llvm-project/llvm/lib/CodeGen/GlobalISel/IRTranslator.cpp

2014 lines
72 KiB
C++
Raw Normal View History

//===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the IRTranslator class.
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/GlobalISel/IRTranslator.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/GlobalISel/CallLowering.h"
#include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
#include "llvm/CodeGen/LowLevelType.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/StackProtector.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/MC/MCContext.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/LowLevelTypeImpl.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetIntrinsicInfo.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <string>
#include <utility>
#include <vector>
#define DEBUG_TYPE "irtranslator"
using namespace llvm;
static cl::opt<bool>
EnableCSEInIRTranslator("enable-cse-in-irtranslator",
cl::desc("Should enable CSE in irtranslator"),
cl::Optional, cl::init(false));
char IRTranslator::ID = 0;
INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
false, false)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass)
INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
false, false)
static void reportTranslationError(MachineFunction &MF,
const TargetPassConfig &TPC,
OptimizationRemarkEmitter &ORE,
OptimizationRemarkMissed &R) {
MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
// Print the function name explicitly if we don't have a debug location (which
// makes the diagnostic less useful) or if we're going to emit a raw error.
if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled())
R << (" (in function: " + MF.getName() + ")").str();
if (TPC.isGlobalISelAbortEnabled())
report_fatal_error(R.getMsg());
else
ORE.emit(R);
}
IRTranslator::IRTranslator() : MachineFunctionPass(ID) {
initializeIRTranslatorPass(*PassRegistry::getPassRegistry());
}
#ifndef NDEBUG
namespace {
/// Verify that every instruction created has the same DILocation as the
/// instruction being translated.
class DILocationVerifier : public GISelChangeObserver {
const Instruction *CurrInst = nullptr;
public:
DILocationVerifier() = default;
~DILocationVerifier() = default;
const Instruction *getCurrentInst() const { return CurrInst; }
void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; }
void erasingInstr(MachineInstr &MI) override {}
void changingInstr(MachineInstr &MI) override {}
void changedInstr(MachineInstr &MI) override {}
void createdInstr(MachineInstr &MI) override {
assert(getCurrentInst() && "Inserted instruction without a current MI");
// Only print the check message if we're actually checking it.
#ifndef NDEBUG
LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst
<< " was copied to " << MI);
#endif
// We allow insts in the entry block to have a debug loc line of 0 because
// they could have originated from constants, and we don't want a jumpy
// debug experience.
assert((CurrInst->getDebugLoc() == MI.getDebugLoc() ||
MI.getDebugLoc().getLine() == 0) &&
"Line info was not transferred to all instructions");
}
};
} // namespace
#endif // ifndef NDEBUG
void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<StackProtector>();
AU.addRequired<TargetPassConfig>();
AU.addRequired<GISelCSEAnalysisWrapperPass>();
getSelectionDAGFallbackAnalysisUsage(AU);
MachineFunctionPass::getAnalysisUsage(AU);
}
IRTranslator::ValueToVRegInfo::VRegListT &
IRTranslator::allocateVRegs(const Value &Val) {
assert(!VMap.contains(Val) && "Value already allocated in VMap");
auto *Regs = VMap.getVRegs(Val);
auto *Offsets = VMap.getOffsets(Val);
SmallVector<LLT, 4> SplitTys;
computeValueLLTs(*DL, *Val.getType(), SplitTys,
Offsets->empty() ? Offsets : nullptr);
for (unsigned i = 0; i < SplitTys.size(); ++i)
Regs->push_back(0);
return *Regs;
}
ArrayRef<unsigned> IRTranslator::getOrCreateVRegs(const Value &Val) {
auto VRegsIt = VMap.findVRegs(Val);
if (VRegsIt != VMap.vregs_end())
return *VRegsIt->second;
if (Val.getType()->isVoidTy())
return *VMap.getVRegs(Val);
// Create entry for this type.
auto *VRegs = VMap.getVRegs(Val);
auto *Offsets = VMap.getOffsets(Val);
assert(Val.getType()->isSized() &&
"Don't know how to create an empty vreg");
SmallVector<LLT, 4> SplitTys;
computeValueLLTs(*DL, *Val.getType(), SplitTys,
Offsets->empty() ? Offsets : nullptr);
if (!isa<Constant>(Val)) {
for (auto Ty : SplitTys)
VRegs->push_back(MRI->createGenericVirtualRegister(Ty));
return *VRegs;
}
if (Val.getType()->isAggregateType()) {
// UndefValue, ConstantAggregateZero
auto &C = cast<Constant>(Val);
unsigned Idx = 0;
while (auto Elt = C.getAggregateElement(Idx++)) {
auto EltRegs = getOrCreateVRegs(*Elt);
2018-11-17 09:44:25 +08:00
llvm::copy(EltRegs, std::back_inserter(*VRegs));
}
} else {
assert(SplitTys.size() == 1 && "unexpectedly split LLT");
VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0]));
bool Success = translate(cast<Constant>(Val), VRegs->front());
if (!Success) {
OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
MF->getFunction().getSubprogram(),
&MF->getFunction().getEntryBlock());
R << "unable to translate constant: " << ore::NV("Type", Val.getType());
reportTranslationError(*MF, *TPC, *ORE, R);
return *VRegs;
}
}
return *VRegs;
}
int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) {
if (FrameIndices.find(&AI) != FrameIndices.end())
return FrameIndices[&AI];
unsigned ElementSize = DL->getTypeAllocSize(AI.getAllocatedType());
unsigned Size =
ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue();
// Always allocate at least one byte.
Size = std::max(Size, 1u);
unsigned Alignment = AI.getAlignment();
if (!Alignment)
Alignment = DL->getABITypeAlignment(AI.getAllocatedType());
int &FI = FrameIndices[&AI];
FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI);
return FI;
}
unsigned IRTranslator::getMemOpAlignment(const Instruction &I) {
unsigned Alignment = 0;
Type *ValTy = nullptr;
if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
Alignment = SI->getAlignment();
ValTy = SI->getValueOperand()->getType();
} else if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
Alignment = LI->getAlignment();
ValTy = LI->getType();
} else if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) {
// TODO(PR27168): This instruction has no alignment attribute, but unlike
// the default alignment for load/store, the default here is to assume
// it has NATURAL alignment, not DataLayout-specified alignment.
const DataLayout &DL = AI->getModule()->getDataLayout();
Alignment = DL.getTypeStoreSize(AI->getCompareOperand()->getType());
ValTy = AI->getCompareOperand()->getType();
} else if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) {
// TODO(PR27168): This instruction has no alignment attribute, but unlike
// the default alignment for load/store, the default here is to assume
// it has NATURAL alignment, not DataLayout-specified alignment.
const DataLayout &DL = AI->getModule()->getDataLayout();
Alignment = DL.getTypeStoreSize(AI->getValOperand()->getType());
ValTy = AI->getType();
} else {
OptimizationRemarkMissed R("gisel-irtranslator", "", &I);
R << "unable to translate memop: " << ore::NV("Opcode", &I);
reportTranslationError(*MF, *TPC, *ORE, R);
return 1;
}
return Alignment ? Alignment : DL->getABITypeAlignment(ValTy);
}
MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) {
MachineBasicBlock *&MBB = BBToMBB[&BB];
assert(MBB && "BasicBlock was not encountered before");
return *MBB;
}
void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) {
assert(NewPred && "new predecessor must be a real MachineBasicBlock");
MachinePreds[Edge].push_back(NewPred);
}
bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U,
MachineIRBuilder &MIRBuilder) {
// FIXME: handle signed/unsigned wrapping flags.
// Get or create a virtual register for each value.
// Unless the value is a Constant => loadimm cst?
// or inline constant each time?
// Creation of a virtual register needs to have a size.
unsigned Op0 = getOrCreateVReg(*U.getOperand(0));
unsigned Op1 = getOrCreateVReg(*U.getOperand(1));
unsigned Res = getOrCreateVReg(U);
uint16_t Flags = 0;
if (isa<Instruction>(U)) {
const Instruction &I = cast<Instruction>(U);
Flags = MachineInstr::copyFlagsFromInstruction(I);
}
MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags);
return true;
}
bool IRTranslator::translateFSub(const User &U, MachineIRBuilder &MIRBuilder) {
// -0.0 - X --> G_FNEG
if (isa<Constant>(U.getOperand(0)) &&
U.getOperand(0) == ConstantFP::getZeroValueForNegation(U.getType())) {
MIRBuilder.buildInstr(TargetOpcode::G_FNEG)
.addDef(getOrCreateVReg(U))
.addUse(getOrCreateVReg(*U.getOperand(1)));
return true;
}
return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder);
}
bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) {
MIRBuilder.buildInstr(TargetOpcode::G_FNEG)
.addDef(getOrCreateVReg(U))
.addUse(getOrCreateVReg(*U.getOperand(0)));
return true;
}
bool IRTranslator::translateCompare(const User &U,
MachineIRBuilder &MIRBuilder) {
const CmpInst *CI = dyn_cast<CmpInst>(&U);
unsigned Op0 = getOrCreateVReg(*U.getOperand(0));
unsigned Op1 = getOrCreateVReg(*U.getOperand(1));
unsigned Res = getOrCreateVReg(U);
CmpInst::Predicate Pred =
CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>(
cast<ConstantExpr>(U).getPredicate());
if (CmpInst::isIntPredicate(Pred))
MIRBuilder.buildICmp(Pred, Res, Op0, Op1);
else if (Pred == CmpInst::FCMP_FALSE)
MIRBuilder.buildCopy(
Res, getOrCreateVReg(*Constant::getNullValue(CI->getType())));
else if (Pred == CmpInst::FCMP_TRUE)
MIRBuilder.buildCopy(
Res, getOrCreateVReg(*Constant::getAllOnesValue(CI->getType())));
else {
MIRBuilder.buildInstr(TargetOpcode::G_FCMP, {Res}, {Pred, Op0, Op1},
MachineInstr::copyFlagsFromInstruction(*CI));
}
return true;
}
bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) {
const ReturnInst &RI = cast<ReturnInst>(U);
const Value *Ret = RI.getReturnValue();
if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0)
Ret = nullptr;
ArrayRef<unsigned> VRegs;
if (Ret)
VRegs = getOrCreateVRegs(*Ret);
unsigned SwiftErrorVReg = 0;
if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) {
SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt(
&RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg());
}
// The target may mess up with the insertion point, but
// this is not important as a return is the last instruction
// of the block anyway.
return CLI->lowerReturn(MIRBuilder, Ret, VRegs, SwiftErrorVReg);
}
bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) {
const BranchInst &BrInst = cast<BranchInst>(U);
unsigned Succ = 0;
if (!BrInst.isUnconditional()) {
// We want a G_BRCOND to the true BB followed by an unconditional branch.
unsigned Tst = getOrCreateVReg(*BrInst.getCondition());
const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++));
MachineBasicBlock &TrueBB = getMBB(TrueTgt);
MIRBuilder.buildBrCond(Tst, TrueBB);
}
const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ));
MachineBasicBlock &TgtBB = getMBB(BrTgt);
MachineBasicBlock &CurBB = MIRBuilder.getMBB();
// If the unconditional target is the layout successor, fallthrough.
if (!CurBB.isLayoutSuccessor(&TgtBB))
MIRBuilder.buildBr(TgtBB);
// Link successors.
for (const BasicBlock *Succ : successors(&BrInst))
CurBB.addSuccessor(&getMBB(*Succ));
return true;
}
bool IRTranslator::translateSwitch(const User &U,
MachineIRBuilder &MIRBuilder) {
// For now, just translate as a chain of conditional branches.
// FIXME: could we share most of the logic/code in
// SelectionDAGBuilder::visitSwitch between SelectionDAG and GlobalISel?
// At first sight, it seems most of the logic in there is independent of
// SelectionDAG-specifics and a lot of work went in to optimize switch
// lowering in there.
const SwitchInst &SwInst = cast<SwitchInst>(U);
const unsigned SwCondValue = getOrCreateVReg(*SwInst.getCondition());
const BasicBlock *OrigBB = SwInst.getParent();
LLT LLTi1 = getLLTForType(*Type::getInt1Ty(U.getContext()), *DL);
for (auto &CaseIt : SwInst.cases()) {
const unsigned CaseValueReg = getOrCreateVReg(*CaseIt.getCaseValue());
const unsigned Tst = MRI->createGenericVirtualRegister(LLTi1);
MIRBuilder.buildICmp(CmpInst::ICMP_EQ, Tst, CaseValueReg, SwCondValue);
MachineBasicBlock &CurMBB = MIRBuilder.getMBB();
const BasicBlock *TrueBB = CaseIt.getCaseSuccessor();
MachineBasicBlock &TrueMBB = getMBB(*TrueBB);
MIRBuilder.buildBrCond(Tst, TrueMBB);
CurMBB.addSuccessor(&TrueMBB);
addMachineCFGPred({OrigBB, TrueBB}, &CurMBB);
MachineBasicBlock *FalseMBB =
MF->CreateMachineBasicBlock(SwInst.getParent());
// Insert the comparison blocks one after the other.
MF->insert(std::next(CurMBB.getIterator()), FalseMBB);
MIRBuilder.buildBr(*FalseMBB);
CurMBB.addSuccessor(FalseMBB);
MIRBuilder.setMBB(*FalseMBB);
}
// handle default case
const BasicBlock *DefaultBB = SwInst.getDefaultDest();
MachineBasicBlock &DefaultMBB = getMBB(*DefaultBB);
MIRBuilder.buildBr(DefaultMBB);
MachineBasicBlock &CurMBB = MIRBuilder.getMBB();
CurMBB.addSuccessor(&DefaultMBB);
addMachineCFGPred({OrigBB, DefaultBB}, &CurMBB);
return true;
}
bool IRTranslator::translateIndirectBr(const User &U,
MachineIRBuilder &MIRBuilder) {
const IndirectBrInst &BrInst = cast<IndirectBrInst>(U);
const unsigned Tgt = getOrCreateVReg(*BrInst.getAddress());
MIRBuilder.buildBrIndirect(Tgt);
// Link successors.
MachineBasicBlock &CurBB = MIRBuilder.getMBB();
for (const BasicBlock *Succ : successors(&BrInst))
CurBB.addSuccessor(&getMBB(*Succ));
return true;
}
static bool isSwiftError(const Value *V) {
if (auto Arg = dyn_cast<Argument>(V))
return Arg->hasSwiftErrorAttr();
if (auto AI = dyn_cast<AllocaInst>(V))
return AI->isSwiftError();
return false;
}
bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) {
const LoadInst &LI = cast<LoadInst>(U);
auto Flags = LI.isVolatile() ? MachineMemOperand::MOVolatile
: MachineMemOperand::MONone;
Flags |= MachineMemOperand::MOLoad;
if (DL->getTypeStoreSize(LI.getType()) == 0)
return true;
ArrayRef<unsigned> Regs = getOrCreateVRegs(LI);
ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI);
unsigned Base = getOrCreateVReg(*LI.getPointerOperand());
Type *OffsetIRTy = DL->getIntPtrType(LI.getPointerOperandType());
LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
if (CLI->supportSwiftError() && isSwiftError(LI.getPointerOperand())) {
assert(Regs.size() == 1 && "swifterror should be single pointer");
unsigned VReg = SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(),
LI.getPointerOperand());
MIRBuilder.buildCopy(Regs[0], VReg);
return true;
}
for (unsigned i = 0; i < Regs.size(); ++i) {
unsigned Addr = 0;
MIRBuilder.materializeGEP(Addr, Base, OffsetTy, Offsets[i] / 8);
MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8);
unsigned BaseAlign = getMemOpAlignment(LI);
auto MMO = MF->getMachineMemOperand(
Ptr, Flags, (MRI->getType(Regs[i]).getSizeInBits() + 7) / 8,
MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), nullptr,
LI.getSyncScopeID(), LI.getOrdering());
MIRBuilder.buildLoad(Regs[i], Addr, *MMO);
}
return true;
}
bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) {
const StoreInst &SI = cast<StoreInst>(U);
auto Flags = SI.isVolatile() ? MachineMemOperand::MOVolatile
: MachineMemOperand::MONone;
Flags |= MachineMemOperand::MOStore;
if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0)
return true;
ArrayRef<unsigned> Vals = getOrCreateVRegs(*SI.getValueOperand());
ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand());
unsigned Base = getOrCreateVReg(*SI.getPointerOperand());
Type *OffsetIRTy = DL->getIntPtrType(SI.getPointerOperandType());
LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) {
assert(Vals.size() == 1 && "swifterror should be single pointer");
unsigned VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(),
SI.getPointerOperand());
MIRBuilder.buildCopy(VReg, Vals[0]);
return true;
}
for (unsigned i = 0; i < Vals.size(); ++i) {
unsigned Addr = 0;
MIRBuilder.materializeGEP(Addr, Base, OffsetTy, Offsets[i] / 8);
MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8);
unsigned BaseAlign = getMemOpAlignment(SI);
auto MMO = MF->getMachineMemOperand(
Ptr, Flags, (MRI->getType(Vals[i]).getSizeInBits() + 7) / 8,
MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), nullptr,
SI.getSyncScopeID(), SI.getOrdering());
MIRBuilder.buildStore(Vals[i], Addr, *MMO);
}
return true;
}
static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) {
const Value *Src = U.getOperand(0);
Type *Int32Ty = Type::getInt32Ty(U.getContext());
// getIndexedOffsetInType is designed for GEPs, so the first index is the
// usual array element rather than looking into the actual aggregate.
SmallVector<Value *, 1> Indices;
Indices.push_back(ConstantInt::get(Int32Ty, 0));
if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) {
for (auto Idx : EVI->indices())
Indices.push_back(ConstantInt::get(Int32Ty, Idx));
} else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) {
for (auto Idx : IVI->indices())
Indices.push_back(ConstantInt::get(Int32Ty, Idx));
} else {
for (unsigned i = 1; i < U.getNumOperands(); ++i)
Indices.push_back(U.getOperand(i));
}
return 8 * static_cast<uint64_t>(
DL.getIndexedOffsetInType(Src->getType(), Indices));
}
bool IRTranslator::translateExtractValue(const User &U,
MachineIRBuilder &MIRBuilder) {
const Value *Src = U.getOperand(0);
uint64_t Offset = getOffsetFromIndices(U, *DL);
ArrayRef<unsigned> SrcRegs = getOrCreateVRegs(*Src);
ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src);
unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin();
auto &DstRegs = allocateVRegs(U);
for (unsigned i = 0; i < DstRegs.size(); ++i)
DstRegs[i] = SrcRegs[Idx++];
return true;
}
bool IRTranslator::translateInsertValue(const User &U,
MachineIRBuilder &MIRBuilder) {
const Value *Src = U.getOperand(0);
uint64_t Offset = getOffsetFromIndices(U, *DL);
auto &DstRegs = allocateVRegs(U);
ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U);
ArrayRef<unsigned> SrcRegs = getOrCreateVRegs(*Src);
ArrayRef<unsigned> InsertedRegs = getOrCreateVRegs(*U.getOperand(1));
auto InsertedIt = InsertedRegs.begin();
for (unsigned i = 0; i < DstRegs.size(); ++i) {
if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end())
DstRegs[i] = *InsertedIt++;
else
DstRegs[i] = SrcRegs[i];
}
return true;
}
bool IRTranslator::translateSelect(const User &U,
MachineIRBuilder &MIRBuilder) {
unsigned Tst = getOrCreateVReg(*U.getOperand(0));
ArrayRef<unsigned> ResRegs = getOrCreateVRegs(U);
ArrayRef<unsigned> Op0Regs = getOrCreateVRegs(*U.getOperand(1));
ArrayRef<unsigned> Op1Regs = getOrCreateVRegs(*U.getOperand(2));
const SelectInst &SI = cast<SelectInst>(U);
uint16_t Flags = 0;
if (const CmpInst *Cmp = dyn_cast<CmpInst>(SI.getCondition()))
Flags = MachineInstr::copyFlagsFromInstruction(*Cmp);
for (unsigned i = 0; i < ResRegs.size(); ++i) {
MIRBuilder.buildInstr(TargetOpcode::G_SELECT, {ResRegs[i]},
{Tst, Op0Regs[i], Op1Regs[i]}, Flags);
}
return true;
}
bool IRTranslator::translateBitCast(const User &U,
MachineIRBuilder &MIRBuilder) {
// If we're bitcasting to the source type, we can reuse the source vreg.
if (getLLTForType(*U.getOperand(0)->getType(), *DL) ==
getLLTForType(*U.getType(), *DL)) {
unsigned SrcReg = getOrCreateVReg(*U.getOperand(0));
auto &Regs = *VMap.getVRegs(U);
// If we already assigned a vreg for this bitcast, we can't change that.
// Emit a copy to satisfy the users we already emitted.
if (!Regs.empty())
MIRBuilder.buildCopy(Regs[0], SrcReg);
else {
Regs.push_back(SrcReg);
VMap.getOffsets(U)->push_back(0);
}
return true;
}
return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder);
}
bool IRTranslator::translateCast(unsigned Opcode, const User &U,
MachineIRBuilder &MIRBuilder) {
unsigned Op = getOrCreateVReg(*U.getOperand(0));
unsigned Res = getOrCreateVReg(U);
MIRBuilder.buildInstr(Opcode, {Res}, {Op});
return true;
}
bool IRTranslator::translateGetElementPtr(const User &U,
MachineIRBuilder &MIRBuilder) {
// FIXME: support vector GEPs.
if (U.getType()->isVectorTy())
return false;
Value &Op0 = *U.getOperand(0);
unsigned BaseReg = getOrCreateVReg(Op0);
Type *PtrIRTy = Op0.getType();
LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy);
LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
int64_t Offset = 0;
for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U);
GTI != E; ++GTI) {
const Value *Idx = GTI.getOperand();
2016-12-02 10:55:30 +08:00
if (StructType *StTy = GTI.getStructTypeOrNull()) {
unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
Offset += DL->getStructLayout(StTy)->getElementOffset(Field);
continue;
} else {
uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
// If this is a scalar constant or a splat vector of constants,
// handle it quickly.
if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
Offset += ElementSize * CI->getSExtValue();
continue;
}
if (Offset != 0) {
unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy);
[GlobalISel] Enable CSE in the IRTranslator & legalizer for -O0 with constants only. Other opcodes shouldn't be CSE'd until we can be sure debug info quality won't be degraded. This change also improves the IRTranslator so that in most places, but not all, it creates constants using the MIRBuilder directly instead of first creating a new destination vreg and then creating a constant. By doing this, the buildConstant() method can just return the vreg of an existing G_CONSTANT instead of having to create a COPY from it. I measured a 0.2% improvement in compile time and a 0.9% improvement in code size at -O0 ARM64. Compile time: Program base cse diff test-suite...ark/tramp3d-v4/tramp3d-v4.test 9.04 9.12 0.8% test-suite...Mark/mafft/pairlocalalign.test 2.68 2.66 -0.7% test-suite...-typeset/consumer-typeset.test 5.53 5.51 -0.4% test-suite :: CTMark/lencod/lencod.test 5.30 5.28 -0.3% test-suite :: CTMark/Bullet/bullet.test 25.82 25.76 -0.2% test-suite...:: CTMark/ClamAV/clamscan.test 6.92 6.90 -0.2% test-suite...TMark/7zip/7zip-benchmark.test 34.24 34.17 -0.2% test-suite :: CTMark/SPASS/SPASS.test 6.25 6.24 -0.1% test-suite...:: CTMark/sqlite3/sqlite3.test 1.66 1.66 -0.1% test-suite :: CTMark/kimwitu++/kc.test 13.61 13.60 -0.0% Geomean difference -0.2% Code size: Program base cse diff test-suite...-typeset/consumer-typeset.test 1315632 1266480 -3.7% test-suite...:: CTMark/ClamAV/clamscan.test 1313892 1297508 -1.2% test-suite :: CTMark/lencod/lencod.test 1439504 1423112 -1.1% test-suite...TMark/7zip/7zip-benchmark.test 2936980 2904172 -1.1% test-suite :: CTMark/Bullet/bullet.test 3478276 3445460 -0.9% test-suite...ark/tramp3d-v4/tramp3d-v4.test 8082868 8033492 -0.6% test-suite :: CTMark/kimwitu++/kc.test 3870380 3853972 -0.4% test-suite :: CTMark/SPASS/SPASS.test 1434904 1434896 -0.0% test-suite...Mark/mafft/pairlocalalign.test 764528 764528 0.0% test-suite...:: CTMark/sqlite3/sqlite3.test 782092 782092 0.0% Geomean difference -0.9% Differential Revision: https://reviews.llvm.org/D60580 llvm-svn: 358369
2019-04-15 13:04:20 +08:00
LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset);
MIRBuilder.buildGEP(NewBaseReg, BaseReg, OffsetMIB.getReg(0));
BaseReg = NewBaseReg;
Offset = 0;
}
unsigned IdxReg = getOrCreateVReg(*Idx);
if (MRI->getType(IdxReg) != OffsetTy) {
unsigned NewIdxReg = MRI->createGenericVirtualRegister(OffsetTy);
MIRBuilder.buildSExtOrTrunc(NewIdxReg, IdxReg);
IdxReg = NewIdxReg;
}
// N = N + Idx * ElementSize;
// Avoid doing it for ElementSize of 1.
unsigned GepOffsetReg;
if (ElementSize != 1) {
GepOffsetReg = MRI->createGenericVirtualRegister(OffsetTy);
[GlobalISel] Enable CSE in the IRTranslator & legalizer for -O0 with constants only. Other opcodes shouldn't be CSE'd until we can be sure debug info quality won't be degraded. This change also improves the IRTranslator so that in most places, but not all, it creates constants using the MIRBuilder directly instead of first creating a new destination vreg and then creating a constant. By doing this, the buildConstant() method can just return the vreg of an existing G_CONSTANT instead of having to create a COPY from it. I measured a 0.2% improvement in compile time and a 0.9% improvement in code size at -O0 ARM64. Compile time: Program base cse diff test-suite...ark/tramp3d-v4/tramp3d-v4.test 9.04 9.12 0.8% test-suite...Mark/mafft/pairlocalalign.test 2.68 2.66 -0.7% test-suite...-typeset/consumer-typeset.test 5.53 5.51 -0.4% test-suite :: CTMark/lencod/lencod.test 5.30 5.28 -0.3% test-suite :: CTMark/Bullet/bullet.test 25.82 25.76 -0.2% test-suite...:: CTMark/ClamAV/clamscan.test 6.92 6.90 -0.2% test-suite...TMark/7zip/7zip-benchmark.test 34.24 34.17 -0.2% test-suite :: CTMark/SPASS/SPASS.test 6.25 6.24 -0.1% test-suite...:: CTMark/sqlite3/sqlite3.test 1.66 1.66 -0.1% test-suite :: CTMark/kimwitu++/kc.test 13.61 13.60 -0.0% Geomean difference -0.2% Code size: Program base cse diff test-suite...-typeset/consumer-typeset.test 1315632 1266480 -3.7% test-suite...:: CTMark/ClamAV/clamscan.test 1313892 1297508 -1.2% test-suite :: CTMark/lencod/lencod.test 1439504 1423112 -1.1% test-suite...TMark/7zip/7zip-benchmark.test 2936980 2904172 -1.1% test-suite :: CTMark/Bullet/bullet.test 3478276 3445460 -0.9% test-suite...ark/tramp3d-v4/tramp3d-v4.test 8082868 8033492 -0.6% test-suite :: CTMark/kimwitu++/kc.test 3870380 3853972 -0.4% test-suite :: CTMark/SPASS/SPASS.test 1434904 1434896 -0.0% test-suite...Mark/mafft/pairlocalalign.test 764528 764528 0.0% test-suite...:: CTMark/sqlite3/sqlite3.test 782092 782092 0.0% Geomean difference -0.9% Differential Revision: https://reviews.llvm.org/D60580 llvm-svn: 358369
2019-04-15 13:04:20 +08:00
auto ElementSizeMIB = MIRBuilder.buildConstant(
getLLTForType(*OffsetIRTy, *DL), ElementSize);
MIRBuilder.buildMul(GepOffsetReg, ElementSizeMIB.getReg(0), IdxReg);
} else
GepOffsetReg = IdxReg;
unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy);
MIRBuilder.buildGEP(NewBaseReg, BaseReg, GepOffsetReg);
BaseReg = NewBaseReg;
}
}
if (Offset != 0) {
[GlobalISel] Enable CSE in the IRTranslator & legalizer for -O0 with constants only. Other opcodes shouldn't be CSE'd until we can be sure debug info quality won't be degraded. This change also improves the IRTranslator so that in most places, but not all, it creates constants using the MIRBuilder directly instead of first creating a new destination vreg and then creating a constant. By doing this, the buildConstant() method can just return the vreg of an existing G_CONSTANT instead of having to create a COPY from it. I measured a 0.2% improvement in compile time and a 0.9% improvement in code size at -O0 ARM64. Compile time: Program base cse diff test-suite...ark/tramp3d-v4/tramp3d-v4.test 9.04 9.12 0.8% test-suite...Mark/mafft/pairlocalalign.test 2.68 2.66 -0.7% test-suite...-typeset/consumer-typeset.test 5.53 5.51 -0.4% test-suite :: CTMark/lencod/lencod.test 5.30 5.28 -0.3% test-suite :: CTMark/Bullet/bullet.test 25.82 25.76 -0.2% test-suite...:: CTMark/ClamAV/clamscan.test 6.92 6.90 -0.2% test-suite...TMark/7zip/7zip-benchmark.test 34.24 34.17 -0.2% test-suite :: CTMark/SPASS/SPASS.test 6.25 6.24 -0.1% test-suite...:: CTMark/sqlite3/sqlite3.test 1.66 1.66 -0.1% test-suite :: CTMark/kimwitu++/kc.test 13.61 13.60 -0.0% Geomean difference -0.2% Code size: Program base cse diff test-suite...-typeset/consumer-typeset.test 1315632 1266480 -3.7% test-suite...:: CTMark/ClamAV/clamscan.test 1313892 1297508 -1.2% test-suite :: CTMark/lencod/lencod.test 1439504 1423112 -1.1% test-suite...TMark/7zip/7zip-benchmark.test 2936980 2904172 -1.1% test-suite :: CTMark/Bullet/bullet.test 3478276 3445460 -0.9% test-suite...ark/tramp3d-v4/tramp3d-v4.test 8082868 8033492 -0.6% test-suite :: CTMark/kimwitu++/kc.test 3870380 3853972 -0.4% test-suite :: CTMark/SPASS/SPASS.test 1434904 1434896 -0.0% test-suite...Mark/mafft/pairlocalalign.test 764528 764528 0.0% test-suite...:: CTMark/sqlite3/sqlite3.test 782092 782092 0.0% Geomean difference -0.9% Differential Revision: https://reviews.llvm.org/D60580 llvm-svn: 358369
2019-04-15 13:04:20 +08:00
auto OffsetMIB =
MIRBuilder.buildConstant(getLLTForType(*OffsetIRTy, *DL), Offset);
MIRBuilder.buildGEP(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0));
return true;
}
MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg);
return true;
}
bool IRTranslator::translateMemfunc(const CallInst &CI,
MachineIRBuilder &MIRBuilder,
unsigned ID) {
// If the source is undef, then just emit a nop.
if (isa<UndefValue>(CI.getArgOperand(1))) {
switch (ID) {
case Intrinsic::memmove:
case Intrinsic::memcpy:
case Intrinsic::memset:
return true;
default:
break;
}
}
LLT SizeTy = getLLTForType(*CI.getArgOperand(2)->getType(), *DL);
Type *DstTy = CI.getArgOperand(0)->getType();
if (cast<PointerType>(DstTy)->getAddressSpace() != 0 ||
SizeTy.getSizeInBits() != DL->getPointerSizeInBits(0))
return false;
SmallVector<CallLowering::ArgInfo, 8> Args;
for (int i = 0; i < 3; ++i) {
const auto &Arg = CI.getArgOperand(i);
Args.emplace_back(getOrCreateVReg(*Arg), Arg->getType());
}
const char *Callee;
switch (ID) {
case Intrinsic::memmove:
case Intrinsic::memcpy: {
Type *SrcTy = CI.getArgOperand(1)->getType();
if(cast<PointerType>(SrcTy)->getAddressSpace() != 0)
return false;
Callee = ID == Intrinsic::memcpy ? "memcpy" : "memmove";
break;
}
case Intrinsic::memset:
Callee = "memset";
break;
default:
return false;
}
return CLI->lowerCall(MIRBuilder, CI.getCallingConv(),
MachineOperand::CreateES(Callee),
CallLowering::ArgInfo(0, CI.getType()), Args);
}
void IRTranslator::getStackGuard(unsigned DstReg,
MachineIRBuilder &MIRBuilder) {
const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF));
auto MIB = MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD);
MIB.addDef(DstReg);
auto &TLI = *MF->getSubtarget().getTargetLowering();
Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent());
if (!Global)
return;
MachinePointerInfo MPInfo(Global);
auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
MachineMemOperand::MODereferenceable;
[MI] Change the array of `MachineMemOperand` pointers to be a generically extensible collection of extra info attached to a `MachineInstr`. The primary change here is cleaning up the APIs used for setting and manipulating the `MachineMemOperand` pointer arrays so chat we can change how they are allocated. Then we introduce an extra info object that using the trailing object pattern to attach some number of MMOs but also other extra info. The design of this is specifically so that this extra info has a fixed necessary cost (the header tracking what extra info is included) and everything else can be tail allocated. This pattern works especially well with a `BumpPtrAllocator` which we use here. I've also added the basic scaffolding for putting interesting pointers into this, namely pre- and post-instruction symbols. These aren't used anywhere yet, they're just there to ensure I've actually gotten the data structure types correct. I'll flesh out support for these in a subsequent patch (MIR dumping, parsing, the works). Finally, I've included an optimization where we store any single pointer inline in the `MachineInstr` to avoid the allocation overhead. This is expected to be the overwhelmingly most common case and so should avoid any memory usage growth due to slightly less clever / dense allocation when dealing with >1 MMO. This did require several ergonomic improvements to the `PointerSumType` to reasonably support the various usage models. This also has a side effect of freeing up 8 bits within the `MachineInstr` which could be repurposed for something else. The suggested direction here came largely from Hal Finkel. I hope it was worth it. ;] It does hopefully clear a path for subsequent extensions w/o nearly as much leg work. Lots of thanks to Reid and Justin for careful reviews and ideas about how to do all of this. Differential Revision: https://reviews.llvm.org/D50701 llvm-svn: 339940
2018-08-17 05:30:05 +08:00
MachineMemOperand *MemRef =
MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8,
DL->getPointerABIAlignment(0));
[MI] Change the array of `MachineMemOperand` pointers to be a generically extensible collection of extra info attached to a `MachineInstr`. The primary change here is cleaning up the APIs used for setting and manipulating the `MachineMemOperand` pointer arrays so chat we can change how they are allocated. Then we introduce an extra info object that using the trailing object pattern to attach some number of MMOs but also other extra info. The design of this is specifically so that this extra info has a fixed necessary cost (the header tracking what extra info is included) and everything else can be tail allocated. This pattern works especially well with a `BumpPtrAllocator` which we use here. I've also added the basic scaffolding for putting interesting pointers into this, namely pre- and post-instruction symbols. These aren't used anywhere yet, they're just there to ensure I've actually gotten the data structure types correct. I'll flesh out support for these in a subsequent patch (MIR dumping, parsing, the works). Finally, I've included an optimization where we store any single pointer inline in the `MachineInstr` to avoid the allocation overhead. This is expected to be the overwhelmingly most common case and so should avoid any memory usage growth due to slightly less clever / dense allocation when dealing with >1 MMO. This did require several ergonomic improvements to the `PointerSumType` to reasonably support the various usage models. This also has a side effect of freeing up 8 bits within the `MachineInstr` which could be repurposed for something else. The suggested direction here came largely from Hal Finkel. I hope it was worth it. ;] It does hopefully clear a path for subsequent extensions w/o nearly as much leg work. Lots of thanks to Reid and Justin for careful reviews and ideas about how to do all of this. Differential Revision: https://reviews.llvm.org/D50701 llvm-svn: 339940
2018-08-17 05:30:05 +08:00
MIB.setMemRefs({MemRef});
}
bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op,
MachineIRBuilder &MIRBuilder) {
ArrayRef<unsigned> ResRegs = getOrCreateVRegs(CI);
MIRBuilder.buildInstr(Op)
.addDef(ResRegs[0])
.addDef(ResRegs[1])
.addUse(getOrCreateVReg(*CI.getOperand(0)))
.addUse(getOrCreateVReg(*CI.getOperand(1)));
return true;
}
unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) {
switch (ID) {
default:
break;
case Intrinsic::bswap:
return TargetOpcode::G_BSWAP;
case Intrinsic::ceil:
return TargetOpcode::G_FCEIL;
case Intrinsic::cos:
return TargetOpcode::G_FCOS;
case Intrinsic::ctpop:
return TargetOpcode::G_CTPOP;
case Intrinsic::exp:
return TargetOpcode::G_FEXP;
case Intrinsic::exp2:
return TargetOpcode::G_FEXP2;
case Intrinsic::fabs:
return TargetOpcode::G_FABS;
case Intrinsic::copysign:
return TargetOpcode::G_FCOPYSIGN;
case Intrinsic::canonicalize:
return TargetOpcode::G_FCANONICALIZE;
case Intrinsic::floor:
return TargetOpcode::G_FFLOOR;
case Intrinsic::fma:
return TargetOpcode::G_FMA;
case Intrinsic::log:
return TargetOpcode::G_FLOG;
case Intrinsic::log2:
return TargetOpcode::G_FLOG2;
case Intrinsic::log10:
return TargetOpcode::G_FLOG10;
case Intrinsic::nearbyint:
return TargetOpcode::G_FNEARBYINT;
case Intrinsic::pow:
return TargetOpcode::G_FPOW;
case Intrinsic::rint:
return TargetOpcode::G_FRINT;
case Intrinsic::round:
return TargetOpcode::G_INTRINSIC_ROUND;
case Intrinsic::sin:
return TargetOpcode::G_FSIN;
case Intrinsic::sqrt:
return TargetOpcode::G_FSQRT;
case Intrinsic::trunc:
return TargetOpcode::G_INTRINSIC_TRUNC;
}
return Intrinsic::not_intrinsic;
}
bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI,
Intrinsic::ID ID,
MachineIRBuilder &MIRBuilder) {
unsigned Op = getSimpleIntrinsicOpcode(ID);
// Is this a simple intrinsic?
if (Op == Intrinsic::not_intrinsic)
return false;
// Yes. Let's translate it.
SmallVector<llvm::SrcOp, 4> VRegs;
for (auto &Arg : CI.arg_operands())
VRegs.push_back(getOrCreateVReg(*Arg));
MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs,
MachineInstr::copyFlagsFromInstruction(CI));
return true;
}
bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID,
MachineIRBuilder &MIRBuilder) {
// If this is a simple intrinsic (that is, we just need to add a def of
// a vreg, and uses for each arg operand, then translate it.
if (translateSimpleIntrinsic(CI, ID, MIRBuilder))
return true;
switch (ID) {
default:
break;
case Intrinsic::lifetime_start:
case Intrinsic::lifetime_end: {
// No stack colouring in O0, discard region information.
if (MF->getTarget().getOptLevel() == CodeGenOpt::None)
return true;
unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START
: TargetOpcode::LIFETIME_END;
// Get the underlying objects for the location passed on the lifetime
// marker.
SmallVector<const Value *, 4> Allocas;
GetUnderlyingObjects(CI.getArgOperand(1), Allocas, *DL);
// Iterate over each underlying object, creating lifetime markers for each
// static alloca. Quit if we find a non-static alloca.
for (const Value *V : Allocas) {
const AllocaInst *AI = dyn_cast<AllocaInst>(V);
if (!AI)
continue;
if (!AI->isStaticAlloca())
return true;
MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI));
}
return true;
}
case Intrinsic::dbg_declare: {
const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI);
assert(DI.getVariable() && "Missing variable");
const Value *Address = DI.getAddress();
if (!Address || isa<UndefValue>(Address)) {
LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
return true;
}
assert(DI.getVariable()->isValidLocationForIntrinsic(
MIRBuilder.getDebugLoc()) &&
"Expected inlined-at fields to agree");
auto AI = dyn_cast<AllocaInst>(Address);
if (AI && AI->isStaticAlloca()) {
// Static allocas are tracked at the MF level, no need for DBG_VALUE
// instructions (in fact, they get ignored if they *do* exist).
MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(),
getOrCreateFrameIndex(*AI), DI.getDebugLoc());
} else {
// A dbg.declare describes the address of a source variable, so lower it
// into an indirect DBG_VALUE.
MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address),
DI.getVariable(), DI.getExpression());
}
return true;
}
case Intrinsic::dbg_label: {
const DbgLabelInst &DI = cast<DbgLabelInst>(CI);
assert(DI.getLabel() && "Missing label");
assert(DI.getLabel()->isValidLocationForIntrinsic(
MIRBuilder.getDebugLoc()) &&
"Expected inlined-at fields to agree");
MIRBuilder.buildDbgLabel(DI.getLabel());
return true;
}
case Intrinsic::vaend:
// No target I know of cares about va_end. Certainly no in-tree target
// does. Simplest intrinsic ever!
return true;
case Intrinsic::vastart: {
auto &TLI = *MF->getSubtarget().getTargetLowering();
Value *Ptr = CI.getArgOperand(0);
unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8;
// FIXME: Get alignment
MIRBuilder.buildInstr(TargetOpcode::G_VASTART)
.addUse(getOrCreateVReg(*Ptr))
.addMemOperand(MF->getMachineMemOperand(
MachinePointerInfo(Ptr), MachineMemOperand::MOStore, ListSize, 1));
return true;
}
case Intrinsic::dbg_value: {
// This form of DBG_VALUE is target-independent.
const DbgValueInst &DI = cast<DbgValueInst>(CI);
const Value *V = DI.getValue();
assert(DI.getVariable()->isValidLocationForIntrinsic(
MIRBuilder.getDebugLoc()) &&
"Expected inlined-at fields to agree");
if (!V) {
// Currently the optimizer can produce this; insert an undef to
// help debugging. Probably the optimizer should not do this.
MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression());
} else if (const auto *CI = dyn_cast<Constant>(V)) {
MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression());
} else {
unsigned Reg = getOrCreateVReg(*V);
// FIXME: This does not handle register-indirect values at offset 0. The
// direct/indirect thing shouldn't really be handled by something as
// implicit as reg+noreg vs reg+imm in the first palce, but it seems
// pretty baked in right now.
MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression());
}
return true;
}
case Intrinsic::uadd_with_overflow:
return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder);
case Intrinsic::sadd_with_overflow:
return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder);
case Intrinsic::usub_with_overflow:
return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder);
case Intrinsic::ssub_with_overflow:
return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder);
case Intrinsic::umul_with_overflow:
return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder);
case Intrinsic::smul_with_overflow:
return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder);
case Intrinsic::fmuladd: {
const TargetMachine &TM = MF->getTarget();
const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
unsigned Dst = getOrCreateVReg(CI);
unsigned Op0 = getOrCreateVReg(*CI.getArgOperand(0));
unsigned Op1 = getOrCreateVReg(*CI.getArgOperand(1));
unsigned Op2 = getOrCreateVReg(*CI.getArgOperand(2));
if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
TLI.isFMAFasterThanFMulAndFAdd(TLI.getValueType(*DL, CI.getType()))) {
// TODO: Revisit this to see if we should move this part of the
// lowering to the combiner.
MIRBuilder.buildInstr(TargetOpcode::G_FMA, {Dst}, {Op0, Op1, Op2},
MachineInstr::copyFlagsFromInstruction(CI));
} else {
LLT Ty = getLLTForType(*CI.getType(), *DL);
auto FMul = MIRBuilder.buildInstr(TargetOpcode::G_FMUL, {Ty}, {Op0, Op1},
MachineInstr::copyFlagsFromInstruction(CI));
MIRBuilder.buildInstr(TargetOpcode::G_FADD, {Dst}, {FMul, Op2},
MachineInstr::copyFlagsFromInstruction(CI));
}
return true;
}
case Intrinsic::memcpy:
case Intrinsic::memmove:
case Intrinsic::memset:
return translateMemfunc(CI, MIRBuilder, ID);
case Intrinsic::eh_typeid_for: {
GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0));
unsigned Reg = getOrCreateVReg(CI);
unsigned TypeID = MF->getTypeIDFor(GV);
MIRBuilder.buildConstant(Reg, TypeID);
return true;
}
case Intrinsic::objectsize: {
// If we don't know by now, we're never going to know.
const ConstantInt *Min = cast<ConstantInt>(CI.getArgOperand(1));
MIRBuilder.buildConstant(getOrCreateVReg(CI), Min->isZero() ? -1ULL : 0);
return true;
}
case Intrinsic::is_constant:
// If this wasn't constant-folded away by now, then it's not a
// constant.
MIRBuilder.buildConstant(getOrCreateVReg(CI), 0);
return true;
case Intrinsic::stackguard:
getStackGuard(getOrCreateVReg(CI), MIRBuilder);
return true;
case Intrinsic::stackprotector: {
LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
unsigned GuardVal = MRI->createGenericVirtualRegister(PtrTy);
getStackGuard(GuardVal, MIRBuilder);
AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1));
int FI = getOrCreateFrameIndex(*Slot);
MF->getFrameInfo().setStackProtectorIndex(FI);
MIRBuilder.buildStore(
GuardVal, getOrCreateVReg(*Slot),
*MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
MachineMemOperand::MOStore |
MachineMemOperand::MOVolatile,
PtrTy.getSizeInBits() / 8, 8));
return true;
}
case Intrinsic::stacksave: {
// Save the stack pointer to the location provided by the intrinsic.
unsigned Reg = getOrCreateVReg(CI);
unsigned StackPtr = MF->getSubtarget()
.getTargetLowering()
->getStackPointerRegisterToSaveRestore();
// If the target doesn't specify a stack pointer, then fall back.
if (!StackPtr)
return false;
MIRBuilder.buildCopy(Reg, StackPtr);
return true;
}
case Intrinsic::stackrestore: {
// Restore the stack pointer from the location provided by the intrinsic.
unsigned Reg = getOrCreateVReg(*CI.getArgOperand(0));
unsigned StackPtr = MF->getSubtarget()
.getTargetLowering()
->getStackPointerRegisterToSaveRestore();
// If the target doesn't specify a stack pointer, then fall back.
if (!StackPtr)
return false;
MIRBuilder.buildCopy(StackPtr, Reg);
return true;
}
case Intrinsic::cttz:
case Intrinsic::ctlz: {
ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1));
bool isTrailing = ID == Intrinsic::cttz;
unsigned Opcode = isTrailing
? Cst->isZero() ? TargetOpcode::G_CTTZ
: TargetOpcode::G_CTTZ_ZERO_UNDEF
: Cst->isZero() ? TargetOpcode::G_CTLZ
: TargetOpcode::G_CTLZ_ZERO_UNDEF;
MIRBuilder.buildInstr(Opcode)
.addDef(getOrCreateVReg(CI))
.addUse(getOrCreateVReg(*CI.getArgOperand(0)));
return true;
}
case Intrinsic::invariant_start: {
LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
unsigned Undef = MRI->createGenericVirtualRegister(PtrTy);
MIRBuilder.buildUndef(Undef);
return true;
}
case Intrinsic::invariant_end:
return true;
case Intrinsic::assume:
case Intrinsic::var_annotation:
case Intrinsic::sideeffect:
// Discard annotate attributes, assumptions, and artificial side-effects.
return true;
}
return false;
}
bool IRTranslator::translateInlineAsm(const CallInst &CI,
MachineIRBuilder &MIRBuilder) {
const InlineAsm &IA = cast<InlineAsm>(*CI.getCalledValue());
if (!IA.getConstraintString().empty())
return false;
unsigned ExtraInfo = 0;
if (IA.hasSideEffects())
ExtraInfo |= InlineAsm::Extra_HasSideEffects;
if (IA.getDialect() == InlineAsm::AD_Intel)
ExtraInfo |= InlineAsm::Extra_AsmDialect;
MIRBuilder.buildInstr(TargetOpcode::INLINEASM)
.addExternalSymbol(IA.getAsmString().c_str())
.addImm(ExtraInfo);
return true;
}
unsigned IRTranslator::packRegs(const Value &V,
MachineIRBuilder &MIRBuilder) {
ArrayRef<unsigned> Regs = getOrCreateVRegs(V);
ArrayRef<uint64_t> Offsets = *VMap.getOffsets(V);
LLT BigTy = getLLTForType(*V.getType(), *DL);
if (Regs.size() == 1)
return Regs[0];
unsigned Dst = MRI->createGenericVirtualRegister(BigTy);
MIRBuilder.buildUndef(Dst);
for (unsigned i = 0; i < Regs.size(); ++i) {
unsigned NewDst = MRI->createGenericVirtualRegister(BigTy);
MIRBuilder.buildInsert(NewDst, Dst, Regs[i], Offsets[i]);
Dst = NewDst;
}
return Dst;
}
void IRTranslator::unpackRegs(const Value &V, unsigned Src,
MachineIRBuilder &MIRBuilder) {
ArrayRef<unsigned> Regs = getOrCreateVRegs(V);
ArrayRef<uint64_t> Offsets = *VMap.getOffsets(V);
for (unsigned i = 0; i < Regs.size(); ++i)
MIRBuilder.buildExtract(Regs[i], Src, Offsets[i]);
}
bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) {
const CallInst &CI = cast<CallInst>(U);
auto TII = MF->getTarget().getIntrinsicInfo();
const Function *F = CI.getCalledFunction();
// FIXME: support Windows dllimport function calls.
if (F && F->hasDLLImportStorageClass())
return false;
if (CI.isInlineAsm())
return translateInlineAsm(CI, MIRBuilder);
Intrinsic::ID ID = Intrinsic::not_intrinsic;
if (F && F->isIntrinsic()) {
ID = F->getIntrinsicID();
if (TII && ID == Intrinsic::not_intrinsic)
ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F));
}
if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic) {
bool IsSplitType = valueIsSplit(CI);
unsigned Res = IsSplitType ? MRI->createGenericVirtualRegister(
getLLTForType(*CI.getType(), *DL))
: getOrCreateVReg(CI);
SmallVector<unsigned, 8> Args;
unsigned SwiftErrorVReg = 0;
for (auto &Arg: CI.arg_operands()) {
if (CLI->supportSwiftError() && isSwiftError(Arg)) {
LLT Ty = getLLTForType(*Arg->getType(), *DL);
unsigned InVReg = MRI->createGenericVirtualRegister(Ty);
MIRBuilder.buildCopy(InVReg, SwiftError.getOrCreateVRegUseAt(
&CI, &MIRBuilder.getMBB(), Arg));
Args.push_back(InVReg);
SwiftErrorVReg =
SwiftError.getOrCreateVRegDefAt(&CI, &MIRBuilder.getMBB(), Arg);
continue;
}
Args.push_back(packRegs(*Arg, MIRBuilder));
}
MF->getFrameInfo().setHasCalls(true);
bool Success =
CLI->lowerCall(MIRBuilder, &CI, Res, Args, SwiftErrorVReg,
[&]() { return getOrCreateVReg(*CI.getCalledValue()); });
if (IsSplitType)
unpackRegs(CI, Res, MIRBuilder);
return Success;
}
assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic");
if (translateKnownIntrinsic(CI, ID, MIRBuilder))
return true;
ArrayRef<unsigned> ResultRegs;
if (!CI.getType()->isVoidTy())
ResultRegs = getOrCreateVRegs(CI);
// Ignore the callsite attributes. Backend code is most likely not expecting
// an intrinsic to sometimes have side effects and sometimes not.
MachineInstrBuilder MIB =
MIRBuilder.buildIntrinsic(ID, ResultRegs, !F->doesNotAccessMemory());
if (isa<FPMathOperator>(CI))
MIB->copyIRFlags(CI);
for (auto &Arg : CI.arg_operands()) {
// Some intrinsics take metadata parameters. Reject them.
if (isa<MetadataAsValue>(Arg))
return false;
MIB.addUse(packRegs(*Arg, MIRBuilder));
}
// Add a MachineMemOperand if it is a target mem intrinsic.
const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
TargetLowering::IntrinsicInfo Info;
// TODO: Add a GlobalISel version of getTgtMemIntrinsic.
if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) {
unsigned Align = Info.align;
if (Align == 0)
Align = DL->getABITypeAlignment(Info.memVT.getTypeForEVT(F->getContext()));
uint64_t Size = Info.memVT.getStoreSize();
MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal),
Info.flags, Size, Align));
}
return true;
}
bool IRTranslator::translateInvoke(const User &U,
MachineIRBuilder &MIRBuilder) {
const InvokeInst &I = cast<InvokeInst>(U);
MCContext &Context = MF->getContext();
const BasicBlock *ReturnBB = I.getSuccessor(0);
const BasicBlock *EHPadBB = I.getSuccessor(1);
const Value *Callee = I.getCalledValue();
const Function *Fn = dyn_cast<Function>(Callee);
if (isa<InlineAsm>(Callee))
return false;
// FIXME: support invoking patchpoint and statepoint intrinsics.
if (Fn && Fn->isIntrinsic())
return false;
// FIXME: support whatever these are.
if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
return false;
// FIXME: support Windows exception handling.
if (!isa<LandingPadInst>(EHPadBB->front()))
return false;
// Emit the actual call, bracketed by EH_LABELs so that the MF knows about
// the region covered by the try.
MCSymbol *BeginSymbol = Context.createTempSymbol();
MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol);
unsigned Res = 0;
if (!I.getType()->isVoidTy())
Res = MRI->createGenericVirtualRegister(getLLTForType(*I.getType(), *DL));
SmallVector<unsigned, 8> Args;
unsigned SwiftErrorVReg = 0;
for (auto &Arg : I.arg_operands()) {
if (CLI->supportSwiftError() && isSwiftError(Arg)) {
LLT Ty = getLLTForType(*Arg->getType(), *DL);
unsigned InVReg = MRI->createGenericVirtualRegister(Ty);
MIRBuilder.buildCopy(InVReg, SwiftError.getOrCreateVRegUseAt(
&I, &MIRBuilder.getMBB(), Arg));
Args.push_back(InVReg);
SwiftErrorVReg =
SwiftError.getOrCreateVRegDefAt(&I, &MIRBuilder.getMBB(), Arg);
continue;
}
Args.push_back(packRegs(*Arg, MIRBuilder));
}
if (!CLI->lowerCall(MIRBuilder, &I, Res, Args, SwiftErrorVReg,
[&]() { return getOrCreateVReg(*I.getCalledValue()); }))
return false;
unpackRegs(I, Res, MIRBuilder);
MCSymbol *EndSymbol = Context.createTempSymbol();
MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol);
// FIXME: track probabilities.
MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB),
&ReturnMBB = getMBB(*ReturnBB);
MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol);
MIRBuilder.getMBB().addSuccessor(&ReturnMBB);
MIRBuilder.getMBB().addSuccessor(&EHPadMBB);
MIRBuilder.buildBr(ReturnMBB);
return true;
}
bool IRTranslator::translateCallBr(const User &U,
MachineIRBuilder &MIRBuilder) {
// FIXME: Implement this.
return false;
}
bool IRTranslator::translateLandingPad(const User &U,
MachineIRBuilder &MIRBuilder) {
const LandingPadInst &LP = cast<LandingPadInst>(U);
MachineBasicBlock &MBB = MIRBuilder.getMBB();
MBB.setIsEHPad();
// If there aren't registers to copy the values into (e.g., during SjLj
// exceptions), then don't bother.
auto &TLI = *MF->getSubtarget().getTargetLowering();
const Constant *PersonalityFn = MF->getFunction().getPersonalityFn();
if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
return true;
// If landingpad's return type is token type, we don't create DAG nodes
// for its exception pointer and selector value. The extraction of exception
// pointer or selector value from token type landingpads is not currently
// supported.
if (LP.getType()->isTokenTy())
return true;
// Add a label to mark the beginning of the landing pad. Deletion of the
// landing pad can thus be detected via the MachineModuleInfo.
MIRBuilder.buildInstr(TargetOpcode::EH_LABEL)
.addSym(MF->addLandingPad(&MBB));
LLT Ty = getLLTForType(*LP.getType(), *DL);
unsigned Undef = MRI->createGenericVirtualRegister(Ty);
MIRBuilder.buildUndef(Undef);
SmallVector<LLT, 2> Tys;
for (Type *Ty : cast<StructType>(LP.getType())->elements())
Tys.push_back(getLLTForType(*Ty, *DL));
assert(Tys.size() == 2 && "Only two-valued landingpads are supported");
// Mark exception register as live in.
unsigned ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn);
if (!ExceptionReg)
return false;
MBB.addLiveIn(ExceptionReg);
ArrayRef<unsigned> ResRegs = getOrCreateVRegs(LP);
MIRBuilder.buildCopy(ResRegs[0], ExceptionReg);
unsigned SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn);
if (!SelectorReg)
return false;
MBB.addLiveIn(SelectorReg);
unsigned PtrVReg = MRI->createGenericVirtualRegister(Tys[0]);
MIRBuilder.buildCopy(PtrVReg, SelectorReg);
MIRBuilder.buildCast(ResRegs[1], PtrVReg);
return true;
}
bool IRTranslator::translateAlloca(const User &U,
MachineIRBuilder &MIRBuilder) {
auto &AI = cast<AllocaInst>(U);
if (AI.isSwiftError())
return true;
if (AI.isStaticAlloca()) {
unsigned Res = getOrCreateVReg(AI);
int FI = getOrCreateFrameIndex(AI);
MIRBuilder.buildFrameIndex(Res, FI);
return true;
}
// FIXME: support stack probing for Windows.
if (MF->getTarget().getTargetTriple().isOSWindows())
return false;
// Now we're in the harder dynamic case.
Type *Ty = AI.getAllocatedType();
unsigned Align =
std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI.getAlignment());
unsigned NumElts = getOrCreateVReg(*AI.getArraySize());
Type *IntPtrIRTy = DL->getIntPtrType(AI.getType());
LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL);
if (MRI->getType(NumElts) != IntPtrTy) {
unsigned ExtElts = MRI->createGenericVirtualRegister(IntPtrTy);
MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts);
NumElts = ExtElts;
}
unsigned AllocSize = MRI->createGenericVirtualRegister(IntPtrTy);
unsigned TySize =
getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, -DL->getTypeAllocSize(Ty)));
MIRBuilder.buildMul(AllocSize, NumElts, TySize);
LLT PtrTy = getLLTForType(*AI.getType(), *DL);
auto &TLI = *MF->getSubtarget().getTargetLowering();
unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
unsigned SPTmp = MRI->createGenericVirtualRegister(PtrTy);
MIRBuilder.buildCopy(SPTmp, SPReg);
unsigned AllocTmp = MRI->createGenericVirtualRegister(PtrTy);
MIRBuilder.buildGEP(AllocTmp, SPTmp, AllocSize);
// Handle alignment. We have to realign if the allocation granule was smaller
// than stack alignment, or the specific alloca requires more than stack
// alignment.
unsigned StackAlign =
MF->getSubtarget().getFrameLowering()->getStackAlignment();
Align = std::max(Align, StackAlign);
if (Align > StackAlign || DL->getTypeAllocSize(Ty) % StackAlign != 0) {
// Round the size of the allocation up to the stack alignment size
// by add SA-1 to the size. This doesn't overflow because we're computing
// an address inside an alloca.
unsigned AlignedAlloc = MRI->createGenericVirtualRegister(PtrTy);
MIRBuilder.buildPtrMask(AlignedAlloc, AllocTmp, Log2_32(Align));
AllocTmp = AlignedAlloc;
}
MIRBuilder.buildCopy(SPReg, AllocTmp);
MIRBuilder.buildCopy(getOrCreateVReg(AI), AllocTmp);
MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, &AI);
assert(MF->getFrameInfo().hasVarSizedObjects());
return true;
}
bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) {
// FIXME: We may need more info about the type. Because of how LLT works,
// we're completely discarding the i64/double distinction here (amongst
// others). Fortunately the ABIs I know of where that matters don't use va_arg
// anyway but that's not guaranteed.
MIRBuilder.buildInstr(TargetOpcode::G_VAARG)
.addDef(getOrCreateVReg(U))
.addUse(getOrCreateVReg(*U.getOperand(0)))
.addImm(DL->getABITypeAlignment(U.getType()));
return true;
}
bool IRTranslator::translateInsertElement(const User &U,
MachineIRBuilder &MIRBuilder) {
// If it is a <1 x Ty> vector, use the scalar as it is
// not a legal vector type in LLT.
if (U.getType()->getVectorNumElements() == 1) {
unsigned Elt = getOrCreateVReg(*U.getOperand(1));
auto &Regs = *VMap.getVRegs(U);
if (Regs.empty()) {
Regs.push_back(Elt);
VMap.getOffsets(U)->push_back(0);
} else {
MIRBuilder.buildCopy(Regs[0], Elt);
}
return true;
}
unsigned Res = getOrCreateVReg(U);
unsigned Val = getOrCreateVReg(*U.getOperand(0));
unsigned Elt = getOrCreateVReg(*U.getOperand(1));
unsigned Idx = getOrCreateVReg(*U.getOperand(2));
MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx);
return true;
}
bool IRTranslator::translateExtractElement(const User &U,
MachineIRBuilder &MIRBuilder) {
// If it is a <1 x Ty> vector, use the scalar as it is
// not a legal vector type in LLT.
if (U.getOperand(0)->getType()->getVectorNumElements() == 1) {
unsigned Elt = getOrCreateVReg(*U.getOperand(0));
auto &Regs = *VMap.getVRegs(U);
if (Regs.empty()) {
Regs.push_back(Elt);
VMap.getOffsets(U)->push_back(0);
} else {
MIRBuilder.buildCopy(Regs[0], Elt);
}
return true;
}
unsigned Res = getOrCreateVReg(U);
unsigned Val = getOrCreateVReg(*U.getOperand(0));
const auto &TLI = *MF->getSubtarget().getTargetLowering();
unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits();
unsigned Idx = 0;
if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) {
if (CI->getBitWidth() != PreferredVecIdxWidth) {
APInt NewIdx = CI->getValue().sextOrTrunc(PreferredVecIdxWidth);
auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx);
Idx = getOrCreateVReg(*NewIdxCI);
}
}
if (!Idx)
Idx = getOrCreateVReg(*U.getOperand(1));
if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) {
const LLT &VecIdxTy = LLT::scalar(PreferredVecIdxWidth);
Idx = MIRBuilder.buildSExtOrTrunc(VecIdxTy, Idx)->getOperand(0).getReg();
}
MIRBuilder.buildExtractVectorElement(Res, Val, Idx);
return true;
}
bool IRTranslator::translateShuffleVector(const User &U,
MachineIRBuilder &MIRBuilder) {
MIRBuilder.buildInstr(TargetOpcode::G_SHUFFLE_VECTOR)
.addDef(getOrCreateVReg(U))
.addUse(getOrCreateVReg(*U.getOperand(0)))
.addUse(getOrCreateVReg(*U.getOperand(1)))
.addUse(getOrCreateVReg(*U.getOperand(2)));
return true;
}
bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) {
const PHINode &PI = cast<PHINode>(U);
SmallVector<MachineInstr *, 4> Insts;
for (auto Reg : getOrCreateVRegs(PI)) {
[GISel]: Refactor MachineIRBuilder to allow passing additional parameters to build Instrs https://reviews.llvm.org/D55294 Previously MachineIRBuilder::buildInstr used to accept variadic arguments for sources (which were either unsigned or MachineInstrBuilder). While this worked well in common cases, it doesn't allow us to build instructions that have multiple destinations. Additionally passing in other optional parameters in the end (such as flags) is not possible trivially. Also a trivial call such as B.buildInstr(Opc, Reg1, Reg2, Reg3) can be interpreted differently based on the opcode (2defs + 1 src for unmerge vs 1 def + 2srcs). This patch refactors the buildInstr to buildInstr(Opc, ArrayRef<DstOps>, ArrayRef<SrcOps>) where DstOps and SrcOps are typed unions that know how to add itself to MachineInstrBuilder. After this patch, most invocations would look like B.buildInstr(Opc, {s32, DstReg}, {SrcRegs..., SrcMIBs..}); Now all the other calls (such as buildAdd, buildSub etc) forward to buildInstr. It also makes it possible to build instructions with multiple defs. Additionally in a subsequent patch, we should make it possible to add flags directly while building instructions. Additionally, the main buildInstr method is now virtual and other builders now only have to override buildInstr (for say constant folding/cseing) is straightforward. Also attached here (https://reviews.llvm.org/F7675680) is a clang-tidy patch that should upgrade the API calls if necessary. llvm-svn: 348815
2018-12-11 08:48:50 +08:00
auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {});
Insts.push_back(MIB.getInstr());
}
PendingPHIs.emplace_back(&PI, std::move(Insts));
return true;
}
bool IRTranslator::translateAtomicCmpXchg(const User &U,
MachineIRBuilder &MIRBuilder) {
const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U);
if (I.isWeak())
return false;
auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile
: MachineMemOperand::MONone;
Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
Type *ResType = I.getType();
Type *ValType = ResType->Type::getStructElementType(0);
auto Res = getOrCreateVRegs(I);
unsigned OldValRes = Res[0];
unsigned SuccessRes = Res[1];
unsigned Addr = getOrCreateVReg(*I.getPointerOperand());
unsigned Cmp = getOrCreateVReg(*I.getCompareOperand());
unsigned NewVal = getOrCreateVReg(*I.getNewValOperand());
MIRBuilder.buildAtomicCmpXchgWithSuccess(
OldValRes, SuccessRes, Addr, Cmp, NewVal,
*MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
Flags, DL->getTypeStoreSize(ValType),
getMemOpAlignment(I), AAMDNodes(), nullptr,
I.getSyncScopeID(), I.getSuccessOrdering(),
I.getFailureOrdering()));
return true;
}
bool IRTranslator::translateAtomicRMW(const User &U,
MachineIRBuilder &MIRBuilder) {
const AtomicRMWInst &I = cast<AtomicRMWInst>(U);
auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile
: MachineMemOperand::MONone;
Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
Type *ResType = I.getType();
unsigned Res = getOrCreateVReg(I);
unsigned Addr = getOrCreateVReg(*I.getPointerOperand());
unsigned Val = getOrCreateVReg(*I.getValOperand());
unsigned Opcode = 0;
switch (I.getOperation()) {
default:
llvm_unreachable("Unknown atomicrmw op");
return false;
case AtomicRMWInst::Xchg:
Opcode = TargetOpcode::G_ATOMICRMW_XCHG;
break;
case AtomicRMWInst::Add:
Opcode = TargetOpcode::G_ATOMICRMW_ADD;
break;
case AtomicRMWInst::Sub:
Opcode = TargetOpcode::G_ATOMICRMW_SUB;
break;
case AtomicRMWInst::And:
Opcode = TargetOpcode::G_ATOMICRMW_AND;
break;
case AtomicRMWInst::Nand:
Opcode = TargetOpcode::G_ATOMICRMW_NAND;
break;
case AtomicRMWInst::Or:
Opcode = TargetOpcode::G_ATOMICRMW_OR;
break;
case AtomicRMWInst::Xor:
Opcode = TargetOpcode::G_ATOMICRMW_XOR;
break;
case AtomicRMWInst::Max:
Opcode = TargetOpcode::G_ATOMICRMW_MAX;
break;
case AtomicRMWInst::Min:
Opcode = TargetOpcode::G_ATOMICRMW_MIN;
break;
case AtomicRMWInst::UMax:
Opcode = TargetOpcode::G_ATOMICRMW_UMAX;
break;
case AtomicRMWInst::UMin:
Opcode = TargetOpcode::G_ATOMICRMW_UMIN;
break;
}
MIRBuilder.buildAtomicRMW(
Opcode, Res, Addr, Val,
*MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
Flags, DL->getTypeStoreSize(ResType),
getMemOpAlignment(I), AAMDNodes(), nullptr,
I.getSyncScopeID(), I.getOrdering()));
return true;
}
void IRTranslator::finishPendingPhis() {
#ifndef NDEBUG
DILocationVerifier Verifier;
GISelObserverWrapper WrapperObserver(&Verifier);
RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
#endif // ifndef NDEBUG
for (auto &Phi : PendingPHIs) {
const PHINode *PI = Phi.first;
ArrayRef<MachineInstr *> ComponentPHIs = Phi.second;
EntryBuilder->setDebugLoc(PI->getDebugLoc());
#ifndef NDEBUG
Verifier.setCurrentInst(PI);
#endif // ifndef NDEBUG
// All MachineBasicBlocks exist, add them to the PHI. We assume IRTranslator
// won't create extra control flow here, otherwise we need to find the
// dominating predecessor here (or perhaps force the weirder IRTranslators
// to provide a simple boundary).
SmallSet<const BasicBlock *, 4> HandledPreds;
for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) {
auto IRPred = PI->getIncomingBlock(i);
if (HandledPreds.count(IRPred))
continue;
HandledPreds.insert(IRPred);
ArrayRef<unsigned> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i));
for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) {
assert(Pred->isSuccessor(ComponentPHIs[0]->getParent()) &&
"incorrect CFG at MachineBasicBlock level");
for (unsigned j = 0; j < ValRegs.size(); ++j) {
MachineInstrBuilder MIB(*MF, ComponentPHIs[j]);
MIB.addUse(ValRegs[j]);
MIB.addMBB(Pred);
}
}
}
}
}
bool IRTranslator::valueIsSplit(const Value &V,
SmallVectorImpl<uint64_t> *Offsets) {
SmallVector<LLT, 4> SplitTys;
if (Offsets && !Offsets->empty())
Offsets->clear();
computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets);
return SplitTys.size() > 1;
}
bool IRTranslator::translate(const Instruction &Inst) {
CurBuilder->setDebugLoc(Inst.getDebugLoc());
// We only emit constants into the entry block from here. To prevent jumpy
// debug behaviour set the line to 0.
if (const DebugLoc &DL = Inst.getDebugLoc())
EntryBuilder->setDebugLoc(
DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt()));
else
EntryBuilder->setDebugLoc(DebugLoc());
switch (Inst.getOpcode()) {
#define HANDLE_INST(NUM, OPCODE, CLASS) \
case Instruction::OPCODE: \
return translate##OPCODE(Inst, *CurBuilder.get());
#include "llvm/IR/Instruction.def"
default:
return false;
}
}
bool IRTranslator::translate(const Constant &C, unsigned Reg) {
if (auto CI = dyn_cast<ConstantInt>(&C))
EntryBuilder->buildConstant(Reg, *CI);
else if (auto CF = dyn_cast<ConstantFP>(&C))
EntryBuilder->buildFConstant(Reg, *CF);
else if (isa<UndefValue>(C))
EntryBuilder->buildUndef(Reg);
else if (isa<ConstantPointerNull>(C)) {
// As we are trying to build a constant val of 0 into a pointer,
// insert a cast to make them correct with respect to types.
unsigned NullSize = DL->getTypeSizeInBits(C.getType());
auto *ZeroTy = Type::getIntNTy(C.getContext(), NullSize);
auto *ZeroVal = ConstantInt::get(ZeroTy, 0);
unsigned ZeroReg = getOrCreateVReg(*ZeroVal);
EntryBuilder->buildCast(Reg, ZeroReg);
} else if (auto GV = dyn_cast<GlobalValue>(&C))
EntryBuilder->buildGlobalValue(Reg, GV);
else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) {
if (!CAZ->getType()->isVectorTy())
return false;
// Return the scalar if it is a <1 x Ty> vector.
if (CAZ->getNumElements() == 1)
return translate(*CAZ->getElementValue(0u), Reg);
SmallVector<unsigned, 4> Ops;
for (unsigned i = 0; i < CAZ->getNumElements(); ++i) {
Constant &Elt = *CAZ->getElementValue(i);
Ops.push_back(getOrCreateVReg(Elt));
}
EntryBuilder->buildBuildVector(Reg, Ops);
} else if (auto CV = dyn_cast<ConstantDataVector>(&C)) {
// Return the scalar if it is a <1 x Ty> vector.
if (CV->getNumElements() == 1)
return translate(*CV->getElementAsConstant(0), Reg);
SmallVector<unsigned, 4> Ops;
for (unsigned i = 0; i < CV->getNumElements(); ++i) {
Constant &Elt = *CV->getElementAsConstant(i);
Ops.push_back(getOrCreateVReg(Elt));
}
EntryBuilder->buildBuildVector(Reg, Ops);
} else if (auto CE = dyn_cast<ConstantExpr>(&C)) {
switch(CE->getOpcode()) {
#define HANDLE_INST(NUM, OPCODE, CLASS) \
case Instruction::OPCODE: \
return translate##OPCODE(*CE, *EntryBuilder.get());
#include "llvm/IR/Instruction.def"
default:
return false;
}
} else if (auto CV = dyn_cast<ConstantVector>(&C)) {
if (CV->getNumOperands() == 1)
return translate(*CV->getOperand(0), Reg);
SmallVector<unsigned, 4> Ops;
for (unsigned i = 0; i < CV->getNumOperands(); ++i) {
Ops.push_back(getOrCreateVReg(*CV->getOperand(i)));
}
EntryBuilder->buildBuildVector(Reg, Ops);
} else if (auto *BA = dyn_cast<BlockAddress>(&C)) {
EntryBuilder->buildBlockAddress(Reg, BA);
} else
return false;
return true;
}
void IRTranslator::finalizeFunction() {
// Release the memory used by the different maps we
// needed during the translation.
PendingPHIs.clear();
VMap.reset();
FrameIndices.clear();
MachinePreds.clear();
// MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it
// to avoid accessing freed memory (in runOnMachineFunction) and to avoid
// destroying it twice (in ~IRTranslator() and ~LLVMContext())
EntryBuilder.reset();
CurBuilder.reset();
}
bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) {
MF = &CurMF;
const Function &F = MF->getFunction();
if (F.empty())
return false;
GISelCSEAnalysisWrapper &Wrapper =
getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper();
// Set the CSEConfig and run the analysis.
GISelCSEInfo *CSEInfo = nullptr;
TPC = &getAnalysis<TargetPassConfig>();
bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences()
? EnableCSEInIRTranslator
: TPC->isGISelCSEEnabled();
if (EnableCSE) {
EntryBuilder = make_unique<CSEMIRBuilder>(CurMF);
CSEInfo = &Wrapper.get(TPC->getCSEConfig());
EntryBuilder->setCSEInfo(CSEInfo);
CurBuilder = make_unique<CSEMIRBuilder>(CurMF);
CurBuilder->setCSEInfo(CSEInfo);
} else {
EntryBuilder = make_unique<MachineIRBuilder>();
CurBuilder = make_unique<MachineIRBuilder>();
}
CLI = MF->getSubtarget().getCallLowering();
CurBuilder->setMF(*MF);
EntryBuilder->setMF(*MF);
MRI = &MF->getRegInfo();
DL = &F.getParent()->getDataLayout();
ORE = llvm::make_unique<OptimizationRemarkEmitter>(&F);
assert(PendingPHIs.empty() && "stale PHIs");
if (!DL->isLittleEndian()) {
// Currently we don't properly handle big endian code.
OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
F.getSubprogram(), &F.getEntryBlock());
R << "unable to translate in big endian mode";
reportTranslationError(*MF, *TPC, *ORE, R);
}
// Release the per-function state when we return, whether we succeeded or not.
auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); });
// Setup a separate basic-block for the arguments and constants
MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock();
MF->push_back(EntryBB);
EntryBuilder->setMBB(*EntryBB);
DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc();
SwiftError.setFunction(CurMF);
SwiftError.createEntriesInEntryBlock(DbgLoc);
// Create all blocks, in IR order, to preserve the layout.
for (const BasicBlock &BB: F) {
auto *&MBB = BBToMBB[&BB];
MBB = MF->CreateMachineBasicBlock(&BB);
MF->push_back(MBB);
if (BB.hasAddressTaken())
MBB->setHasAddressTaken();
}
// Make our arguments/constants entry block fallthrough to the IR entry block.
EntryBB->addSuccessor(&getMBB(F.front()));
// Lower the actual args into this basic block.
SmallVector<unsigned, 8> VRegArgs;
for (const Argument &Arg: F.args()) {
if (DL->getTypeStoreSize(Arg.getType()) == 0)
continue; // Don't handle zero sized types.
VRegArgs.push_back(
MRI->createGenericVirtualRegister(getLLTForType(*Arg.getType(), *DL)));
if (Arg.hasSwiftErrorAttr())
SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(),
VRegArgs.back());
}
// We don't currently support translating swifterror or swiftself functions.
for (auto &Arg : F.args()) {
if (Arg.hasSwiftSelfAttr()) {
OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
F.getSubprogram(), &F.getEntryBlock());
R << "unable to lower arguments due to swiftself: "
<< ore::NV("Prototype", F.getType());
reportTranslationError(*MF, *TPC, *ORE, R);
return false;
}
}
if (!CLI->lowerFormalArguments(*EntryBuilder.get(), F, VRegArgs)) {
OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
F.getSubprogram(), &F.getEntryBlock());
R << "unable to lower arguments: " << ore::NV("Prototype", F.getType());
reportTranslationError(*MF, *TPC, *ORE, R);
return false;
}
auto ArgIt = F.arg_begin();
for (auto &VArg : VRegArgs) {
// If the argument is an unsplit scalar then don't use unpackRegs to avoid
// creating redundant copies.
if (!valueIsSplit(*ArgIt, VMap.getOffsets(*ArgIt))) {
auto &VRegs = *VMap.getVRegs(cast<Value>(*ArgIt));
assert(VRegs.empty() && "VRegs already populated?");
VRegs.push_back(VArg);
} else {
unpackRegs(*ArgIt, VArg, *EntryBuilder.get());
}
ArgIt++;
}
// Need to visit defs before uses when translating instructions.
GISelObserverWrapper WrapperObserver;
if (EnableCSE && CSEInfo)
WrapperObserver.addObserver(CSEInfo);
{
ReversePostOrderTraversal<const Function *> RPOT(&F);
#ifndef NDEBUG
DILocationVerifier Verifier;
WrapperObserver.addObserver(&Verifier);
#endif // ifndef NDEBUG
RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
for (const BasicBlock *BB : RPOT) {
MachineBasicBlock &MBB = getMBB(*BB);
// Set the insertion point of all the following translations to
// the end of this basic block.
CurBuilder->setMBB(MBB);
for (const Instruction &Inst : *BB) {
#ifndef NDEBUG
Verifier.setCurrentInst(&Inst);
#endif // ifndef NDEBUG
if (translate(Inst))
continue;
OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
Inst.getDebugLoc(), BB);
R << "unable to translate instruction: " << ore::NV("Opcode", &Inst);
if (ORE->allowExtraAnalysis("gisel-irtranslator")) {
std::string InstStrStorage;
raw_string_ostream InstStr(InstStrStorage);
InstStr << Inst;
R << ": '" << InstStr.str() << "'";
}
reportTranslationError(*MF, *TPC, *ORE, R);
return false;
}
}
#ifndef NDEBUG
WrapperObserver.removeObserver(&Verifier);
#endif
}
finishPendingPhis();
SwiftError.propagateVRegs();
// Merge the argument lowering and constants block with its single
// successor, the LLVM-IR entry block. We want the basic block to
// be maximal.
assert(EntryBB->succ_size() == 1 &&
"Custom BB used for lowering should have only one successor");
// Get the successor of the current entry block.
MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin();
assert(NewEntryBB.pred_size() == 1 &&
"LLVM-IR entry block has a predecessor!?");
// Move all the instruction from the current entry block to the
// new entry block.
NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(),
EntryBB->end());
// Update the live-in information for the new entry block.
for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins())
NewEntryBB.addLiveIn(LiveIn);
NewEntryBB.sortUniqueLiveIns();
// Get rid of the now empty basic block.
EntryBB->removeSuccessor(&NewEntryBB);
MF->remove(EntryBB);
MF->DeleteMachineBasicBlock(EntryBB);
assert(&MF->front() == &NewEntryBB &&
"New entry wasn't next in the list of basic block!");
// Initialize stack protector information.
StackProtector &SP = getAnalysis<StackProtector>();
SP.copyToMachineFrameInfo(MF->getFrameInfo());
return false;
}