the given dependence graph.
|
||
|
* We first check if the graph is connected (through validity and conditional
|
||
|
* validity dependences) and, if not, compute a schedule
|
||
|
* for each component separately.
|
||
|
* If schedule_fuse is set to minimal fusion, then we check for strongly
|
||
|
* connected components instead and compute a separate schedule for
|
||
|
* each such strongly connected component.
|
||
|
*/
|
||
|
static int compute_schedule(isl_ctx *ctx, struct isl_sched_graph *graph)
|
||
|
{
|
||
|
if (ctx->opt->schedule_fuse == ISL_SCHEDULE_FUSE_MIN) {
|
||
|
if (detect_sccs(ctx, graph) < 0)
|
||
|
return -1;
|
||
|
} else {
|
||
|
if (detect_wccs(ctx, graph) < 0)
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
if (graph->scc > 1)
|
||
|
return compute_component_schedule(ctx, graph);
|
||
|
|
||
|
return compute_schedule_wcc(ctx, graph);
|
||
|
}
|
||
|
|
||
|
/* Compute a schedule on sc->domain that respects the given schedule
|
||
|
* constraints.
|
||
|
*
|
||
|
* In particular, the schedule respects all the validity dependences.
|
||
|
* If the default isl scheduling algorithm is used, it tries to minimize
|
||
|
* the dependence distances over the proximity dependences.
|
||
|
* If Feautrier's scheduling algorithm is used, the proximity dependence
|
||
|
* distances are only minimized during the extension to a full-dimensional
|
||
|
* schedule.
|
||
|
*
|
||
|
* If there are any condition and conditional validity dependences,
|
||
|
* then the conditional validity dependences may be violated inside
|
||
|
* a tilable band, provided they have no adjacent non-local
|
||
|
* condition dependences.
|
||
|
*/
|
||
|
__isl_give isl_schedule *isl_schedule_constraints_compute_schedule(
|
||
|
__isl_take isl_schedule_constraints *sc)
|
||
|
{
|
||
|
isl_ctx *ctx = isl_schedule_constraints_get_ctx(sc);
|
||
|
struct isl_sched_graph graph = { 0 };
|
||
|
isl_schedule *sched;
|
||
|
struct isl_extract_edge_data data;
|
||
|
enum isl_edge_type i;
|
||
|
|
||
|
sc = isl_schedule_constraints_align_params(sc);
|
||
|
if (!sc)
|
||
|
return NULL;
|
||
|
|
||
|
graph.n = isl_union_set_n_set(sc->domain);
|
||
|
if (graph.n == 0)
|
||
|
goto empty;
|
||
|
if (graph_alloc(ctx, &graph, graph.n,
|
||
|
isl_schedule_constraints_n_map(sc)) < 0)
|
||
|
goto error;
|
||
|
if (compute_max_row(&graph, sc) < 0)
|
||
|
goto error;
|
||
|
graph.root = 1;
|
||
|
graph.n = 0;
|
||
|
if (isl_union_set_foreach_set(sc->domain, &extract_node, &graph) < 0)
|
||
|
goto error;
|
||
|
if (graph_init_table(ctx, &graph) < 0)
|
||
|
goto error;
|
||
|
for (i = isl_edge_first; i <= isl_edge_last; ++i)
|
||
|
graph.max_edge[i] = isl_union_map_n_map(sc->constraint[i]);
|
||
|
if (graph_init_edge_tables(ctx, &graph) < 0)
|
||
|
goto error;
|
||
|
graph.n_edge = 0;
|
||
|
data.graph = &graph;
|
||
|
for (i = isl_edge_first; i <= isl_edge_last; ++i) {
|
||
|
data.type = i;
|
||
|
if (isl_union_map_foreach_map(sc->constraint[i],
|
||
|
&extract_edge, &data) < 0)
|
||
|
goto error;
|
||
|
}
|
||
|
|
||
|
if (compute_schedule(ctx, &graph) < 0)
|
||
|
goto error;
|
||
|
|
||
|
empty:
|
||
|
sched = extract_schedule(&graph, isl_union_set_get_space(sc->domain));
|
||
|
|
||
|
graph_free(ctx, &graph);
|
||
|
isl_schedule_constraints_free(sc);
|
||
|
|
||
|
return sched;
|
||
|
error:
|
||
|
graph_free(ctx, &graph);
|
||
|
isl_schedule_constraints_free(sc);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/* Compute a schedule for the given union of domains that respects
|
||
|
* all the validity dependences and minimizes
|
||
|
* the dependence distances over the proximity dependences.
|
||
|
*
|
||
|
* This function is kept for backward compatibility.
|
||
|
*/
|
||
|
__isl_give isl_schedule *isl_union_set_compute_schedule(
|
||
|
__isl_take isl_union_set *domain,
|
||
|
__isl_take isl_union_map *validity,
|
||
|
__isl_take isl_union_map *proximity)
|
||
|
{
|
||
|
isl_schedule_constraints *sc;
|
||
|
|
||
|
sc = isl_schedule_constraints_on_domain(domain);
|
||
|
sc = isl_schedule_constraints_set_validity(sc, validity);
|
||
|
sc = isl_schedule_constraints_set_proximity(sc, proximity);
|
||
|
|
||
|
return isl_schedule_constraints_compute_schedule(sc);
|
||
|
}
|